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Abstract

If learning methods are to scale to the massive sizes of modern data sets, it is essential for
the field of machine learning to embrace parallel and distributed computing. Inspired by
the recent development of matrix factorization methods with rich theory but poor compu-
tational complexity and by the relative ease of mapping matrices onto distributed architec-
tures, we introduce a scalable divide-and-conquer framework for noisy matrix factorization.
We present a thorough theoretical analysis of this framework in which we characterize the
statistical errors introduced by the “divide” step and control their magnitude in the “con-
quer” step, so that the overall algorithm enjoys high-probability estimation guarantees
comparable to those of its base algorithm. We also present experiments in collaborative
filtering and video background modeling that demonstrate the near-linear to superlinear
speed-ups attainable with this approach.

Keywords: collaborative filtering, divide-and-conquer, matrix completion, matrix fac-
torization, parallel and distributed algorithms, randomized algorithms, robust matrix fac-
torization, video surveillance

1. Introduction

The scale of modern scientific and technological data sets poses major new challenges for
computational and statistical science. Data analyses and learning algorithms suitable for
modest-sized data sets are often entirely infeasible for the terabyte and petabyte data sets
that are fast becoming the norm. There are two basic responses to this challenge. One
response is to abandon algorithms that have superlinear complexity, focusing attention on
simplified algorithms that—in the setting of massive data—may achieve satisfactory results
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because of the statistical strength of the data. While this is a reasonable research strategy,
it requires developing suites of algorithms of varying computational complexity for each
inferential task and calibrating statistical and computational efficiencies. There are many
open problems that need to be solved if such an effort is to bear fruit.

The other response to the massive data problem is to retain existing algorithms but to
apply them to subsets of the data. To obtain useful results under this approach, one em-
braces parallel and distributed computing architectures, applying existing base algorithms
to multiple subsets of the data in parallel and then combining the results. Such a divide-
and-conquer methodology has two main virtues: (1) it builds directly on algorithms that
have proven their value at smaller scales and that often have strong theoretical guarantees,
and (2) it requires little in the way of new algorithmic development. The major challenge,
however, is in preserving the theoretical guarantees of the base algorithm once one em-
beds the algorithm in a computationally-motivated divide-and-conquer procedure. Indeed,
the theoretical guarantees often refer to subtle statistical properties of the data-generating
mechanism (e.g., sparsity, information spread, and near low-rankedness). These may or
may not be retained under the “divide” step of a putative divide-and-conquer solution. In
fact, we generally would expect subsampling operations to damage the relevant statisti-
cal structures. Even if these properties are preserved, we face the difficulty of combining
the intermediary results of the “divide” step into a final consilient solution to the original
problem. The question, therefore, is whether we can design divide-and-conquer algorithms
that manage the tradeoffs relating these statistical properties to the computational degrees
of freedom such that the overall algorithm provides a scalable solution that retains the
theoretical guarantees of the base algorithm.

In this paper,1 we explore this issue in the context of an important class of machine
learning algorithms—the matrix factorization algorithms underlying a wide variety of prac-
tical applications, including collaborative filtering for recommender systems , e.g., Koren
et al. (2009) and the references therein, link prediction for social networks (Hoff, 2005),
click prediction for web search (Das et al., 2007), video surveillance (Candès et al., 2011),
graphical model selection (Chandrasekaran et al., 2009), document modeling (Min et al.,
2010), and image alignment (Peng et al., 2010). We focus on two instances of the general
matrix factorization problem: noisy matrix completion (Candès and Plan, 2010), where the
goal is to recover a low-rank matrix from a small subset of noisy entries, and noisy robust
matrix factorization (Candès et al., 2011; Chandrasekaran et al., 2009), where the aim is
to recover a low-rank matrix from corruption by noise and outliers of arbitrary magnitude.
These two classes of matrix factorization problems have attracted significant interest in the
research community.

Various approaches have been proposed for scalable noisy matrix factorization prob-
lems, in particular for noisy matrix completion, though the vast majority tackle rank-
constrained non-convex formulations of these problems with no assurance of finding optimal
solutions (Zhou et al., 2008; Gemulla et al., 2011; Recht and Ré, 2011; F. Niu et al., 2011; Yu
et al., 2012). In contrast, convex formulations of noisy matrix factorization relying on the
nuclear norm have been shown to admit strong theoretical estimation guarantees (Agarwal
et al., 2011; Candès et al., 2011; Candès and Plan, 2010; Negahban and Wainwright, 2012),

1. A preliminary form of this work appears in Mackey et al. (2011).
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and a variety of algorithms (e.g., Lin et al., 2009b; Ma et al., 2011; Toh and Yun, 2010) have
been developed for solving both matrix completion and robust matrix factorization via con-
vex relaxation. Unfortunately, however, all of these methods are inherently sequential, and
all rely on the repeated and costly computation of truncated singular value decompositions
(SVDs), factors that severely limit the scalability of the algorithms. Moreover, previous
attempts at reducing this computational burden have introduced approximations without
theoretical justification (Mu et al., 2011).

To address this key problem of noisy matrix factorization in a scalable and theoret-
ically sound manner, we propose a divide-and-conquer framework for large-scale matrix
factorization. Our framework, entitled Divide-Factor-Combine (DFC), randomly divides
the original matrix factorization task into cheaper subproblems, solves those subproblems
in parallel using a base matrix factorization algorithm for nuclear norm regularized for-
mulations, and combines the solutions to the subproblems using efficient techniques from
randomized matrix approximation. We develop a thoroughgoing theoretical analysis for the
DFC framework, linking statistical properties of the underlying matrix to computational
choices in the algorithms and thereby providing conditions under which statistical estima-
tion of the underlying matrix is possible. We also present experimental results for several
DFC variants demonstrating that DFC can provide near-linear to superlinear speed-ups in
practice. Indeed, DFC naturally handles massive data sets that are too large to fit on a
single machine, as DFC’s minimal communication footprint is particularly well-suited for
distributed computing environments.

The remainder of the paper is organized as follows. In Section 2, we define the setting of
noisy matrix factorization and introduce the components of the DFC framework. Secs. 3,
4, and 5 present our theoretical analysis of DFC, along with a new analysis of convex
noisy matrix completion and a novel characterization of randomized matrix approximation
algorithms. To illustrate the practical speed-up and robustness of DFC, we present exper-
imental results on collaborative filtering, video background modeling, and simulated data
in Section 6. Finally, we conclude in Section 7.

Notation: For a matrix M ∈ R
m×n, we define M(i) as the ith row vector, M(j) as the jth

column vector, and Mij as the ijth entry. If rank(M) = r, we write the compact singular
value decomposition (SVD) of M as UMΣMV⊤

M , where ΣM is diagonal and contains the
r non-zero singular values of M, and UM ∈ R

m×r and VM ∈ R
n×r are the corresponding

left and right singular vectors of M. We define M+ = VMΣ−1
M U⊤

M as the Moore-Penrose
pseudoinverse of M and PM = MM+ as the orthogonal projection onto the column space
of M. We let ‖·‖2, ‖·‖F , and ‖·‖∗ respectively denote the spectral, Frobenius, and nuclear
norms of a matrix, ‖·‖∞ denote the maximum entry of a matrix, and ‖·‖ represent the ℓ2
norm of a vector.

2. The Divide-Factor-Combine Framework

In this section, we present a general divide-and-conquer framework for scalable noisy matrix
factorization. We begin by defining the problem setting of interest.

915



Mackey, Talwalkar and Jordan

2.1 Noisy Matrix Factorization (MF)

In the setting of noisy matrix factorization, we observe a subset of the entries of a matrix
M = L0 + S0 + Z0 ∈ R

m×n, where L0 has rank r ≪ m,n, S0 represents a sparse matrix
of outliers of arbitrary magnitude, and Z0 is a dense noise matrix. We let Ω represent the
locations of the observed entries and PΩ be the orthogonal projection onto the space of
m× n matrices with support Ω, so that

(PΩ(M))ij = Mij , if (i, j) ∈ Ω and (PΩ(M))ij = 0 otherwise.2

Our goal is to estimate the low-rank matrix L0 from PΩ(M) with error proportional to the
noise level ∆ , ‖Z0‖F . We will focus on two specific instances of this general problem:

• Noisy Matrix Completion (MC): s , |Ω| entries of M are revealed uniformly
without replacement, along with their locations. There are no outliers, so that S0 is
identically zero.

• Noisy Robust Matrix Factorization (RMF): S0 is identically zero save for s
outlier entries of arbitrary magnitude with unknown locations distributed uniformly
without replacement. All entries of M are observed, so that PΩ(M) = M.

2.2 Divide-Factor-Combine

The Divide-Factor-Combine (DFC) framework divides the expensive task of matrix factor-
ization into smaller subproblems, executes those subproblems in parallel, and then efficiently
combines the results into a final low-rank estimate of L0. We highlight three variants of this
general framework in Algorithms 1, 2, and 3. These algorithms, which we refer to as DFC-

Proj, DFC-RP, and DFC-Nys, differ in their strategies for division and recombination
but adhere to a common pattern of three simple steps:

(D step) Divide input matrix into submatrices: DFC-Proj andDFC-RP randomly
partition PΩ(M) into t l-column submatrices, {PΩ(C1), . . . ,PΩ(Ct)},3 while DFC-

Nys selects an l-column submatrix, PΩ(C), and a d-row submatrix, PΩ(R), uniformly
at random.

(F step) Factor each submatrix in parallel using any base MF algorithm: DFC-

Proj and DFC-RP perform t parallel submatrix factorizations, while DFC-Nys

performs two such parallel factorizations. Standard base MF algorithms output the
following low-rank approximations: {Ĉ1, . . . , Ĉt} for DFC-Proj and DFC-RP; Ĉ
and R̂ for DFC-Nys. All matrices are retained in factored form.

(C step) Combine submatrix estimates: DFC-Proj generates a final low-rank esti-
mate L̂proj by projecting [Ĉ1, . . . , Ĉt] onto the column space of Ĉ1, DFC-RP uses
random projection to compute a rank-k estimate L̂rp of [Ĉ1 · · · Ĉt] where k is the me-
dian rank of the returned subproblem estimates, and DFC-Nys forms the low-rank

2. When Q is a submatrix of M we abuse notation and let PΩ(Q) be the corresponding submatrix of
PΩ(M).

3. For ease of discussion, we assume that t evenly divides n so that l = n/t. In general, PΩ(M) can always
be partitioned into t submatrices, each with either ⌊n/t⌋ or ⌈n/t⌉ columns.
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Algorithm 1 DFC-Proj

Input: PΩ(M), t
{PΩ(Ci)}1≤i≤t = SampCol(PΩ(M), t)
do in parallel

Ĉ1 = Base-MF-Alg(PΩ(C1))
...

Ĉt = Base-MF-Alg(PΩ(Ct))
end do
L̂proj = ColProjection(Ĉ1, . . . , Ĉt)

Algorithm 2 DFC-RP

Input: PΩ(M), t
{PΩ(Ci)}1≤i≤t = SampCol(PΩ(M), t)
do in parallel

Ĉ1 = Base-MF-Alg(PΩ(C1))
...

Ĉt = Base-MF-Alg(PΩ(Ct))
end do
k = mediani∈{1...t}

(

rank(Ĉi)
)

L̂proj = RandProjection(Ĉ1, . . . , Ĉt, k)

Algorithm 3 DFC-Nys

Input: PΩ(M), l, d
PΩ(C) ,PΩ(R) = SampColRow(PΩ(M), l, d)
do in parallel

Ĉ = Base-MF-Alg(PΩ(C))
R̂ = Base-MF-Alg(PΩ(R))

end do
L̂nys = GenNyström(Ĉ, R̂)

estimate L̂nys from Ĉ and R̂ via the generalized Nyström method. These matrix
approximation techniques are described in more detail in Section 2.3.

2.3 Randomized Matrix Approximations

Underlying the C step of each DFC algorithm is a method for generating randomized low-
rank approximations to an arbitrary matrix M.

Column Projection: DFC-Proj (Algorithm 1) uses the column projection method of
Frieze et al. (1998). Suppose that C is a matrix of l columns sampled uniformly and
without replacement from the columns of M. Then, column projection generates a “matrix
projection” approximation (Kumar et al., 2009a) of M via

Lproj = CC+M = UCU
⊤
CM.

In practice, we do not reconstruct Lproj but rather maintain low-rank factors, e.g., UC and
U⊤

CM.
Random Projection: The celebrated result of Johnson and Lindenstrauss (1984) shows

that random low-dimensional embeddings preserve Euclidean geometry. Inspired by this
result, several random projection algorithms (e.g., Papadimitriou et al., 1998; Liberty, 2009;
Rokhlin et al., 2009) have been introduced for approximating a matrix by projecting it onto
a random low-dimensional subspace (see Halko et al. 2011 for further discussion). DFC-RP

(Algorithm 2) uses such a random projection method due to Halko et al. (2011). Given a
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target low-rank parameter k, let G be an n× (k + p) standard Gaussian matrix G, where
p is an oversampling parameter. Next, let Y = (MM⊤)qMG, and define Q ∈ R

m×k as the
top k left singular vectors of Y. The random projection approximation of M is then given
by

Lrp = QQ+M.

We work with an implementation (Tygert, 2009) of a numerically stable variant of this
algorithm described in Algorithm 4.4 of Halko et al. (2011). Moreover, the parameters p
and q are typically set to small positive constants (Tygert, 2009; Halko et al., 2011), and
we set p = 5 and q = 2.

Generalized Nyström Method : The Nyström method was developed for the discretization
of integral equations (Nyström, 1930) and has since been used to speed up large-scale learn-
ing applications involving symmetric positive semidefinite matrices (Williams and Seeger,
2000). DFC-Nys (Algorithm 3) makes use of a generalization of the Nyström method for
arbitrary real matrices (Goreinov et al., 1997). Suppose that C consists of l columns of M,
sampled uniformly without replacement, and that R consists of d rows of M, independently
sampled uniformly and without replacement. Let W be the d×l matrix formed by sampling
the corresponding rows of C.4 Then, the generalized Nyström method computes a “spectral
reconstruction” approximation (Kumar et al., 2009a) of M via

Lnys = CW+R = CVWΣ+
WU⊤

WR .

As with Mproj , we store low-rank factors of Lnys, such as CVWΣ+
W and U⊤

WR.

Algorithm
Factorization (Per Iteration) Combine Step

Serial Parallel Serial Parallel

Base Alg O(mnk̂) O(mnk̂) - -

DFC-Proj O(tmlk̂) O(mlk̂) O(tmk̂2) O(mk̂2)

DFC-RP O(tmlk̂) O(mlk̂) O(tmk̂2 + nk̂) O(mk̂2 + tmk̂ + nk̂)

DFC-Nys O((ml + nd)k̂) O(max(ml, nd)k̂) O(mk̂2) O(mk̂2)

Table 1: Summary of running time complexity of DFC variants in contrast to many stan-
dard start-of-the-art MF algorithms. This running time analysis assumes that
l ≤ m ≤ n and that all low-rank matrices considered have rank k̂. See Section 2.4
for a more detailed analysis.

2.4 Running Time of DFC

Many state-of-the-art MF algorithms have Ω(mnkM ) per-iteration time complexity due to
the rank-kM truncated SVD performed on each iteration. DFC significantly reduces the
per-iteration complexity to O(mlkCi

) time for Ci (or C) and O(ndkR) time for R. The cost
of combining the submatrix estimates is even smaller when using column projection or the
generalized Nyström method, since the outputs of standard MF algorithms are returned

4. This choice is arbitrary: W could also be defined as a submatrix of R.
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in factored form. Indeed, if we define k′ , maxi kCi
, then the column projection step of

DFC-Proj requires only O(mk′2 + lk′2) time: O(mk′2 + lk′2) time for the pseudoinversion
of Ĉ1 and O(mk′2+ lk′2) time for matrix multiplication with each Ĉi in parallel. Similarly,
the generalized Nyström step of DFC-Nys requires only O(lk̄2 + dk̄2 +min(m,n)k̄2) time,
where k̄ , max(kC , kR).

DFC-RP also benefits from the factored form of the outputs of standard MF algorithms.
Assuming that p and q are positive constants, the random projection step of DFC-RP

requires O(mkt +mkk′ + lkk′ + nk) time where k is the low-rank parameter of Q: O(nk)
time to generate G, O(mkk′ + lkk′ +mkt) to compute Y in parallel, O(mk2) to compute
the SVD of Y, and O(mk′2 + lk′2) time for matrix multiplication with each Ĉi in parallel
in the final projection step. Note that the running time of the random projection step
depends on t (even when executed in parallel) and thus has a larger complexity than the
column projection and generalized Nyström variants. Nevertheless, the random projection
step need be performed only once and thus yields a significant savings over the repeated
computation of SVDs required by typical base algorithms.

A summary of these running times is presented in Table 1.

2.5 Ensemble Methods

Ensemble methods have been shown to improve performance of matrix approximation al-
gorithms, while straightforwardly leveraging the parallelism of modern many-core and dis-
tributed architectures (Kumar et al., 2009b). As such, we propose ensemble variants of
the DFC algorithms that demonstrably reduce estimation error while introducing a negli-
gible cost to the parallel running time. For DFC-Proj-Ens, rather than projecting only
onto the column space of Ĉ1, we project [Ĉ1, . . . , Ĉt] onto the column space of each Ĉi

in parallel and then average the t resulting low-rank approximations. For DFC-RP-Ens,
rather than projecting only onto a column space derived from a single random matrix G,
we project [Ĉ1, . . . , Ĉt] onto t column spaces derived from t random matrices in parallel
and then average the t resulting low-rank approximations. For DFC-Nys-Ens, we choose a
random d-row submatrix PΩ(R) as in DFC-Nys and independently partition the columns
of PΩ(M) into {PΩ(C1), . . . ,PΩ(Ct)} as in DFC-Proj and DFC-RP. After running the
base MF algorithm on each submatrix, we apply the generalized Nyström method to each
(Ĉi, R̂) pair in parallel and average the t resulting low-rank approximations. Section 6
highlights the empirical effectiveness of ensembling.

3. Roadmap of Theoretical Analysis

While DFC in principle can work with any base matrix factorization algorithm, it offers the
greatest benefits when united with accurate but computationally expensive base procedures.
Convex optimization approaches to matrix completion and robust matrix factorization (e.g.,
Lin et al., 2009b; Ma et al., 2011; Toh and Yun, 2010) are prime examples of this class,
since they admit strong theoretical estimation guarantees (Agarwal et al., 2011; Candès
et al., 2011; Candès and Plan, 2010; Negahban and Wainwright, 2012) but suffer from poor
computational complexity due to the repeated and costly computation of truncated SVDs.
Section 6 will provide empirical evidence that DFC provides an attractive framework to
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improve the scalability of these algorithms, but we first present a thorough theoretical
analysis of the estimation properties of DFC.

Over the course of the next three sections, we will show that the same assumptions
that give rise to strong estimation guarantees for standard MF formulations also guarantee
strong estimation properties for DFC. While these results represent an important first step
toward understanding the theoretical behavior of DFC, we will see that certain gaps remain
between our theoretical characterization and the practical performance of DFC. We will
reflect on these gaps and the attendant opportunities for tightened theoretical analysis in
Section 6.4. In the remainder of this section, we first introduce these standard assumptions
and then present simplified bounds to build intuition for our theoretical results and our
underlying proof techniques.

3.1 Standard Assumptions for Noisy Matrix Factorization

Since not all matrices can be recovered from missing entries or gross outliers, recent theo-
retical advances have studied sufficient conditions for accurate noisy MC (Candès and Plan,
2010; Keshavan et al., 2010; Negahban and Wainwright, 2012) and RMF (Agarwal et al.,
2011; Zhou et al., 2010). Informally, these conditions capture the degree to which informa-
tion about a single entry is “spread out” across a matrix. The ease of matrix estimation is
correlated with this spread of information. The most prevalent set of conditions are matrix
coherence conditions, which limit the extent to which the singular vectors of a matrix are
correlated with the standard basis. However, there exist classes of matrices that violate the
coherence conditions but can nonetheless be recovered from missing entries or gross outliers.
Negahban and Wainwright (2012) define an alternative notion of matrix spikiness in part
to handle these classes.

3.1.1 Matrix Coherence

Letting ei be the ith column of the standard basis, we define two standard notions of
coherence (Recht, 2011):

Definition 1 (µ0-Coherence) Let V ∈ R
n×r contain orthonormal columns with r ≤ n.

Then the µ0-coherence of V is:

µ0(V) , n
r max1≤i≤n ‖PV ei‖2 = n

r max1≤i≤n ‖V(i)‖2 .

Definition 2 (µ1-Coherence) Let L ∈ R
m×n have rank r. Then, the µ1-coherence of L

is:

µ1(L) ,
√

mn
r maxij |e⊤i ULV

⊤
Lej | .

For conciseness, we extend the definition of µ0-coherence to an arbitrary matrix L ∈ R
m×n

with rank r via µ0(L) , max(µ0(UL), µ0(VL)). Further, for any µ > 0, we will call a matrix
L (µ, r)-coherent if rank(L) = r, µ0(L) ≤ µ, and µ1(L) ≤ √

µ. Our analysis in Section 4
will focus on base MC and RMF algorithms that express their estimation guarantees in
terms of the (µ, r)-coherence of the target low-rank matrix L0. For such algorithms, lower
values of µ correspond to better estimation properties.
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3.1.2 Matrix Spikiness

The matrix spikiness condition of Negahban and Wainwright (2012) captures the intuition
that a matrix is easier to estimate if its maximum entry is not much larger than its average
entry (in the root mean square sense):

Definition 3 (Spikiness) The spikiness of L ∈ R
m×n is:

α(L) ,
√
mn‖L‖∞/‖L‖F .

We call a matrix α-spiky if α(L) ≤ α.

Our analysis in Section 5 will focus on base MC algorithms that express their estimation
guarantees in terms of the α-spikiness of the target low-rank matrix L0. For such algorithms,
lower values of α correspond to better estimation properties.

3.2 Prototypical Estimation Bounds

We now present a prototypical estimation bound for DFC. Suppose that a base MC algo-
rithm solves the noisy nuclear norm heuristic, studied in Candès and Plan (2010):

minimizeL ‖L‖∗ subject to ‖PΩ(M− L)‖F ≤ ∆,

and that, for simplicity, M is square. The following prototype bound, derived from a new
noisy MC guarantee in Theorem 10, describes the behavior of this estimator under matrix
coherence assumptions. Note that the bound implies exact recovery in the noiseless setting,
i.e., when ∆ = 0.

Proto-Bound 1 (MC under Incoherence) Suppose that L0 is (µ, r)-coherent, s en-
tries of M ∈ R

n×n are observed uniformly at random where s = Ω(µrn log2(n)), and
‖M− L0‖F ≤ ∆. If L̂ solves the noisy nuclear norm heuristic, then

‖L0 − L̂‖F ≤ f(n)∆

with high probability, where f is a function of n.

Now we present a corresponding prototype bound for DFC-Proj, a simplified version
of our Corollary 14, under precisely the same coherence assumptions. Notably, this bound
i) preserves accuracy with a flexible (2 + ǫ) degradation in estimation error over the base
algorithm, ii) allows for speed-up by requiring only a vanishingly small fraction of columns
to be sampled (i.e., l/n → 0) whenever s = ω(n log2(n)) entries are revealed, and iii)
maintains exact recovery in the noiseless setting.

Proto-Bound 2 (DFC-MC under Incoherence) Suppose that L0 is (µ, r)-coherent, s
entries of M ∈ R

n×n are observed uniformly at random, and ‖M− L0‖F ≤ ∆. Then it
suffices to choose

l ≥ c
µ2r2n2 log2(n)

sǫ2
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random columns suffice to have

‖L0 − L̂proj‖F ≤ (2 + ǫ)f(n)∆

with high probability when the noisy nuclear norm heuristic is used as a base algorithm,
where f is the same function of n defined in Proto. 1 and c is a fixed positive constant.

The proof of Proto. 2, and indeed of each of our main DFC results, consists of three high-
level steps:

1. Bound coherence of submatrices : Recall that the F step of DFC operates by applying
a base MF algorithm to submatrices. We show that, with high probability, uniformly
sampled submatrices are only moderately more coherent and moderately more spiky
than the matrix from which they are drawn. This allows for accurate estimation
of submatrices using base algorithms with standard coherence or spikiness require-
ments. The conservation of incoherence result is summarized in Lemma 4, while the
conservation of non-spikiness is presented in Lemma 17.

2. Bound error of randomized matrix approximations : The error introduced by the C
step of DFC depends on the framework variant. Drawing upon tools from random-
ized ℓ2 regression (Drineas et al., 2008), randomized matrix multiplication (Drineas
et al., 2006a,b), and matrix concentration (Hsu et al., 2012), we show that the same
assumptions on the spread of information responsible for accurate MC and RMF also
yield high fidelity reconstructions for column projection (Corollary 6 and Theorem 18)
and the Nyström method (Corollary 7 and Corollary 8). We additionally present gen-
eral approximation guarantees for random projection due to Halko et al. (2011) in
Corollary 9. These results give rise to “master theorems” for coherence (Theorem 12)
and spikiness (Theorem 20) that generically relate the estimation error of DFC to
the error of any base algorithm.

3. Bound error of submatrix factorizations : The final step combines a master theorem
with a base estimation guarantee applied to each DFC subproblem. We study both
new (Theorem 10) and established bounds (Theorem 11 and Corollary 19) for MC and
RMF and prove that DFC submatrices satisfy the base guarantee preconditions with
high probability. We present the resulting coherence-based estimation guarantees for
DFC in Corollary 14 and Corollary 16 and the spikiness-based estimation guarantee
in Corollary 22.

The next two sections present the main results contributing to each of these proof steps,
as well as their consequences for MC and RMF. Section 4 presents our analysis under
coherence assumptions, while Section 5 contains our spikiness analysis.

4. Coherence-based Theoretical Analysis

This section presents our analysis of DFC under standard coherence assumptions encoun-
tered in the MC and RMF literature.
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4.1 Coherence Analysis of Randomized Approximation Algorithms

We begin our coherence-based analysis by characterizing the behavior of randomized ap-
proximation algorithms under standard coherence assumptions. The derived properties will
aid us in deriving DFC estimation guarantees. Hereafter, ǫ ∈ (0, 1] represents a prescribed
error tolerance, and δ, δ′ ∈ (0, 1] denote target failure probabilities.

4.1.1 Conservation of Incoherence

Our first result bounds the µ0 and µ1-coherence of a uniformly sampled submatrix in terms
of the coherence of the full matrix. This conservation of incoherence allows for accurate
submatrix completion or submatrix outlier removal when using standard MC and RMF
algorithms. Its proof is given in Section B.

Lemma 4 (Conservation of Incoherence) Let L ∈ R
m×n be a rank-r matrix and define

LC ∈ R
m×l as a matrix of l columns of L sampled uniformly without replacement. If

l ≥ crµ0(VL) log(n) log(1/δ)/ǫ
2, where c is a fixed positive constant defined in Corollary 6,

then

i) rank(LC) = rank(L)

ii) µ0(ULC
) = µ0(UL)

iii) µ0(VLC
) ≤ µ0(VL)

1− ǫ/2

iv) µ2
1(LC) ≤

rµ0(UL)µ0(VL)

1− ǫ/2

all hold jointly with probability at least 1− δ/n.

4.1.2 Column Projection Analysis

Our next result shows that projection based on uniform column sampling leads to near
optimal estimation in matrix regression when the covariate matrix has small coherence.
This statement will immediately give rise to estimation guarantees for column projection
and the generalized Nyström method.

Theorem 5 (Subsampled Regression under Incoherence) Given a target matrix B ∈
R
p×n and a rank-r matrix of covariates L ∈ R

m×n, choose l ≥ 3200rµ0(VL) log(4n/δ)/ǫ
2,

let BC ∈ R
p×l be a matrix of l columns of B sampled uniformly without replacement, and

let LC ∈ R
m×l consist of the corresponding columns of L. Then,

‖B−BCL
+
CL‖F ≤ (1 + ǫ)‖B−BL+L‖F

with probability at least 1− δ − 0.2.

Fundamentally, Theorem 5 links the notion of coherence, common in matrix estimation
communities, to the randomized approximation concept of leverage score sampling (Ma-
honey and Drineas, 2009). The proof of Theorem 5, given in Section A, builds upon the
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randomized ℓ2 regression work of Drineas et al. (2008) and the matrix concentration re-
sults of Hsu et al. (2012) to yield a subsampled regression guarantee with better sampling
complexity than that of Drineas et al. (2008, Theorem 5).

A first consequence of Theorem 5 shows that, with high probability, column projection
produces an estimate nearly as good as a given rank-r target by sampling a number of
columns proportional to the coherence and r log n.

Corollary 6 (Column Projection under Incoherence) Given a matrix M ∈ R
m×n

and a rank-r approximation L ∈ R
m×n, choose l ≥ crµ0(VL) log(n) log(1/δ)/ǫ

2, where c is
a fixed positive constant, and let C ∈ R

m×l be a matrix of l columns of M sampled uniformly
without replacement. Then,

‖M−CC+M‖F ≤ (1 + ǫ)‖M− L‖F
with probability at least 1− δ.

Our result generalizes Theorem 1 of Drineas et al. (2008) by providing improved sampling
complexity and guarantees relative to an arbitrary low-rank approximation. Notably, in the
“noiseless” setting, when M = L, Corollary 6 guarantees exact recovery of M with high
probability. The proof of Corollary 6 is given in Section C.

4.1.3 Generalized Nyström Analysis

Theorem 5 and Corollary 6 together imply an estimation guarantee for the generalized
Nyström method relative to an arbitrary low-rank approximation L. Indeed, if the ma-
trix of sampled columns is denoted by C, then, with appropriately reduced probability,
O(µ0(VL)r log n) columns and O(µ0(UC)r logm) rows suffice to match the reconstruction
error of L up to any fixed precision. The proof can be found in Section D.

Corollary 7 (Generalized Nyström under Incoherence) Given a matrix M ∈ R
m×n

and a rank-r approximation L ∈ R
m×n, choose l ≥ crµ0(VL) log(n) log(1/δ)/ǫ

2 with c a
constant as in Corollary 6, and let C ∈ R

m×l be a matrix of l columns of M sampled
uniformly without replacement. Further choose d ≥ clµ0(UC) log(m) log(1/δ′)/ǫ2, and let
R ∈ R

d×n be a matrix of d rows of M sampled independently and uniformly without re-
placement. Then,

‖M−CW+R‖F ≤ (1 + ǫ)2‖M− L‖F
with probability at least (1− δ)(1− δ′ − 0.2).

Like the generalized Nyström bound of Drineas et al. (2008, Theorem 4) and unlike our
column projection result, Corollary 7 depends on the coherence of the submatrix C and
holds only with probability bounded away from 1. Our next contribution shows that we
can do away with these restrictions in the noiseless setting, where M = L.

Corollary 8 (Noiseless Generalized Nyström under Incoherence) Let L ∈ R
m×n

be a rank-r matrix. Choose l ≥ 48rµ0(VL) log(4n/(1−
√
1− δ)) and d ≥ 48rµ0(UL) log(4m/(1−√

1− δ)). Let C ∈ R
m×l be a matrix of l columns of L sampled uniformly without replace-

ment, and let R ∈ R
d×n be a matrix of d rows of L sampled independently and uniformly

without replacement. Then,
L = CW+R
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with probability at least 1− δ.

This result may appear surprising at first sight, since only vanishingly small fractions of
rows and columns may participate in the generalized Nyström reconstruction. The intuition
for the method’s success that when the rank of L is small, only a small number of well-
chosen rows and columns are needed to reconstruct the row and column space of L and
that, when L is incoherent, uniform random sampling is likely produce well-chosen rows
and columns. The proof of Corollary 8, given in Section E, adapts a strategy of Talwalkar
and Rostamizadeh (2010) developed for the analysis of positive semidefinite matrices.

4.1.4 Random Projection Analysis

We next present an estimation guarantee for the random projection method relative to an
arbitrary low-rank approximation L. The result implies that using a random matrix with
oversampled columns proportional to r log(1/δ) suffices to match the reconstruction error
of L up to any fixed precision with probability 1− δ. The result is a direct consequence of
the random projection analysis of Halko et al. (2011, Theorem 10.7), and the proof can be
found in Section F.

Corollary 9 (Random Projection) Given a matrix M ∈ R
m×n and a rank-r approxi-

mation L ∈ R
m×n with r ≥ 2, choose an oversampling parameter

p ≥ 242 r log(7/δ)/ǫ2.

Draw an n × (r + p) standard Gaussian matrix G and define Y = MG. Then, with
probability at least 1− δ,

‖M−PY M‖F ≤ (1 + ǫ)‖M− L‖F .

Moreover, define Lrp as the best rank-r approximation of PY M with respect to the Frobenius
norm. Then, with probability at least 1− δ,

‖M− Lrp‖F ≤ (2 + ǫ)‖M− L‖F .

We note that, in contrast to Corollary 6 and Corollary 7, Corollary 9 does not depend on
the coherence of L and hence can be fruitfully applied even in the absence of an incoherence
assumption. We demonstrate such a use case in Section 5. We note moreover that past
empirical studies have demonstrated excellent estimation error with p ≤ 10 irrespective of
the target matrix rank (Halko et al., 2011); bridging the gap between theory and practice
in this instance represents an interesting open problem.

4.2 Base Algorithm Guarantees

As prototypical examples of the coherence-based estimation guarantees available for noisy
MC and noisy RMF, consider the following two theorems. The first bounds the estimation
error of a convex optimization approach to noisy matrix completion, under the assumptions
of incoherence and uniform sampling.
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Theorem 10 (Noisy MC under Incoherence) Suppose that L0 ∈ R
m×n is (µ, r)-coherent

and that, for some target rate parameter β > 1,

s ≥ 32µr(m+ n)β log2(m+ n)

entries of M are observed with locations Ω sampled uniformly without replacement. Then,
if m ≤ n and ‖PΩ(M)− PΩ(L0)‖F ≤ ∆ a.s., the minimizer L̂ of the problem

minimizeL ‖L‖∗ subject to ‖PΩ(M− L)‖F ≤ ∆. (1)

satisfies

‖L0 − L̂‖F ≤ 8

√

2m2n

s
+m+

1

16
∆ ≤ ce

√
mn∆

with probability at least 1− 4 log(n)n2−2β for ce a positive constant.

A similar estimation guarantee was obtained by Candès and Plan (2010) under stronger
assumptions. We give the proof of Theorem 10 in Section J.

The second result, due to Zhou et al. (2010) and reformulated for a generic rate pa-
rameter β, as described in Candès et al. (2011, Section 3.1), bounds the estimation error of
a convex optimization approach to noisy RMF, under the assumptions of incoherence and
uniformly distributed outliers.

Theorem 11 (Noisy RMF under Incoherence, Zhou et al. 2010, Theorem 2) Suppose
that L0 is (µ, r)-coherent and that the support set of S0 is uniformly distributed among all
sets of cardinality s. Then, if m ≤ n and ‖M− L0 − S0‖F ≤ ∆ a.s., there is a constant cp
such that with probability at least 1− cpn

−β, the minimizer (L̂, Ŝ) of the problem

minimizeL,S ‖L‖∗ + λ‖S‖1 subject to ‖M− L− S‖F ≤ ∆ with λ = 1/
√
n (2)

satisfies ‖L0 − L̂‖2F + ‖S0 − Ŝ‖2F ≤ c′2e mn∆2, provided that

r ≤ ρrm

µ log2(n)
and s ≤ (1− ρsβ)mn

for target rate parameter β > 2, and positive constants ρr, ρs, and c′e.

4.3 Coherence Master Theorem

We now show that the same coherence conditions that allow for accurate MC and RMF
also imply high-probability estimation guarantees for DFC. To make this precise, we let
M = L0 + S0 + Z0 ∈ R

m×n, where L0 is (µ, r)-coherent and ‖PΩ(Z0)‖F ≤ ∆. Then, our
next theorem provides a generic bound on the estimation error of DFC used in combination
with an arbitrary base algorithm. The proof, which builds upon the results of Section 4.1,
is given in Section G.
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Theorem 12 (Coherence Master Theorem) Choose t = n/l, l ≥ crµ log(n) log(2/δ)/ǫ2,
where c is a fixed positive constant, and p ≥ 242 r log(14/δ)/ǫ2. Under the notation of Al-
gorithms 1 and 2, let {C0,1, · · · ,C0,t} be the corresponding partition of L0. Then, with

probability at least 1− δ, C0,i is ( rµ2

1−ǫ/2 , r)-coherent for all i, and

‖L0 − L̂∗‖F ≤ (2 + ǫ)

√

∑t
i=1‖C0,i − Ĉi‖

2

F ,

where L̂∗ is the estimate returned by either DFC-Proj or DFC-RP.

Under the notation of Algorithm 3, let C0 and R0 be the corresponding column and row
submatrices of L0. If in addition d ≥ clµ0(Ĉ) log(m) log(4/δ)/ǫ2, then, with probability at

least (1− δ)(1− δ− 0.2), DFC-Nys guarantees that C0 and R0 are ( rµ2

1−ǫ/2 , r)-coherent and
that

‖L0 − L̂nys‖F ≤ (2 + 3ǫ)

√

‖C0 − Ĉ‖2F + ‖R0 − R̂‖2F .

Remark 13 The DFC-Nys guarantee requires the number of rows sampled to grow in
proportion to µ0(Ĉ), a quantity always bounded by µ in our simulations. Here and in the
consequences to follow, the DFC-Nys result can be strengthened in the noiseless setting
(∆ = 0) by utilizing Corollary 8 in place of Corollary 7 in the proof of Theorem 12.

When a target matrix is incoherent, Theorem 12 asserts that – with high probability
for DFC-Proj and DFC-RP and with fixed probability for DFC-Nys – the estimation
error of DFC is not much larger than the error sustained by the base algorithm on each
subproblem. Because Theorem 12 further bounds the coherence of each submatrix, we can
use any coherence-based matrix estimation guarantee to control the estimation error on
each subproblem. The next two sections demonstrate how Theorem 12 can be applied to
derive specific DFC estimation guarantees for noisy MC and noisy RMF. In these sections,
we let n̄ , max(m,n).

4.4 Consequences for Noisy MC

As a first consequence of Theorem 12, we will show that DFC retains the high-probability
estimation guarantees of a standard MC solver while operating on matrices of much smaller
dimension. Suppose that a base MC algorithm solves the convex optimization problem of
Eq. (1). Then, Corollary 14 follows from the Coherence Master Theorem (Theorem 12) and
the base algorithm guarantee of Theorem 10.

Corollary 14 (DFC-MC under Incoherence) Suppose that L0 is (µ, r)-coherent and
that s entries of M are observed, with locations Ω distributed uniformly. Fix any target rate
parameter β > 1. Then, if ‖PΩ(M)− PΩ(L0)‖F ≤ ∆ a.s., and the base algorithm solves
the optimization problem of Eq. (1), it suffices to choose t = n/l,

l ≥ cµ2r2(m+ n)nβ log2(m+ n)/(sǫ2), d ≥ clµ0(Ĉ)(2β − 1) log2(4n̄)n̄/(nǫ2),

and p ≥ 242 r log(14n̄2β−2)/ǫ2 to achieve

DFC-Proj : ‖L0 − L̂proj‖F ≤ (2 + ǫ)ce
√
mn∆
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DFC-RP : ‖L0 − L̂rp‖F ≤ (2 + ǫ)ce
√
mn∆

DFC-Nys : ‖L0 − L̂nys‖F ≤ (2 + 3ǫ)ce
√
ml + dn∆

with probability at least

DFC-Proj / DFC-RP : 1− (5t log(n̄) + 1)n̄2−2β ≥ 1− n̄3−2β

DFC-Nys : 1− (10 log(n̄) + 2)n̄2−2β − 0.2,

respectively, with c as in Theorem 12 and ce as in Theorem 10.

Remark 15 Corollary 14 allows for the fraction of columns and rows sampled to decrease
as the number of revealed entries, s, increases. Only a vanishingly small fraction of columns
(l/n → 0) and rows (d/n̄ → 0) need be sampled whenever s = ω((m+ n) log2(m+ n)).

To understand the conclusions of Corollary 14, consider the base algorithm of The-
orem 10, which, when applied to PΩ(M), recovers an estimate L̂ satisfying ‖L0 − L̂‖F ≤
ce
√
mn∆ with high probability. Corollary 14 asserts that, with appropriately reduced prob-

ability, DFC-Proj and DFC-RP exhibit the same estimation error scaled by an adjustable
factor of 2 + ǫ, while DFC-Nys exhibits a somewhat smaller error scaled by 2 + 3ǫ.

The key take-away is that DFC introduces a controlled increase in error and a controlled
decrement in the probability of success, allowing the user to interpolate between maximum
speed and maximum accuracy. Thus, DFC can quickly provide near-optimal estimation in
the noisy setting and exact recovery in the noiseless setting (∆ = 0), even when entries are
missing. The proof of Corollary 14 can be found in Section H.

4.5 Consequences for Noisy RMF

Our next corollary shows that DFC retains the high-probability estimation guarantees of a
standard RMF solver while operating on matrices of much smaller dimension. Suppose that
a base RMF algorithm solves the convex optimization problem of Eq. (2). Then, Corol-
lary 16 follows from the Coherence Master Theorem (Theorem 12) and the base algorithm
guarantee of Theorem 11.

Corollary 16 (DFC-RMF under Incoherence) Suppose that L0 is (µ, r)-coherent with

r2 ≤ min(m,n)ρr

2µ2 log2(n̄)

for a positive constant ρr. Suppose moreover that the uniformly distributed support set of
S0 has cardinality s. For a fixed positive constant ρs, define the undersampling parameter

βs ,
(

1− s

mn

)

/ρs,

and fix any target rate parameter β > 2 with rescaling β′ , β log(n̄)/ log(m) satisfying
4βs − 3/ρs ≤ β′ ≤ βs. Then, if ‖M− L0 − S0‖F ≤ ∆ a.s., and the base algorithm solves
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the optimization problem of Eq. (2), it suffices to choose t = n/l,

l ≥ max

(

cr2µ2β log2(2n̄)

ǫ2ρr
,
4 log(n̄)β(1− ρsβs)

m(ρsβs − ρsβ′)2

)

,

d ≥ max

(

clµ0(Ĉ)β log2(4n̄)

ǫ2
,
4 log(n̄)β(1− ρsβs)

n(ρsβs − ρsβ′)2

)

and p ≥ 242 r log(14n̄β)/ǫ2 to have

DFC-Proj : ‖L0 − L̂proj‖F ≤ (2 + ǫ)c′e
√
mn∆

DFC-RP : ‖L0 − L̂rp‖F ≤ (2 + ǫ)c′e
√
mn∆

DFC-Nys : ‖L0 − L̂nys‖F ≤ (2 + 3ǫ)c′e
√
ml + dn∆

with probability at least

DFC-Proj / DFC-RP : 1− (t(cp + 1) + 1)n̄−β ≥ 1− cpn̄
1−β

DFC-Nys : 1− (2cp + 3)n̄−β − 0.2,

respectively, with c as in Theorem 12 and ρr, c
′
e, and cp as in Theorem 11.

Note that Corollary 16 places only very mild restrictions on the number of columns and
rows to be sampled. Indeed, l and d need only grow poly-logarithmically in the matrix
dimensions to achieve estimation guarantees comparable to those of the RMF base algorithm
(Theorem 11). Hence, DFC can quickly provide near-optimal estimation in the noisy setting
and exact recovery in the noiseless setting (∆ = 0), even when entries are grossly corrupted.
The proof of Corollary 16 can be found in Section I.

5. Theoretical Analysis under Spikiness Conditions

This section presents our analysis of DFC under standard spikiness assumptions from the
MC and RMF literature.

5.1 Spikiness Analysis of Randomized Approximation Algorithms

We begin our spikiness analysis by characterizing the behavior of randomized approximation
algorithms under standard spikiness assumptions. The derived properties will aid us in
developing DFC estimation guarantees. Hereafter, ǫ ∈ (0, 1] represents a prescribed error
tolerance, and δ, δ′ ∈ (0, 1] designates a target failure probability.

5.1.1 Conservation of Non-Spikiness

Our first lemma establishes that the uniformly sampled submatrices of an α-spiky matrix
are themselves nearly α-spiky with high probability. This property will allow for accurate
submatrix completion or outlier removal using standard MC and RMF algorithms. Its proof
is given in Section K.
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Lemma 17 (Conservation of Non-Spikiness) Let LC ∈ R
m×l be a matrix of l columns

of L ∈ R
m×n sampled uniformly without replacement. If l ≥ α4(L) log(1/δ)/(2ǫ2), then

α(LC) ≤
α(L)√
1− ǫ

with probability at least 1− δ.

5.1.2 Column Projection Analysis

Our first theorem asserts that, with high probability, column projection produces an ap-
proximation nearly as good as a given rank-r target by sampling a number of columns
proportional to the spikiness and r log(mn).

Theorem 18 (Column Projection under Non-Spikiness) Given a matrix M ∈ R
m×n

and a rank-r, α-spiky approximation L ∈ R
m×n, choose

l ≥ 8rα4 log(2mn/δ)/ǫ2,

and let C ∈ R
m×l be a matrix of l columns of M sampled uniformly without replacement.

Then,
‖M− Lproj‖F ≤ ‖M− L‖F + ǫ

with probability at least 1− δ, whenever ‖M‖∞ ≤ α/
√
mn.

The proof of Theorem 18 builds upon the randomized matrix multiplication work of
Drineas et al. (2006a,b) and will be given in Section L.

5.2 Base Algorithm Guarantee

The next result, a reformulation of Negahban and Wainwright (2012, Corollary 1), is a
prototypical example of a spikiness-based estimation guarantee for noisy MC. Corollary 19
bounds the estimation error of a convex optimization approach to noisy matrix completion,
under non-spikiness and uniform sampling assumptions.

Corollary 19 (Noisy MC under Non-Spikiness) (Negahban and Wainwright, 2012)
Suppose that L0 ∈ R

m×n is α-spiky with rank r and ‖L0‖F ≤ 1 and that Z0 ∈ R
m×n

has i.i.d. zero-mean, sub-exponential entries with variance ν2/mn. If, for an oversampling
parameter β > 0,

s ≥ α2βr(m+ n) log(m+ n)

entries of M = L0 +Z0 are observed with locations Ω sampled uniformly with replacement,
then any solution L̂ of the problem

minimizeL
mn

2s
‖PΩ(M− L)‖2F + λ‖L‖∗ subject to ‖L‖∞ ≤ α√

mn
(3)

with λ = 4ν
√

(m+ n) log(m+ n)/s

satisfies

‖L0 − L̂‖2F ≤ c1max
(

ν2, 1
)

/β

with probability at least 1− c2 exp(−c3 log(m+ n)) for positive constants c1, c2, and c3.
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5.3 Spikiness Master Theorem

We now show that the same spikiness conditions that allow for accurate MC also imply high-
probability estimation guarantees for DFC. To make this precise, we let M = L0 + Z0 ∈
R
m×n, where L0 is α-spiky with rank r and that Z0 ∈ R

m×n has i.i.d. zero-mean, sub-
exponential entries with variance ν2/mn. We further fix any ǫ, δ ∈ (0, 1]. Then, our
Theorem 20 provides a generic bound on estimation error forDFC when used in combination
with an arbitrary base algorithm. The proof, which builds upon the results of Section 5.1,
is deferred to Section M.

Theorem 20 (Spikiness Master Theorem) Choose t = n/l, l ≥ 13rα4 log(4mn/δ)/ǫ2,
and p ≥ 242 r log(14/δ)/ǫ2. Under the notation of Algorithms 1 and 2, let {C0,1, · · · ,C0,t}
be the corresponding partition of L0. Then, with probability at least 1− δ, DFC-Proj and
DFC-RP guarantee that C0,i is (

√
1.25α)-spiky for all i and that

‖L0 − L̂proj‖F ≤ 2

√

∑t
i=1‖C0,i − Ĉi‖

2

F + ǫ and

‖L0 − L̂rp‖F ≤ (2 + ǫ)

√

∑t
i=1‖C0,i − Ĉi‖

2

F

whenever ‖Ĉi‖∞ ≤
√
1.25α/

√
ml for all i.

Remark 21 The factor of
√
1.25 can be replaced with the smaller term

√

1 + ǫ/(4
√
r).

When a target matrix is non-spiky, Theorem 20 asserts that, with high probability, the
estimation error of DFC is not much larger than the error sustained by the base algorithm
on each subproblem. Theorem 20 further bounds the spikiness of each submatrix with
high probability, and hence we can use any spikiness-based matrix estimation guarantee
to control the estimation error on each subproblem. The next section demonstrates how
Theorem 20 can be applied to derive specific DFC estimation guarantees for noisy MC.

5.4 Consequences for Noisy MC

Our corollary of Theorem 20 shows that DFC retains the high-probability estimation guar-
antees of a standard MC solver while operating on matrices of much smaller dimension.
Suppose that a base MC algorithm solves the convex optimization problem of Eq. (3).
Then, Corollary 22 follows from the Spikiness Master Theorem (Theorem 20) and the base
algorithm guarantee of Corollary 19.

Corollary 22 (DFC-MC under Non-Spikiness) Suppose that L0 ∈ R
m×n is α-spiky

with rank r and ‖L0‖F ≤ 1 and that Z0 ∈ R
m×n has i.i.d. zero-mean, sub-exponential

entries with variance ν2/mn. Let c1, c2, and c3 be positive constants as in Corollary 19. If
s entries of M = L0+Z0 are observed with locations Ω sampled uniformly with replacement,
and the base algorithm solves the optimization problem of Eq. (3), then it suffices to choose
t = n/l,

l ≥ 13(c3 + 1)

√

(m+ n) log(m+ n)β

s
nrα4 log(4mn)/ǫ2,
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and p ≥ 242 r log(14(m+ l)c3)/ǫ2 to achieve

‖L0 − L̂proj‖F ≤ 2
√

c1max((l/n)ν2, 1)/β + ǫ and

‖L0 − L̂rp‖F ≤ (2 + ǫ)
√

c1max((l/n)ν2, 1)/β

with respective probability at least 1−(t+1)(c2+1) exp(−c3 log(m+ l)), if the base algorithm
of Eq. (3) is used with λ = 4ν

√

(m+ n) log(m+ n)/s.

Remark 23 Corollary 22 allows for the fraction of columns sampled to decrease as the
number of revealed entries, s, increases. Only a vanishingly small fraction of columns
(l/n → 0) need be sampled whenever s = ω((m+ n) log3(m+ n)).

To understand the conclusions of Corollary 22, consider the base algorithm of Corol-
lary 19, which, when applied to M, recovers an estimate L̂ satisfying

‖L0 − L̂‖F ≤
√

c1max(ν2, 1)/β

with high probability. Corollary 14 asserts that, with appropriately reduced probability,
DFC-RP exhibits the same estimation error scaled by an adjustable factor of 2 + ǫ, while
DFC-Proj exhibits at most twice this error plus an adjustable factor of ǫ. Hence, DFC

can quickly provide near-optimal estimation for non-spiky matrices as well as incoherent
matrices, even when entries are missing. The proof of Corollary 22 can be found in Section N.

6. Experimental Evaluation

We now explore the accuracy and speed-up of DFC on a variety of simulated and real-world
data sets. We use the Accelerated Proximal Gradient (APG) algorithm of Toh and Yun
(2010) as our base noisy MC algorithm5 and the APG algorithm of Lin et al. (2009b) as our
base noisy RMF algorithm. In order to provide a fair comparison with baseline algorithms,
we perform all experiments on an x86-64 architecture using a single 2.60 Ghz core and 30GB
of main memory. In practice, one will typically run DFC jobs in a distributed fashion across
a cluster; our released code supports this standard use case. We use the default parameter
settings suggested by Toh and Yun (2010) and Lin et al. (2009b), and measure estimation
error via root mean square error (RMSE). To achieve a fair running time comparison, we
execute each subproblem in the F step of DFC in a serial fashion on the same machine
using a single core. Since, in practice, each of these subproblems would be executed in
parallel, the parallel running time of DFC is calculated as the time to complete the D and
C steps of DFC plus the running time of the longest running subproblem in the F step.
We compare DFC with two baseline methods: the base algorithm APG applied to the full
matrix M and Partition, which carries out the D and F steps of DFC-Proj but omits
the final C step (projection). We denote a particular sampling method along with the size
of its partitions as ‘method-xx%,’ e.g., Proj-25% refers to DFC-Proj with partitioned
submatrices containing 25% of the columns of the full matrix (i.e., t = 4). For Partition,
DFC-Proj, and DFC-RP, we orient our data matrices such that n ≥ m and partition by
column. Moreover, for DFC-RP we set p = 5 and q = 2.

5. Our experiments with the Augmented Lagrange Multiplier (ALM) algorithm of Lin et al. (2009a) as a
base algorithm (not reported) yield comparable relative speedups and performance for DFC.
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6.1 Simulations

For our simulations, we focused on square matrices (m = n) and generated random low-rank
and sparse decompositions, similar to the schemes used in related work (Candès et al., 2011;
Keshavan et al., 2010; Zhou et al., 2010). We created L0 ∈ R

m×m as a random product,
AB⊤, where A and B are m× r matrices with independent N (0,

√

1/r) entries such that
each entry of L0 has unit variance. Z0 contained independent N (0, 0.1) entries. In the MC
setting, s entries of L0 + Z0 were revealed uniformly at random. In the RMF setting, the
support of S0 was generated uniformly at random, and the s corrupted entries took values
in [0, 1] with uniform probability. For each algorithm, we report error between L0 and the
estimated low-rank matrix, and all reported results are averages over ten trials.
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Figure 1: Recovery error of DFC relative to base algorithms.

We first explored the estimation error of DFC as a function of s, using (m = 10K,
r = 10) with varying observation sparsity for MC and (m = 1K, r = 10) with a varying
percentage of outliers for RMF. The results are summarized in Figure 1. In both MC and
RMF, the gaps in estimation between APG and DFC are small when sampling only 10%
of rows and columns. Moreover, of the standard DFC algorithms, DFC-RP performs the
best, as shown in Figures 1(a) and (b). Ensembling improves the performance of DFC-

Nys and DFC-Proj, as shown in Figures 1(c) and (d), and DFC-Proj-Ens in particular
consistently outperforms Partition and DFC-Nys-Ens, slightly outperforms DFC-RP,
and matches the performance of APG for most settings of s. In practice we observe that Lrp

equals the optimal (with respect to the spectral or Frobenius norm) rank-k approximation
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of [Ĉ1, . . . , Ĉt], and thus the performance of DFC-RP consistently matches that of DFC-

RP-Ens. We therefore omit the DFC-RP-Ens results in the remainder this section.

We next explored the speed-up of DFC as a function of matrix size. For MC, we revealed
4% of the matrix entries and set r = 0.001 ·m, while for RMF we fixed the percentage of
outliers to 10% and set r = 0.01·m. We sampled 10% of rows and columns and observed that
estimation errors were comparable to the errors presented in Figure 1 for similar settings
of s; in particular, at all values of n for both MC and RMF, the errors of APG and DFC-

Proj-Ens were nearly identical. Our timing results, presented in Figure 2, illustrate a
near-linear speed-up for MC and a superlinear speed-up for RMF across varying matrix
sizes. Note that the timing curves of the DFC algorithms and Partition all overlap, a
fact that highlights the minimal computational cost of the final matrix approximation step.
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Figure 2: Speed-up of DFC relative to base algorithms.

6.2 Collaborative Filtering

Collaborative filtering for recommender systems is one prevalent real-world application of
noisy matrix completion. A collaborative filtering data set can be interpreted as the in-
complete observation of a ratings matrix with columns corresponding to users and rows
corresponding to items. The goal is to infer the unobserved entries of this ratings matrix.
We evaluate DFC on two of the largest publicly available collaborative filtering data sets:
MovieLens 10M (http://www.grouplens.org/) with m = 10K, n = 72K, s > 10M, and
the Netflix Prize data set (http://www.netflixprize.com/) with m = 18K, n = 480K,
s > 100M. To generate test sets drawn from the training distribution, for each data set,
we aggregated all available rating data into a single training set and withheld test entries
uniformly at random, while ensuring that at least one training observation remained in
each row and column. The algorithms were then run on the remaining training portions
and evaluated on the test portions of each split. The results, averaged over three train-test
splits, are summarized in Table 2. Notably, DFC-Proj, DFC-Proj-Ens, DFC-Nys-Ens,
and DFC-RP all outperform Partition, and DFC-Proj-Ens performs comparably to
APG while providing a nearly linear parallel time speed-up. Similar to the simulation re-
sults presented in Figure 1, DFC-RP performs the best of the standard DFC algorithms,
though DFC-Proj-Ens slightly outperforms DFC-RP. Moreover, the poorer performance
of DFC-Nys can be in part explained by the asymmetry of these problems. Since these
matrices have many more columns than rows, MF on column submatrices is inherently
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Method
MovieLens 10M Netflix
RMSE Time RMSE Time

Base algorithm (APG) 0.8005 552.3s 0.8433 4775.4s

Partition-25% 0.8146 146.2s 0.8451 1274.6s
Partition-10% 0.8461 56.0s 0.8491 548.0s

DFC-Nys-25% 0.8449 141.9s 0.8832 1541.2s
DFC-Nys-10% 0.8776 82.5s 0.9228 797.4s

DFC-Nys-Ens-25% 0.8085 153.5s 0.8486 1661.2s
DFC-Nys-Ens-10% 0.8328 96.2s 0.8613 909.8s

DFC-Proj-25% 0.8061 146.3s 0.8436 1274.8s
DFC-Proj-10% 0.8270 56.0s 0.8486 548.1s

DFC-Proj-Ens-25% 0.7944 146.3s 0.8411 1274.8s
DFC-Proj-Ens-10% 0.8117 56.0s 0.8434 548.1s

DFC-RP-25% 0.8027 147.4s 0.8438 1283.6s
DFC-RP-10% 0.8074 56.2s 0.8448 550.1s

Table 2: Performance of DFC relative to base algorithm APG on collaborative filtering
tasks.

easier than MF on row submatrices, and for DFC-Nys, we observe that Ĉ is an accurate
estimate while R̂ is not.

6.3 Background Modeling in Computer Vision

Background modeling has important practical ramifications for detecting activity in surveil-
lance video. This problem can be framed as an application of noisy RMF, where each video
frame is a column of some matrix (M), the background model is low-rank (L0), and moving
objects and background variations, e.g., changes in illumination, are outliers (S0). We evalu-
ate DFC on two videos (treating each frame as a row): ‘Hall’ (200 frames of size 176×144)
contains significant foreground variation and was studied by Candès et al. (2011), while
‘Lobby’ (1546 frames of size 168 × 120) includes many changes in illumination (a smaller
video with 250 frames was studied by Candès et al. 2011). We focused on DFC-Proj-Ens,
due to its superior performance in previous experiments, and measured the RMSE between
the background model estimated by DFC and that of APG. On both videos, DFC-Proj-

Ens estimated nearly the same background model as the full APG algorithm in a small
fraction of the time. On ‘Hall,’ the DFC-Proj-Ens-5% and DFC-Proj-Ens-0.5% models
exhibited RMSEs of 0.564 and 1.55, quite small given pixels with 256 intensity values. The
associated running time was reduced from 342.5s for APG to real-time (5.2s for a 13s video)
for DFC-Proj-Ens-0.5%. Snapshots of the results are presented in Figure 3. On ‘Lobby,’

935



Mackey, Talwalkar and Jordan

Original frame APG 5% sampled 0.5% sampled
(342.5s) (24.2s) (5.2s)

Figure 3: Sample ‘Hall’ estimation by APG, DFC-Proj-Ens-5%, and DFC-Proj-Ens-
.5%.

the RMSE of DFC-Proj-Ens-4% was 0.64, and the speed-up over APG was more than
20X, i.e., the running time reduced from 16557s to 792s.

6.4 From Theory to Practice

Our experimental results suggest that the theoretical error bounds of Secs. 4 and 5 can be
further tightened. In particular, our master theorems Theorems 12 and 20 guarantee that
DFC-Proj-Ens and DFC-RP are never more than a constant factor worse than Par-

tition, yet in both real data experiments and simulations we observe significant gains in
accuracy over Partition due to the incorporation of projection and ensembling. More-
over, our theory gives rise to comparable estimation guarantees for DFC-Nys, albeit under
stronger assumptions as noted in Remark 13. This is a surprising fact given that DFC-Nys

may make use of only a vanishingly small subset of all available matrix entries; however, we
find that for data sets with high noise levels, methods that make use of all available data
like DFC-Proj and DFC-RP are unsurprisingly more accurate than DFC-Nys. We view
addressing these gaps between theory and practice as important directions for future work.

7. Conclusions

To improve the scalability of existing matrix factorization algorithms while leveraging the
ubiquity of parallel computing architectures, we introduced, evaluated, and analyzed DFC,
a divide-and-conquer framework for noisy matrix factorization with missing entries or out-
liers. DFC is trivially parallelized and particularly well suited for distributed environments
given its low communication footprint. Moreover, DFC provably maintains the estimation
guarantees of its base algorithm, even in the presence of noise, and yields linear to super-
linear speedups in practice. A number of natural follow-up questions suggest themselves:

• Can the sampling complexities and conclusions of our theoretical analyses be strength-
ened? For example, can the (2+ ǫ) approximation guarantees of our master theorems
be sharpened to (1 + ǫ)? More generally, can we close the gaps between theory and
practice described in Section 6.4?
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• How does DFC compare empirically with scalable heuristics for MC and RMF that
have little theoretical backing (see, e.g., Zhou et al., 2008; Gemulla et al., 2011; Recht
and Ré, 2011; F. Niu et al., 2011; Yu et al., 2012; Mu et al., 2011)? Is improved perfor-
mance obtained by pairing DFC with base algorithms lacking theoretical guarantees
but displaying other practical benefits?

• Which algorithmic refinements lead to enhanced performance for DFC? For instance,
could ensemble variants of DFC be improved by learning combination weights in a
manner analogous to that of Kumar et al. (2009b)? In the matrix completion setting,
could one use held-out entries to determine the optimal dimension (via rows or via
columns) for partitioning in DFC-Proj or DFC-RP?

These open questions are fertile ground for future work.
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Appendix A. Proof of Theorem 5: Subsampled Regression under

Incoherence

We now give a proof of Theorem 5. While the results of this section are stated in terms of
i.i.d. with-replacement sampling of columns and rows, a concise argument due to Hoeffding
(1963, Section 6) implies the same conclusions when columns and rows are sampled without
replacement.

Our proof of Theorem 5 will require a strengthened version of the randomized ℓ2 regres-
sion work of Drineas et al. (2008, Theorem 5). The proof of Theorem 5 of Drineas et al.
(2008) relies heavily on the fact that ‖AB−GH‖F ≤ ǫ

2‖A‖F ‖B‖F with probability at
least 0.9, when G and H contain sufficiently many rescaled columns and rows of A and
B, sampled according to a particular non-uniform probability distribution. A result of Hsu
et al. (2012), modified to allow for slack in the probabilities, establishes a related claim with
improved sampling complexity.6

Lemma 24 (Hsu et al. 2012, Example 4.3) Given a matrix A ∈ R
m×k with r ≥ rank(A),

an error tolerance ǫ ∈ (0, 1], and a failure probability δ ∈ (0, 1], define probabilities pj sat-
isfying

pj ≥
β

Z
‖A(j)‖2, Z =

∑

j

‖A(j)‖2, and
∑k

j=1pj = 1

6. The general conclusion of (Hsu et al., 2012, Example 4.3) is incorrectly stated as noted in Hsu (2012).
However, the original statement is correct in the special case when a matrix is multiplied by its own
transpose, which is the case of interest here.
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for some β ∈ (0, 1]. Let G ∈ R
m×l be a column submatrix of A in which exactly l ≥

48r log(4r/(βδ))/(βǫ2) columns are selected in i.i.d. trials in which the j-th column is chosen
with probability pj. Further, let D ∈ R

l×l be a diagonal rescaling matrix with entry Dtt =
1/
√

lpj whenever the j-th column of A is selected on the t-th sampling trial, for t = 1, . . . , l.
Then, with probability at least 1− δ,

‖AA⊤ −GDDG⊤‖2 ≤
ǫ

2
‖A‖22.

Using Lemma 24, we now establish a stronger version of Lemma 1 of Drineas et al.
(2008). For a given β ∈ (0, 1] and L ∈ R

m×n with rank r, we first define column sampling
probabilities pj satisfying

pj ≥
β

r
‖(VL)(j)‖2 and

∑n
j=1pj = 1. (4)

We further let S ∈ R
n×l be a random binary matrix with independent columns, where a

single 1 appears in each column, and Sjt = 1 with probability pj for each t ∈ {1, . . . , l}.
Moreover, let D ∈ R

l×l be a diagonal rescaling matrix with entry Dtt = 1/
√

lpj whenever
Sjt = 1. Postmultiplication by S is equivalent to selecting l random columns of a matrix,
independently and with replacement. Under this notation, we establish the following lemma:

Lemma 25 Let ǫ ∈ (0, 1], and define V⊤
l = V⊤

LS and Γ = (V⊤
l D)+ − (V⊤

l D)⊤. If
l ≥ 48r log(4r/(βδ))/(βǫ2) for δ ∈ (0, 1] then with probability at least 1− δ:

rank(Vl) = rank(VL) = rank(L)

‖Γ‖2 = ‖Σ−1
V ⊤

l
D
−ΣV ⊤

l
D‖

2

(LSD)+ = (V⊤
l D)+Σ−1

L U⊤
L

‖Σ−1
V ⊤

l
D
−ΣV ⊤

l
D‖

2
≤ ǫ/

√
2.

Proof By Lemma 24, for all 1 ≤ i ≤ r,

|1− σ2
i (V

⊤
l D)| = |σi(V⊤

LVL)− σi(V
⊤
l DDVl)|

≤ ‖V⊤
LVL −V⊤

LSDDS⊤VL‖2
≤ ǫ/2‖V⊤

L‖
2

2 = ǫ/2,

where σi(·) is the i-th largest singular value of a given matrix. Since ǫ/2 ≤ 1/2, each singu-
lar value of Vl is positive, and so rank(Vl) = rank(VL) = rank(L). The remainder of the
proof is identical to that of Lemma 1 of Drineas et al. (2008).

Lemma 25 immediately yields improved sampling complexity for the randomized ℓ2
regression of Drineas et al. (2008):

Proposition 26 Suppose B ∈ R
p×n and ǫ ∈ (0, 1]. If l ≥ 3200r log(4r/(βδ))/(βǫ2) for

δ ∈ (0, 1], then with probability at least 1− δ − 0.2:

‖B−BSD(LSD)+L‖F ≤ (1 + ǫ)‖B−BL+L‖F .
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Proof The proof is identical to that of Theorem 5 of Drineas et al. (2008) once Lemma 25
is substituted for Lemma 1 of Drineas et al. (2008).

A typical application of Prop. 26 would involve performing a truncated SVD of M to
obtain the statistical leverage scores, ‖(VL)(j)‖2, used to compute the column sampling
probabilities of Eq. (4). Here, we will take advantage of the slack term, β, allowed in the
sampling probabilities of Eq. (4) to show that uniform column sampling gives rise to the
same estimation guarantees for column projection approximations when L is sufficiently
incoherent.

To prove Theorem 5, we first notice that n ≥ rµ0(VL) and hence

l ≥ 3200rµ0(VL) log(4rµ0(VL)/δ)/ǫ
2

≥ 3200r log(4r/(βδ))/(βǫ2)

whenever β ≥ 1/µ0(VL). Thus, we may apply Prop. 26 with β = 1/µ0(VL) ∈ (0, 1] and
pj = 1/n by noting that

β

r
‖(VL)(j)‖2 ≤

β

r

r

n
µ0(VL) =

1

n
= pj

for all j, by the definition of µ0(VL). By our choice of probabilities, D = I
√

n/l, and hence

‖B−BCL
+
CL‖F = ‖B−BCD(LCD)+L‖F ≤ (1 + ǫ)‖B−BL+L‖F

with probability at least 1− δ − 0.2, as desired.

Appendix B. Proof of Lemma 4: Conservation of Incoherence

Since for all n > 1,

c log(n) log(1/δ) = (c/4) log(n4) log(1/δ) ≥ 48 log(4n2/δ) ≥ 48 log(4rµ0(VL)/(δ/n))

as n ≥ rµ0(VL), claim i follows immediately from Lemma 25 with β = 1/µ0(VL), pj = 1/n
for all j, and D = I

√

n/l. When rank(LC) = rank(L), Lemma 1 of Mohri and Talwalkar
(2011) implies that PULC

= PUL
, which in turn implies claim ii.

To prove claim iii given the conclusions of Lemma 25, assume, without loss of generality,
that Vl consists of the first l rows of VL. Then if LC = ULΣLV

⊤
l has rank(LC) =

rank(L) = r, the matrix Vl must have full column rank. Thus we can write

L+
CLC = (ULΣLV

⊤
l )

+ULΣLV
⊤
l

= (ΣLV
⊤
l )

+U+
LULΣLV

⊤
l

= (ΣLV
⊤
l )

+ΣLV
⊤
l

= (V⊤
l )

+Σ+
LΣLV

⊤
l

= (V⊤
l )

+V⊤
l

= Vl(V
⊤
l Vl)

−1V⊤
l ,
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where the second and third equalities follow from UL having orthonormal columns, the
fourth and fifth result from ΣL having full rank and Vl having full column rank, and the
sixth follows from V⊤

l having full row rank.

Now, denote the right singular vectors of LC by VLC
∈ R

l×r. Observe that PVLC
=

VLC
V⊤

LC
= L+

CLC , and define ei,l as the ith column of Il and ei,n as the ith column of In.
Then we have,

µ0(VLC
) =

l

r
max
1≤i≤l

‖PVLC
ei,l‖2

=
l

r
max
1≤i≤l

e⊤i,lL
+
CLCei,l

=
l

r
max
1≤i≤l

e⊤i,l(V
⊤
l )

+V⊤
l ei,l

=
l

r
max
1≤i≤l

e⊤i,lVl(V
⊤
l Vl)

−1V⊤
l ei,l

=
l

r
max
1≤i≤l

e⊤i,nVL(V
⊤
l Vl)

−1V⊤
Lei,n,

where the final equality follows from V⊤
l ei,l = V⊤

Lei,n for all 1 ≤ i ≤ l.

Now, defining Q = V⊤
l Vl we have

µ0(VLC
) =

l

r
max
1≤i≤l

e⊤i,nVLQ
−1V⊤

Lei,n

=
l

r
max
1≤i≤l

Tr
[

e⊤i,nVLQ
−1V⊤

Lei,n

]

=
l

r
max
1≤i≤l

Tr
[

Q−1V⊤
Lei,ne

⊤
i,nVL

]

≤ l

r
‖Q−1‖2 max

1≤i≤l
‖V⊤

Lei,ne
⊤
i,nVL‖∗ ,

by Hölder’s inequality for Schatten p-norms. Since V⊤
Lei,ne

⊤
i,nVL has rank one, we can

explicitly compute its trace norm as ‖V⊤
Lei,n‖

2
= ‖PVL

ei,n‖2. Hence,

µ0(VLC
) ≤ l

r
‖Q−1‖2 max

1≤i≤l
‖PVL

ei,n‖2

≤ l

r

r

n
‖Q−1‖2

(

n

r
max
1≤i≤n

‖PVL
ei,n‖2

)

=
l

n
‖Q−1‖2µ0(VL) ,

by the definition of µ0-coherence. The proof of Lemma 25 established that the smallest
singular value of n

l Q = V⊤
l DDVl is lower bounded by 1− ǫ

2 and hence ‖Q−1‖2 ≤ n
l(1−ǫ/2) .

Thus, we conclude that µ0(VLC
) ≤ µ0(VL)/(1− ǫ/2).
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To prove claim iv under Lemma 25, we note that

µ1(LC) =

√

ml

r
max
1≤i≤m
1≤j≤l

|e⊤i,mULC
V⊤

LC
ej,l|

≤
√

ml

r
max
1≤i≤m

‖U⊤
LC

ei,m‖ max
1≤j≤l

‖V⊤
LC

ej,l‖

=
√
r

(
√

m

r
max
1≤i≤m

‖PULC
ei,m‖

)(

√

l

r
max
1≤j≤l

‖PVLC
ej,l‖

)

=
√

rµ0(ULC
)µ0(VLC

) ≤
√

rµ0(UL)µ0(VL)/(1− ǫ/2)

by Hölder’s inequality for Schatten p-norms, the definition of µ0-coherence, and claims ii
and iii.

Appendix C. Proof of Corollary 6: Column Projection under Incoherence

Fix c = 48000/ log(1/0.45), and notice that for n > 1,

48000 log(n) ≥ 3200 log(n5) ≥ 3200 log(16n).

Hence l ≥ 3200rµ0(VL) log(16n)(log(δ)/ log(0.45))/ǫ
2.

Now partition the columns ofC into b = log(δ)/ log(0.45) submatrices,C = [C1, · · · ,Cb],
each with a = l/b columns,7 and let [LC1

, · · · ,LCb
] be the corresponding partition of LC .

Since

a ≥ 3200rµ0(VL) log(4n/0.25)/ǫ
2,

we may apply Prop. 26 independently for each i to yield

‖M−CiL
+
Ci
L‖

F
≤ (1 + ǫ)‖M−ML+L‖F ≤ (1 + ǫ)‖M− L‖F (5)

with probability at least 0.55, since ML+ minimizes ‖M−YL‖F over all Y ∈ R
m×m.

Since each Ci = CSi for some matrix Si and C+M minimizes ‖M−CX‖F over all
X ∈ R

l×n, it follows that

‖M−CC+M‖F ≤ ‖M−CiL
+
Ci
L‖

F
,

for each i. Hence, if

‖M−CC+M‖F ≤ (1 + ǫ)‖M− L‖F ,

fails to hold, then, for each i, Eq. (5) also fails to hold. The desired conclusion therefore
must hold with probability at least 1− 0.45b = 1− δ.

7. For simplicity, we assume that b divides l evenly.
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Appendix D. Proof of Corollary 7: Generalized Nyström Method under

Incoherence

With c = 48000/ log(1/0.45) as in Corollary 6, we notice that for m > 1,

48000 log(m) = 16000 log(m3) ≥ 16000 log(4m).

Therefore,

d ≥ 16000rµ0(UC) log(4m)(log(δ′)/ log(0.45))/ǫ2

≥ 3200rµ0(UC) log(4m/δ′)/ǫ2,

for all m > 1 and δ′ ≤ 0.8. Hence, we may apply Theorem 5 and Corollary 6 in turn to
obtain

‖M−CW+R‖F ≤ (1 + ǫ)‖M−CC+M‖F ≤ (1 + ǫ)2‖M− L‖
with probability at least (1− δ)(1− δ′ − 0.2) by independence.

Appendix E. Proof of Corollary 8: Noiseless Generalized Nyström

Method under Incoherence

Since rank(L) = r, L admits a decomposition L = Y⊤Z for some matrices Y ∈ R
r×m

and Z ∈ R
r×n. In particular, let Y⊤ = ULΣ

1

2

L and Z = Σ
1

2

LV
⊤
L . By block partitioning

Y and Z as Y =
[

Y1 Y2

]

and Z =
[

Z1 Z2

]

for Y1 ∈ R
r×d and Z1 ∈ R

r×l, we may
write W = Y⊤

1 Z1,C = Y⊤Z1, and R = Y⊤
1 Z. Note that we assume that the generalized

Nyström approximation is generated from sampling the first l columns and the first d rows
of L, which we do without loss of generality since the rows and columns of the original
low-rank matrix can always be permuted to match this assumption.

Prop. 27 shows that, like the Nyström method (Kumar et al., 2009a), the generalized
Nyström method yields exact recovery of L whenever rank(L) = rank(W). The same result
was established in Wang et al. (2009) with a different proof.

Proposition 27 Suppose r = rank(L) ≤ min(d, l) and rank(W) = r. Then L = Lnys.

Proof By appealing to our factorized block decomposition, we may rewrite the generalized
Nyström approximation as Lnys = CW+R = Y⊤Z1(Y

⊤
1 Z1)

+Y⊤
1 Z. We first note that

rank(W) = r implies that rank(Y1) = r and rank(Z1) = r so that Z1Z
⊤
1 and Y1Y

⊤
1 are

full-rank. Hence, (Y⊤
1 Z1)

+ = Z⊤
1 (Z1Z

⊤
1 )

−1(Y1Y
⊤
1 )

−1Y1, yielding

Lnys = Y⊤Z1Z
⊤
1 (Z1Z

⊤
1 )

−1(Y1Y
⊤
1 )

−1Y1Y
⊤
1 Z = Y⊤Z = L.

Prop. 27 allows us to lower bound the probability of exact recovery with the probability
of randomly selecting a rank-r submatrix. As rank(W) = r iff both rank(Y1) = r and
rank(Z1) = r, it suffices to characterize the probability of selecting full rank submatrices of
Y and Z. Following the treatment of the Nyström method in Talwalkar and Rostamizadeh
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(2010), we note that Σ
− 1

2

L Z = V⊤
L and hence that Z⊤

1 Σ
− 1

2

L
= Vl where Vl ∈ R

l×r contains
the first l components of the leading r right singular vectors of L. It follows that rank(Z1) =

rank(Z⊤
1 Σ

− 1

2

L ) = rank(Vl). Similarly, rank(Y1) = rank(Ud) where Ud ∈ R
d×r contains the

first d components of the leading r left singular vectors of L. Thus, we have

P(rank(Z1) = r) = P(rank(Vl) = r) and (6)

P(rank(Y1) = r) = P(rank(Ud) = r). (7)

Next we can apply the first result of Lemma 25 to lower bound the RHSs of Eq. (6)
and Eq. (7) by selecting ǫ = 1, S such that its diagonal entries equal 1, and β = 1

µ0(VL)
for

the RHS of Eq. (6) and β = 1
µ0(UL)

for the RHS of Eq. (7). In particular, given the lower
bounds on d and l in the statement of the corollary, the RHSs are each lower bounded by√
1− δ. Furthermore, by the independence of row and column sampling and Eq. (6) and

Eq. (7), we see that

1− δ ≤ P(rank(Ud) = r)P(rank(Vl) = r)

= P(rank(Y1) = r)P(rank(Z1) = r)

= P(rank(W) = r).

Finally, Prop. 27 implies that

P(L = Lnys) ≥ P(rank(W) = r) ≥ 1− δ,

which proves the statement of the theorem.

Appendix F. Proof of Corollary 9: Random Projection

Our proof rests upon the following random projection guarantee of Halko et al. (2011):

Theorem 28 (Halko et al. 2011, Theorem 10.7) Given a matrix M ∈ R
m×n and a

rank-r approximation L ∈ R
m×n with r ≥ 2, choose an oversampling parameter p ≥ 4,

where r+ p ≤ min(m,n). Draw an n× (r+ p) standard Gaussian matrix G, let Y = MG.
For all u, t ≥ 1,

‖M−PY M‖F ≤ (1 + t
√

12r/p)‖M−Mr‖F + ut · e
√
r + p

p+ 1
‖M−Mr‖

with probability at least 1− 5t−p − 2e−u2/2.

Fix (u, t) = (
√

2 log(7/δ), e), and note that

1− 5e−p − 2e−u2/2 = 1− 5e−p − 2δ/7 ≥ 1− δ,
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since p ≥ log(7/δ). Hence, Theorem 28 implies that

‖M−PY M‖F ≤ (1 + e
√

12r/p)‖M−Mr‖F +
e2
√

2(r + p) log(7/δ)

p+ 1
‖M−Mr‖2

≤
(

1 + e
√

12r/p+
e2
√

2(r + p) log(7/δ)

p+ 1

)

‖M− L‖F

≤
(

1 + e
√

12r/p+ e2
√

2r log(7/δ)/p
)

‖M− L‖F
≤
(

1 + 11
√

2r log(7/δ)/p
)

‖M− L‖F ≤ (1 + ǫ)‖M− L‖F
with probability at least 1 − δ, where the second inequality follows from ‖M−Mr‖2 ≤
‖M−Mr‖F ≤ ‖M− L‖F , the third follows from

√
r + p

√
p ≤ (p + 1)

√
r for all r and p,

and the final follows from our choice of p ≥ 242 r log(7/δ)/ǫ2.
Next, we note, as in the proof of Theorem 9.3 of Halko et al. (2011), that

‖PY M− Lrp‖F ≤ ‖PY M−PY Mr‖F ≤ ‖M−Mr‖F ≤ ‖M− L‖F .

The first inequality holds because Lrp is by definition the best rank-r approximation to
PY M and rank(PY Mr) ≤ r. The second inequality holds since

‖M−Mr‖F = ‖PY (M−Mr)‖F + ‖P⊥
Y (M−Mr)‖F .

The final inequality holds since Mr is the best rank-r approximation to M and rank(L) = r.
Moreover, by the triangle inequality,

‖M− Lrp‖F ≤ ‖M−PY M‖F + ‖PY M− Lrp‖F
≤ ‖M−PY M‖F + ‖M− L‖F . (8)

Combining Eq. (8) with the first statement of the corollary yields the second statement.

Appendix G. Proof of Theorem 12: Coherence Master Theorem

G.1 Proof of DFC-Proj and DFC-RP Bounds

Let L0 = [C0,1, . . . ,C0,t] and L̃ = [Ĉ1, . . . , Ĉt]. Define A(X) as the event that a matrix

X is ( rµ2

1−ǫ/2 , r)-coherent and K as the event ‖L̃− L̂proj‖F ≤ (1 + ǫ)‖L0 − L̃‖F . When K
holds, we have that

‖L0 − L̂proj‖F ≤ ‖L0 − L̃‖F + ‖L̃− L̂proj‖F ≤ (2 + ǫ)‖L0 − L̃‖F
= (2 + ǫ)

√

∑t
i=1‖C0,i − Ĉi‖

2

F ,

by the triangle inequality, and hence it suffices to lower bound P(K ∩⋂iA(C0,i)). Our
choice of l, with a factor of log(2/δ), implies that each A(C0,i) holds with probability at
least 1−δ/(2n) by Lemma 4, while K holds with probability at least 1−δ/2 by Corollary 6.
Hence, by the union bound,

P(K ∩⋂iA(C0,i)) ≥ 1−P(Kc)−∑iP(A(C0,i)
c) ≥ 1− δ/2− tδ/(2n) ≥ 1− δ.

An identical proof with Corollary 9 substituted for Corollary 6 yields the random projection
result.
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G.2 Proof of DFC-Nys Bound

To prove the generalized Nyström result, we redefine L̃ and write it in block notation as:

L̃ =

[

Ĉ1 R̂2

Ĉ2 L0,22

]

, where Ĉ =

[

Ĉ1

Ĉ2

]

, R̂ =
[

R̂1 R̂2

]

and L0,22 ∈ R
(m−d)×(n−l) is the bottom right submatrix of L0. We further redefine K as

the event ‖L̃− L̂nys‖F ≤ (1 + ǫ)2‖L0 − L̃‖F . As above,

‖L0 − L̂nys‖F ≤ ‖L0 − L̃‖F + ‖L̃− L̂nys‖F ≤ (2+ 2ǫ+ ǫ2)‖L0 − L̃‖F ≤ (2+ 3ǫ)‖L0 − L̃‖F ,

when K holds, by the triangle inequality. Our choices of l and

d ≥ clµ0(Ĉ) log(m) log(4/δ)/ǫ2 ≥ crµ log(m) log(1/δ)/ǫ2

imply that A(C) and A(R) hold with probability at least 1 − δ/(2n) and 1 − δ/(4n) re-
spectively by Lemma 4, while K holds with probability at least (1− δ/2)(1− δ/4− 0.2) by
Corollary 7. Hence, by the union bound,

P(K ∩A(C) ∩A(R)) ≥ 1−P(Kc)−P(A(C)c)−P(A(R)c)

≥ 1− (1− (1− δ/2)(1− δ/4− 0.2))− δ/(2n)− δ/(4n)

≥ (1− δ/2)(1− δ/4− 0.2)− 3δ/8

≥ (1− δ)(1− δ − 0.2)

for all n ≥ 2 and δ ≤ 0.8.

Appendix H. Proof of Corollary 14: DFC-MC under Incoherence

H.1 Proof of DFC-Proj and DFC-RP Bounds

We begin by proving the DFC-Proj bound. Let G be the event that

‖L0 − L̂proj‖F ≤ (2 + ǫ)ce
√
mn∆,

H be the event that

‖L0 − L̂proj‖F ≤ (2 + ǫ)

√

∑t
i=1‖C0,i − Ĉi‖

2

F ,

A(X) be the event that a matrix X is ( rµ2

1−ǫ/2 , r)-coherent, and, for each i ∈ {1, . . . , t}, Bi

be the event that ‖C0,i − Ĉi‖F > ce
√
ml∆.

Note that, by assumption,

l ≥ cµ2r2(m+ n)nβ log2(m+ n)/(sǫ2) ≥ crµ log(n)2β log(m+ n)/ǫ2

≥ crµ log(n)((2β − 2) log(n̄) + log(2))/ǫ2 = crµ log(n) log(2n̄2β−2)/ǫ2.
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Hence the Coherence Master Theorem (Theorem 12) guarantees that, with probability at
least 1− n̄2−2β , H holds and the event A(C0,i) holds for each i. Since G holds whenever H
holds and Bc

i holds for each i, we have

P(G) ≥ P(H ∩⋂iB
c
i ) ≥ P(H ∩⋂iA(C0,i) ∩

⋂

iB
c
i )

= P(H ∩⋂iA(C0,i))P(
⋂

iB
c
i | H ∩⋂iA(C0,i))

= P(H ∩⋂iA(C0,i))(1−P(
⋃

iBi | H ∩⋂iA(C0,i)))

≥ (1− n̄2−2β)(1−∑iP(Bi | A(C0,i)))

≥ 1− n̄2−2β −∑iP(Bi | A(C0,i)).

To prove our desired claim, it therefore suffices to show

P(Bi | A(C0,i)) ≤ 4 log(n̄)n̄2−2β + n̄−2β ≤ 5 log(n̄)n̄2−2β

for each i.
For each i, let Di be the event that si < 32µ′r(m + l)β′ log2(m + l), where si is the

number of revealed entries in C0,i,

µ′ ,
µ2r

1− ǫ/2
, and β′ ,

β log(n̄)

log(max(m, l))
.

By Theorem 10 and our choice of β′,

P(Bi | A(C0,i)) ≤ P(Bi | A(C0,i), D
c
i ) +P(Di | A(C0,i))

≤ 4 log(max(m, l))max(m, l)2−2β′

+P(Di)

≤ 4 log(n̄)n̄2−2β +P(Di).

Further, since the support of S0 is uniformly distributed and of cardinality s, the variable si
has a hypergeometric distribution with E(si) =

sl
n and hence satisfies Hoeffding’s inequality

for the hypergeometric distribution (Hoeffding, 1963, Section 6):

P(si ≤ E(si)− st) ≤ exp
(

−2st2
)

.

Since, by assumption,

s ≥ cµ2r2(m+ n)nβ log2(m+ n)/(lǫ2) ≥ 64µ′r(m+ l)nβ′ log2(m+ l)/l,

and
sl2/n2 ≥ cµ2r2(m+ n)lβ log2(m+ n)/(nǫ2) ≥ 4 log(n̄)β,

it follows that

P(Di) = P

(

si < E(si)− s

(

l

n
− 32µ′r(m+ l)β′ log2(m+ l)

s

))

≤ P

(

si < E(si)− s

(

l

n
− l

2n

))

= P

(

si < E(si)− s
l

2n

)

≤ exp

(

− sl2

2n2

)

≤ exp(−2 log(n̄)β) = n̄−2β .

Hence, P(Bi | A(C0,i)) ≤ 4 log(n̄)n̄2−2β+n̄−2β for each i, and the DFC-Proj result follows.
Since, p ≥ 242 r log(14n̄2β−2)/ǫ2, the DFC-RP bound follows in an identical manner

from the Coherence Master Theorem (Theorem 12).
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H.2 Proof of DFC-Nys Bound

For DFC-Nys, let BC be the event that ‖C0 − Ĉ‖F > ce
√
ml∆ and BR be the event that

‖R0 − R̂‖F > ce
√
dn∆. The Coherence Master Theorem (Theorem 12) and our choice of

d ≥ clµ0(Ĉ)(2β − 1) log2(4n̄)n̄/(nǫ2) ≥ clµ0(Ĉ) log(m) log(4n̄2β−2)/ǫ2

guarantee that, with probability at least (1− n̄2−2β)(1− n̄2−2β − 0.2) ≥ 1− 2n̄2−2β − 0.2,

‖L0 − L̂nys‖F ≤ (2 + 3ǫ)

√

‖C0 − Ĉ‖2F + ‖R0 − R̂‖2F ,

and both A(C) and A(R) hold. Moreover, since

d ≥ clµ0(Ĉ)(2β − 1) log2(4n̄)n̄/(nǫ2) ≥ cµ2r2(m+ n)n̄β log2(m+ n)/(sǫ2),

reasoning identical to the DFC-Proj case yields P(BC | A(C)) ≤ 4 log(n̄)n̄2−2β+ n̄−2β and
P(BR | A(R)) ≤ 4 log(n̄)n̄2−2β + n̄−2β , and the DFC-Nys bound follows as above.

Appendix I. Proof of Corollary 16: DFC-RMF under Incoherence

I.1 Proof of DFC-Proj and DFC-RP Bounds

We begin by proving the DFC-Proj bound. Let G be the event that

‖L0 − L̂proj‖F ≤ (2 + ǫ)c′e
√
mn∆

for the constant c′e defined in Theorem 11, H be the event that

‖L0 − L̂proj‖F ≤ (2 + ǫ)

√

∑t
i=1‖C0,i − Ĉi‖

2

F ,

A(X) be the event that a matrix X is ( rµ2

1−ǫ/2 , r)-coherent, and, for each i ∈ {1, . . . , t}, Bi

be the event that ‖C0,i − Ĉi‖F > c′e
√
ml∆.

We may take ρr ≤ 1, and hence, by assumption,

l ≥ cr2µ2β log2(2n̄)/(ǫ2ρr) ≥ crµ log(n) log(2n̄β)/ǫ2.

Hence the Coherence Master Theorem (Theorem 12) guarantees that, with probability at
least 1− n̄−β , H holds and the event A(C0,i) holds for each i. Since G holds whenever H
holds and Bc

i holds for each i, we have

P(G) ≥ P(H ∩⋂iB
c
i ) ≥ P(H ∩⋂iA(C0,i) ∩

⋂

iB
c
i )

= P(H ∩⋂iA(C0,i))P(
⋂

iB
c
i | H ∩⋂iA(C0,i))

= P(H ∩⋂iA(C0,i))(1−P(
⋃

iBi | H ∩⋂iA(C0,i)))

≥ (1− n̄−β)(1−∑iP(Bi | A(C0,i)))

≥ 1− n̄−β −∑iP(Bi | A(C0,i)).

To prove our desired claim, it therefore suffices to show

P(Bi | A(C0,i)) ≤ (cp + 1)n̄−β
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for each i.

Define m̄ , max(m, l) and β′′ , β log(n̄)/ log(m̄) ≤ β′. By assumption,

r ≤ ρrm

2µ2r log2(n̄)
≤ ρrm(1− ǫ/2)

µ2r log2(m̄)
and r ≤ ρrlǫ

2

cµ2rβ log2(2n̄)
≤ ρrl(1− ǫ/2)

µ2r log2(m̄)
.

Hence, by Theorem 11 and the definitions of β′ and β′′,

P(Bi | A(C0,i)) ≤ P
(

Bi | A(C0,i), si ≤ (1− ρsβ
′′)ml

)

+P
(

si > (1− ρsβ
′′)ml | A(C0,i)

)

≤ cpm̄
−β′′

+P
(

si > (1− ρsβ
′′)ml

)

≤ cpn̄
−β +P

(

si > (1− ρsβ
′)ml

)

,

where si is the number of corrupted entries in C0,i. Further, since the support of S0 is
uniformly distributed and of cardinality s, the variable si has a hypergeometric distribution
with E(si) =

sl
n and hence satisfies Bernstein’s inequality for the hypergeometric (Hoeffding,

1963, Section 6):

P(si ≥ E(si) + st) ≤ exp
(

−st2/(2σ2 + 2t/3)
)

≤ exp
(

−st2n/4l
)

,

for all 0 ≤ t ≤ 3l/n and σ2 , l
n(1− l

n) ≤ l
n . It therefore follows that

P
(

si > (1− ρsβ
′)ml

)

= P

(

si > E(si) + s

(

(1− ρsβ
′)ml

s
− l

n

))

= P

(

si > E(si) + s
l

n

(

(1− ρsβ
′)

(1− ρsβs)
− 1

))

≤ exp

(

−s
l

4n

(

(1− ρsβ
′)

(1− ρsβs)
− 1

)2
)

= exp

(

−ml

4

(ρsβs − ρsβ
′)2

(1− ρsβs)

)

≤ n̄−β

by our assumptions on s and l and the fact that l
n

(

(1−ρsβ′)
(1−ρsβs)

− 1
)

≤ 3l/n whenever 4βs −
3/ρs ≤ β′. Hence, P(Bi | A(C0,i)) ≤ (cp + 1)n̄−β for each i, and the DFC-Proj result
follows.

Since, p ≥ 242 r log(14n̄β)/ǫ2, the DFC-RP bound follows in an identical manner from
the Coherence Master Theorem (Theorem 12).

I.2 Proof of DFC-Nys Bound

For DFC-Nys, let BC be the event that ‖C0 − Ĉ‖F > c′e
√
ml∆ and BR be the event that

‖R0 − R̂‖F > c′e
√
dn∆. The Coherence Master Theorem (Theorem 12) and our choice of

d ≥ clµ0(Ĉ)β log2(4n̄)/ǫ2 guarantee that, with probability at least (1−n̄−β)(1−n̄−β−0.2) ≥
1− 2n̄−β − 0.2,

‖L0 − L̂nys‖F ≤ (2 + 3ǫ)

√

‖C0 − Ĉ‖2F + ‖R0 − R̂‖2F ,
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and both A(C) and A(R) hold. Moreover, since

d ≥ clµ0(Ĉ)β log2(4n̄)/ǫ2 ≥ cµ2r2β log2(n̄)/(ǫ2ρr),

reasoning identical to the DFC-Proj case yields

P(BC | A(C)) ≤ (cp + 1)n̄−β and P(BR | A(R)) ≤ (cp + 1)n̄−β ,

and the DFC-Nys bound follows as above.

Appendix J. Proof of Theorem 10: Noisy MC under Incoherence

In the spirit of Candès and Plan (2010), our proof will extend the noiseless analysis of Recht
(2011) to the noisy matrix completion setting. As suggested in Gross and Nesme (2010),
we will obtain strengthened results, even in the noiseless case, by reasoning directly about
the without-replacement sampling model, rather than appealing to a with-replacement sur-
rogate, as done in Recht (2011).

For UL0
ΣL0

V⊤
L0

the compact SVD of L0, we let T = {UL0
X+YV⊤

L0
: X ∈ R

r×n,Y ∈
R
m×r}, PT denote orthogonal projection onto the space T , and PT⊥ represent orthogonal

projection onto the orthogonal complement of T . We further define I as the identity
operator on R

m×n and the spectral norm of an operator A : Rm×n → R
m×n as ‖A‖2 =

sup‖X‖F≤1 ‖A(X)‖F .
We begin with a theorem providing sufficient conditions for our desired estimation guar-

antee.

Theorem 29 Under the assumptions of Theorem 10, suppose that

mn

s

∥

∥

∥
PTPΩPT − s

mn
PT

∥

∥

∥

2
≤ 1

2
(9)

and that there exists a Y = PΩ(Y) ∈ R
m×n satisfying

‖PT (Y)−UL0
V⊤

L0
‖
F
≤
√

s

32mn
and ‖PT⊥(Y)‖2 <

1

2
. (10)

Then,

‖L0 − L̂‖F ≤ 8

√

2m2n

s
+m+

1

16
∆ ≤ c′′e

√
mn∆.

Proof We may write L̂ as L0 +G+H, where PΩ(G) = G and PΩ(H) = 0. Then, under
Eq. (9),

‖PΩPT (H)‖2F =
〈

H,PTP2
ΩPT (H)

〉

≥ 〈H,PTPΩPT (H)〉 ≥ s

2mn
‖PT (H)‖2F .

Furthermore, by the triangle inequality, 0 = ‖PΩ(H)‖F ≥ ‖PΩPT (H)‖F − ‖PΩPT⊥(H)‖F .
Hence, we have

√

s

2mn
‖PT (H)‖F ≤ ‖PΩPT (H)‖F ≤ ‖PΩPT⊥(H)‖F ≤ ‖PT⊥(H)‖F ≤ ‖PT⊥(H)‖∗, (11)
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where the penultimate inequality follows as PΩ is an orthogonal projection operator.
Next we select U⊥ and V⊥ such that [UL0

,U⊥] and [VL0
,V⊥] are orthonormal and

〈

U⊥V
⊤
⊥,PT⊥(H)

〉

= ‖PT⊥(H)‖∗ and note that

‖L0 +H‖∗ ≥
〈

UL0
V⊤

L0
+U⊥V

⊤
⊥,L0 +H

〉

= ‖L0‖∗ +
〈

UL0
V⊤

L0
+U⊥V

⊤
⊥ −Y,H

〉

= ‖L0‖∗ +
〈

UL0
V⊤

L0
− PT (Y),PT (H)

〉

+
〈

U⊥V
⊤
⊥,PT⊥(H)

〉

− 〈PT⊥(Y),PT⊥(H)〉
≥ ‖L0‖∗ − ‖UL0

V⊤
L0

− PT (Y)‖
F
‖PT (H)‖F + ‖PT⊥(H)‖∗ − ‖PT⊥(Y)‖2‖PT⊥(H)‖∗

> ‖L0‖∗ +
1

2
‖PT⊥(H)‖∗ −

√

s

32mn
‖PT (H)‖F

≥ ‖L0‖∗ +
1

4
‖PT⊥(H)‖F

where the first inequality follows from the variational representation of the trace norm,
‖A‖∗ = sup‖B‖

2
≤1〈A,B〉, the first equality follows from the fact that 〈Y,H〉 = 0 for

Y = PΩ(Y), the second inequality follows from Hölder’s inequality for Schatten p-norms,
the third inequality follows from Eq. (10), and the final inequality follows from Eq. (11).

Since L0 is feasible for Eq. (1), ‖L0‖∗ ≥ ‖L̂‖∗, and, by the triangle inequality, ‖L̂‖∗ ≥
‖L0 +H‖∗−‖G‖∗. Since ‖G‖∗ ≤

√
m‖G‖F and ‖G‖F ≤ ‖PΩ(L̂−M)‖F+‖PΩ(M− L0)‖F ≤

2∆, we conclude that

‖L0 − L̂‖2F = ‖PT (H)‖2F + ‖PT⊥(H)‖2F + ‖G‖2F
≤
(

2mn

s
+ 1

)

‖PT⊥(H)‖2F + ‖G‖2F

≤ 16

(

2mn

s
+ 1

)

‖G‖2∗ + ‖G‖2F

≤ 64

(

2m2n

s
+m+

1

16

)

∆2.

Hence

‖L0 − L̂‖F ≤ 8

√

2m2n

s
+m+

1

16
∆ ≤ c′′e

√
mn∆

for some constant c′′e , by our assumption on s.

To show that the sufficient conditions of Theorem 29 hold with high probability, we will
require four lemmas. The first establishes that the operator PTPΩPT is nearly an isometry
on T when sufficiently many entries are sampled.

Lemma 30 For all β > 1,

mn

s

∥

∥

∥
PTPΩPT − s

mn
PT

∥

∥

∥

2
≤
√

16µr(m+ n)β log(n)

3s

with probability at least 1− 2n2−2β provided that s > 16
3 µr(n+m)β log(n).
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The second states that a sparsely but uniformly observed matrix is close to a multiple
of the original matrix under the spectral norm.

Lemma 31 Let Z be a fixed matrix in R
m×n. Then for all β > 1,

∥

∥

∥

(mn

s
PΩ − I

)

(Z)
∥

∥

∥

2
≤
√

8βmn2 log(m+ n)

3s
‖Z‖∞

with probability at least 1− (m+ n)1−β provided that s > 6βm log(m+ n).

The third asserts that the matrix infinity norm of a matrix in T does not increase under
the operator PTPΩ.

Lemma 32 Let Z ∈ T be a fixed matrix. Then for all β > 2

∥

∥

∥

mn

s
PTPΩ(Z)− Z

∥

∥

∥

∞
≤
√

8βµr(m+ n) log(n)

3s
‖Z‖∞

with probability at least 1− 2n2−β provided that s > 8
3βµr(m+ n) log(n).

These three lemmas were proved in Recht (2011, Theorem 6, Theorem 7, and Lemma 8)
under the assumption that entry locations in Ω were sampled with replacement. They
admit identical proofs under the sampling without replacement model by noting that the
referenced Noncommutative Bernstein Inequality (Recht, 2011, Theorem 4) also holds under
sampling without replacement, as shown in Gross and Nesme (2010).

Lemma 30 guarantees that Eq. (9) holds with high probability. To construct a matrix
Y = PΩ(Y) satisfying Eq. (10), we consider a sampling with batch replacement scheme rec-
ommended in Gross and Nesme (2010) and developed in Chen et al. (2011). Let Ω̃1, . . . , Ω̃p

be independent sets, each consisting of q random entry locations sampled without replace-
ment, where pq = s. Let Ω̃ = ∪p

i=1Ω̃i, and note that there exist p and q satisfying

q ≥ 128

3
µr(m+ n)β log(m+ n) and p ≥ 3

4
log(n/2).

It suffices to establish Eq. (10) under this batch replacement scheme, as shown in the next
lemma.

Lemma 33 For any location set Ω0 ⊂ {1, . . . ,m} × {1, . . . , n}, let A(Ω0) be the event that
there exists Y = PΩ0

(Y) ∈ R
m×n satisfying Eq. (10). If Ω(s) consists of s locations sampled

uniformly without replacement and Ω̃(s) is sampled via batch replacement with p batches of
size q for pq = s, then P(A(Ω̃(s))) ≤ P(A(Ω(s))).

Proof As sketched in Gross and Nesme (2010)

P
(

A( ˜Ω(s))
)

=
s
∑

i=1

P(|Ω̃| = i)P(A(Ω̃(i)) | |Ω̃| = i)

≤
s
∑

i=1

P(|Ω̃| = i)P(A(Ω(i)))

≤
s
∑

i=1

P(|Ω̃| = i)P(A(Ω(s))) = P(A(Ω(s))),
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since the probability of existence never decreases with more entries sampled without replace-
ment and, given the size of Ω̃, the locations of Ω̃ are conditionally distributed uniformly
(without replacement).

We now follow the construction of Recht (2011) to obtain Y = PΩ̃(Y) satisfying

Eq. (10). Let W0 = UL0
V⊤

L0
and define Yk = mn

q

∑k
j=1 PΩ̃j

(Wj−1) and Wk = UL0
V⊤

L0
−

PT (Yk) for k = 1, . . . , p. Assume that

mn

q

∥

∥

∥
PTPΩ̃k

PT − q

mn
PT

∥

∥

∥

2
≤ 1

2
(12)

for all k. Then

‖Wk‖F =

∥

∥

∥

∥

Wk−1 −
mn

q
PTPΩ̃k

(Wk−1)

∥

∥

∥

∥

F

=

∥

∥

∥

∥

(PT − mn

q
PTPΩ̃k

PT )(Wk−1)

∥

∥

∥

∥

F

≤ 1

2
‖Wk−1‖F

and hence ‖Wk‖F ≤ 2−k‖W0‖F = 2−k√r. Since

p ≥ 3

4
log(n/2) ≥ 1

2
log2(n/2) ≥ log2

√

32rmn/s ,

Y , Yp satisfies the first condition of Eq. (10).
The second condition of Eq. (10) follows from the assumptions

∥

∥

∥

∥

Wk−1 −
mn

q
PTPΩ̃k

(Wk−1)

∥

∥

∥

∥

∞

≤ 1

2
‖Wk−1‖∞ (13)

∥

∥

∥

∥

(

mn

q
PΩ̃k

− I
)

(Wk−1)

∥

∥

∥

∥

2

≤
√

8mn2β log(m+ n)

3q
‖Wk−1‖∞ (14)

for all k, since Eq. (13) implies ‖Wk‖∞ ≤ 2−k‖UL0
V⊤

L0
‖
∞
, and thus

‖PT⊥(Yp)‖2 ≤
p
∑

j=1

∥

∥

∥

∥

mn

q
PT⊥PΩ̃j

(Wj−1)

∥

∥

∥

∥

2

=

p
∑

j=1

∥

∥

∥

∥

PT⊥(
mn

q
PΩ̃j

(Wj−1)−Wj−1)

∥

∥

∥

∥

2

≤
p
∑

j=1

∥

∥

∥

∥

(
mn

q
PΩ̃j

− I)(Wj−1)

∥

∥

∥

∥

2

≤
p
∑

j=1

√

8mn2β log(m+ n)

3q
‖Wj−1‖∞

= 2

p
∑

j=1

2−j

√

8mn2β log(m+ n)

3q
‖UWV⊤

W ‖∞ <

√

32µrnβ log(m+ n)

3q
< 1/2

by our assumption on q. The first line applies the triangle inequality; the second holds since
Wj−1 ∈ T for each j; the third follows because PT⊥ is an orthogonal projection; and the
final line exploits (µ, r)-coherence.
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We conclude by bounding the probability of any assumed event failing. Lemma 30
implies that Eq. (9) fails to hold with probability at most 2n2−2β . For each k, Eq. (12)
fails to hold with probability at most 2n2−2β by Lemma 30, Eq. (13) fails to hold with
probability at most 2n2−2β by Lemma 32, and Eq. (14) fails to hold with probability at
most (m+n)1−2β by Lemma 31. Hence, by the union bound, the conclusion of Theorem 29
holds with probability at least

1− 2n2−2β − 3

4
log(n/2)(4n2−2β + (m+ n)1−2β) ≥ 1− 15

4
log(n)n2−2β ≥ 1− 4 log(n)n2−2β .

Appendix K. Proof of Lemma 17: Conservation of Non-Spikiness

By assumption,

LCL
⊤
C =

l
∑

a=1

L(ja)(L(ja))⊤

where {j1, . . . , jl} are random indices drawn uniformly and without replacement from {1, . . . , n}.
Hence, we have that

E
[

‖LC‖2F
]

= E
[

Tr
[

LCL
⊤
C

]]

= Tr

[

E

[

l
∑

a=1

L(ja)(L(ja))⊤

]]

= Tr





l
∑

a=1

1

n

n
∑

j=1

L(j)(L(j))⊤



 =
l

n
Tr
[

LL⊤
]

=
l

n
‖L‖2F .

Since ‖L(j)‖4 ≤ m2‖L‖4∞ for all j ∈ {1, . . . , n}, Hoeffding’s inequality for sampling
without replacement (Hoeffding, 1963, Section 6) implies

P
(

(1− ǫ)(l/n)‖L‖2F ≥ ‖LC‖2F
)

≤ exp
(

−2ǫ2‖L‖4F l2/(n2lm2‖L‖4∞)
)

= exp
(

−2ǫ2l/α4(L)
)

≤ δ,

by our choice of l. Hence,
√
l

1

‖LC‖F
≤

√
n√

1− ǫ

1

‖L‖F
with probability at least 1− δ. Since, ‖LC‖∞ ≤ ‖L‖∞ almost surely, we have that

α(LC) =

√
ml‖LC‖∞
‖LC‖F

≤
√
mn‖L‖∞√
1− ǫ‖L‖F

=
α(L)√
1− ǫ

with probability at least 1− δ as desired.

Appendix L. Proof of Theorem 18: Column Projection under

Non-Spikiness

We now give a proof of Theorem 18. While the results of this section are stated in terms of
i.i.d. with-replacement sampling of columns and rows, a simple argument due to (Hoeffding,
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1963, Section 6) implies the same conclusions when columns and rows are sampled without
replacement.

Our proof builds upon two key results from the randomized matrix approximation lit-
erature. The first relates column projection to randomized matrix multiplication:

Theorem 34 (Theorem 2 of Drineas et al. 2006b) Let G ∈ R
m×l be a matrix of l

columns of A ∈ R
m×n, and let r be a nonnegative integer. Then,

‖A−GrG
+
r A‖F ≤ ‖A−Ar‖F +

√
r‖AA⊤ − (n/l)GG⊤‖F .

The second allows us to bound ‖AA⊤ − (n/l)GG⊤‖F in probability when entries are
bounded:

Lemma 35 (Lemma 2 of Drineas et al. 2006a) Given a failure probability δ ∈ (0, 1]
and matrices A ∈ R

m×k and B ∈ R
k×n with ‖A‖∞ ≤ b and ‖B‖∞ ≤ b, suppose that G is

a matrix of l columns drawn uniformly with replacement from A and that H is a matrix of
the corresponding l rows of B. Then, with probability at least 1− δ,

|(AB)ij − (n/l)(GH)ij | ≤
kb2√
l

√

8 log(2mn/δ) ∀i, j.

Under our assumption, ‖M‖∞ is bounded by α/
√
mn. Hence, Lemma 35 with A = M

and B = M⊤ guarantees

‖MM⊤ − (n/l)CC⊤‖2F ≤ m2n2α48 log(2mn/δ)

m2n2l
≤ ǫ2/r

with probability at least 1− δ, by our choice of l.
Now, Theorem 34 implies that

‖M−CC+M‖F ≤ ‖M−CrC
+
r M‖F ≤ ‖M−Mr‖F +

√
r‖MM⊤ − (n/l)CC⊤‖F

≤ ‖M− L‖F + ǫ

with probability at least 1− δ, as desired.

Appendix M. Proof of Theorem 20: Spikiness Master Theorem

Define A(X) as the event that a matrixX is (α
√

1 + ǫ/(4
√
r))-spiky. Since

√

1 + ǫ/(4
√
r) ≤√

1.25 for all ǫ ∈ (0, 1] and r ≥ 1, X is (
√
1.25α)-spiky whenever A(X) holds.

Let L0 = [C0,1, . . . ,C0,t] and L̃ = [Ĉ1, . . . , Ĉt], and defineH as the event ‖L̃− L̂proj‖F ≤
‖L0 − L̃‖F + ǫ. When H holds, we have that

‖L0 − L̂proj‖F ≤ ‖L0 − L̃‖F + ‖L̃− L̂proj‖F ≤ 2‖L0 − L̃‖F + ǫ

= 2

√

∑t
i=1‖C0,i − Ĉi‖

2

F + ǫ,

by the triangle inequality, and hence it suffices to lower bound P(H ∩⋂iA(C0,i)).
By assumption,

l ≥ 13rα4 log(4mn/δ)/ǫ2 ≥ α4 log(2n/δ)/(2ǫ̃2)
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where ǫ̃ , ǫ/(5
√
r). Hence, for each i, Lemma 17 implies that α(C0,i) ≤ α/

√
1− ǫ̃ with

probability at least 1− δ/(2n). Since

(1− ǫ/(5
√
r))(1 + ǫ/(4

√
r)) = 1 + ǫ(1− ǫ/

√
r)/(20

√
r) ≥ 1

it follows that
1√
1− ǫ̃

=
1

√

1− ǫ/(5
√
r)

≤
√

1 + ǫ/(4
√
r),

so that each event A(C0,i) also holds with probability at least 1− δ/(2n).

Our assumption that ‖Ĉi‖∞ ≤
√
1.25α/

√
mn for all i implies that ‖L̃‖∞ ≤

√
1.25α/

√
mn.

Our choice of l, with a factor of log(4mn/δ), therefore implies that H holds with probability
at least 1− δ/2 by Theorem 18. Hence, by the union bound,

P(H ∩⋂iA(C0,i)) ≥ 1−P(Hc)−∑iP(A(C0,i)
c) ≥ 1− δ/2− tδ/(2n) ≥ 1− δ.

To establish theDFC-RP bound, redefineH as the event ‖L̃− Lrp‖F ≤ (2+ǫ)‖L0 − L̃‖F .
Since p ≥ 242 r log(14/δ)/ǫ2, H holds with probability at least 1− δ/2 by Corollary 9, and
the DFC-RP bound follows as above.

Appendix N. Proof of Corollary 22: Noisy MC under Non-Spikiness

N.1 Proof of DFC-Proj Bound

We begin by proving the DFC-Proj bound. Let G be the event that

‖L0 − L̂proj‖F ≤ 2
√

c1max((l/n)ν2, 1)/β + ǫ,

H be the event that

‖L0 − L̂proj‖F ≤ 2

√

∑t
i=1‖C0,i − Ĉi‖

2

F + ǫ,

A(X) be the event that a matrix X is (
√
1.25α)-spiky, and, for each i ∈ {1, . . . , t}, Bi be

the event that ‖C0,i − Ĉi‖
2

F > (l/n)c1max
(

(l/n)ν2, 1
)

/β.

By definition, ‖Ĉi‖∞ ≤
√
1.25α/

√
ml for all i. Furthermore, we have assumed that

l ≥ 13(c3 + 1)

√

(m+ n) log(m+ n)β

s
nrα4 log(4mn)/ǫ2

≥ 13rα4(log(4mn) + c3 log(m+ n))/ǫ2 ≥ 13rα4 log(4mn(m+ l)c3)/ǫ2.

Hence the Spikiness Master Theorem (Theorem 20) guarantees that, with probability at
least 1−exp(−c3 log(m+ l)), H holds and the event A(C0,i) holds for each i. Since G holds
whenever H holds and Bc

i holds for each i, we have

P(G) ≥ P(H ∩⋂iB
c
i ) ≥ P(H ∩⋂iA(C0,i) ∩

⋂

iB
c
i )

= P(H ∩⋂iA(C0,i))P(
⋂

iB
c
i | H ∩⋂iA(C0,i))

= P(H ∩⋂iA(C0,i))(1−P(
⋃

iBi | H ∩⋂iA(C0,i)))

≥ (1− exp(−c3 log(m+ l)))(1−∑iP(Bi | A(C0,i)))

≥ 1− (c2 + 1) exp(−c3 log(m+ l))−∑iP(Bi | A(C0,i)).
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To prove our desired claim, it therefore suffices to show

P(Bi | A(C0,i)) ≤ (c2 + 1) exp(−c3 log(m+ l))

for each i.

For each i, let Di be the event that si < 1.25α2β(n/l)r(m + l) log(m + l), where si is
the number of revealed entries in C0,i. Since rank(C0,i) ≤ rank(L0) = r and ‖C0,i‖F ≤
‖L0‖F ≤ 1, Corollary 19 implies that

P(Bi | A(C0,i)) ≤ P(Bi | A(C0,i), D
c
i ) +P(Di | A(C0,i))

≤ c2 exp(−c3 log(m+ l)) +P(Di). (15)

Further, since the support of S0 is uniformly distributed and of cardinality s, the vari-
able si has a hypergeometric distribution with E(si) = sl

n and hence satisfies Hoeffding’s
inequality for the hypergeometric distribution (Hoeffding, 1963, Section 6):

P(si ≤ E(si)− st) ≤ exp
(

−2st2
)

.

Our assumption on l implies that

l

n
≥ 169(c3 + 1)2α8β

n

ls
r2(m+ n) log(m+ n) log2(4mn)/ǫ4

≥ 1.25α2β
n

ls
r(m+ l) log(m+ l) +

√

c3 log(m+ l)/(2s),

and therefore

P(Di) = P

(

si < E(si)− s

(

l

n
− 1.25α2β

n

ls
r(m+ l) log(m+ l)

))

= P
(

si < E(si)− s
√

c3 log(m+ l)/(2s)
)

≤ exp(−2sc3 log(m+ l)/(2s)) = exp(−c3 log(m+ l)).

Combined with Eq. (15), this yields P(Bi | A(C0,i)) ≤ (c2+1) exp(−c3 log(m+ l)) for each
i, and the DFC-Proj result follows.

N.2 Proof of DFC-RP Bound

Let G be the event that

‖L0 − L̂rp‖F ≤ (2 + ǫ)
√

c1max((l/n)ν2, 1)/β

and H be the event that

‖L0 − L̂rp‖F ≤ (2 + ǫ)

√

∑t
i=1‖C0,i − Ĉi‖

2

F .

Since p ≥ 242 r log(14(m + l)c3)/ǫ2, the DFC-RP bound follows in an identical manner
from the Spikiness Master Theorem (Theorem 20).
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