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Distributed Maximal Clique Computation and
Management

Yanyan Xu, James Cheng, and Ada Wai-Chee Fu

Abstract—Maximal cliques are elementary substructures in a graph and instrumental in graph analysis such as the structural analysis

of many complex networks, graph clustering and community detection, network hierarchy detection, emerging pattern mining, vertex

importance measures, etc. However, the number of maximal cliques is also notoriously large even for many small real world graphs.

This size problem gives rise to challenges in both computing and managing the set of maximal cliques. Many algorithms for computing

maximal cliques have been proposed in the literature; however, most of them are sequential algorithms that cannot scale due to the

high complexity of the problem, while existing parallel algorithms for computing maximal cliques are mostly immature and especially

suffer from skewed workload. As for managing the set of maximal cliques, which is essential due to its large size, there is barely any

efficient method for querying or updating the set of maximal cliques.

In this paper, we first propose a distributed algorithm built on a share-nothing architecture for computing the set of maximal cliques. We

effectively address the problem of skewed workload distribution due to high-degree vertices, which also leads to drastically reduced

worst-case time complexity for computing maximal cliques in common real-world graphs. Then, we propose a set of fundamental query

operations and efficient algorithms to process the queries, to aid more efficient and effective analysis of the set of maximal cliques.

Finally, we also devise algorithms to support efficient update maintenance of the set of maximal cliques when the underlying graph is

updated. We verify the efficiency of our algorithms for computing, querying, and updating the set of maximal cliques with a range of

real-world graphs from different application domains.

Index Terms—Distributed maximal clique enumeration, updating maximal cliques, querying maximal cliques

✦

1 INTRODUCTION

Let G = (V,E) be a simple undirected graph. A subset
of vertices, C ⊆ V , is called a clique if every vertex in C
is connected to every other vertex in C by an edge in G,
and C is called a maximal clique if any proper superset
of C is not a clique. The problem of maximal clique
enumeration (MCE) is to compute the set of maximal
cliques in G.

Maximal cliques are elementary substructures of a
graph that play a vital role in graph and network anal-
ysis, and have numerous applications. MCE is a funda-
mental problem in graph theory and closely related to
many other important graph problems, such as maximal
independent sets (or minimal vertex covers), graph col-
oring, maximal common induced subgraphs, etc. Apart
from graph theory, maximal cliques are used in a broad
range of applications such as social network analysis [1],
financial network analysis [2], dynamic network cluster-
ing [3], email network hierarchy detection [4], emergent
pattern detection in terrorist networks [5], structural
study in behavioral and cognitive networks [6], and
various analytical tasks in computational biology [7].

The problem of MCE has been extensively studied.
There are three main types of algorithms. The first type
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is sequential in-memory algorithms [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [3], [20],
[21], [22], which often do not scale well for processing
large graphs, mainly because of the high complexity
of MCE. The second type is sequential I/O-efficient
algorithms [23], [24], [25], which focus on reducing the
high cost of random disk I/Os for processing graphs
that cannot fit in main memory. However, addressing
the I/O problem does not solve the main computational
issue as MCE is a CPU-intensive task. The third type is
parallel and distributed algorithms [24], [26], [27], [28],
[29], which aim at reducing the elapsed running time
by parallelizing the task of MCE. However, the parallel
algorithms [26], [28] require a copy of the entire input
graph to be resident in main memory and cannot handle
unbalanced workload. The distributed algorithms [27],
[29] partition a graph and distribute the subgraphs to the
worker machines where MCE is processed locally on the
subgraphs. However, these algorithms do not deal with
unbalanced workload due to skewed degree distribu-
tion, and may also have high communication cost since
many unwanted edges may be distributed. Moreover,
the cliques generated may not be maximal and hence
expensive postprocessing is required to remove non-
maximal cliques [27]. Recently, another algorithm was
proposed to recursively split a graph into smaller sub-
graphs and distribute the subgraphs to worker machines
for MCE [24]. Their algorithm is also not work-efficient
and may also have skewed workload due to high-degree
vertices, while the subgraph splitting process can be
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expensive.
Apart from the computational challenges, the number

of maximal cliques is notoriously known to be large even
for some small graphs. The sheer number of maximal
cliques severely thwarts the applications of maximal
cliques since managing and analyzing such a large set
is often impractical. In addition, the underlying graph
may be updated from time to time and any small up-
date (e.g., an edge insertion/deletion) to the graph can
cause a considerable amount of updates to the set of
maximal cliques. Such updates are not only costly but
also difficult without any efficient methods to store and
search the maximal cliques.

In this paper, we study two main problems: computing
the set of maximal cliques and managing the set of maximal
cliques. We highlight the main ideas of our algorithms
and the main contributions of our work as follows.

For computing the set of maximal cliques, we examine
the computational bottlenecks that hinder the perfor-
mance of computing the set of maximal cliques as well as
parallelizing MCE, and propose a new parallel algorithm
based on the share-nothing architecture to overcome
these bottlenecks. Specifically, we significantly reduce
the cost of a frequent and most costly operation in the
process of MCE, as well as use specific vertex orderings

that can achieve O(
∑d

i=1 nii3
i/3) worst-case time com-

plexity for processing most common real-world graphs
(e.g., d-degenerate graphs, power-law graphs, and sparse
graphs), where d is the maximum core number of a
graph (which is generally small for real-world graphs,
see Table 1) and ni is the number of vertices with core
number i [30]. Note that

∑d
i=1 ni = |V |. This is tremen-

dously smaller the optimal worst-case time complexity
of MCE for processing general graphs, which is O(3|V |/3)
[20]. We give detailed analysis of our algorithm and also
show that our algorithm achieves balanced workload
and the total amount of work performed by parallelizing
the MCE task is asymptotically the same as that by
sequentially executing the task.

For managing the set of maximal cliques, we focus
on the following two main issues, query processing and
update maintenance, neither of which has been well
studied in the past (we are only aware of a method that
updates a data structure that can generate only a partial
set of maximal cliques [23]). First, we propose a set of
fundamental query operations, and efficient algorithms
to process the queries, to allow users more efficiently and
effectively analyze the set of maximal cliques. Second,
we propose efficient algorithms to incrementally update
the set of maximal cliques when the underlying graph
is updated.

We evaluate the performance of our algorithms on a
set of real world graphs from different domains. Our
results show that our parallel MCE algorithm is sig-
nificantly more efficient than an existing MapReduce
algorithm for MCE [29]. The experimental results also
show that our algorithms for processing all the queries
are efficient under various settings. In addition, we also
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Fig. 1: A graph G

demonstrate the high efficiency of our algorithms for
update maintenance of the set of maximal cliques.

The remainder of the paper is organized as follows.
Section 2 gives the basic notations and defines the
problem. Sections 3, 4, and 5 present the algorithms for
computing, querying, and updating the set of maximal
cliques, respectively. Section 6 reports the experimental
results. Section 7 discusses the related work and Section
8 gives our concluding remarks.

2 NOTATIONS AND NOTIONS

We study the problem of computing and managing max-
imal cliques in a simple undirected graph, G = (V,E),
where V is the set of vertices and E is the set of edges of
G. We keep G in its adjacency list representation. Each
vertex v ∈ V is assigned a unique vertex ID, denoted
by ID(v), where the vertex ID ranges from 1 to |V |.
Given any two vertices u and v, we use ID(u) < ID(v)
or equivalently ID(v) > ID(u) to denote that u is
ordered before v according to the order of their IDs. In
the adjacency list representation of a graph, vertices are
ordered in ascending order of their IDs.

We define the set of adjacent vertices of a vertex v ∈ V
as adj (v) = {u : (u, v) ∈ E}. We further define adj (<
v) = {u : u ∈ adj (v), ID(u) < ID(v)} and adj (> v) =
{u : u ∈ adj (v), ID(u) > ID(v)}.

A set of vertices, C, where C ⊆ V , is a clique in G
if every v ∈ C is adjacent to all other vertices in C, i.e.,
v ∈ adj (u) for all u ∈ (C \ {v}). If ∄C ′ ⊃ C such that C ′

is a clique in G, then C is a maximal clique.
We use M(G) to denote the set of maximal cliques

in G. We also use Mv to denote the set of maximal
cliques starting with v, i.e., Mv = {C : C ∈ M(G), v =
argminu∈CID(u)}, where “v = argminu∈CID(u)”
means “v ∈ C such that ID(v) = min{ID(u) : u ∈ C}”.

The following example illustrates the concepts.

Example 1: Figure 1 shows a graph G with 8 vertices.
If we assign the vertex ID in ascending order of the
vertex degree, where ties are broken arbitrarily, then we
have ID(h) = 1, ID(c) = 2, ID(f) = 3, ID(a) = 4,
ID(d) = 5, ID(g) = 6, ID(b) = 7, and ID(e) = 8. Ac-
cording to this ID assignment and ID ordering, we have
adj (< h) = ∅, adj (> h) = {g, e}, adj (< g) = {h, a, d}
and adj (> g) = {b, e}. There are 3 maximal cliques
in G, i.e., M(G) = {{a, b, d, e, g}, {b, c, e, f}, {e, g, h}}.
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Algorithm 1: Parallel MCE

1 Data distribution:
Input : ⟨v; adj(v)⟩ for each v ∈ V

2 begin
3 foreach vertex v ∈ V do
4 output ⟨ID(v); (v, adj(v))⟩;
5 foreach vertex u ∈ adj(< v) do
6 output ⟨ID(u); (v, adj(v))⟩;

7 Maximal clique enumeration (MCE):
Input : ⟨ID(v); (v, adj(v), {(u, adj(u)) : u ∈ adj(> v)}⟩

for each v ∈ V
8 begin
9 foreach u ∈ adj(> v) do

10 ADJ>v[u]← adj(u) ∩ adj(> v);
11 ADJv[u]← adj(u) ∩ adj(v);

12 LocalMCE({v}, adj(> v), adj(< v), ADJ>v, ADJv);

Hence, we have Mh = {e, g, h}, Mc = {b, c, e, f},
Ma = {a, b, d, e, g}, and Mv = ∅ for v ∈ {b, d, e, f, g}.

Problem definition. Given a graph G = (V,E), this
paper proposes efficient algorithms for:

• Computing the set of maximal cliques, i.e., computing
M(G);

• Managing the set of maximal cliques, which include

– proposing a set of fundamental query operations on
M(G), and

– update maintenance of M(G) when G is updated.

3 COMPUTING MAXIMAL CLIQUES

We first present a parallel algorithm for computing the
set of maximal cliques on a shared-nothing architecture.
The algorithm consists of two phases: data distribution
and maximal clique enumeration (MCE), which can be
easily implemented in one round of Map and Reduce
[31]. We first discuss these two phases, and then we also
show how different orderings of vertices can reduce the
complexity of MCE in common real-world graphs.

3.1 Phase I: Data Distribution

The data distribution phase is shown in Lines 1-6 of Al-
gorithm 1. Given a simple undirected graph G = (V,E),
the algorithm divides the task of MCE into many sub-
tasks to be computed in parallel. The data necessary
for MCE at each worker machine is to be distributed
according to the following lemma.

LEMMA 1: Computing Mv requires ADJ =
{(u, adj(u)) : u ∈ adj(> v)} ∪ {(v, adj(v)}.

Proof: For each C ∈ Mv and each u ∈ C \ {v},
we have u ∈ adj(> v). To compute C, we need to
know whether (u,w) ∈ E for all u,w ∈ C, i.e., whether
w ∈ adj(u). Thus, we need adj(u) for each u ∈ adj(> v).
Note that there may be some w ∈ adj(u) and w ∈ adj(v),

Algorithm 2: LocalMCE(C, cand , prev ,ADJ>v,ADJ v)

1 if cand = ∅ and prev = ∅ then
2 output C as a maximal clique;

3 else if cand ̸= ∅ then
4 let up be the vertex in cand that maximizes

|cand ∩ ADJ>v[up]|;
5 U ← cand \ ADJ>v[up];
6 sort U in descending order of |ADJ>v[u]| for all

u ∈ U ;
7 foreach u ∈ U do
8 cand ← cand \ {u};
9 cand ′ ← cand ∩ ADJ>v[u];

10 foreach w ∈ cand ′ do
11 ADJ ′

>v[w]← ADJ>v[w] ∩ cand ′;
12 ADJ ′

v[w]← ADJ v[w] ∩ prev ;

13 LocalMCE(C ∪ {u}, cand ′, prev ∩ ADJ v[u],
ADJ ′

>v,ADJ ′
v);

14 prev ← prev ∪ {u};

ID(w) < ID(v), but we still require w (i.e., the whole
adj(u) and adj(v)) because w is used to check maximality
(e.g., if the only superset of {v, u} that is a clique is
{w, v, u}, then without w the algorithm will report {v, u}
as a maximal clique).

Lemma 1 implies that for each v ∈ V , (v, adj(v))
is only needed to compute Mu for each u ∈ (adj(<
v) ∪ {v}). Thus, we only need to output the key-value
pair ⟨ID(u); (v, adj(v))⟩ for each u ∈ (adj(< v) ∪ {v})
instead of u ∈ (adj(v)∪{v}), which will prove to achieve
a tremendous reduction in the complexity of MCE for
processing common real-world graphs (to be analyzed
in Section 3.3).

3.2 Phase II: Maximal Clique Enumeration

The second phase, i.e., MCE, is shown in Lines 7-12 of
Algorithm 1. The data for computing Mv is distributed
to an active worker. Note that for each C ∈ Mv ,
(C \ {v}) ⊆ adj(> v). Thus, to enumerate the maximal
cliques in Mv , we only need adj(u) ∩ adj(> v), denoted
by ADJ>v[u], for each u ∈ adj(> v). However, to check
maximality of the cliques, we also need adj(u) ∩ adj(v),
denoted by ADJv[u], for each u ∈ adj(> v). Then, the al-
gorithm invokes the procedure “LocalMCE” to compute
Mv locally at the worker, as shown in Algorithm 2.

We first explain some notations used in Algorithms
2. We use C to denote the clique currently being enu-
merated, cand to denote the set of candidate vertices
that can be used to expand or form a clique, and
prev to denote a set of vertices that are in some other
maximal cliques (either enumerated previously by the
same worker or enumerated by another worker) so that
C is maximal only if prev = ∅. We also use ADJ>v and
ADJ v to denote the sets {ADJ>v[u] : u ∈ adj(> v)} and
{ADJv[u] : u ∈ adj(> v)}, respectively.

The LocalMCE algorithm starts from a set C initially
consisting of a single vertex, and repeats the process
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“find a candidate vertex u ∈ cand that is a common
neighbor of all vertices in the current C and then add
u to C” until there exists no common neighbor of the
current C, in which case cand = ∅, and C is returned as
a maximal clique if prev = ∅. When we grow the current
clique C to C ′ = (C∪{u}), we refine cand by intersecting
it with ADJ>v[u] because any candidate vertex that can
grow C ′ must be in ADJ>v[u]. We also refine prev by
intersecting it with ADJ v[u] because if another maximal
clique C ′′ exists such that C ′ cannot be grown into a
maximal clique in the end, then (C ′′ \ C ′) must be a
subset of ADJ v[u]. For the same reasons, we also refine
ADJ>v[w] and ADJv[w] for each new candidate vertex
w ∈ cand ′, by intersecting them with cand ′ and prev ,
respectively. Then, LocalMCE is invoked recursively to
further grow C ′.

The following lemma shows that computing Mv for
each v ∈ V gives the complete set of maximal cliques,
M, and no redundant maximal clique is generated.

LEMMA 2: M(G) =
∪

v∈V Mv , and Mu ∩Mv = ∅ for
all u, v ∈ V and u ̸= v.

Proof: For any C ∈ M(G), let v = argminu∈CID(u),
then C ∈ Mv by the definition of Mv . Thus, M(G) =∪

v∈V Mv .
For any Cu ∈ Mu and Cv ∈ Mv , we have u =

argminw∈Cu
ID(w) and v = argminw∈Cv

ID(w). If u ̸= v,
then Cu ̸= Cv , and thus Mu ∩ Mv = ∅ for all u, v ∈ V
and u ̸= v.

A comparison between LocalMCE and classic MCE
algorithms. The LocalMCE algorithm is similar to the
classic MCE algorithms that apply pruning by pivot
vertex (i.e., up in Line 4 of Algorithm 2) [9], [10], [20].
Compared with the classic algorithm, our algorithm
makes the following improvement.

When growing the current clique C to a new clique
(C ∪ {u}), the classic algorithm refines cand and prev

by intersecting each of them with adj (u). During the
processing of MCE, these set intersections are the most
costly operations to be processed, especially because
adj (u) can be very large for those high-degree vertices in
a power-law graph. Since the number of cliques enumer-
ated (i.e., those ‘C’s in the intermediate steps of MCE)
can be significantly larger than the number of maximal
cliques and high-degree vertices are contained in many
cliques, we can tremendously reduce the running time
of MCE if we can reduce the cost of the set intersections.

Cheng et al. [24] proposed to reduce the cost of set
intersection by extracting subgraphs and then perform-
ing MCE in the subgraphs. Apparently, the smaller the
subgraphs, the smaller are the sizes of the sets (i.e., the
adjacency lists of the vertices within the subgraphs). But
they also show that the overall search space will be
increased when smaller subgraphs are used, in addition
to the cost of subgraph extraction. Thus, they use a cost
model to find a balance point. However, computing the
optimal point by the cost model is NP-hard.

We propose a much simpler but effective mechanism,
which is also more suitable for parallel MCE. We observe
that by ordering the vertices we only need ADJ>v[u]
for growing the current clique and ADJv[u] for checking
maximality. Thus, we always refine cand by intersecting
it with ADJ>v[u] instead of with the whole set adj (u),
and we will show in Section 3.3 that ADJ>v[u] is small
even for high-degree vertices in common real-world
graphs. Furthermore, whenever we add a new candidate
vertex u to C, we refine ADJ>v[w] and ADJv[w] for each
new candidate vertex w, so that in the subsequent recur-
sive steps we can intersect with the smaller ADJ>v[w]
and ADJv[w] instead of with adj (w).

3.3 Ordered MCE and Complexity

The time complexity of the classic algorithm for MCE [9],
[10], [20] is O(3|V |/3), which is proved to be optimal for
processing general graphs [20]. However, we show how
different orderings of vertices can reduce the complexity
of MCE in many graphs such as power-law graphs
and d-degenerate graphs, which are prevalent in real
world [32], [13], [33]. We consider the following types
of ordering: (1) ordering by vertex degree, (2) ordering
by degeneracy number [13], and (3) ordering by the core
number of the vertices.

Degeneracy ordering. An undirected graph G is k-
degenerate if for every subgraph G′ of G, there exists some
vertex in G′ that has k or fewer neighbors within G′. The
degeneracy of G is the smallest value of k for which
G is k-degenerate. If the degeneracy of G is d, then G
has a degeneracy ordering such that if we assign ID(v)
according to the degeneracy ordering (i.e., ID(v) = i if v
is at the i-th position by the degeneracy ordering), then
|adj(> v)| ≤ d for all v ∈ V .

Eppstein et al. [13] prove the following complexity of
MCE for a d-degenerate graph.

THEOREM 1: Let G = (V,E) be a graph where the de-
generacy of G is d. When the vertices in G are ordered by
degeneracy ordering, applying Algorithm 2 to compute
Mv for all v ∈ V uses O(|V |d3d/3) time.

Note that the above complexity is proved in [13] based
on the classic MCE algorithms [9], [10], [20], but applying
Algorithm 2 can only be more efficient as discussed
in Section 3.2. The analysis [13] is also for sequential
algorithms, while in our case for parallel computation,
each worker uses O(d3d/3) time for computing Mv .

Since the degeneracy d is quite small for most real-
world graphs, especially for sparse graphs and power-
law graphs, the above complexity is a significant reduc-
tion to the O(3|V |/3) complexity for processing general
graphs.

Degree ordering. For each v ∈ V , we assign ID(v) = i
if v is at the i-th position when the vertices in V are
ordered in ascending order of their degree, where ties
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are broken arbitrarily. Let h be the maximum value of h
such that there are h vertices with degree at least h. We
give the following complexity analysis.

THEOREM 2: Given a graph G = (V,E), when the
vertices are ordered by their degree, applying Algorithm
2 to compute Mv for all v ∈ V uses O(|V |h3h/3) time.

Proof: We first show that |adj(> v)| ≤ h for all v ∈ V .
Suppose on the contrary that there exists a vertex v ∈ V
such that |adj(> v)| > h. Since |adj(> v)| > h, there
are at least (h+ 1) vertices that are ordered after v, i.e.,
they have degree at least as large as v. Since |adj(v)| ≥
|adj(> v)| > h, v has degree at least (h + 1) and hence
each u ∈ adj(> v) has degree at least (h+1). This means
that there are at least (h+1) vertices that have degree at
least (h + 1), which contradicts to the fact that h is the
maximum value of h such that there are h vertices with
degree at least h. Thus, |adj(> v)| ≤ h for any v ∈ V .

If |adj(> v)| ≤ h, then following a similar analysis to
Theorem 2 of [13] we can show that computing Mv by
Algorithm 2 uses at most O(h3h/3) time.

For a typical power-law graph, h ≤ |V |0.4 [23]. Thus,
for processing large power-law graphs, our algorithm is
a significant improvement over the classic algorithms [9],
[10], [20].

Core number ordering. Another interesting vertex
ordering we can use is based on k-core [30]. The k-core
of a graph G is the largest subgraph Ck = (VCk

, ECk
) of

G such that ∀v ∈ VCk
, the degree of v in Ck is at least

k. The core number of a vertex v ∈ V , denoted by c(v), is
defined as the largest k such that v is in Ck.

Let d be the maximum core number of a vertex in G.
Note that the degeneracy of G is equal to d. However,
we can give an ordering of the vertices by their core
number and show that this ordering achieves better time
complexity than that by degeneracy ordering given in
Theorem 1. We present the details in Lemma 3, Theo-
rems 3 and 4, which are due to Fu [34].

LEMMA 3: There exists an ordering of the vertices in
G such that (1) for all v ∈ V , ID(v) = i if v is at the i-th
position by the ordering, (2) for all u, v ∈ V , if ID(u) <
ID(v), then c(u) ≤ c(v), and (3) for all v ∈ Vi, |adj(>
v)| ≤ i.

Proof: We obtain such an ordering as follows. We
repeatedly delete from G a vertex v that has the smallest
degree, where tires are broken arbitrarily, and assign
ID(v) = i if v is the i-th vertex to be deleted. Note
that when we delete v, we also delete all edges incident
to v and this changes the degree of other vertices (e.g.,
deleting (u, v) decreases the degree of u by 1).

For all u, v ∈ V , if ID(u) < ID(v), then at the time u
is deleted from G, the degree of u is not larger than that
of v, which implies that c(u) ≤ c(v).

For all v ∈ Vi, at the time when v is deleted from G,
the degree of v is at most i, which implies that there are

at most i neighbors of v that are deleted later than v,
and thus |adj(> v)| ≤ i.

By the ordering given in the proof of Lemma 3, we
have the following new complexity.

Let Vi be the set of vertices with core number i and
ni = |Vi|. Note that ni = |VCi

\ VCi+1
| for 1 ≤ i < d and

nd = |VCd
|.

THEOREM 3: Given a graph G = (V,E), when the
vertices are ordered by core number ordering as given
in Lemma 3, applying Algorithm 2 to compute Mv for

all v ∈ V uses O(
∑d

i=1 nii3
i/3) time.

Proof: The proof is similar to that of Theorem 2 ex-
cept that we partition the vertex set into {V1, V2, . . . , Vd}
according to the core number of the vertices. For all
v ∈ Vi, since |adj(> v)| ≤ i according to Lemma 3,
computing Mv for all v ∈ Vi uses O(nii3

i/3) time.

Since in most real-world graphs, the number of ver-
tices with core number i decreases rapidly when i in-
creases, the complexity using core number ordering can
be much smaller than that using degeneracy ordering.
The following theorem further shows that the complex-
ity of MCE given in Theorem 3 is close to the lower
bound.

THEOREM 4: The maximum possible number of max-
imal cliques in a graph G, where the degeneracy of G

is d, is given by
∑d−1

i=1 ni3
i/3 + (nd − d)3d/3, and such a

graph exists.

Proof: It is shown that the maximum possible num-
ber of maximal cliques in a graph with n vertices is
bounded by 3n/3 [35]. For all v ∈ Vi, |adj(> v)| ≤ i
according to Lemma 3, which means that the subgraph
of G induced by adj(> v) gives at most 3i/3 maximal
cliques. Since any maximal clique in Mv is a subset of
({v} ∪ adj(> v)), v forms at most 3i/3 maximal cliques
with vertices in adj(> v) and hence |Mv| ≤ 3i/3. Thus,∑

v∈Vi
|Mv| ≤ ni3

i/3.
When i = d, the subgraph induced by Vd, i.e., Cd,

has degeneracy d. By Theorem 3 of [13], the maximum
possible number of maximal cliques in a graph with
degeneracy d is given by (nd − d)3d/3.

Next we show that there exists a graph G that has
∑d−1

i=1 ni3
i/3+(nd−d)3d/3 maximal cliques. The graph G

is formed by d/3 components (for simplicity, we assume
that d is a multiple of 3) and a main component. The
main component is a Turan’s graph T (d, d/3), forming
d/3 independent sets (each of size 3), and with edges
from each vertex in each independent set connected to
all vertices in the other independent sets. The other
d/3 components are L1, ..., Ld/3, where Li contains mi

vertices and there is no edge among vertices in Li, i.e.,
Li is an independent set in G (for simplicity, we assume
that mi ≥ 3). Each vertex in Li is connected to all
vertices in i independent sets in T (d, d/3). Obviously,
vertices in Li have core number 3i, and hence mi = n3i
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for i < d/3, and nd = md/3 + d since the d vertices
in T (d, d/3) are also in the d-core. For 1 ≤ i ≤ d, if
i%d ̸= 0, then ni = 0 (note that no maximal clique
is formed by vertices with core number i in this case).
Now consider the number of maximal cliques that can
be formed by vertices in Li for 1 ≤ i < d/3. Note that
each vertex in Li is linked to i sets of independent sets
{I1, ..., Ii} in T (d, d/3). A maximal clique can be formed
by picking one vertex from Li, and one vertex from each
of I1, ..., Ii. Hence the number of maximal cliques that
can be formed by vertices in Li is given by mi3

i = n3i3
i.

Since nd = md/3 + d, the number of maximal cliques
that can be formed by vertices in Ld/3 is given by
md/33

d/3 = (nd − d)3d/3. Combining all components we

have a graph with
∑d−1

i=1 (ni)3
i/3 + (nd − d)3d/3 maximal

cliques.

Theorem 4 implies that the worst-case time complex-
ity of MCE in a graph with degeneracy d is at least

O(
∑d−1

i=1 ni3
i/3 + (nd − d)3d/3) since there are so many

maximal cliques in the worst case. Thus, the worst-case
time complexity of our algorithm for computing Mv for
all v ∈ Vi is only a factor of i greater than the lower
bound time complexity. Importantly, i is small when ni is
large, and nd is usually small for most real-world graphs.
We further verify the efficiency of MCE by each ordering
by experiments.

3.4 Work Efficiency and Workload Balancing

The vertex ordering not only gives a tremendously re-
duced worst-case time complexity for MCE in processing
many common real-world graphs especially power-law
graphs and d-degenerate graphs, but it also effectively
solves the problem of skewed workload distribution due
to high-degree vertices.

The following theorem shows that the total amount of
work performed by all the machines is asymptotically
the same as that by sequentially executing Algorithm
2 to compute Mv for all v ∈ V , which achieves the
best known time complexity (as given in Theorem 3) for
computing maximal cliques in a graph with degeneracy
d (the previous best complexity is given by [13] as
shown in Theorem 1). In addition, it also shows that
the workload at each worker machine is bounded by d
instead of |V | or the degree of the vertices.

THEOREM 5: The total amount of work performed
by all the machines for computing the set of maximal
cliques by core number ordering, as well as the total

amount of data being communicated, is O(
∑d

i=1 nii3
i/3).

The amount of work done by any worker machine is
O((|V |/φ)ndd3

d/3), where φ is the number of worker
machines.

Proof: The total amount of data distributed to all the
worker machines is bounded by the total amount of data
processed in the worker machines. Since Mv , for each
v ∈ V , is computed only in one machine, and no machine

performs any other extra work, the total amount of work

performed at all the worker machines is O(
∑d

i=1 nii3
i/3).

Each worker machine may compute Mv for (|V |/φ)
vertices. Computing each Mv uses O(nii3

i/3) time,
where v ∈ Vi. In the worst case, v ∈ Vd and O(nii3

i/3) =
O(ndd3

d/3). Here, we assume O(dnd) = O(3d/3), other-
wise d must be small and nd ≤ ni ≤ |V |, which implies
that both O(nii3

i/3) = O(|V |) and O(ndd3
d/3) = O(|V |)

(which is a better bound for a task like MCE).

Note that the same analysis can be applied if the
vertices are ordered by degeneracy ordering or degree
ordering, by substituting the complexity given in Theo-
rems 1 and 2 into the analysis, respectively.

4 QUERYING MAXIMAL CLIQUES

The set of maximal cliques is often too large to manage
and be used directly for analysis. Thus, we propose a
set of fundamental queries on M(G) to help users find
targeted maximal cliques for more effective and efficient
analysis.

4.1 Data Structure

Before we discuss the queries, we first present the data
structure that we use to store the maximal cliques. When
we apply Algorithm 2 to compute Mv , for each v ∈ V ,
the process naturally constructs a prefix tree, denoted by
Tv , such that the root of Tv is v and each root-to-leaf path
represents a maximal clique in Mv . We use the prefix tree
structure because it can effectively save storage space by
sharing the common subsets among maximal cliques.

The prefix trees Tv for each v ∈ V are stored in
distributed file system. To support efficient querying
of the maximal cliques, we also record the following
information for each Tv :

• level(x): for each node x in Tv , we record the level
of x in Tv , where the level of the root is 1 and
level(x) = level(parent(x)) + 1 (parent(x) is the
parent of x in Tv).

• label(x): a vertex u ∈ adj(> v) may occur in multiple
maximal cliques in Mv and hence may be repre-
sented by multiple nodes in Tv ; if u is represented
by node x in Tv , then label(x) = u.

• nodeListv(u): since a vertex u ∈ adj(> v) may be
represented by multiple nodes in Tv , nodeListv(u)
gives the list of nodes in Tv that represent u, i.e.,
for each node(u) ∈ nodeListv(u), label(node(u)) = u,
where we use node(u) to indicate an occurrence of
u in Tv .

• leafListw: this gives the list of leaf nodes (in the
order from left to right) in Tv .
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Algorithm 3: Query(v)

Input : A query vertex v,
and Tu for all u ∈ (adj(< v) ∪ {v})

Output : M(v)

1 output all maximal cliques in Tv ;
2 foreach u ∈ adj(< v) do
3 foreach node(v) ∈ nodeListu(v) do
4 initialize an empty array C;
5 C[level(node(v))]← v;
6 search-up(C, node(v), Tu);
7 search-down(C, node(v), Tu);

Algorithm 4: search-up(C, x, T )

1 while x is not the root of T do
2 x← parent(x);
3 C[level(x)]← label(x);

Algorithm 5: search-down(C, x, T )

1 if x is a leaf in T then
2 output C′ = {C[i] : 1 ≤ i ≤ level(x)} as a maximal

clique;

3 else
4 foreach child y of x in T do
5 C[level(y)]← label(y);
6 search-down(C, y, T );

4.2 Query(v)

The first type of queries we want to consider is to find
all maximal cliques containing a given vertex, denoted
by query(v): given a query vertex v, query(v) returns
M(v) = {C : C ∈ M(G), v ∈ C}. Note that M(v) ⊇ Mv .

The following observation shows how query(v) can be
processed efficiently.

OBSERVATION 1: For any maximal clique C ∈ M(v),
C can be found in Tu for some u ∈ (adj(< v) ∪ {v}).

Proof: Let u′ = argminw∈CID(w). Then, either u′ =
v in which case C is in Tv , or u′ ∈ adj(< v) in which
case C is in Tu′ .

We give our algorithm for processing query(v) in
Algorithm 3, which follows Observation 1 to search Tu

for all u ∈ (adj(< v) ∪ {v}) to find all maximal cliques
in M(v).

First, we can simply perform a depth-first search in Tv ,
and output the maximal clique represented by each root-
to-leaf path. Then, we search Tu for each u ∈ adj(< v)
as follows. We follow the node list of v in Tu. For each
node(v) ∈ nodeListu(v), we first search up from node(v)
to the root (by the “search-up” procedure, i.e., Algorithm
4), and then search down from node(v) to each leaf f
in the subtree rooted at node(v) (by the “search-down”
procedure, i.e., Algorithm 5). Each root-to-f path via
node(v) represents a maximal clique in Mu that contains

Algorithm 6: Query(≥ s)

Input : A size threshold s, and Tv for all v ∈ V
Output : M≥s(G)

1 foreach v ∈ V do
2 if depth(Tv) ≥ s then
3 initialize an empty array C;
4 foreach f ∈ leafListv , where level(f) ≥ s, do
5 C[level(f)]← label(f);
6 search-up(C, f, Tv);
7 output C′ = {C[i] : 1 ≤ i ≤ level(f)} as a

maximal clique;

v, and is thus reported as a query answer.

4.3 Query(≥s)

The set M(G) is large; however, most of the maximal
cliques in M(G) are small in size. According to [19],
large maximal cliques are more useful and interesting
than small maximal cliques, and the set of large maximal
cliques is much smaller and hence more manageable.
Thus, the second type of queries we ask is to find all
large maximal cliques, denoted by query(≥ s): given a
size threshold s, query(≥ s) returns M≥s(G) = {C :
C ∈ M(G), |C| ≥ s}. The term “large” depends on
applications and hence we allow users the flexibility to
specify a size threshold s.

We give the algorithm for processing query(≥ s) in
Algorithm 6, which searches Tv for all v ∈ V if the
depth of Tv is at least s. Note that the query is executed
in parallel and the worker machines retrieve Tv from
distributed file system where Tv is stored, and then the
partial query answers from each worker machine are
sent to the machine where the query is issued.

To process query(≥ s), we follow the leaf list of each
Tv . For each leaf node f in leafListv , if the level of
f is at least s, we simply output the maximal clique
represented by the root-to-f path. Since there may be
many leaf nodes that share the same prefix subpath,
we can perform an optimization as follows. During the
search-up process, when we reach the internal node x
at level s, we first obtain the root-to-x prefix subpath by
the “search-up” procedure (i.e., Algorithm 4). Then, we
invoke the “search-down” procedure (i.e., Algorithm 5)
starting at x to every leaf f ′ in the subtree rooted at x,
and output the maximal clique represented by each root-
to-f ′ path via x. Then, we start the process again from
the next leaf node in leafListv that is not in the subtree
rooted at x.

4.4 Query(U)

The query query(v) finds all maximal cliques containing
a single vertex. We now consider another type of queries
that return all maximal cliques containing a set of ver-
tices, denoted by query(⊇ U): given a query vertex set U ,
query(⊇ U) returns M(⊇ U) = {C : C ∈ M(G), C ⊇ U}.
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Algorithm 7: Query(⊇ U)

Input : A query vertex set U ,
and Tw for all w ∈ (adj(< v) ∪ {v}),
where v = argminu∈UID(u)

Output : M(⊇ U)

1 foreach w ∈ {adj(< v) ∪ {v}} do
2 if U ⊆ adj(> w) ∪ {w} then
3 foreach f ∈ leafListw, where level(f) ≥ |U |, do
4 output the maximal clique C represented by

the root-to-f path in Tw, if C ⊇ U ;

Note that U must be a clique for this query, otherwise
M(⊇ U) = ∅.

We also consider the type of queries that return all
maximal cliques that are subsets of a given query vertex
set, denoted by query(⊆ U): given U , query(⊆ U) returns
M(⊆ U) = {C : C ∈ M(G), C ⊆ U}.

We first discuss how we process query(⊇ U). The fol-
lowing observation gives the search space of processing
the query.

OBSERVATION 2: Let v = argminu∈UID(u). For any
maximal clique C ∈ M(⊇ U), C can be found in Tw for
some w ∈ (adj(< v) ∪ {v}).

Proof: Since U itself is a clique but may not be
maximal, any maximal clique containing U as a subset
must be either in Mv or in Mw for some w ∈ adj(< v).

We give the algorithm for processing query(⊇ U) in
Algorithm 7. We first prune the search space by discard-
ing any w ∈ {adj(< v) ∪ {v}} if U * adj(> w) ∪ {w},
because in this case U cannot be contained in any maxi-
mal clique in Mw. Then, for each Tw, we follow the leaf
list of Tw. For each leaf node f in leafListw, if the level
of f is smaller than |U |, we can safely skip f . Otherwise,
we invoke the “search-up” procedure to obtain the root-
to-f path in Tw. During the search process, we count
the number of nodes that are not in U , and denote
this number by c. If level(f) − c < |U |, then U cannot
be contained in the maximal clique represented by this
root-to-f path and hence we terminate the process and
continue with next f ∈ leafListw. Otherwise, if the
search reaches the root and level(f) − c ≥ |U |, then the
maximal clique C represented by the root-to-f path must
contain U as a subset, and we output C.

Next, we discuss how we process query(⊆ U). The fol-
lowing observation gives the search space of processing
the query.

OBSERVATION 3: For any maximal clique C ∈ M(⊆
U), C can be found in Tu for some u ∈ U .

Proof: Let u = argminw∈CID(w). First, C ∈ Mu and
C can be found in Tu. Since C must be a subset of U ,
we have u ∈ U .

We give the algorithm for processing query(⊆ U) in

Algorithm 8: Query(⊆ U)

Input : A query vertex set U , and Tu for all u ∈ U
Output : M(⊆ U)

1 foreach u ∈ U do
2 cand← adj(> u) ∩ U ;
3 output the maximal clique C represented by each

root-to-leaf path in Tu, if C ⊆ (cand ∪ {u});

Algorithm 8. We search Tu for each u ∈ U according to
Observation 3. Since each maximal clique represented in
Tu must be a subset of (adj(> u)∪{u}) and also of U , we
first obtain cand = adj(> u) ∩ U . Then, we invoke the
“search-down” procedure starting from the root of Tu.
During the process, if any internal node x is not in cand,
we can prune the whole subtree rooted at x, because the
maximal clique represented by any root-to-leaf path via
x cannot be a subset of U since x is not in U . If the
search reaches a leaf node f , then the maximal clique C
represented by any root-to-f must be a subset of U , and
we output C.

4.5 Top-k Query

A top-k query finds the k maximal cliques that have the
largest size (ties are broken arbitrarily), i.e., the query
returns M(k) where M(k) ⊆ M(G), |M(k)| = k, and
for any C ∈ M(k) and C ′ ∈ (M(G) \ M(k)), |C| ≥
|C ′|. A special case is the top-1 query, which returns the
maximum clique in G.

We discuss how a top-k query can be processed as
follows. Let α be the size of the maximum clique in G
and Ni be the number of maximal cliques with size i
(note that the distribution of the sizes of the maximal
cliques can be easily obtained as a by-product of the
MCE process). Then, we approximate the size of the k-
th largest maximal clique as β, such that

∑α
i=β+1 Ni ≤

k ≤
∑α

i=β Ni. Based on this approximation, a top-k query
can be transformed into query(≥ β) and return the top-k
largest maximal cliques in the query answer.

5 UPDATING MAXIMAL CLIQUES

To manage the set of maximal cliques, we also need
to consider update maintenance of the set when the
underlying graph is updated. Clearly it is not practical
to re-compute M(G) every time when G is updated.
Thus, we propose efficient algorithms to support in-
cremental update of M(G). We consider two update
operations: edge insertion and edge deletion. Note that
vertex deletion can be considered as a series of edge
deletion followed by the deletion of an isolated vertex,
while the deletion (and insertion) of an isolated vertex
(i.e., a maximal clique of size 1) is trivial.

In the following discussion, we process the insertion
and deletion of an edge (u, v), and without loss of
generality we assume ID(u) < ID(v). Note that after
the insertion and deletion of (u, v), the vertex ordering
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discussed in Section 3.3 may change; however, we do
not change the ID of the vertices during the update and
hence the update result does not affect the correctness
of query processing discussed in Section 4.

5.1 Edge Insertion

When an edge (u, v) is inserted into G, we have two cases
to handle: (1) some existing maximal cliques become
non-maximal, which need to be deleted; and (2) new
maximal cliques appear in G, which need to be inserted.
We process the two cases as shown in Algorithm 9.

For Case (1), an existing maximal clique C becomes
non-maximal only if C contains either u or v, and C ⊂
(adj(u) ∩ adj(v)) ∪ {u, v}, since now C ∪ {v} or C ∪ {u}
is a new maximal clique containing C. The following
observation shows where C can be found.

OBSERVATION 4: Let C be a maximal clique before
inserting (u, v), where C ⊂ (adj(u)∩ adj(v))∪ {u, v} and
either u ∈ C or v ∈ C. Then, C is represented by a root-
to-leaf path in Tw, where w ∈ ((adj(> u)∩adj(< v))∪{v})
or w ∈ ((adj(< u) ∩ adj(< v)) ∪ {u}).

Proof: Let w = argminw′∈CID(w′). Then, C ∈ Mw

and hence C is represented by a root-to-leaf path in Tw.
Regarding w we have two cases: (1) ID(u) < ID(w) <
ID(v) or w = v, which implies w ∈ ((adj(> u) ∩ adj(<
v))∪{v}); or (2) ID(w) < ID(u) or w = u, which implies
w ∈ ((adj(< u) ∩ adj(< v)) ∪ {u}).

Following Observation 4, first Lines 3, 5 and 6 of Algo-
rithm 9 call the “DeleteNode” procedure (i.e., Algorithm
10) to delete an existing maximal clique C from Tw, if
C will become non-maximal after inserting (u, v), i.e.,
C ⊂ cand = (adj(u) ∩ adj(v)) ∪ {u, v} (checked in Line 3
of Algorithm 10). Since C is represented by a root-to-leaf
path in Tw but a prefix subpath of C may be shared by
some other maximal cliques in Mw, we only remove the
part of the path that is not shared by any other maximal
cliques (Line 4 of Algorithm 10).

Now we process Case (2). The following observation
shows where a new maximal clique C should be in-
serted.

OBSERVATION 5: Let C be a new maximal clique after
inserting (u, v) into G. Then, C should be inserted into
Tw, where w ∈ ((adj(< u) ∩ adj(< v)) ∪ {u}).

Proof: Let w = argminw′∈CID(w′). Then, C should
be in Mw and hence inserted into Tw. Since u, v ∈ C
and ID(u) < ID(v), we have ID(w) < ID(u) or w = u,
which implies w ∈ ((adj(< u) ∩ adj(< v)) ∪ {u}).

Following Observation 5, we first generate all new
maximal cliques that contain {u, v, w}, for each w ∈
((adj(< u) ∩ adj(< v)) ∪ {u}), which is processed by the
algorithm “LocalMCE” (i.e., Algorithm 2), and we also
insert the new maximal cliques into Tw (Lines 7-12 of
Algorithm 9).

Algorithm 9: Insert(u, v)

1 cand← (adj(u) ∩ adj(v)) ∪ {u, v};
2 foreach w ∈ ((adj(> u) ∩ adj(< v)) ∪ {v}) do
3 DeleteNode(v, Tw, cand);

4 foreach w ∈ ((adj(< u) ∩ adj(< v)) ∪ {u}) do
5 DeleteNode(v, Tw, cand);
6 DeleteNode(u, Tw, cand);

7 newcand← (adj(> w) ∩ cand) \ {u, v};
8 newprev ← adj(< w) ∩ cand;
9 foreach w′ ∈ newcand do

10 ADJ>w[w
′]← adj(w′) ∩ adj(> w);

11 ADJw[w
′]← adj(w′) ∩ adj(w);

12 invoke LocalMCE({u, v, w}, newcand, newprev,
ADJ>w, ADJw) to generate new maximal cliques
containing {u, v} and {w} and insert them into Tw;

Algorithm 10: DeleteNode(x, Tw, cand)

1 foreach node(x) ∈ nodeListw(x) do
2 foreach maximal clique C represented by each root-to-leaf

path via node(x) in Tw do
3 if C ⊂ cand then
4 starting from the leaf node and moving along

the path up to the root, recursively delete
from Tw any node that has no child (note that
initially only the leaf node has no child);

Algorithm 11: Delete(u, v)

1 cand← (adj(u) ∩ adj(v)) ∪ {u, v};
2 foreach w ∈ ((adj(< u) ∩ adj(< v)) ∪ {u}) do
3 delete unshared nodes along any path in Tw that

represents a maximal clique containing both u and v
by a procedure similar to Algorithm 10;

4 compute all new maximal cliques that contain
C = {w, u} and insert them into Tw by a procedure
similar to Lines 7-12 of Algorithm 9; and similarly for
C = {w, v};

5 foreach w ∈ ((adj(> u) ∩ adj(< v)) ∪ {v}) do
6 compute all new maximal cliques that contain

C = {w, v} and insert them into Tw by a procedure
similar to Lines 7-12 of Algorithm 9;

5.2 Edge Deletion

The deletion of an edge (u, v) is processed in essentially
the reverse way of how we process the edge insertion.
As shown in Algorithm 11, we first delete all the existing
maximal cliques that contain both u and v, where such
maximal cliques appear in Tw, where w is defined in
Observation 5. Then, we general all new maximal cliques
that contain only u or v, and insert them into Tw, where
w is defined in Observation 4.

6 EXPERIMENTAL EVALUATION

We evaluate the performance of our algorithms for
computing, querying, and updating the set of maximal
cliques. We tested our algorithms on a cluster of 64
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computing nodes, each with a 2.0GHz and 4GB RAM.
The communication speed between the computing nodes
in the cluster is 1Gbps.

We select five datasets from five different domains
in the Stanford Large Network Dataset Collection
(http://snap.stanford.edu/data/). The Youtube
dataset comes from the community networks with
ground-truth communities, where users form friendship
each other. The Patents dataset is from the citation net-
works. The Google dataset is a Web graph from Google
and it is selected from the category of Web graphs. The
Skitter dataset is an Internet topology graph and it is
selected from the category of Systems graphs. The Wiki
dataset is a Wikipedia talk (communication) network
from the Wikipedia networks. Some of the graphs are
directed and we ignore the edge direction to study
maximal cliques in these graphs. Table 1 gives some
statistical information about the datasets, including the
number of vertices (|V |), the number of edges (|E|), the
maximum vertex degree (degmax), the maximum core
number or degeneracy of the graph (d), the size of the
maximum clique (α), and the number of maximal cliques
(|M(G)|).

TABLE 1: Dataset statistics

Youtube Patents Google Skitter Wiki

|V | 1134890 3774767 875713 1696415 2394385
|E| 2987624 16518948 4322051 11059298 4659562

degmax 28754 793 6332 35455 100029
d 51 58 43 111 131
α 17 11 44 67 26

|M(G)| 3265953 14787028 1417580 37322351 86333297

6.1 Results of Computing Maximal Cliques

We evaluate the performance of computing the set of
maximal cliques, compared with an existing MapReduce
MCE algorithm [29], denoted by Wu et al. in Table 3.
Wu et al.’s algorithm is implemented using Hadoop. We
also use the Hadoop distributed file system to store the
graph data and the prefix trees that represent the set
of maximal cliques, but implemented our own version
of Map and Reduce phases for both data distribution
(see Section 3.1) and MCE computation (see Section 3.2).
We ran the algorithms on 4, 8, 16, 32, and 64 machines,
respectively, and recorded the elapsed running time (in
seconds).

Effect of vertex orderings. We first report the elapsed
running time of our algorithm for MCE using different
vertex orderings by core number, degree, and degen-
eracy, respectively, as shown in Figure 2. Note that the
running time includes the time to compute the orderings.
The results show that for all the datasets, when more
machines are used, there is a significant decrease in the
elapsed running time. On average, we record 1.60 times
reduction in the elapsed running time when the number
of machines is doubled for both core number ordering

and degeneracy order, while for degree ordering the re-
duction is 1.54 times. Among the three vertex orderings,
core number ordering achieves the best performance
consistently in most of the cases. The result thus verifies
our analysis that core number ordering gives the lowest
time complexity for MCE in Section 3.3. The performance
of degree ordering is comparable with that of degeneracy
ordering in most cases, except for processing the Skitter
dataset its performance is considerably worse when 4 to
16 machines are used.

We also measured the data distribution time of our
algorithm, and found that the data distribution time is
almost the same regardless of which vertex ordering is
used. We thus report the data distribution time of core
number ordering when different number of machines
are used in Table 2. The result shows that the data
distribution time does not decrease significantly when
more than 16 machines are used, which may be due
to the fact that the communication time also increases
when more machines are used, and the amount of data to
be distributed is not large. Compared with the running
time shown in Figure 2, we can see that the overall data
distribution time is only a small portion of the elapsed
running time, especially for the Skitter and Wiki datasets.
Thus, it is important to have an efficient algorithm for
the main MCE process.

TABLE 2: Data distribution time (in seconds) for 4, 8, 16,
32, and 64 machines

Youtube Patents Google Skitter Wiki

4 4.8286 4.3470 4.4218 4.1530 4.3232
8 3.7168 3.5472 3.6615 3.5509 3.6869
16 2.8447 2.6010 2.6174 2.9907 2.7394
32 2.4480 2.6241 2.5171 2.3189 2.4165
64 2.5729 2.3870 2.4692 2.4641 2.5176

TABLE 3: Running time (in seconds) of our algorithm
and Wu et al.’s algorithm

Ours Wu et al.

Youtube 7.0162 982
Patents 8.4981 2868
Google 5.8394 1178
Skitter 140.3460 > 10000
Wiki 219.2920 > 10000

Comparison with Wu et al. [29]. We now compare the
performance of our algorithm (by core number ordering)
with that of Wu et al.’s algorithm. We report the running
time for 16 machines only due to limited space, as
the running time of Wu et al.’s algorithm is orders
of magnitude larger than ours in all cases while our
algorithm also shows a better scalability in terms of
number of machines used. As shown in Table 3, Wu
et al.’s algorithm uses up to orders of magnitude more
time than our algorithm, which clearly demonstrates the
efficiency of our algorithm.
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Fig. 2: Running time (in seconds) of MCE with different vertex orderings
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Fig. 3: Running time (in seconds) for processing query(≥ s)

6.2 Results of Querying Maximal Cliques

We now evaluate the performance of our algorithms for
querying the set of maximal cliques. We are not aware
of any existing work on querying maximal cliques and
hence we only report the results of our algorithms for
different types of queries under different settings. We
processed each query using 4, 8, 16, 32, and 64 machines,
respectively, and recorded the elapsed running time (in
seconds).

Performance of query(v). We randomly select 1000
vertices from each graph and process query(v) on each
of the vertices. Table 4 reports the average running time.
The result shows that this type of queries is fast to
process. We also notice that the querying time is not
significantly reduced (as compared with the time trend
of MCE as shown in Figure 2) when more machines are
used, especially when the number increases to 32 and
64. This can be explained as the processing of query(v)
is concentrated on Tv , which is processed by a single
worker machine, and thus using more machines does
not reduce the querying time a lot due to the curse of
the last worker, i.e., when measuring the running time,
the time taken by the last worker that completes the last
querying task determines the elapsed time.

TABLE 4: Running time (in seconds) for query(v)

Youtube Patents Google Skitter Wiki

4 0.0596 0.1810 0.0755 0.0862 0.1205
8 0.0384 0.1015 0.0474 0.0554 0.0648
16 0.0264 0.0600 0.0343 0.0387 0.0479
32 0.0251 0.0578 0.0231 0.0403 0.0433
64 0.0284 0.0671 0.0319 0.0296 0.0509

Performance of query(≥ s). Since the size of the max-

imal cliques is a relative measure for different datasets,
we set s to be relative to the size of the maximum clique,
denoted by α in Table 1. We set s from 0.5α to 0.9α,
and report the elapsed running time in Figure 3. The
result shows that a smaller s has a longer running time,
as more maximal cliques are returned as query answers.
From Figure 3, we also see that, unlike query(v), the run-
ning time of query(≥ s) decreases significantly in many
instances when more machines are used, especially for
s = 0.5α. This is because processing query(≥ s) searches
Tv for all v ∈ V and hence the search time is balanced
and shared by all machines. Overall, the result shows
that the efficiency of processing query(≥ s) depends on
the number of query answers returned, and processing
query(≥ s) is fast when s ≥ 0.8α.

Performance of query(⊇ U). For query(⊇ U), since U
should be a clique for this query, we test smaller sets of
query vertices from |U | = 2 to |U | = 32. We randomly
generate 1000 query sets for each |U | and report the
average running time in Tables 5 to 9. For some datasets,
when there is no answer returned for the query, we
indicate it by “−” in the tables. The running time of
processing query(⊇ U) decreases when more machines
are used in most cases. However, when |U | increases,
the running time may not increase. This is because the
running time also depends on the number of maximal
cliques that are supersets of U , which is generally smaller
for a larger |U |.

Performance of query(⊆ U). For query(⊆ U), since
query answers are maximal cliques that are subsets of
U , we set |U | to be larger. In fact, randomly selecting
vertices for U does not lead to a meaningful query.
Thus, we use the top-5 cores of each graph, i.e., (d− i)-
core for 0 ≤ i ≤ 4 (d is given in Table 1). The d-core
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TABLE 5: Running time (in seconds) for processing
query(⊇ U) in Youtube

|U | = 2 |U | = 4 |U | = 8 |U | = 16 |U | = 32

4 0.4040 0.5898 0.0640 − −
8 0.2399 0.3221 0.0373 − −
16 0.1339 0.1721 0.0239 − −
32 0.0762 0.0961 0.1437 − −
64 0.0689 0.0892 0.0982 − −

TABLE 6: Running time (in seconds) for processing
query(⊇ U) in Patents

|U | = 2 |U | = 4 |U | = 8 |U | = 16 |U | = 32

4 0.1827 0.1889 0.1626 − −
8 0.1168 0.1132 0.1099 − −
16 0.0730 0.0731 0.0690 − −
32 0.0704 0.0721 0.0657 − −
64 0.0615 0.0622 0.0605 − −

TABLE 7: Running time (in seconds) for processing
query(⊇ U) in Google

|U | = 2 |U | = 4 |U | = 8 |U | = 16 |U | = 32

4 0.8969 0.1068 0.1169 0.1267 0.1415
8 0.5956 0.0717 0.0728 0.0793 0.0963
16 0.4856 0.0561 0.0698 0.0743 0.0461
32 0.0536 0.0539 0.0532 0.0527 0.0490
64 0.0461 0.0329 0.0341 0.0338 0.0737

TABLE 8: Running time (in seconds) for processing
query(⊇ U) in Skitter

|U | = 2 |U | = 4 |U | = 8 |U | = 16 |U | = 32

4 0.0784 0.1138 0.1139 0.1135 0.1138
8 0.2563 0.0782 0.0778 0.0779 0.0776
16 0.1218 0.0526 0.0532 0.0535 0.0526
32 0.0947 0.0492 0.0490 0.0493 0.0494
64 0.0811 0.0421 0.0421 0.0420 0.0428

TABLE 9: Running time (in seconds) for processing
query(⊇ U) in Wiki

|U | = 2 |U | = 4 |U | = 8 |U | = 16 |U | = 32

4 0.1411 0.9583 0.7626 1.2850 −
8 0.1269 0.8204 0.6932 1.3464 −
16 0.0891 0.5984 0.7338 0.9074 −
32 0.0837 0.5777 0.5722 0.6455 −
64 0.0743 0.3172 0.3144 0.3162 −

is considered as the heart of a graph and the top-k
cores for a small k are generally dense subgraphs with
concentrated occurrences of large maximal cliques in the
graph. We report the elapsed running time in Tables
10 to 14. In most cases, the running time of processing
query(⊆ U) is longer for the (d − i)-core than for the
(d− i−1)-core, since the (d− i)-core is larger in size, and
the time also decreases when more machines are used.

Overall, processing query(⊇ U) and query(⊆ U) is
considerably more costly than processing query(v), but

TABLE 10: Running time (in seconds) for processing
query(⊆ U) in Youtube

d-core (d− 1)-core (d− 2)-core (d− 3)-core (d− 4)-core

4 0.0697 0.8444 0.1715 0.4195 0.5148
8 0.0485 0.4845 0.1144 0.2757 0.2764
16 0.0393 0.2390 0.0804 0.1555 0.1553
32 0.0378 0.0945 0.0711 0.0920 0.0857
64 0.0412 0.0909 0.0573 0.0805 0.0744

TABLE 11: Running time (in seconds) for processing
query(⊆ U) in Patents

d-core (d− 1)-core (d− 2)-core (d− 3)-core (d− 4)-core

4 0.1838 0.1826 0.1996 0.1948 0.3370
8 0.1142 0.1109 0.1105 0.1270 0.1211
16 0.0742 0.0733 0.0732 0.0726 0.0717
32 0.0714 0.0705 0.0698 0.0700 0.0702
64 0.0899 0.0835 0.0827 0.0820 0.0690

TABLE 12: Running time (in seconds) for processing
query(⊆ U) in Google

d-core (d− 1)-core (d− 2)-core (d− 3)-core (d− 4)-core

4 0.3370 0.3361 0.1786 0.2484 0.0672
8 0.3544 0.0326 0.1196 0.1765 0.0380
16 0.0359 0.3591 0.0888 0.1472 0.0288
32 0.0366 0.2905 0.0759 0.1171 0.0244
64 0.0749 0.7163 0.1247 0.1483 0.7354

TABLE 13: Running time (in seconds) for processing
query(⊆ U) in Skitter

d-core (d− 1)-core (d− 2)-core (d− 3)-core (d− 4)-core

4 1.2994 1.4566 1.5215 2.0322 2.3524
8 0.0681 0.9186 0.8719 1.1336 1.2886
16 0.0480 0.4170 0.5307 0.5303 0.7615
32 0.0473 0.3305 0.2924 0.3263 0.4626
64 0.0686 0.4632 0.2833 0.3048 0.3483

TABLE 14: Running time (in seconds) for processing
query(⊆ U) in Wiki

d-core (d− 1)-core (d− 2)-core (d− 3)-core (d− 4)-core

4 2.5353 2.7972 3.2721 3.4666 4.0481
8 1.4458 1.7369 2.3970 2.6223 2.6401
16 0.8564 1.0326 1.5980 1.7243 1.8993
32 0.4838 0.6255 0.8171 0.8207 0.9370
64 0.2524 0.2752 0.7225 0.7652 0.7755

is still quite efficient considering that we store and search
the data in distributed file system and the query answers
need to be sent to the machine where the query is issued.

6.3 Results of Updating Maximal Cliques

We now evaluate the performance of updating the set
of maximal cliques, M(G). For edge insertion, we ran-
domly generated 1000 edges that are not in G, and insert
them into G. For edge deletion, we randomly selected
1000 existing edges in G to be deleted. Tables 15 and 16
report the average elapsed running time for each update
operation, running on 4, 8, 16, 32, and 64 machines,
respectively.

The results show that updating M(G) for both edge
insertion and deletion is fast for all the datasets, but it is
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TABLE 15: Running time (in seconds) for updating
M(G) due to edge insertion

Youtube Patents Google Skitter Wiki

4 0.0669 0.0623 0.0493 0.0830 0.0188
8 0.0410 0.0423 0.0333 0.0532 0.1304
16 0.0311 0.0299 0.0285 0.0436 0.0702
32 0.0269 0.0286 0.0353 0.0387 0.0727
64 0.0269 0.0254 0.0228 0.0336 0.0421

TABLE 16: Running time (in seconds) for updating
M(G) due to edge deletion

Youtube Patents Google Skitter Wiki

4 0.0780 0.0731 0.2082 0.0784 0.2459
8 0.0461 0.0486 0.1636 0.0539 0.2606
16 0.0283 0.0409 0.0294 0.0455 0.2375
32 0.0220 0.0247 0.0346 0.0393 0.2062
64 0.0261 0.0243 0.0226 0.0342 0.1529

not easy to see a trend when more machines are used.
In general, when more machines are used, the running
time decreases but the time reduction is not significant.
We examined the details and found that when an edge
(u, v) is inserted or deleted, most updates are operated
on Tu and/or Tv . Since the updates on Tu and/or Tv

take much longer time, the time taken by the worker
that processes Tu and/or Tv is longer than that by
other workers. Since we measure the elapsed time, the
finishing time of the last worker determines the running
time, and thus using more machines does not help much
in this situation. However, we emphasize that the use of
vertex ordering has significantly limited the size of any
Tv to O(3d/3). Without the ordering, the size of Tv is
bounded by O(3n/3) or O(3|adj(v)|/3) in practice, where
O(3|adj(v)|/3) is still drastically larger than O(3d/3) for
high-degree vertices (see Table 1). Thus, our method has
already achieved a good bounded balanced workload.

7 RELATED WORK

The classic algorithms for MCE are the backtracking
methods [8], [9], [10], [16], [20], which employ effective
pruning by selecting good pivots to reduce the search
space, and give an optimal worst-case time complexity of
O(3|V |/3) for processing general graphs [20]. For process-
ing d-degenerate graphs, an extension of the algorithm
that uses degeneracy ordering achieves a time complex-
ity of O(d|V |3d/3) [13], [14]. Various output-sensitive
MCE algorithms whose processing time is proportional
to the number of maximal cliques were also studied [21],
[18]. Other algorithms, such as computing a k-clique by
joining two (k−1)-cliques [17], by utilizing triangles [22],
and enumerating maximal cliques of size larger than a
threshold [19], were also studied. All these algorithms
are sequential in-memory algorithms, which do not scale
well due to the high complexity of MCE. To process
graphs that are too large to fit in main memory, I/O-
efficient algorithms that recursively extract a core part

of the input graph for local MCE computation were
proposed [23], [24], and a theoretical analysis on the I/O
complexity of transforming the algorithm of [13], [14]
into an I/O-efficient version was given in [25]. Recently,
several parallel or distributed algorithms were proposed
[24], [26], [27], [28], [29], which we have discussed in
Section 1. Apart from algorithms for computing the max-
imal cliques, a recent work proposed a concise summary
of the set of maximal cliques, which ensures that for
every maximal clique C, there is a good portion of
C that is represented by some maximal clique in the
summary [36]. This summary, however, is not a lossless
representation of the set of maximal cliques.

Note that computing maximal cliques is different from
finding the maximum clique, which is to find the largest
maximal clique. We refer readers to a comprehensive
survey in [37] and a recent work on parallel maximum
clique finding by MapReduce [38] (and the references
therein).

Finally, we note that a preliminary version of this
paper appeared in [39]. The preliminary version mainly
focuses on computing maximal cliques, while this sub-
mission focuses on both computing and querying the set
of maximal cliques. Among the two problems, querying
maximal cliques is totally new, for which we introduce
a new set of queries on maximal cliques, discuss algo-
rithms for efficient query processing, and conduct exten-
sive experiments to verify the efficiency of the querying
algorithms. In addition, the current submission also adds
significantly more technical details in the discussion of
maximal clique computation.

8 CONCLUSIONS

We studied efficient algorithms for computing, querying,
updating the set of maximal cliques. Existing parallel
algorithms for computing maximal cliques are still im-
mature and we showed that our parallel algorithm is
orders of magnitude faster than the existing MapReduce
algorithm for MCE [29]. Both querying and updating the
set of maximal cliques have not been well studied in the
past, and we proposed efficient algorithms that achieve
high efficiency under various settings for a range of real-
world datasets from different domains.
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