
Distributed Match-Making for Processes in Computer Networks*
Preliminary Version

Sape j . Mullender
Paul M.B. Vitdnyi

CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

ABSTRACT

In the very large multiprocessor systems and, on a g a n d e r scale, computer networks now emerging, processes
are not tied to fixed processors but run on processors taken from a pool of processors. Processors are released
when a process dies, migrates or when the process crashes. In distributed operating systems using the service
concept, processes can be clients asking for a service, servers giving a service or both. Establishing
communication between a process asking for a service and a process giving that service, without centralized
control in a distributed environment with mobile processes, constitutes the problem of 1 distributed match-
making. Logically, such a match-making phase precedes routing in store-and-forward d6mputer networks of
this type. Algorithms for distributed match-making are developed and their complexity is investigated in
terms of message passes and in terms of storage needed. The theoretical limitations of distributed match-
making are established, and the techniques are applied to several network topologies.

1. Introduction

We investigate the problem of setting up communication-
when-needed between processes in a multiprocessor network
where processes have names but no permanent addresses. A
mechanism for this purpose is called a name-sewer, analogous
to the telephone system's directory assistance server: given a
name it returns an address. A single centralized name server in
the network can be taken out through a single processor
crash, thereby effectively killing all communication and
crashing the entire network. A more robust solution is
d&tributing the name server. A great variety of options and
problems of both theoretical and practical interest are
attached to this issue. Our motivation was provided by the
design objectives of the Amoeba distributed operating system
project [11].

1.1. The Catering Service Problem

Suppose you want to give a party in your Silicon Valley
home, but do not care for the bother. You want a catering
service. Now it so happens, that you do not know the address
or telephone number of such a service. Anyway, even if you

* T h i s w o r k w a s s u p p o r t e d b y t h e Stichting Mathematisch Centrum.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1985 ACM 0-89791-167-9/1985/0800-0261 $00.75

did, this would not do you much good. In Silicon Valley
such small outfits come and go so fast that it is unlikely that
this service, which you used two years ago, still exists at the
old address. You can phone them, but the number gets you
somebody who has never heard of your old catering service.
There are several courses of action you can take.

• One way to solve your problem is to send mail to
everybody in town asking whether they supply catering
service. In computer networks this is called broadcasting.

• Another way is to wait until you get an advertisement
leaflet of a catering service in your mailbox. Below we call
this sweeping.

Most likely, you do one of the following:

• You look in the Yellow Pages under the appropriate
heading. If everybody exclusively uses YP for all services
then we may view the. YP outfit as a centralized name
server. Services reveal their whereabouts by advertising
there and clients look them up there. If the YP company
crashes then clients and services cannot be matched
anymore, and society grinds to a halt.

• You buy a suitable newspaper and look up "catering" in
the advertisement section. Now the name server is
distributed. Catering services advertise in many
newspapers. I f one newspaper flounders, this will not create
problems for you.

• You ask some of your friends whether the~ know where to
find the desired service. Some of your friends crashing will
not prevent you finding a caterer. The name server is
distributed in this case as well, and, depending on how
sociable you are, perhaps better.

261

. . ~ - . ! ' . ~ . ~ S ~ - , ~-,.~ .- ~# ~ . ' ~ ' ~ . ~ , ~ 4 ~ , _ .~ " ~ : ~ ,'.

Having found the address or telephone number of a catering
service, you have to find a way to route your request to
them. Thus, ma tch-making between clients and services
necessarily precedes routing in a mobile society. Note that
the catering service, in order to execute the task you set
them, m a y call on other services such as a car rental service.
The catering service then is a client with respect to the car
rental service. Clearly, everybody can be server, client or
both.

1.2. Mult iprocessors & Computer Networks

New generation computers mus t be fast, reliable, and flexible.
One way to achieve this is to build them from a small
numbe r of basic processor-memory modules that can be
assembled together to realize machines of various sizes. The
use of multiple modules can make the machines not only fast,
bu t also achieve a substantial amoun t of fault tolerance. The
pr imary difference between machines should be the number
of modules, rather than the type of the modules. In
principle, any of these machines can be gracefully increased
in size to improve performance by adding new modules or
decreased in size to allow removal and repair of defective
modules. The software running on the various machines
should be in essence identical. It should be possible to
connect different machines together to form even larger
machines and to partition existing machines into disjoint
pieces when necessary, all in a way t ransparent to the user
level software. W hen a user has a heavy computat ion to do,

an appropriate number of processor-memory modules are
temporarily assigned to him. W h e n the computa t ion is
completed, they are returned to the idle pool for use by other
users. Note that in this view a computer network is essentially
such machine on a grand scale.

Software design for these new machines can
advantageously be based o n the object model. In this model,
the system deals with abstract objects, each of which has some
set of abstract operations that can be performed on it. At the
user level, the basic system primitive is performing an
operation on an object, rather than such things as
establishing connections, sending and receiving messages, and
closing connections. For example, a typical object is the file,
with operations to read and write portions of it. The object
model is also known under the name of "abstract da ta type"
[6]. A major advantage of the object or abstract da ta type
model is that the semantics are inherently location
independent. T h e concept of performing an operation on an
object does not require the user to be aware of where objects
are located or how the communicat ion is actually
implemented. This property gives the system the possibility
of moving objects a round to position them close to where
they are frequently used. Furthermore, the issue of how
m a n y processes are involved in carrying out an operation,
and where they are located is also hidden from the user.

1.3. T h e Service Model

It is convenient to implement the object model in terms of
clients (users) who send messages to services [10]. A service
is defined by a set of c o m m a n d s and responses. Each service
is handled by one or more server processes that accept
messages from clients, carry out the required work, and send
back replies.

As an example, consider a file server. The design must deal with
how and where information is stored, how and when it is moved,
how it is backed up, how concurrent reads and writes are
controlled, how local caches are maintained, how information is
named, and how accounting and protection are accomplished,
The internal structure of the service must be designed: how many
server processes are there, where are they located, how and when
do they communicate, what happens when one of them fails, how
is a server process organized imemally for both reliability and
high performance, and so on. A server can itself be client to
another service. The possible hierarchy of services is the strength
of the model:

A crash of the database server, will be detected by the query
server, which must then try to recover from it. The query server
can retry the request, it might rephrase a query to get the answer
from another database server, and as a last resort, it can report
failure to its client, the command interpreter. In this way the
human client at the top of the hierarchy gets to cope only with
irrecoverable errors and crashes in the system.

More precisely, Services are offered by a n u m b e r o f server
processes, distributed over the network. Client processes send
requests to services; the services carry out these requests and
return a reply. Essentially, every job in the system is
executed by a dynamic network of servers executing each

other 's requests. So a process can be a client, a server, or
both, and change its role dynamical ly. New services can be
created by installing server processes for them. Services can
be removed by destroying their server processes (or by
making them stop behaving like a server, i.e., by telling them
to stop receiving requests). Server processes can be migrated

through the network, either by actually moving the process
from one host to another, or only in effect, by destroying the
server process in one host and creating another one in a
different host a t the same time. A specific service m a y be
offered by one, or by more than one server process. In the
latter case, we assume tha t all server processes that belong to
one service are equivalent: a client sees the same result,

regardless which server process carries out its request. A
process resides in a network node. Each node has an address
and we assume that, given an address, the network is capable
of rout ing a message to the node at tha t address. A service is
identified by its port. A port uniquely names a service. We
shall therefore also refer to a service by its port. Ports give
no clue about the physical location of a server process.

1.4. T h e Problem of Match-Maklng

Before a client can send a request to a server which provides
the desired service, the client has to locate tha t server. Th e
problem of effncient routing arises at a later stage; first the

262

address of the destination has to be found in a match-making
phase. We can view ma tch -mak ing as yet another service in
the system, be it the primus inter pares. Thus, we need to
implement a name server to serve a connection between client
process and server process.

A centralized name server must reside at a so-called well-
known address which does not change and is known to all
processes. (Clearly, the name server cannot be used to locate
itself.) W h e n the host of the name server crashes, the entire
network crashes. This solution also causes an overload of
messages in the neighborhood of the host.

W h e n clients broadcast for services with "where are you"
messages, we have an example of a distributed name server.

This solution is more robust than the centralized one. But in
large store-and-forward networks, where messages are
forwarded from node to node to their destination,
broadcasting is considerably more costly than sending a
message directly to its destination. Broadcast messages are
sent to every host, while point-to-point messages need only
pass through the hosts on the pa th between client and server.
Conventional broadcast methods for locating services need a
m i n i m u m of f~(n) message passes to do the broadcast (e.g.,
via a spanning tree [2]).

W e investigate realizations of name servers in the entire
range between centralized and distributed forms. The
efficiency of solutions is measured in terms of message passes
and local storage. It appears that, in m a n y n-node networks,
very efficient distributed ma tch -mak ing between processes
can be done in O(V~n) message passes, by using limited
numbers of point-to-point messages.

1.5. Locate Algor i thms

In all cases, the method used to locate a port is the following:
A server process s located at address A s and offering a
service identified by a port or, selects a collection Ps of
network nodes and posts at these nodes that server s receives
requests on port ~r at the address A s. Each of the nodes in Ps
stores this information in a cache for future reference. When

a client process c located at address A c has a request to send
to ~r, it selects a collection of network nodes Q¢ and queries
each node in QQ¢ for the address of ~r. W hen Ps fq Q¢ ~ 0 ,
the node(s) in the intersection will return a message to c

stating that ~r is available at A s . If P~ = {s } and ~ = U then
the technique is called broadcasting; i f Ps = U and QQ~ = { c }
then the technique is called sweeping.

1.6. Out l ine of the paper .

W e develop a class of distributed algorithms for match-
making between client processes and server processes in
computer networks. We investigate the expected
performance of such an algori thm under random choices.
Subsequently, we determine the optimal lower bound on the
performance in number of message passes or "hops" for any
such algorithm, in any network, reader any strategy,

distributed or not. This yields a combinatorial l emma which
m a y be interesting in its own right, and results in a lower

bound on the trade-off product between the number of nodes
a server advertises at and the number of nodes a client
inquires at. We consider criteria for robustness. Second, we
apply the method to part icular networks, both designed
networks and spontaneously emerged networks. Finally, a
probabilistic and a hashing algori thm for ma tch-making are
investigated.

1.7. Related work.

Distributed ma tch -mak ing between clients and servers will be
used in the Amoeba distributed operating system [11].
Essentially the M a n h a t t a n topology method below has been
used before in the toms-shaped Stony Brook Microcomputer
Network [5]. Some current multiprocessor systems avoid the
communicat ion overload due to mobile processes, which use
broadcasting to do the match-making , by opting for the
processes to r un on fixed processors [8]. Other system
designers have chosen for mobile processes, but use the
crash-vulnerable solution of a centralized name server [7].
The present paper introduces, and Wstematically explores for
the first time, the general concept of distributed match-
making.

2. A T h e o r y o f D i s t r i b u t e d M a t c h - M a k i n g

Below we obtain lower bounds on the message pass
complexity of a class of Locate algorithms (called Shotgun
Locate), for the entire range from centralized to distributed
methods, and for any network topology. In the next section
we give methods which achieve these lower bounds, or nearly
achieve these lower bounds, for m a n y network topologies.

2.1. Framework for Shotgun Locate

The networks we consider are point-to-point (store-and-
forward) communicat ions networks described by an
undirected communicat ions g raph G = (U , E) , with a set of
nodes U representing the processors of the network, and a set
of edges E representing bidirectional noninterfering
communicat ion c h a n n e l s between them. No common
memory is shared by the node-processors. Each node

processes messages it receives from its neighbors, performs

local computat ions on messages and sends messages to
neighbors. All these actions take finite time. A message pass or
hop consists of the sending of a message from one node to one
of its direct neighbors.

1. The number of message passes needed for ma tch-making
depends on the topology of a network. We want to obtain
topology independent lower bounds. Therefore, assume
that all messages can be routed in one message pass to
their destinations. Equivalently, assume that the network is
a complete graph. Lower bounds on the needed number of
message passes in complete networks a Jbrtiori hold for all
networks.

263

2. For each network G = (U , E) and associated match-making
algorithm, there are total functions P , Q such that:

P , Q: u --02 U

(Here 2 v is the set of all subsets of U.) Any server
residing at node i starts its stay there by posting its (port,
address) pair at each node in P(i). Any client residing at
node j queries each node in Q(j) for each service (port) it
requires.

3. We assume that all nodes j have a cache which is large
enough to store all (port, address) pairs associated with
addresses i such that j ~P(i) . That is, the nodes at which
the rendez-vous" are made can hold all posted material.
The caches are large enough to hold so many (port,
address) pairs that they never have to discard one for a
server that is still active. Entries are made or updated
whenever a message is received from a server process with
its address (or when a reply from a locate operation is
received). We can timestamp the messages to determine

,which addresses are out of date in case of a conflict.

We have dubbed this class of algorithms Shotgun Locate
algorithms. (Put so many pheasants in the bushes that the
hunter can expect success for the amount of shot he is willing
to spend.) Later we consider alternative locate methods:
Hash Locate where the functions P , Q depend on the service
ports as well, and Lighthouse Locate which is a probabilistic
version of Shotgun Locate where too-small caches can
discard (port, address) pairs.

2.2. Probabilistic Analysis

Let the number of elements in a given set U (universe) of
nodes be n. Let a given server s reside at node i. Let p be
the cardinality of P (i) C U, the set of nodes where s posts its
whereabouts. Let a given client c reside at node j . Let q be
the number of elements in Q(j) c u , the set of nodes queried
by c. If the elements of P(i) and Q(/) are randomly chosen
then the probability for any one element of U to be an
element o f P (i) {Q(/)] is p / n [q / n]. I f P (i) and Q(j) are
chosen independently then the probability for any one
element of U to be an element in both P(i) and Q(/) is
p q / n 2. Since there are n elements in U, the expected size of
P(i) fqQ(j) is given by

E(#(P(i) f~Q(j))) = "p-q-
?l

Therefore, to expect one full node in P(i)NQ(j) , we must
have p + q >I 2 V~n. This is the situation for a l~artieular pair
of nodes. For the performance of the whole network we have
to consider the combined performance of the n 2 pairs of
nodes, The above analysis holds for each pair i , j of
elements of U, since they are all interchangeable.
Consequently, the minimal average value of p + q over all
pairs in U 2 must be 2 ~ n , in order to expect a successful
match-making for each pair.
By choice of the sets P(i) and Q(j) , we may improve the
situation in two ways:

• The method deterministically yields success.

• We get by w i t h p + q < 2 ~ n .

2.3. Number of Messages for Match-Making

To match a server at node i to a client at node j the
following actions have to take place. The server at i tells a
set P(i) of nodes about its location. Client j queries a set
Q(/) of nodes for the desired service. Call the set of nodes
rid =P(i) f - IQ(j) the set of rendez-vous nodes, that is, the
nodes at which a rendez-vous between a client at j looking for
a service and a server at i offering that service can be made.

Defim~zbn. The n Xn matrix, R , with entries r iJ
(l<~id'<n) is the rendez-vous matrix. Each entry rlj , in the
i th row and j t h column of R, represents the set of rendez-vous
nodes where the client at node j can find the location i and
port of the server at node i. Note that:

n n

Urid c P(i) & Urld c QO') (M1)
j = l i = 1

To prevent waste in message passes, we can take care that
the inclusions in (M1) are replaced by equalities. (But then
the surviving subnetwork after a node crash may lack this
property again.) An optimal shotgun method has exactly o n e

element in each rid. Below, we represent such singleton sets
by their single element. (If faults occur in the network then
we may opt for more redundancy by using larger rid , cf §
2.4.)

2.3.1. Examples of rendez-vous matrices associated with
both well-known and lesser known strategies.

1. Broadcasting. The server stays put and client looks
everywhere:

1
s 2
e 3
r 4
v 5
e 6
r 7
s 8

9

C l i e n t s

1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9 9

2. Sweeping. The client stays put and the server looks for
work:

264

C l i e n t s

1

S 2

e 3

r 4

v 5

e 6

r 7

s 8

9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

3. Centralized name server. All services pos t a t n o d e 3 a n d a l l

c l ients q u e r y for services a t n o d e 3:

C l i e n t s

1

S 2

e 3

r 4

v 5

e 6

r 7

s 8

9

1 2 3 4 5 6 7 8 9

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

4. Truly distributed name server. All n o d e s a r e used e q u a l l y of ten

as rendez-vous n o d e :

C l i e n t s

1

S 2

e 3

r 4

v 5

e 6

r 7

s 8

9

1 2 3 4 5 6 7 8 9

1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

4 4 4 5 5 5 6 6 6

4 4 4 5 5 5 6 6 6

4 4 4 5 5 5 6 6 6

7 7 7 8 8 8 9 9 9

7 7 7 8 8 8 9 9 9

7 7 7 8 8 8 9 9 9

5. Hierarchical~ distributed name server. Links for nodes lower in

the h i e r a r c h y a r e se rved b y rendez-vous nodes h i g h e r in t he

h i e r a r c h y . T h e n o d e s a r e h i e r a r c h i c a l l y o r d e r e d b y 1 , 2 , 3 < 7 ;

4 , 5 , 6 < 8 ; 7 , 8 < 9 :

C l i e n t s

1

S 2

e 3

r 4

v 5

e 6

r 7

s 8

9

1 2 3 4 5 6 7 8 9

7 7 7 9 9 9 9 9 9

7 7 7 9 9 9 9 9 9

7 7 7 9 9 9 9 9 9

9 9 9 8 8 8 9 9 9

9 9 9 8 8 8 9 9 9

9 9 9 8 8 8 9 9 9

9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9

6. Distributed name server for t he b i n a r y 3 - c u b e topo logy . T h e

n o d e addres ses a r e t he 3-b i t addresses o f t he c o m e r s o f the

cube . F o r a l l a,b ,c ~ (0 , 1 } , P(abc) = (axy [x y E (0 , 1) }

a n d Q(abc) = (xbc I x ~ (0 , 1 }) :

C l i e n t s

000

S 001

e 010

r 011

v 100

e 101

r 110

s 111

000 (301 010 011 100 101 110 111

000 001 010 011 000 04)1 010 011

000 001 010 011 000 001 010 0It

000 001 010 011 000 001 010 011

000 001 010 0ll 000 001 010 011

100 101 110 111 100 101 110 111

100 101 110 111 100 101 110 111

100 101 110 111 I00 101 110 111

100 lOt 110 111 100 101 110 111

2.3.2. L o w e r B o u n d

T h e r e a r e n poss ib le rendez-vous n o d e s a n d n 2 e l emen t s in R .

By cho i ce o f P , Q the a l g o r i t h m d i s t r ibu tes the l oad o f be ing

a rendez-vons n o d e o v e r the nodes in the ne twork . I t is

some t imes p r e f e r a b l e to d i s t r ibu te t he l o a d uneven ly . F o r

ins t ance , in the v e r y l a r g e n e t w o r k s w i t h mi l l ions o f

processors w h i c h a r e n o w env is ioned , ~ m e s s a g e passes is

j u s t too m u c h b e c a u s e n is so l a rge . I n h i e r a r c h i c a l n e t w o r k s

(E x a m p l e 5) the n u m b e r o f m e s s a g e passes for a m a t c h -

m a k i n g i n s t a n c e c a n b e as l o w as l o g n . T h i s m e a n s t h a t

some nodes a r e used v e r y of ten as rendez-vous node , a n d o thers

ve ry s e l d o m o r no t a t all . A c o m b i n a t i o n o f h i e r a r c h i c a l a n d

loca l pos t i ng m a y a lso b e useful .

Le t t he rendez-vous m a t r i x R h a v e n 2 n o d e entr ies , cons t i tu t ed

b y k i >10 copies o f e a c h n o d e i , 1 <~i ~ n . C l e a r l y ,

n k ~ , i n2 (M 2)
i=1

T o m a t c h a se rve r a t n o d e i w i th a c l ien t a t n o d e j , the

se rver sends messages to a l l nodes in P (i) a n d the c l ient

sends messages to al l n o d e s in Q (j) . So, a l l in all , t he number
of message passes m (i d) i n v o l v e d in th is match.making instance is

265

given, in a complete network, by

m (i d) = # P (i) + # Q O) • (M3)

In the examples above we have seen that, for different
pairs i d , the number of message passes re(i j) for a match-
making instance can, in a single match-making strategy, range
all the way from a minimum of 2 to n, and beyond. We
determine the quality and complexity of a match-making
strategy by the minimum of m (i v;), the maximum of m (i j) and,
above all, the average o f m (i d) , for l~id'<-~n.

Definition. The average number of message passes m (n) of
the given match-making strategy (which is determined by the
rendez-vous matrix R) is:

n n 1 . •
re(n) = -~2 5] E m O d) " (M4)

i = l j = l

We now proceed to derive an exact lower bound on m(n)
expressed in terms of the number k i of times node i occurs in
R, i.e., is used as rendez-voas for a pair of nodes (l ~ < i ~ n) .

Proposition 1. Consider the rendez-vous matrix R as defined.

Then the average value - -~ '~=l~]=l#P(i) -#Q(3") is bounded

below by."

i = l j = l i = l

Proof Let r i [ci] be the number of different nodes in row i
[column i] (1 <~i ~<n). Then

" 0 ri = :# ~.Jrid & 9 = # rid (1)
j = l i = 1

Let R i be the number of different rows containing node i,
and let C i be the number of different columns containing
node i (l~<i~<n). Let p i d = l if node i occurs in r o w j and
else Oid = 0 , and let 7id = 1 if node i occurs in column j and
else Yid =0 , (l~< i j~<n) . Then,

n n n n

5]ri = 5] Y. 0~j = Y.R~ (2)
j = l j = l i = l i = 1

j = l j = l i =1 i = 1

Clearly, for all i (l~<i~<n) we have

R i G >l kl • (3)

Furthermore, since

+k,# = (rE:R,- V ;%7
~ 0 ,

for all i ~j (1 <~i d' <~n), we obtain immediately:

+ ~ > 2 ~
Rj

from which it follows that:

i = 1 j = l i = l j = l

Hence,

" #

i = l j = l i = l j = l

-- / : r , ×
i = 1 j = l

n

= ~ R i × 2 C j (by (2))
i = 1 j = l

/> (byO >
i = l j = l

(by (MI) a (1))

which yields the Proposition. []
The constraints (M1)-(M5) imply a lower bound trade-off

between the number of message passes (and nodes) for
posting a server's (port, address) and the number of message
passes due to a client querying nodes for the whereabouts of
services.

We can adjust the distributed match-making strategy to the
relative frequency of these happenings, so as to minimize the
weighted overall number of messages. For instance, if the average
call for a service at i by a client at j occurs ai d times more often
than the average posting of a service available at i, then we may
want to minimize m (n) replacing (M3) by (M3'):

re(i j) = #P(i) + ai,i#Q(O') . (M3')

Proposition 1 immediately gives us a lower bound on the
average number of messages involved with a rendez-vons:

Proposition 2. For a complete n-node network and any Shotgun
Locate strategy, with the k i's as defined above, the average number
re(n) of message passes (c.q., distina nodes accessed) to make a
match is

m(n) ~ --2 n ~ X/~7 •
i = 1

Proof Assume, by way of contradiction, that the
Proposition is false, that is,

i = l j = l i = 1

n
< 2nX •

i= l

Then,

i= l i = 1 i= l

which contradicts Proposition 1. []
It is not difficult to see that Propositions 1 and 2 hold

mutatis mutandis for nonsquare matrices R, that is, for
networks where some nodes can host only servers and other
nodes perhaps only clients.

266

2.3.3. Truly Distributed Match-Making, Centralized Link-
Server

Propositions 1 and 2 specialize to the Corollary below for
k I = k 2 = ' • • =k , = n, the truly distributed case. Here, each
node occurs equally often as rendez-vous node in matrix R,
and hence carries an equal load of the work.

Corollary. Consider the rendez-vous matrix R as defined, for
k l - - k 2 k n = n . Then:

n n

~ - X E : # P (~) # Q (/) ~ n ,
i a l j = l

re(n) a 2 ~nn .

This lower bound we saw before in the probabilistic
approach. Another choice of the k i's gives:

Corollary. For k 2 = k 3 k~ = 0 and k I = n 2, that
is, there is a centralized name server, we obtain:

n n
1 . .

==~I "=EI#P(~)#Q(J) > 1 ,
z 3

m(n) ~ 2 .

2.3.4. Upper Bound for Complete Networks

For complete networks the above lower bounds on the
number of message passes for match-making are about sharp.
For instance:

Proposition 3. For the truly distributed case arrangements can be
constructed such that the lower bounds are (nearly) matched by upper
bounds. Viz., for each complete network there exists functions P, Q
such that, for all l ~ i d ' ~ n , ~P(i)#QO") ~ n,
P (i) + # Q (j) ~ 2V~n , and k i ~ n .

Proof sketch. Arrange the rendez-voas matrix R as a checker
board consisting of (as near as possible) V~n × V~n squares,
or nearly squares, of about n entries each. Each square is
filled with about n copies of one unique node out of the n
nodes, a different one for each square; cf Example 4. []

Proposition 4. Let R be the rendez-vous matrix for an n-node
network. Let k i (l ~ i ~ n) be the multiplicity of node i in R , and
let m (n) be the average match-making cost associated with R . We
can lift this strategy to a 4n-node network by constructing a 4n × 4n
rendez-vous matrix R ' with ki'=4kimod n the multiplicity of node i
in R ' (l ~ i ~ 4 n) and m ' (4 n) - 2m(n) the associated average
match-making cost.

Proof. Replace each entry r i j of R by a 2 × 2 submatrix
consisting of 4 copies of rid. The resulting 2n × 2 n matrix is
M . Let R i (i = 1,2,3,4) be four, pairwise element disjoint,
isomorphic copies of M . Consider the 4n × 4n matrix R ' :

R ' = R3 R4 "

The number of distinct nodes in R ' is 16 times that in R and
ki'=4kimod . (l~<i~<4n). It is easy to see that the
(2 imod2n) th column [row] of R ' contains twice as many
distinct nodes as the (i m o d n) t h eolurrm [row] of R
(l ~ i ~ 2 n) . Therefore, the average match-making cost
associated with R ' is m '(4n) = 2m (n). []

The most inefficient match-making strategy is
P(i) = Q (j) = U (1 ~ i j ~ n), yielding m (n) = 2n,

2.3.5. Uppe r Bound for Non-Complete Networks

The topology of a network G = (U ~ E) determines the
overhead in message passes needed for routing a message to
its destination. For the complete networks we have
considered, the number of message passes m (i d) for a
match-making between a service at node i and a client at
node j equals ~ P (i) + # Q (]) . If the subgraph induced by
the sets P(i) , Q (j) (l ~ i d ~ n) is connected, and i E P (i)
and j E Q (j) , and we broadcast the messages over spanning
trees in these subgraphs, then the number of message passes
re(i j) equals the number of addressed nodes # P (i) + # Q (j) .
Otherwise, there is an overhead m (i d) - # P (i) - # Q (j) > 0
of message passes for routing messages from i d to P (i), Q(j) .
In designing distributed name servers for non-complete
networks, the achievable message pass efficiency of match-
making very much depends on how far we can reduce this
overhead. For this reason, in a ring network, no match-making
algorithms can do significantly better than broadcasting (i.e.,
m(n) ~ (n)).

2.4. Robustness, Fault-Tolerance, and Efficiency

In computer networks, and also in multiprocessor systems,
the communication algorithms must be able to cope with
faulty processors, crashed processors, broken communication
links, reconfigured network topology and similar issues. A
centralized name server (Example 3) is very efficient, but if its
host crashes the whole network fails. It is one of the
advantages of truly distributed algorithms that they may
continue in the presence o f faults. With respect to
implementing the name server, we can distinguish two
distinct criteria for robustness.

• The name server should be distributed in the sense that no
number of node crashes, which leaves a surviving network,
can prevent surviving clients from locating surviving
servers offering a desired service (for instance, by first
moving to another address). This rules out a centralized
name server, but the distributed Examples 1, 2, 4, 5, 6 are
fine. It is lack of robustness according to this criterion that
makes the efficient Hash Locate (last section) so fragile.

• The name server should be redundant in the sense that no
number of node crashes can prevent a client at a surviving
node from locating a service offered at a surviving node.
For example, the Shotgun algorithm expounded above,
may be locally incapacitated by a rendez-vous node
crashing. We can remedy this situation by choosing P and
Q such that, for all l ~ i d ~ n ,

(P (i) A Q (j)) ~ f + l ,

where f is the maximal number of faults at any time in
the network. (There remains of course the problem of how,
or whether it is still possible, to route the match-making
messages to their destinations in the surviving subnetwork.)
The safest solution is obviously P(i)NQO") -= U

267

• .. -,..):~ ~ ~7:,. ~,&.~ . . ~

(l < i j < n) . This criterion holds equally for Shotgun
Locate and Hash Locate.

Robustness is in~ficient and has a price tag in number of
message passes per match-making instance. That question is
not addressed in this paper.

3 . I m p l e m e n t a t i o n s i n P a r t i c u l a r N e t w o r k s

We assume that each node has a table containing the names
of all other nodes together with the minimum cost to reach
them and the neighbor at which the minimum cost path
starts. In [4] a construction is given to divide every connected
graph in O(x/nn) disjoint connected subgraphs of ~V~-n nodes
each. Number the nodes in each subgraph 1 through X/n-n (if
necessary, divide the excess numbers over the nodes). Each
node i has a table containing the route to the next (adjacent)
node i. In the worst case such a path consists of 2V~n
message passes. (Each of the connected subgraphs contains
at most V~n nodes. The shortest path, between the two
nodes labelled i in two adjacent connected subgraphs, is
therefore not longer than 2V~n .)

Server's Algorithm. A server at the node labelled i in one of
the subgraphs communicates its (port, address) to all nodes i
in the remaining O(X/-~ subgraphs . It follows from above
that this takes O(n) message passes. Size O(V~n) suffices for
the cache of each node.

Client's Algorithm. A client broadcasts for a service (along a
spanning tree) in the subgraph where it resides. This takes at
most Vtn-n message passes.

Under the practical assumption that clients need to locate
services usually far more frequently than servers need to post
(port, address), this scheme is fairly optimal. Additionally,
the caches are kept to a moderate size. Moreover, in
practice, many store-and-forward networks will require but
O (~ n) message passes on the average to broadcast over the
required subsets of ~ nodes of the server's algorithm. All
this suggests that in most networks using this method the
average number of message passes per match-making
instance can be substantially less than the order n figure. In
the remainder of this section we look at match-making in
some networks with specific topologies.

3.1. Manhat tan Networks

The network is laid out as a p × q rectangular grid of nodes.
Post availability of a service along its row and request a
service along the column the client is on. Caches are of size
0 (q) and number of message passes for each match-making
instance is O(p+q) . For p = q we have m(n)=2~nn and
caches of size V'~-n. For the 9-node network below,

1 - g - 3

4 - 5 -- 6

7 -- 8 -- 9

the rendez-vous matrix looks as follows:

C l i e n t s

1

s 2
e 3
r 4
v 5
e 6

r 7
s 8

9

1 2 3 4 5 6 7 8 9

1 2 3 1 2 3 1 2 3
1 2 3 1 2 3 1 2 3
1 2 3 1 2 3 1 2 3
4 5 6 4 5 6 4 5 6
4 5 6 4 5 6 4 5 6
4 5 6 4 5 6 4 5 6
7 8 9 7 8 9 7 8 9
7 8 9 7 8 9 7 8 9
7 8 9 7 8 9 7 8 9

Wrap-around versions of the method can also be used in
cylindrical networks, or torus-shaped networks. It is, in fact,
the method used in the torus-shaped Stony Brook
Microcomputer Network [5]. In the obvious generalization
to d-dimensional meshes the method takes m (n) = 2n (a- 1)/a
message passes.

3.2. Multidimensional Cubes

The network G = (U , E) is a d-dimensional cube with U the
set of nodes of the cube with addresses of d bits and E the set
of edges which connect nodes of which the addresses differ in
a single bit. n = @ U = 2 a and # E =d2 a - l . Assume that d is
even.

Server's Algorithm. A server at an address s = s l s 2 " " s d
broadcasts its (port, address) along a spanning tree to all
nodes in the d / 2-dimensional cube spanned by the nodes in

e (s) = (alaz...aasa ~_l...sa l a l , . . . , a i ~ (0 ,1} } •
2 2 2

Client's Algorithm. A client at an address c = c t c 2 " . c a
broadcasts its query along a spanning tree to all nodes in the
d / 2-dimensional cube spanned by the nodes in

Q(c) = (ClC2...c4a ~+l...aa [aa~_+l at/rE(0,1} } .

For each pair s ,c E (1, . . . , n } the rendez-vous node is given
by

P(s) ('] Q(c) =k (ClC2...c ds a ~_f..sa} •
~ - 2 2

The number of message passes is the same for each server-
client pair, and therefore

m(n) = @P(s)+#Q(c) = even .

268

The nodes need ~ - s i z e caches. Variants of the algori thm
are obtained by splitting the corner address used in the
algori thm not in the middle but in pieces of ed and (1 - ¢) d
bits. C f Example 6. For instance, to adap t the method to
take advantage of relative immobili ty of servers, to get lower
average. Excessive clogging at intermediate nodes may be
prevented by sending messages to a r andom address first, to

be forwarded to their true destination second [12].

3.3. Fast Permutation Networks

For various reasons [1] fast permutat ion networks like the
Cube-Connected Cycles network are important interconneetion

patterns. An algori thm similar to that of the d-dimensional
cube yields, appropriately tuned, for an n-node (2(3(3 network
caches of size ~ / log n and m (n) ~ O(X/n log n).

3.4. Projective Plane Topology.

The projective plane P G (2 , k) has n = k 2 + k + t points

and equally m a n y lines. Each line consists of k + 1 points
and k + 1 lines pass through each point. Each pair of lines
has exactly one point in common. A server s posts its (port,
address) to all nodes on an arbitrary line incident on its host
node. A client c queries all nodes on an arbitrary line
incident on its own host node. T he common node of the two

lines is the rendez-oous node. A " n size cache for each node
suffices. Since the nodes are symmetric, it is easy to see that

re(n) = # P (s) + # Q (c) = 2 (k + l) ~ 2V~n .

This combination of topology and algorithm is resistant to
failures of lines, provided no point has all lines passing
through it removed.

3.5. Hierarchical Networks

Local-area networks are often connected, by gateway nodes, to
wide-area networks, which, in turn, may also be

interconnected. Locating services and objects in such
network hierarchies is bound to become an acute problem.

Service naming preferably should be resolved in a way which is
machine-independent and network-address-independent.
Consequently, ways will have to be fmmd to locate services in
very large networks of hierarchical structure. There, the truly
distributed ~ n solutions to the locate problem are not
acceptable any more. Fortunately, in network hierarchies, it can
be expected that local traffic is most frequent: most message
passing between communicating entities is intra-host
communication; of the remaining inter-host communication, most
will be confined to a local-area network, and so on, up the
network hierarchy. For locate algorithms these statistics for the
locality of communication can be used to advantage. When a
client initiates a locate operation, the system first does a local
locate at the lowest level of the network hierarchy (e.g., inside the
cliem host). If this fails, a locate is carried out at the next level
of the hierarchy, and this goes on until the top level is reached.

Assume that a level i network connects n i level i - 1.
networks through n i gateways, for each l < i ~ k (or basic
nodes, at the lowest level 0 for i = 1). Assume also that the

n i gateway hosts compose a level i network with a topology
which allows thrifty truly distributed match-making with

2 X/~ message passes per match , for all i /> 1.
Sewer's Algorithm. A server posts its (port, address) by

selecting ~v/~ ? gateways, connecting level i - 1 level networks
in a level i network, at each level i of the hierarchy, on a
pa th from its host node to the highest level network, m

advertise their location.
Client's Algorithm. Similarly, at each level i on a pa th from

its host node to the highest level network, a client's locate in
a network of that level can be done in O (v r ~ 7) message

passes.
This gives an average message pass complexity

m (n) ~ O (~ l ~Vf/) for a hierarchical network with a total

of n ~< II/k=l n i nodes. Assuming tha t all ni's equal a fixed

a, the nurnher of levels in the hierarchy is k, and the total
numbe r of nodes in the network is n -~ a k then the message
pass complexity of the locate is m (n) ~ O(k X/a). Therefore,

_k
re(n) E O (k n 2 k) .

Having the number k of levels in the hierarchy depend on n,
the m i n i m u m value

re(n) ~ O(logn)

is reached for k = ½1ogn. This message pass complexity is
much better t han ~(V~n), bu t the cache size towards the top
of the hierarchy increases rapidly. Essentially, the cache of a
node m a y need to hold as m a n y (port, address)'s as there are
nodes in the subtree it dominates. In some cases this can be
avoided. For in a network hierarchy, as we have sketched,
services are often exclusively accessed by local clients.

In the Amoeba distributed operating system, for instance, even the
operating system itsself is accessed just like any other service [11].
"Operating System Service" is thus a local service, useful only to
local clients. Clients on other hosts must use similar services,
local to their host. The Amoeba system provides a way for
services to restrict the availability of the service they offer to
some local group of processes, the processes within the host where
the service resides, the processes within the local-area network of
the service, within the campus network, etc. This last model
seems the most likely model for the interaction between clients
and services. Nearly every service will be a local service in some
sense, with only few services being truly global. Under these
assumptions, the burden of the processing of locate postings and
requests can be distributed more or less evenly over the hosts at
each level of the network hierarchy. This is essentially the
generalization presented later in the section on Hash Locate.

3.6. Exist ing Networks

Many wide-area computer networks are not completely
designed at the outset bu t grow and change dynamically. Yet
one can identify common characteristics.
• The network resembles an undirected tree with a core in
which we can imagine the root, and with some additional
edges thrown in. It appears tha t U U C P n e t (the anarchistic
network connecting most U N I X * systems) has this form in
the sense that the number of extra edges thrown in are not
more than the the number of nodes in a spanning tree. The
extra edges would typically occur between geographically
near nodes.

* UNIX is a trademark of Bell Laboratories.

269

. :~ • .!.~. • :~ .;: • . : ; . .~: . ~ ,~ ~ ~2~'5~ ~ . . ~ . ~ . ~'G-':'. • ~i~c ~:~

• The degree o f the nodes should not be to large. Ideally
bounded by a constant. Yet nodes nearer to the core of the
tree tend to be of higher degree. Compare backbone sites,
feeder sites and terminal sites in UUCPne t . The hierarchy of
the nodes towards the core is very pronounced as can be seen

in the table. The degree of super-backbone sites like ihnp4 is
over 600, of backbone sites like decvax 40 and mcvax 45, and a
feeder site like sdcsvax is 17. Termina l sites like ace have

degree 1.
• The network is p lanar to a large extent. This reflects the

geographical cost factor but also the tree aspect mentioned
above. Thus , the ARPAnet , to a large extent predesigned, is
approximately p lanar and even the chaotic U U C P n e t is not
too unplanar .

In the table below we have collected some statistics about the
state of the known sites of UUCPnet at August 15, 1984. The
total number of sites of UUCPnet is 1916 and of EUnet
(European part) 153. The total number of edges in UUCPnet is
3848 and in EUnet 211. The degree of the nodes varies between
the unlikely number 0 (one such node is appropriately named
loyalist) and 641 (which is/hnp4, in real life AT&T in Naperville).
In the table below we list the number of nodes having a given
degree.

#sites
25

840
384
207
115
83
71
32
29
11
17
5
7

14
10
6

degree #sites degree
0 3 25
1 1 27
2 2 28
3 2 30
4 2 32
5 1 33
6 2 34
7 1 35
8 2 36
9 1 37

10 1 38
11 1 39
12 1 40
13 1 42
14 1 43
15 1 44
16 3 45
17 1 46
18 1 47
19 1 52
20 2 63
21 1 70
22 1 471
23 1 641
24

Table

Let us consider trees as described above. T h e number of
nodes in the balanced tree is n , the number of levels is l
with the root at level l and the leaves at level 0, and the
degree of nodes at the i - th level is d(i). T h e n a 'factorial '
relation holds:

d (t) d (l - - 1) . . , d (l) = . .

Setting d(l) ~- d 1+¢, for constants c,¢ > 0, yields
c t(l !)2 +E = n. By Stirling's approximation, we get after some

calculation:

l ~ ' log n
(1 +¢) log logn

If the exponent 1 + ~ in the expression for d(m) is doubled
then the depth of the tree is halved for the same number of
nodes.
Setting d (l) = c 2 cl , for constants c ,c > 0 yields:

n = cl2 E[-Fi ~ - cl2 2

Therefore,

l = "v/l°~2c + 2 c loan - logc
£

(The logarithms have base 2.) I f ~ is quadrup led then the
depth of the tree is halved for the same number of nodes.

The strategy in such trees can be simple: all services
advertise at the pa th leading to the root of the tree, and
similarly the clients request services on the pa th to the root of

the tree. T h e n the average number of message passes used
for each ma tch -mak ing instance, is re(n) E O(l). The cache
at each node needs to be of the order of the number of
elements in the subtree of which it is the root. For smaller
caches the older and less used entries can be discarded in
favour of new ones, leading to a Lighthouse Locate like

algori thm (see below). It m a y seem that such large caches
are unrealistic and that, anyway, in distributed networks all

nodes should be symmetric. However, even in a genuinely
distributed and anarchistically growing network as U U C P n e t
a hierarchy of nodes develops according to the node degree
(number of links with other nodes in the network). This
points to the fact that nodes higher in the hierarchy mus t
dedicate more comput ing power and memory to runn ing the
network. Hence it is not unrealistic to have the cache size
increase for nodes higher in the hierarchy.

4. L i g h t h o u s e L o c a t e

W e imagine the processors as discrete coordinate points in
the 2-dimensional Euclidean plane grid spanned by (~,0) and
(0, c). The number of servers satisfying a part icular port in an
n-element region of the grid has expected value sn for some
fixed constant s > 0 .

Server's Algorithm. Each server sends out a r andom direction
beam of length l every 8 time units. Each trail left by such a
beam disappears after d t ime units. T h a t is, a node discards
a (port, address) posting after d t ime units. Assume tha t the
t ime for a message to run through a pa th of length l is so

small in relation to d that the trail appears and disappears
instantaneously.

Client's Algorithm. To locate a server, the client beams a
request in a r andom direction at regular intervals. Originally,
the length of the beam is 1 and the intervals are 8. After e
unsuccessful trials, the client increases its effort by doubling
the length of the inquiry beam and the intervals between
them (l ~ 2l & ~$ ~-- 2~). And so on.

Another possibility is to govern the length of the locate
beam (and its durat ion) by the sequence

12131214121312151213121412131216121312 • • "

270

Here the length of the locate beam is il once in each interval
of 2 i trials. (This sequence is sequence 51 in Sloane's
catalogue [9].) The schedule can conveniently be mainta ined
by a binary counter: the position i of the most significant bit
changed by the current unit increment indicates the current
b e a m length il. This schedule has the additional profit that
the servers which drift nearer to the client are located with
less time-loss. Note that in a sequence of 2 A trials there are
2 k - i length il trials (1 < . i ~ k) .

Before the locate method for the euclidean plane can be
converted into a practical algorithm for locating services it is
necessary to find ways of mapping point-to-point networks onto
the euclidean plane in such a way that the euclidean plane
aigorithln can be converted into an algorithm for a point-to-point
network. Fortunately, such a mapping can often be found. Most
point-to-point networks have routing tables that tell each node
which outgoing arc to use to get a message to its destination. In
[3] these tables are used back-to-front to broadcast messages over
the network in near optimal fashion. We can use these tables
back-to-front to simulate sending messages along "a straight line"
of certain length. The technique is as follows.

A client (or server) wishing to send a beam of length k (using
message passes as the unit of length) chooses a random outgoing
arc and sends the message along it to its neighbor. This
neighbor, upon reception of such a message decreases the hop
count (in the message) by 1, and sends the message on any one
outgoing arc that is used to send messages from the node at the
other end of the arc to the original client (or server) where the beam
started from. And so on, until the hop count reaches 0.

5. Hash Locate and Beyond

Let in a given network G = (U , E) the set of ports (i.e., types
of services available) be 1[I. W e can define the functions P

and Q like in the Shotgun Locate but using the port
identities as well:

P,Q: U × Yl --~ 2 U

If we are dealing with a very large network, where it is
advantageous to have servers and clients look for nearby
matches, we can hash a service onto nodes in neighborhoods.
A neighborhood can be a local network, but also the
network connecting the local networks, and so on. Therefore,
such functions can be used to implement the idea of certain
services being local and others being more global (of the
section on hierarchically structured networks) thus balancing
the processing load more evenly over the hosts at each level
of the network hierarchy. Like Shotgun Locate, the Hash
Locate below is a specialization of this more general method.

In Hash Locate we construct hash functions that m a p service
names onto network addresses. T h a t is,

P , Q : I I - - - ~ 2 U & P = Q .

This technique is very efficient. Each server s posts its (port,
address) at the node(s) P(~r), if ~r is the port of s , and each
client in need for a service at port ~r queries the node(s) in
P(~r). Apart from redundancy for fault-tolerance, clients and
servers need only use one network node each in every
match-making. (Clearly, the rendez-vous matrix mus t be
interpreted differently in this setting,) Provided the hash

function is well-chosen, it distributes the burden of the locate
work over the network. It suffers from the drawback that , if
nodes are added to the network, the hash function mus t be
changed to incorporate these nodes in the set of potential
rendez-vous nodes. Moreover, if all rendez-vous nodes for a
part icular service crash then this takes out completely that
part icular service from the entire network. If the service is
indispensable, the entire network crashes. In this sense Hash
Locate is far more vulnerable to node crashes than the more
distributed versions of Shotgun Locate. Examples 1, 2 and 3
may also be viewed as borderline examples of Hash Locate.
Examples 4, 5 and 6 are not Hash Locate methods, since
Hash Locate cannot be distributed in this genuine sense.

Two obvious approaches can make Hash Locate more
robust for node crashes. First, the hash function can m a p a
service name onto m a n y different network addresses for
added reliability. Second, when the rendez-vous node for a
part icular service is down, rehashing can come up with
another network address to act as a backup rendez-vous node.
It then becomes necessary that services regularly poll their
rendez-vous nodes to see if they are still alive.

References

[1] Broomel, G. and J.R. Heath, "Classification categories and
historical development of circuit switching topologies," ACM
Computing Surveys, vol. 15, pp.95-133, 1983.

[2] Dalai, Y.K., "Broadcast Protocols in Packet-Switched
Computer Networks", Ph.D. Thesis, Stanford University,
April 1977.

[3] Dalai, Y.K. and R. Metcalfe, "Reverse path forwarding of
broadcast packets," Communications of the ACM,, vol. 21,
pp. 1040-1048, 1978.

[4] Erdrs, P., L. Gerrncser, and A. Matr, "Problems of graph
theory concerning optimal design," pp. 317-325 in
Colloquium Math. Soe. Janos Bolyai 4, ed. P. Erd6s, V.T.
S6s, North-Holland Publishing Company, Amsterdam
(1970).

[5] Gelernter, D. and A.J. Bernstein, "Distributed
communication via a global buffer," pp. 10-18 in
Proceedings lth ACM SIGAC-"IT-SICaDPS Symposium on
Principles of Distributed Computing (1982).

[6] Liskov, B. and S. Zilles, "Programming with abstract data
types," SIGPLANNotices, vol. 9, pp.50-59, 1974.

[7] Needham, R. M. and A. J. Herbert, The Cambridge Distributed
Computer System. Addison-Wesley, 1982.

[8] Seitz, Ch.L., "The cosmic cube," Communications of the Ass.
Comp. Mach., vol. 28, pp.22-33, 1985.

[9] Sloane, N.J.A., A Handbook of Integer Sequences. New
York:Academic Press, 1973.

[10] Tanenbaum, A. S. and S.J. Mullender, "An overview of the
Amoeba distributed operating system," Operating System
Review, vol. 15, pp.51-64, 1981.

[11] Tanenbaum, A. S. and S.J. Mullender, "The design of a
capability-based distributed operating system," Computer
Journal, to appear.

[12} Valiant, L.G., "A scheme for fast parallel communication,"
SIAM J. on Computing, vol. 11, pp.350-361, 1982.

271

