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Abstract—We propose a class of convex relaxations to solve the
sensor network localization problem, based on a maximum likeli-

hood (ML) formulation. This class, as well as the tightness of the re-

laxations, depends on the noise probability density function (PDF)
of the collected measurements.We derive a computational efficient

edge-based version of this ML convex relaxation class and we de-

sign a distributed algorithm that enables the sensor nodes to solve

these edge-based convex programs locally by communicating only

with their close neighbors. This algorithm relies on the alternating

direction method of multipliers (ADMM), it converges to the cen-

tralized solution, it can run asynchronously, and it is computa-

tion error-resilient. Finally, we compare our proposed distributed

scheme with other available methods, both analytically and nu-

merically, and we argue the added value of ADMM, especially for

large-scale networks.

Index Terms—Distributed optimization, convex relaxations,
sensor network localization, distributed algorithms, ADMM,

distributed localization, sensor networks, maximum likelihood.

I. INTRODUCTION

N OWADAYS, wireless sensor networks are developed to

provide fast, cheap, reliable, and scalable hardware solu-

tions to a large number of industrial applications, ranging from

surveillance [1], [2] and tracking [3], [4] to exploration [5], [6],

monitoring [7], [8], robotics [9], and other sensing tasks [10].

From the software perspective, an increasing effort is spent on

designing distributed algorithms that can be embedded in these

sensor networks, providing high reliability with limited compu-

tation and communication requirements for the sensor nodes.

Estimating the location of the nodes based on pair-wise dis-

tance measurements is regarded as a key enabling technology

in many of the aforementioned scenarios, where GPS is often

not employable.

From a strictly mathematical standpoint, this sensor network

localization problem can be formulated as determining the

node position in or ensuring their consistency with the

given inter-sensor distance measurements and (in some cases)

with the location of known anchors. As it is well known, such
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a fixed-dimensional problem (often phrased as a polynomial

optimization) is NP-hard in general. Consequently, there have

been significant research efforts in developing algorithms and

heuristics that can accurately and efficiently localize the nodes

in a given dimension [11]–[13]. Besides heuristic geometric

schemes, such as multi-lateration, typical methods encompass

multi-dimensional scaling [14], [15], belief propagation tech-

niques [16], and standard non-linear filtering [17].

A very powerful approach to the sensor network localization

problem is to use convex relaxation techniques to massage

the non-convex problem to a more tractable yet approximate

formulation. First adopted in [18], this modus operandi has

since been extensively developed in the literature (see for

example [19] for a comprehensive survey in the field of signal

processing). Semidefinite programming (SDP) relaxations for

the localization problem have been proposed in [20]–[27].

Theoretical properties of these methods have been discussed

in [28]–[30], while their efficient implementation has been

presented in [31]–[35]. Further convex relaxations, namely

second-order cone programming relaxations (SOCP) have been

proposed in [36] to alleviate the computational load of standard

SDP relaxations, at the price of some performance degradation.

Highly accurate and highly computational demanding sum of

squares (SOS) convex relaxations have been instead employed

in [37].

Despite the richness of the convex relaxation literature, two

main aspects have been overlooked. First of all, a comprehen-

sive characterization of these convex relaxations based on the

maximum likelihood (ML) formulation is missing. In [21],

[25], [38], [39] ML-based relaxations are explored, but only

for specific noise models (mainly Gaussian noise), without a

proper understanding of how different noise models would

affect performance.

The second overlooked aspect regards the lack of distributed

optimization algorithms to solve convex relaxation problems

with certificates of convergence to the centralized optimizer,

convergence rate, and proven robustness when applied to real

sensor networks bounded by asynchronous communication and

limited computation capabilities.

Contributions. First, we generalize the current state-of-

the-art convex relaxations by formulating the sensor network

localization problem in a maximum likelihood framework and

then relaxing it. This class of relaxations (which depends on

the choice of the probability density function (PDF) of the

noise) is represented by the convex program (6). We show that

this program is a rank relaxation of the original non-convex

ML estimation problem, and at least for two widely used cases
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(Gaussian noise and Gaussian quantized measurements), it is a

rank- relaxation ( being the dimension of the space where

the sensor nodes live, Proposition 1). The relaxed convex

program is then further massaged into the edge-based ML

relaxation (12) to lessen the computation requirements and

to facilitate the distribution of the problem among the nodes.

Furthermore, we show numerically that the tightness of the

relaxation (in particular, the property of being derived from

a rank- relaxation or not) can affect the performance of the

convex program (12) more than the correctness of the noise

model.

As a second contribution, we demonstrate how the

edge-based ML convex relaxation can be handled via the

alternating direction method of multipliers (ADMM), which

gives us a powerful leverage for the analysis of the resulting

algorithm. The proposed algorithm, Algorithm 1, is distributed

in nature: the sensor nodes are able to locate themselves and

the neighboring nodes without the knowledge of the whole

network. This algorithm converges with a rate of (

being the number of iterations) to the solution of (12) (Theorem

1). Using Algorithm 1, each sensor node has a total commu-

nication cost to reach a certain average local accuracy of the

solution that is independent of the network size (Proposition

2 and Corollary 1). The proposed algorithm is then proven

to converge even when run asynchronously (Theorem 2) and

when the nodes are affected by computation errors (Theorem

3). These features, along with guaranteed convergence, are very

important in real-life sensor network applications. Finally, we

compare the usage of Algorithm 1 with some other available

possibilities, in particular, the methods suggested in [40] and

[41], both in terms of theoretical performances and simulation

results. These analyses support our proposed distributed algo-

rithm, especially for large-scale settings.

Organization. The remainder of the paper is organized as

follows. Section II details the problem formulation. Section III

presents the proposed maximum likelihood convex relaxation

(6) along with some examples. Section IV introduces the edge-

based relaxation (12), which is the building block for our dis-

tributed algorithm. Section V surveys briefly distributed tech-

niques to solve the localization problem, while, in Section VI,

we focus on the development of our distributed algorithm and its

analysis. Numerical simulations and comparisons are displayed

in Section VII, while our conclusions are drawn in Section VIII.

II. PRELIMINARIES AND PROBLEM STATEMENT

We consider a network of static wireless sensor nodes with

computation and communication capabilities, living in a -di-

mensional space (typically will be the standard 2-dimensional

or 3-dimensional Euclidean space). We denote the set of all

nodes . Let be the position vector

of the -th sensor node, or equivalently, let

be the matrix collecting the position vectors. We consider

an environment with line-of-sight conditions between the nodes

and we assume that some pairs of sensor nodes have ac-

cess to noisy range measurements as

(1)

where is the noise-free Euclidean distance

and is an additive noise term with known probability distri-

bution. We call the inter-sensor sensing

PDF, where we have indicated explicitly the dependence of

on the sensor node positions .

In addition, we consider that some sensors also have access

to noisy range measurements with some fixed anchor nodes

(whose position , for , is known by all the

neighboring sensor nodes of each ) as

(2)

where, is the noise-free Euclidean dis-

tance and is an additive noise term with known probability

distribution. We denote as the an-

chor-sensor sensing PDF.

We use graph theory terminology to characterize the set of

sensor nodes and the measurements and . In partic-

ular, we say that the measurements induce a graph with

as vertex set, i.e., for each sensor node pair for which there

exists a measurement , there exists an edge connecting and

. The set of all edges is and its cardinality is . We denote

this undirected graph as . The neighbors of sensor

node are the sensor nodes that are connected to with an edge.

The set of these neighboring nodes is indicated with , that is

. Since the sensor nodes are assumed

to have communication capabilities, we implicitly assume that

each sensor node can communicate with all the sensors in ,

and with these only. In a similar fashion, we collect the anchors

in the vertex set and we say that the mea-

surements induce an edge set , composed by the pairs

for which there exists a measurement . Also, we de-

note with the neighboring anchors for sensor node , i.e.,

.

Problem Statement. The sensor network localization

problem is formulated as estimating the position matrix

(in some cases, up to an orthogonal transformation) given the

measurements and for all and ,

and the anchor positions . When we call

the problem anchor-free localization. The sensor network

localization problem can be written in terms of maximizing the

likelihood leading to the following optimization problem

(3)

This optimization problem is in general non-convex and it is

also NP-hard to find any global solution. In this paper, under

the sole assumptions that:

Assumption 1: The sensing PDFs and

are log-concave functions of the un-

known distances and ,

Assumption 2: The graph induced by the inter-sensor range

measurements is connected,

we will propose a convex relaxation to transform the ML
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estimator (3) into a more tractable problem, which we will then

solve using ADMM in a distributed setting, where each of the

sensor nodes, by communicating only with the neighboring

nodes, will determine its own position.

III. CONVEX RELAXATIONS

A. Maximum Likelihood Relaxation

To derive the mentioned convex relaxation of the ML esti-

mator (3), several steps are needed. First of all, we introduce

the new variables , and we

collect the scalar variables into the stacked

vectors . Second, we rewrite the cost function of the

ML estimator as dependent only on the pair as

(4)

Third, we re-introduce the dependencies of on and on

by considering the following constrained optimization

(5a)

(5b)

(5c)

(5d)

The problem (5) is equivalent to (3): the constraints in the

problem (5) have both the scope of imposing the pair-wise

distance relations and of enforcing the chosen change of vari-

ables (in fact, without the constraints, all the variables would

be independent of each other). In the new variables and under

Assumption 1, is a convex function, however the

constraints of (5) still define a non-convex set. Nonetheless, we

can massage the constraints by using Schur complements and

propose the following convex relaxation

(6a)

(6b)

(6c)

(6d)

The problem (6) is now convex (specifically, it is a convex opti-

mization problem with generalized inequality constraints [42])

and its optimal solution represents a lower bound for the orig-

inal non-convex ML estimator (3).

In the problem (6), all the three constraints (6b) till (6d) are

rank relaxed versions of (5b) till (5d), which makes problem (6)

a rank relaxation. Usually, convex relaxations for sensor net-

work localization are formulated directly on the squared dis-

tance variables using a cost function (not ML)

and eliminating the variables . This way of formulating

the problem does not capture the noise distribution, but renders

the resulting relaxation a rank- relaxation, since (6d) is the

only relaxed constraint [21]. Problem (6) both models correctly

the noise distribution, being derived from an ML formulation,

and for some common used noise PDFs can be transformed into

a rank- relaxation, in which case it is equivalent in tightness

to relaxations based on squared distance alone.

In the next subsections, we specify the convex relaxation

(6) for different noise distributions (satisfying Assumption 1)

and prove that (6) can be expressed as a rank- relaxation for

two particular yet widely used cases. In Section VII, while pre-

senting simulation results, we discuss how this aspect can affect

the quality of the position estimation. In particular, it appears

that tighter relaxations may have a lower estimation error, even

when they employ less accurate noise models.

B. Example 1—Gaussian Noise Relaxation

In the case of Gaussian noise, we assume that the noises

and in the sensing equations (1) and (2) are drawn from

a white zero-mean PDF, i.e., and

. The cost function then is

A natural way to rewrite this cost is to enforce the change of

variables and , yielding

With the cost , the optimization problem reads1

(7a)

(7b)

This relaxation is not only convex but also a semidefinite pro-

gram (SDP), i.e., it has a linear cost function and generalized

linear constraints [42]. Some of its constraints are linear matrix

inequalities (LMIs). For the semidefinite program (7), the fol-

lowing proposition holds true.

1A similar formulation for this relaxation can be found in [21]. We note that

problem (7) is not equivalent to (6) with cost function , since for

(6), and .
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Proposition 1: Under the assumption of Gaussian noise, the

semidefinite program (7) is a rank- relaxation of the original

non-convex optimization problem (3).

Proof: We need to show that at optimality the relaxed

constraints (6b) and (6c) are equivalent to the original con-

straints (5b) and (5c). In other words, we need to show that

any optimal solution of the semidefinite program (7), say

, satisfies the following

for all and for all . To see this, note that

the LMIs in the constraints (6b) and (6c) can be rewritten as

(8)

The cost function (7a) maximizes the scalar variables and

, which are constrained only by (8). Therefore at optimality,

we will always have and , and thus the

claim holds.

C. Example 2—Quantized Observation Relaxation

An interesting, and realistic, elaboration of the ML estimator

is when, due to limited sensing capabilities, the sensors produce

a quantized version of and (see the discussion in [43],

[44] for its relevance in sensor networks). Consider an -ele-

ment convex tessellation of , comprised of the convex sets

. A quantization of and produces the obser-

vations and , which are unitary if and

, respectively. Otherwise and are zero.

The resulting cost function for the convex relaxation (6) is now

which is convex, since the integral of a log-concave function

over a convex set is also log-concave. The resulting convex re-

laxation reads

(9a)

(9b)

which is a rank relaxation of (3), but in general not a rank- re-

laxation.We can specify (9a) for Gaussian noise (using the same

variable enforcing of ) as done in the equation at the bottom

of the page. It is not difficult to show that the convex relaxation

(9) equipped with the cost is now a rank- re-

laxation, by using similar arguments as in Proposition 1.

D. Example 3—Laplacian Noise Relaxation

Laplacian noise is used for example to model outliers in range

measurements [45] and to model errors coming from signal in-

terference, e.g., in UWB localization systems [46]. In the Lapla-

cian noise case the cost function can be specified as

and the ML convex relaxation reads

(10a)

(10b)

ThisML convex relaxation is neither a rank- relaxation, nor

it can be transformed into one by some variable enforcing in the

cost function, yet it correctly models Laplacian PDFs.

E. Example 4—Uniform Noise Relaxation

Uniform noise distributions are used when the source of error

is not known a priori and only a bound on the noise level is

available. For example, this is the case when we are aware of a

lower bound on the pair-wise distances and of an upper bound

dictated by connectivity [47], [48]. Considering uniform noise

PDFs in the range and , the convex re-

laxation (6) becomes the following feasibility problem

(11a)

(11b)

(11c)

(11d)

Also in this case, the ML convex relaxation is neither a

rank- relaxation, nor it can be transformed into one by some

variable enforcing in the cost function, yet it correctly models

uniform noise distributions.
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IV. EDGE-BASED CONVEX RELAXATIONS

The convex relaxations derived from (6) couple arbitrarily far

away sensor nodes through the LMI constraint (6d). This com-

plicates the design of a distributed optimization algorithm. In

addition, due to (6d), the complexity of solving the semidefinite

program (6) scales at least as , i.e., is at least cubic in the

number of sensor nodes [42], and it could become unfeasible

for large-scale networks. In order to massage this coupling con-

straint, we introduce a further relaxation for (6), which will be

called edge-based ML (E-ML) relaxation. We consider the fol-

lowing relaxation of (6)

(12a)

(12b)

(12c)

This relaxation employs the same idea of the edge-based

semidefinite program (ESDP) relaxation of [24], [25] of consid-

ering the coupling constraint (6d) to be valid on the edges only.

Since the constraint (6d) implies (12c) but not the contrary,

the relaxation (12) is not a rank- relaxation. However, it is

straightforward to see that, if the original convex relaxation (6)

was a rank- relaxation, then for the derived (12), it would

be true that . For example, this is the

case for Gaussian noise, and we show how this can play an

important role for the accuracy in Section VII.

The convex relaxation (12) is now ready to be distributed

among the sensor nodes.

V. DISTRIBUTED ALGORITHMS FOR SENSOR NETWORK

LOCALIZATION

Different distributed methods for sensor network localiza-

tion have been proposed in recent years. A first group con-

sists of heuristic algorithms, which are typically based on the

paradigm of dividing the nodes into arbitrarily selected clus-

ters, solving the localization problem within every cluster and

then patching together the different solutions. Methods that be-

long to this group are [49]–[51], while heuristic approaches to

SDP relaxations are discussed in [47]. Among the disadvan-

tages of the heuristic approaches is that we introduce arbitrari-

ness into the problem and we typically lose all the guarantees of

performance of the “father” centralized approach. Furthermore,

very often these heuristic methods are ad-hoc and problem-de-

pendent, which makes their theoretical characterization difficult

(in contrast with the usage of well-established decomposition

methods [52]).

The second group of methods employs decomposition tech-

niques to guarantee that the distributed scheme converges to

the centralized formulation asymptotically. In this group, under

the Gaussian noise assumption, we can find methods that tackle

directly the non-convex optimization problem (3) with parallel

gradient-descent iterative schemes [53], [54] or (very recently)

a work that uses a minimization-majorization technique to

massage (3) sequentially and then employs the alternating

direction method of multipliers (ADMM) to distribute the com-

putations among the sensor nodes [55]. These approaches have

certificates of convergence to a local minimum of the original

non-convex problem2. Other methods encompass algorithms

that tackle multi-dimensional scaling with a communication-in-

tensive distributed spectral decomposition [56], and algorithms

that tackle instead the convex SOCP/SDP relaxations [40],

[41], [57]. In particular [57] proposes a parallel distributed

version of an SOCP relaxation (similar to the ESDP in [24]),

whose convergence properties are however not analyzed3.

In [40], the authors propose a further improvement of [57]

based on the Gauss-Seidel algorithm, which is sequential in

nature (meaning that sensors have to wait for each other before

running their own local algorithm) and offers convergence

guarantees to the ESDP of [24]. However, due to the sequential

nature, the convergence rate depends on the number of sensor

nodes, which makes the approach impractical for large-scale

networks. Finally, in [41] duality is exploited to design inexact

primal-dual iterative algorithms based on the convex relaxation

of [22], [23], [33]. This last approach has the advantage to be

parallel and not sequential, nonetheless it is based on consensus

algorithms whose convergence rate is also dependent on the

size of the network, thus less practical for a large number of

sensor nodes.

In the next section, we propose a distributed algorithm based

on ADMM to solve the edge-based convex relaxation (12). The

algorithm is proven to converge to the centralized optimizer as

, where is the number of iterations. Furthermore, the

computation and communication per iteration and per node do

not depend on the size of the network, but only on the size of

each one’s neighborhood. Finally, we prove that the algorithm

converges also in the case of asynchronous communication pro-

tocols and computation errors, making it robust to these two

common issues in sensor networks.

VI. PROPOSED DISTRIBUTED APPROACH

A. Preliminaries and Background on ADMM

In order to present our distributed algorithm, first of all, we

rewrite the convex program (12) in a more compact way. Define

the shared vector

for each and call the stacked vector comprised of

all the ’s. In a similar fashion, define the local vector

where and are the concatenated vectors of and for

all , and call the stacked vector of all the ’s. We

2This may not be sufficient for a reasonable localization; thus the need for a

good starting condition which can be provided by convex relaxations, see [33]

for some interesting numerical examples.

3As a matter of fact, the proposed Jacobi-like algorithm is very hard to be

proven converging to the centralized solution, since the constraints are coupled

and not Cartesian, see [52] for a detailed discussion.
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note that and are not independent, but this will not be an

issue. Moreover, define the convex sets

Problem (12) is then equivalent to

(13a)

(13b)

(13c)

where, for the general case,

(14)

From the structure of the cost (14) and the problem (13) one

can already see that the convex optimization (13) is separable

and has as complicating variables. One possible way to

handle this type of optimization problems in a distributed way

is employing the alternating direction method of multipliers

(ADMM). The reader is referred to [58] for a very recent survey

of this rather old technique, to the papers [43], [59] which span

possible applications of the method in signal processing, and

to the mentioned recent work [55] that employs ADMM for a

localization problem (albeit with a different flavor as the one

presented here and applied to a different Gaussian noise-based

approximated version of the original non-convex problem).

In a nutshell, the strategy of ADMM is to assign copies of

the coupling variable to both node and node and then

constrain these copies to be equal. The strength of ADMM, and

the main reason of its employment in this paper, resides in its

noise-resilience and computation error-resilience as well as the

very loose assumptions required to guarantee its convergence

(in contrast with typical dual, or primal-dual decomposition

schemes.)

In order to apply ADMM to the problem (13), we define the

local versions of the vector as and , meaning that

represents the vector as seen by the node , while

represents the vector as seen by the node . Call now the

stacked vectors as the ones comprised of for all the

. We can then rewrite (13) in yet another equivalent form as

(15a)

(15b)

(15c)

(15d)

Problems (12), (13), and (15) are all equivalent, but problem

(15) is better suited for ADMM, as we are about to see.

Remark 1: We remark that the sequential greedy optimization

(SGO) method of [40] can also be applied to (13). However, its

analytical properties, such as convergence rate, noise-resilience,

and computation error-resilience are still unknown at the mo-

ment; furthermore, its convergence has been proven only under

the strong assumption of decoupled constraints (and argued for

the real case of sparse coupling constraints, see [40], Remark 4).

Nonetheless, we will implement a distributed algorithm using

SGO applied to our E-ML formulation to compare its perfor-

mance analytically and numerically to ADMM. We will argue

that SGO, given its sequential nature, is less suitable for large-

scale networks.

B. Proposed Algorithm

The first step to derive the ADMMalgorithm is, given a scalar

, defining the regularized Lagrangian of problem (15) as

(16)

where is the shorthand notation for the vector

, while is the shorthand notation for

the vector of multipliers. To each couple of equality constraints

(15d) we assign the multipliers and .

Solving (15) with ADMMmeans implementing the following

recursion: initialize the variables , then

(17a)

(17b)

(17c)

for all , and with the convex sets and defined as the

union of the sets for all and for all ,

respectively.

In our sensor network application, the recursion (17) is dis-

tributed in nature, since it can be carried out as follows.

1) Set to zero, for all the nodes.

2) At each iteration , each node owns the variables

for all ;

3) Each node updates its local variables as

(18a)
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4) Each node sends its local vector to its neighbor ,

for all ;

5) Each node computes, for all

(18b)

We note here that since all the vectors are trans-

mitted perfectly, the value of computed by node is

the same as the one computed by node ;

6) Each node computes, for all

(18c)

We note that here also the values of and

computed by node are the same as the ones computed by

node ;

7) Set and go to 2).

We note that both the optimization problems (18a) and (18b)

are convex programs. Problem (18a) is an SDP (which can be

solved using standard convex optimization toolboxes, such as

Yalmip or CVX). In order to see this more clearly, Program

(18a) needs to be written in the equivalent form

(19a)

(19b)

(19c)

where each and the vector containing them are slack vari-

ables used to impose the quadratic penalty.

Problem (18b) is an unconstrained quadratic program in ,

whose solution is

(20)

We can now simplify the relations (20) and (18c). By using

the relations (18c), we can write (20) as

and, using again (20) for , we obtain

(21)

Furthermore, the following relations hold as by-products4 of

(21) for all :

This simplifies the ADMM algorithm defined by the itera-

tions (18) (as summarized in Algorithm 1), in particular the

computation of is no longer required (as not needed any

more for the computation of ).

C. Properties of Algorithm 1 (Ideal)

We now analyze the analytical properties of Algorithm 1

in terms of convergence and convergence rate of its solution

to the optimal solution of the centralized problem (12). As

a by-product, we also characterize the number of iterations

required to reach a given accuracy and the total communication

cost.

Let denote the stacked vector of the optimization variables,

i.e., , and let represent the running aver-

ages, i.e.,

(22)

with . Assume that the initial

convex problem (15) admits a solution and let be this

solution. Then the following convergence theorem holds.

Theorem 1: Let be the solution generated with Algo-

rithm 1 applied to the convex problem (15), whose solution is

denoted by . Let be defined as (22). Let the graph

be connected (Assumption 2). The following relations hold:

(a) ,

(b) ,

where is a constant that depends on the distance of

the initial guess to the optimal solution, i.e., and

, and on the parameter .

Proof: Since, in the problem (15), the sets and are

closed and convex, and the costs are proper and convex, the

part (a) of the proof follows from ([60], Theorem 4.1). Since the

constraint (15d) defines a linear system with full-column rank,

the part (b) of the proof follows from ([61], Theorem 1).

4Recall that we have set and and apply relations (18c)

and (21) recursively.
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Let now local Lagrangian functions be

where and are the stacked vectors of the ’s and for

, respectively5. Assume we are interested in determining

how many iterations are needed to reach a given average local

accuracy , meaning,

(23)

where is the running average (as in (22)) of the local vector

. The following proposition holds.

Proposition 2: Let be the local solution generated with

Algorithm 1 applied to the convex problem (15), whose solution

for sensor node is denoted by . Let be defined as

(22) for . Let the graph be connected (Assumption 2). Let

Algorithm 1 be initialized with and . Let

be a given average local accuracy level, as expressed in (23). If

the number of iterations is chosen as

where represents the ceiling operator, then the accuracy

is reached.

Proof: The proof follows from Theorem 1. From point (a)

of Theorem 1,

(24)

From ([60], Theorem 4.1), can be expressed as

(25)

where the last simplification is due to the initialization of

and at zero, and . Combining (24), (25), and (23)

we obtain

from which the claim follows.

5By these definitions, the total Lagrangian (16) can now be written as

, and the update (18a) reads

.

Proposition 2 says that the number of iterations for a given av-

erage local accuracy does not depend on the network size, but

only on the worst local initial error. We can also characterize

the total communication cost for node to reach a given accu-

racy level (which also does not depend on the network size) as

follows.

Corollary 1: Under the same premises of Proposition 2, the

communication cost for sensor node (i.e., the number of

scalar numbers to send) to reach a desired average local accu-

racy is lower bounded by .

Proof: Straightforward given the communication cost

counting of Section VI.F and Proposition 2.

Theorem 1 indicates an rate of convergence of Al-

gorithm 1 in ergodic sense (i.e., in the sense of the running av-

erage vector). We note that this convergence is fast if

one looks at the very loose assumptions. As a matter of fact,

could also have been non-differentiable; we report that typi-

cally non-differentiable problems solved using sub-gradient al-

gorithms converge as [62].

The mentioned convergence rate assumes perfect and

synchronous communication at step 4) and that the optimizations

at steps 3) and 5) are carried out exactly. In real situations, these

are rather restrictive requirements. In practice, communication is

affected by noise [43], packages can be dropped, and it is in gen-

eral asynchronous among the sensor nodes. In addition, the often

limited computational capabilities of the sensor nodes limit the

possibility to obtain highly accurate solutions for the SDP in step

3). The strength of ADMM is however to be resilient to these is-

sues,which in turnmeans thatADMMcan be employed and con-

vergence can be guaranteed also with these issues present [58].

In this paper, we decided to focus on the loss of synchronicity

and limited computation capabilities problems, since we believe

they are the most critical ones in our application.

D. Properties of Algorithm 1 (Asynchronous)

First of all, we consider asynchronous communication. Fol-

lowing the main bulk of research in ADMM, we consider an

edge set perspective. Suppose that at iteration only a subset of

all the existing links is activated, denoted by , and suppose

that Algorithm 1 is run in an asynchronous fashion, where at

each iteration we only consider the variables associated with

and we communicate only through . At each iteration ,

we let the symmetric adjacency matrix associated with be

denoted as . We further assume the following.

Assumption 3: At each iteration the symmetric adjacency

matrix is generated by an i.i.d. Bernoulli process with

for all , with a given

probability .

Assumption 4: Let . For every , there

exists an integer such that:

(i) the union of the edge sets satisfies ;

(ii) the union graph, i.e., , is connected.

These assumptions are rather standard in stochastic dis-

tributed optimization [62], [63]. The convergence of Algorithm

1 under asynchronous communication can now be formally

stated as follows.

Theorem 2: Let be the solu-

tion generated by Algorithm 1 run in an asynchronous fashion,
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where at each iteration only a subset of edges are active. Let

be the solution of the convex problem (15). Under As-

sumptions 3 and 4,

Proof: The proof is an application of ([63], Theorem 3 and

Lemma 4). Consider ([63], Theorem 3): Assumption 1 is valid

since in the problem (15), the sets and are closed and

convex, and the costs are proper and convex. The Assump-

tions 2 and 3 are our Assumptions 3 and 4. Problem (15) can

be put as the non-smooth unconstrained problem (2) of [63] and

its dual is the problem (12) of [63]. With this in place, by ([63],

Theorem 3) we have now almost sure convergence in the dual

domain for Algorithm 1. By ([63], Lemma 4) primal conver-

gence follows, after which the claim is proven.

E. Properties of Algorithm 1 (Computation Errors)

The second aspect that we consider is the limited computation

capabilities of the sensor nodes. In particular, we assume that

each of the subproblems (18a) is solved up to an accuracy ,

i.e., the optimal solution of each subproblem satisfies

(26)

The following theorem is now in place.

Theorem 3: Let be the running solution generated with

Algorithm 1 under the assumption that each of the subproblems

(18a) is solved up to an accuracy , as specified by condition

(26). Let be the solution of the convex problem (15).

Then the following holds:

where is a constant that depends on the distance of

the initial guess to the optimal solution, i.e., and

, and on the parameter .

Proof: The proof follows directly from [60] substituting

their (3.5) with our (26).

Proposition 3 implies that Algorithm 1 converges as

to an error floor with magnitude .

F. Comparison of Algorithm 1 With Alternatives

In this section, we analyze the computational complexity

and the communication cost of Algorithm 1 and we compare

it to some other distributed algorithms for convex relaxations,

namely the sequential greedy optimization (SGO) algorithm of

[40] and the distributed maximum variance unfolding (MVU)

algorithm of [41] (we leave out the approach of [57] since con-

vergence has not been proven). The aim is to show the added

value in using ADMM especially for large-scale networks. For

simplicity, the nodes are located in .

E-ML with ADMM (Algorithm 1) At each iteration, for

each sensor node, the most complex operation is to solve the

convex program (19). This convex program optimizes over

and it comprises of scalar vari-

ables, scalar equality/inequality constraints,

and LMI constraints of size at most 10 10

(which is represented by the LMI with )6. This yields a

computational complexity of at least (see

[42] for details on operation counts). The communication cost

per iteration per sensor is proportional to the number of scalar

variables that sensors have to send, and each sensor has to send

the updated to its neighbor , for each neighbor, i.e.,

a communication cost of .

SGO. The SGO algorithm of [40] is sequential in nature,

meaning that only one local optimization can be run at the time,

and although its convergence has been argued, no formal proof

has been given for the convergence rate7. Furthermore noise-re-

silience as well as computation error-resilience are unknown

features of SGO. For ease of comparison, we consider the range-

based localization SGO and ignore the anchors for simplicity.

In this context, and in the case we apply SGO to our E-ML for-

mulation, at each iteration, for the one active sensor node (given

that we keep fixed and there is no or variable) the most

complex operation is to solve a convex program comprising of

variables and LMI constraints, which leads to

a computational complexity of at least (see also [40]).

The communication costs per iteration for the one active sensor

is proportional to the number of scalar variables that have to

be sent (the updated ) multiplied by the number of sensor

nodes they have to be sent to (the neighbors), yielding a cost of

. For the convergence rate, the best convergence rate that

we can expect from a Gauss-Seidel algorithm (with some strong

assumptions on the constraints and cost function) is linear [52],

i.e., the convergence rate is for a certain (problem-depen-

dent and a priori unknown) . Given that one iteration

of the Gauss-Seidel comprises sub-iterations of the SGO, the

convergence rate of SGO is at best , or in er-

godic sense.

MVU. The MVU algorithm of [41] is parallel in nature, em-

ploys a primal-dual scheme with a nested consensus step, and

cannot handle anchors. It is based on the decentralized spectral

decomposition algorithm of [66] and it requires each node to

eventually locate all the others. At each iteration, for each sensor

node, the computational complexity is at most and the

communication cost at most . The convergence rate is

based on the convergence of the decentralized spectral decom-

position algorithm, which requires sub-itera-

tions ( is the mixing time of a random walk on the graph ),

and on the convergence rate of the primal-dual scheme, proven

to be in ergodic sense.

6In fact, assuming , then

, and eliminating the overlapping variables between and the count

follows. Furthermore, the local optimization has a part of (12b) and (19c) as

equality/inequality constraints, in total , and the other part of

(12b) plus (12c) and (19b) as LMI, in total LMIs of dimension

at most 10 10 in the case of (19b).

7Coloring procedures as in [52] could be employed to partially parallelize

SGO. These coloring techniques depend on the availability of a coloring scheme

before running the SGO. Coloring schemes are NP-hard problems, and albeit

there are decentralized techniques to compute bounds, the number of iterations

to achieve a given accuracy is between and [64], [65],

which undermines their applicability for large-scale settings.
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TABLE I

ANALYTICAL COMPARISON OF THE AVAILABLE DISTRIBUTED ALGORITHMS. BOTH SGO AND ADMM CAN BE APPLIED TO THE E-ML FORMULATION

Table I collects the performed analyses and indicates that

ADMMmay be the best choice to increase the convergence rate,

especially in the case of large-scale networks. This comes with

a limited increase in communication cost, which however can

always be tuned choosing the neighborhood’s size. In the next

section, we display what this means in simulation results along

with other relevant comparisons.

VII. NUMERICAL SIMULATIONS

In this section, we report several numerical comparisons for

both the centralized formulation (12) and the distributed Algo-

rithm 1. The aim of the section is to show how the E-ML relax-

ation performs under various noise conditions, to support the

idea that tighter relaxations perform better in terms of position

error (even though theymaymodel the noise PDFwrongly), and

to display the numerical properties of the distributed Algorithm

1.

A. Centralized Simulations

We consider 2-dimensional problems and we use the bench-

mark test10-500 available online at http://www.stanford.

edu/yyye/, where the sensor nodes are randomly distributed in

the unit box . We let be the position error of

sensor node for a certain realization of the noise , i.e.,

, where is the estimated position and is the

true position. We consider the position root mean square error

(PRMSE) as a metric of performance for the proposed convex

relaxations, i.e.,

(27)

where is the total number of noise realizations. Along with

this metric, we consider the worst case maximum error, i.e.,

(28)

and we compute the Cramér-Rao lower bound (CRLB) as a

comparison benchmark as in [12].

Gaussian noise setting. (Figs. 1 and 2) In the first example,

we focus on a Gaussian noise setting. We fix the maximum

number of neighbors for each sensor node to 3, we set the

number of anchors to , we consider additive white

noise of the same standard deviation for all the

measurements, and we average over 50 realizations.

In Fig. 1, we compare the E-ML approach, i.e., the problem

(12) with cost function , with the ESDP relax-

ation of [24] (considered to be the state-of-the-art in convex

Fig. 1. Comparison between E-ML relaxation (12) and ESDP relaxation of [24]

in the Gaussian noise setting for different values of the sensor node number

and fixed .

Fig. 2. Comparison between E-ML relaxation (12) and ESDP relaxation of

[24] in the Gaussian noise setting for different values of the measurement noise

standard deviation and fixed .

relaxations) by increasing the number of sensor nodes and

keeping all the other parameters the same .

As we can see, the performance of E-ML is better than the one

of ESDP, albeit only slightly. Furthermore, as one could expect,

by increasing we average out the noise, which in turn means

a better average performance and less difference among the two

schemes.
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Fig. 3. Comparison between Laplacian E-ML relaxation, i.e., (12) with

, ESDP relaxation of [24], and Gaussian E-ML relaxation, i.e., (12)

with , in the Laplacian noise setting for different values of the sensor node

number and different noise values .

Fig. 4. Actual objective convergence of Algorithm 1 in different settings and

comparison with SGO solving the same E-ML problem (12).

In Fig. 2, we study the performance of the E-ML approach

and of the ESDP relaxation by increasing the noise value, for

. As we can see, the performance of E-ML is again slightly

better than the one of ESDP, and the difference increases with

the noise value (notice that the graph is in logarithmic scale).

Laplacian noise setting. (Fig. 3) In this second example, we

focus on a Laplacian noise setting. Also in this example, we fix

the maximum number of neighbors for each sensor node to 3,

and we set and .

In Fig. 3, we compare the Laplacian E-ML relaxation, i.e.,

problem (12) with cost function , the Gaussian E-ML

relaxation, i.e., problem (12) with cost function ,

and the ESDP relaxation of [24]. We use the modified version

of the CRLB of [67] as a benchmark, since Laplacian distribu-

tions are not differentiable. We vary both the number of sensor

nodes and the noise value. As we can see, although the Lapla-

cian E-ML relaxation correctly models the noise distribution, it

Fig. 5. Ergodic objective convergence of Algorithm 1 in different settings and

comparison with SGO solving the same E-ML problem (12).

performs worse than the other convex relaxations. The reason is

that it is not derived from a rank- relaxation and therefore it is

a “looser” relaxation with respect to the other ones considered

in this example.

B. Distributed Simulations

We use the same setting of the centralized simulations (i.e.,

anchor number , and maximum number of neighbors

for each sensor node is 3) and we consider Gaussian noise.

We test Algorithm 1 based on ADMM for different values of

, computation accuracy , and asynchronous communica-

tion. In order to generate the computation error, we set se-

dumi.eps to , which is an upper bound8 for our definition of

. We set the regularization parameter . We first focus

on synchronous communication and then on the asynchronous

implementation.

Synchronous case. (Figs. 4, 5, and 6) Figs. 4, 5, and 6 col-

lect the synchronous communication results for Algorithm 1 and

confirm the convergence of ADMM.

In Figs. 4 and 5, we fix the centralized problem as the relax-

ation (12) with cost function and we compare the

convergence of Algorithm 1 to the centralized solution (The-

orem 1) with the one of SGO applied to the same centralized

problem. We also show the effect of computation inaccuracies

(Theorem 3) supporting our theoretical findings. As we can see,

by comparing SGO with the ADMM approach, we notice the

slower convergence of the former (for a large-scale setting) due

to its sequential nature (in fact, in the case of SGO, at each it-

eration we update only one sensor node position). We see also

that SGO is resilient to computation inaccuracies (at least in this

simulation), it seems to have a linear type of convergence (as

argued), and it may be a choice in case of small-size networks.

Further studies are however necessary to certify the reliability

of SGO to a broader class of scenarios.

8SeDuMi considers this tolerance to be related also to feasibility and not

only optimality, as we do, see [68] for details.
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Fig. 6. Position solutions as a function of plotted as trajectories (using

Algorithm 1 in its exact form) from till . The values of

(blue circles) are practically coincident with the real sensor node positions (red

squares). The crosses represent the anchors.

Fig. 7. Actual primal convergence of Algorithm 1 to the optimizer of the cen-

tralized E-ML problem (12) for asynchronous communication.

Fig. 6 represents the sensor node locations computed as the

solution of Algorithm 1 for different iterations . The algorithm

is initialized with and then run till . The “tra-

jectories” of the running averaged variables (i.e., the position

part of the vector (22)) as a function of the iteration number

are displayed. As we can see, for , Algorithm 1 is prac-

tically converged onto the real sensor node locations.

Asynchronous case. (Fig. 7) For the asynchronous commu-

nication case, we use the same setting as the synchronous sce-

nario and we consider different values for the number of sensor

nodes and probability (Assumption 3).

In Fig. 7, the results are displayed. In particular, we have

depicted the distance between the primal solution from Algo-

rithm 1, , and the optimal value found using the centralized

problem (12), i.e., . As we expect, Algorithm 1 converges

to the optimal primal solution of the centralized problem (12)

(Theorem 2).

VIII. CONCLUSION

We have studied the sensor network localization problem.

We have argued that employing convex relaxations based on a

maximum likelihood formulation to massage the original non-

convex formulation can offer a powerful handle on computing

accurate solutions. In order to take full advantage of this aspect,

we have shown that the relaxation has to be as tight as pos-

sible to the original non-convex problem, (in some cases, disre-

garding the noise model). Furthermore, we have discussed a dis-

tributed implementation of the resulting convex relaxation via

the ADMM. By exploiting the analytical properties of ADMM

(convergence rate, asynchronism-resilience, computation error-

resilience), we have studied the resulting distributed algorithm

showing its added value with respect to available techniques,

especially in large networks.

Among future research plans, we are interested in studying

mobile sensor network localization problems by using convex

relaxations based on a maximum a posteriori formulation of the

estimation problem.

REFERENCES

[1] P. Biswas and S. Phoha, “Self-organizing sensor networks for inte-
grated target surveillance,” IEEE Trans. Comput., vol. 55, no. 8, pp.
1033–1047, 2006.

[2] T. Räty, “Survey on contemporary remote surveillance systems for
public safety,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 40,
no. 5, pp. 493–515, 2010.

[3] O. Songhwai, L. Schenato, P. Chen, and S. Sastry, “Tracking and co-
ordination of multiple agents using sensor networks: System design,
algorithms and experiments,” Proc. IEEE, vol. 95, no. 1, pp. 234–254,
2007.

[4] J. Liu, M. Chu, and J. Reich, “Multitarget tracking in distributed sensor
networks,” IEEE Signal Process. Mag., vol. 24, no. 3, pp. 36–46, 2007.

[5] T. Sun, L.-J. Chen, C.-C. Han, and M. Gerla, “Reliable sensor net-
works for planet exploration,” in Proc. IEEE Netw., Sens. Control
Conf., Tucson, AZ, USA, Mar. 2005, pp. 816–821.

[6] N. Leonard, D. A. Paley, F. Lekien, R. Sepulchre, D. Fratantoni, and
R. Davis, “Collective motion, sensor networks, and ocean sampling,”
Proc. IEEE, vol. 1, no. 1, pp. 48–74, 2007.

[7] P. Corke, T. Wark, R. Jurdak, W. Hu, P. Valencia, and D. Moore, “En-
vironmental wireless sensor networks,” Proc. IEEE, vol. 98, no. 11, pp.
1903–1917, 2010.

[8] G. Sun, G. Qiao, and B. Xu, “Corrosion monitoring sensor networks
with energy harvesting,” IEEE Sens. J., vol. 11, no. 6, pp. 1476–1477,
2011.

[9] K. Zhou and S. I. Roumeliotis, “Multirobot active target tracking with
combinations of relative observations,” IEEE Trans. Robot., vol. 27,
no. 4, pp. 678–695, 2011.

[10] T. Arampatzis, J. Lygeros, and S. Manesis, “A survey of applica-
tions of wireless sensors and wireless sensor networks,” in Proc.
Mediterranean Conf. Control Autom., Limassol, Cypros, Jun. 2005,
pp. 719–724.

[11] K. Langendoen and N. Reijers, “Distributed localization in wireless
sensor networks: A quantitative comparison,” Comput. Netw., vol. 43,
no. 6, pp. 499–518, 2003.

[12] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, III, R. L. Moses,
and N. S. Correal, “Locating the nodes: Cooperative localization in
wireless sensor networks,” IEEE Signal Process. Mag., vol. 22, no. 4,
pp. 54–69, 2005.

[13] G. Mao, B. Fidan, and B. Anderson, “Wireless sensor network local-
ization techniques,” Comput. Netw., vol. 51, no. 10, pp. 2529–2553,
2007.

[14] Y. Shang, W. Ruml, Y. Zhang, and M. P. J. Fromherz, “Localization
from mere connectivity,” in Proc. 4th ACM Int. Symp. Mobile Ad Hoc
Netw. Comput., Annapolis, MD, USA, Jun. 2003, pp. 201–212.

[15] K. W. Cheung and H. C. So, “A multidimensional scaling framework
for mobile location using time-of-arrival measurements,” IEEE Trans.
Signal Process., vol. 53, no. 2, pp. 460–470, 2005.

[16] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization in
wireless networks,” Proc. IEEE, vol. 97, no. 2, pp. 427–450, 2009.



1436 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 6, MARCH 15, 2014

[17] F. S. Cattivelli and A. H. Sayed, “Distributed nonlinear Kalman fil-
tering with applications to wireless localization,” in Proc. 35th IEEE
Int. Conf. Acoust., Speech, Signal Process., Dallas, TX, USA, Mar.
2010, pp. 3522–3525.

[18] L. Doherty, K. S. J. Pister, and L. E. Ghaoui, “Convex position esti-
mation in wireless sensor networks,” in Proc. 20th Ann. Joint Conf.
IEEE Comput. Commun. Soc., Anchorage, AK, USA, Apr. 2001, pp.
1655–1663.

[19] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, “Semidefinite
relaxation of quadratic optimization problems,” IEEE Signal Process.
Mag., vol. 27, no. 3, pp. 20–34, 2010.

[20] P. Biswas and Y. Ye, “Semidefinite programming for Ad Hoc wireless
sensor network localization,” in Proc. 3rd Int. Conf. Inform. Process.
Sensor Netw., Berkeley, CA, USA, Apr. 2004, pp. 46–54.

[21] P. Biswas, T.-C. Lian, T.-C. Wang, and Y. Ye, “Semidefinite program-
ming based algorithms for sensor network localization,” ACM Trans.
Sens. Netw., vol. 2, no. 2, pp. 188–220, 2006.

[22] K. Q. Weinberger and L. K. Saul, “Unsupervised learning of image
manifolds by semidefinite programming,” Int. J. Comput. Vision, vol.
70, no. 1, pp. 77–90, 2006.

[23] J. Sun, S. Boyd, L. Xiao, and P. Diaconis, “The fastest mixing Markov
process on a graph and a connection to a maximum variance unfolding
problem,” SIAM Rev., vol. 48, no. 4, pp. 681–699, 2006.

[24] Z. Wang, S. Zheng, S. Boyd, and Y. Ye, “Further relaxations of the
SDP approach to sensor network localization,” SIAM J. Optimization,
vol. 19, no. 2, pp. 655–673, 2008.

[25] K. W. K. Lui, W.-K. Ma, H. C. So, and F. K. W. Chan, “Semi-definite
programming algorithms for sensor network node localization with un-
certainties in anchor positions and/or propagation speed,” IEEE Trans.
Signal Process., vol. 57, no. 2, pp. 752–763, 2009.

[26] T. K. Pong and P. Tseng, “(Robust) Edge-based semidefinite program-
ming relaxation of sensor network localization,” Math. Program., vol.
130, no. 2, pp. 321–358, 2011.

[27] T. Pong, “Edge-based semidefinite programming relaxation of sensor
network localization with lower bound constraints,” Comput. Opti-
mization Appl., vol. 53, no. 1, pp. 23–44, 2012.

[28] A.M.-C. So andY.Ye, “Theory of semidefinite programming for sensor
network localization,” Math. Program., vol. 109, no. 2, pp. 367–384,
2007.

[29] A. Javanmard and A. Montanari, “Localization from incomplete noisy
distance measurements,” in Proc. IEEE Int. Symp. Inf. Theory, San Pe-
tersbourg, Russia, Aug. 2011, pp. 1584–1588.

[30] D. Shamsi, N. Taheri, Z. Zhu, and Y. Ye, Conditions for Correct
Sensor Network Localization Using SDP Relaxation Tech. Rep., 2012,
arXiv:1010.2262v4 [math.MG].

[31] M. Fukuda,M. Kojima, K.Murota, and K. Nakata, “Exploiting sparsity
in semidefinite programming via matrix completion I: General frame-
work,” SIAM J. Optimization, vol. 11, no. 3, pp. 647–674, 2001.

[32] K. Nakata, K. Fujisawa, M. Fukuda, M. Kojima, and K. Murota, “Ex-
ploiting sparsity in semidefinite programming via matrix completion
II: Implementation and numerical results,” Math. Program., vol. 95,
no. 2, pp. 303–327, 2003.

[33] K. Q. Weinberger, F. Sha, Q. Zhu, and L. K. Saul, “Graph Lapla-
cian Regularization for Large-Scale Semidefinite Programming,” in
Advances in Neural Information Processing Systems 19. Cambridge,
MA, USA: MIT Press, 2007, pp. 1489–1496.

[34] N.-H. Z. Leung and K.-C. Toh, “An SDP-based divide-and-conquer
algorithm for large-scale noisy anchor-free graph realization,” SIAM J.
Sci. Comput., vol. 31, no. 6, pp. 4351–4372, 2009.

[35] S. Kim, M. Kojima, and H. Waki, “Exploiting sparsity in SDP relax-
ation for sensor network localization,” SIAM J. Optimization, vol. 20,
no. 1, pp. 192–215, 2009.

[36] P. Tseng, “Second-order cone programming relaxation of sensor net-
work localization,” SIAM J. Optimization, vol. 18, no. 1, pp. 156–185,
2007.

[37] J. Nie, “Sum of squares method for sensor network localization,”
Comput. Optimization Appl., vol. 43, no. 2, pp. 151–179, 2009.

[38] K. Yang, G. Wang, and Z.-Q. Luo, “Efficient convex relaxation
methods for robust target localization by a sensor network using time
differences of arrival,” IEEE Trans. Signal Process., vol. 57, no. 7, pp.
2775–2784, 2009.

[39] P. Oğuz-Ekim, J. Gomes, J. Xavier, and P. Oliveira, “A convex re-
laxation for approximate maximum-likelihood 2D source localization
from range measurements,” in Proc. 35th IEEE Int. Conf. Acoust.,
Speech, Signal Process., Dallas, TX, USA, Mar. 2010, pp. 2698–2701.

[40] Q. Shi, C. He, H. Chen, and L. Jiang, “Distributed wireless sensor net-
work localization via sequential greedy optimization algorithm,” IEEE
Trans. Signal Process., vol. 58, no. 6, pp. 3328–3340, 2010.

[41] A. Simonetto, T. Keviczky, and D. V. Dimarogonas, “Distributed solu-
tion for amaximumvariance unfolding problemwith sensor and robotic
network applications,” in Proc. 50th Ann. Allerton Conf. Commun.,
Control, Comput., Monticello, IL, USA,Oct. 2012, pp. 63–70.

[42] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

[43] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus in Ad Hoc
WSNs with noisy links—Part I: Distributed estimation of deterministic
signals,” IIEEE Trans. Signal Process., vol. 56, no. 1, pp. 350–364,
2008.

[44] F. Y. Jakubiec andA. Ribeiro, “D-MAP: Distributedmaximum a poste-
riori probability estimation of dynamic systems,” IIEEE Trans. Signal
Process., vol. 61, no. 2, pp. 450–466, 2013.

[45] P. Oğuz-Ekim, J. Gomes, J. Xavier, and P. Oliveira, “Robust local-
ization of nodes and time-recursive tracking in sensor networks using
noisy range measurements,” IEEE Trans. Signal Process., vol. 59, no.
8, pp. 3930–3942, 2011.

[46] H. Wymeersch, S. Maranò, W. M. Gifford, and M. Z. Win, “A machine
learning approach to ranging error mitigation for UWB localization,”
IEEE Trans. Commun., vol. 60, no. 6, pp. 1719–1728, 2012.

[47] P. Biswas, K.-C. Toh, and Y. Ye, “A distributed SDP approach for
large-scale noisy anchor-free graph realization with applications to
molecular conformation,” SIAM J. Sci. Comput., vol. 30, no. 3, pp.
1251–1277, 2008.

[48] J.-P. Sheu, W.-K. Hu, and J.-C. Lin, “Distributed localization scheme
for mobile sensor networks,” IEEE Trans. Mobile Comput., vol. 9, no.
4, pp. 516–526, 2010.

[49] F. Chan and H. So, “Accurate distributed range-based positioning al-
gorithm for wireless sensor networks,” IEEE Trans. Signal Process.,
vol. 57, no. 10, pp. 4100–4105, 2009.

[50] U. A. Khan, S. Kar, and J. M. F. Moura, “DILAND: An algorithm
for distributed sensor localization with noisy distance measurements,”
IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1940–1947, 2010.

[51] M. Cucuringu, Y. Lipman, and A. Singer, “Sensor network localiza-
tion by eigenvector synchronization over the Euclidean group,” ACM
Trans. Sens. Netw., vol. 8, no. 3, pp. 19:1–19:42, 2012.

[52] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Compu-
tation: Numerical Methods. Belmont, MA, USA: Athena Scientific,
1997.

[53] J. A. Costa, N. Patwari, andA. O. Hero, III, “Distributedweighted-mul-
tidimensional scaling for node localization in sensor networks,” ACM
Trans. Sens. Netw., vol. 2, no. 6, pp. 39–64, 2005.

[54] G. C. Calafiore, L. Carlone, and M. Wei, “A distributed technique for
localization of agent formations from relative range measurements,”
IEEE Trans. Syst., Man, Cybern. A, Syst. Humans, vol. 42, no. 5, pp.
1065–1076, 2012.

[55] C. Soares, J. Xavier, and J. Gomes, “DCOOL-NET: Distributed
cooperative localization for sensor networks,” 2012, available at
arXiv:1211.7277.

[56] A. Montanari and S. Oh, “On positioning via distributed matrix
completion,” in Proc. IEEE Sens. Array Multichannel Signal Process.
Workshop, Jerusalem, Israel, Oct. 2010, pp. 197–200.

[57] S. Srirangarajan, A. Tewfik, and Z.-Q. Luo, “Distributed sensor
network localization using SOCP relaxation,” IEEE Trans. Wireless
Commun., vol. 7, no. 12, pp. 4886–4895, 2008.

[58] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed op-
timization and statistical learning via the alternating direction method
of multipliers,”Found. TrendsMach. Learning, vol. 3, no. 1, pp. 1–122,
2011.

[59] H. Zhu, G. B. Giannakis, and A. Cano, “Distributed in-network
channel decoding,” IEEE Trans. Signal Process., vol. 57, no. 10, pp.
3970–3983, 2009.

[60] B. He and X. Yuan, “On the convergence rate of the Dou-
glas–Rachford Alternating Direction Method,” SIAM J. Numer. Anal.,
vol. 50, no. 2, pp. 700–709, 2012.

[61] J.Mota, J. Xavier, P. Aguiar, andM. Puschel, “D-ADMM:A communi-
cation-efficient distributed algorithm for separable optimization,” IEEE
Trans. Signal Process., vol. 61, no. 10, pp. 2718–2723,May 2013.

[62] J. C. Duchi, A. Agarwal, and M. Wainwright, “Dual averaging for
distributed optimization: Convergence analysis and network scaling,”
IEEE Trans. Automat. Control, vol. 57, no. 3, pp. 592–606, 2012.

[63] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, “Asynchronous dis-
tributed optimization using a randomized alternating direction method
of multipliers,” in Proc. 52nd IEEE Conf. Decision Control, Firenze,
Italy, Dec. 2013, Available at arXiv:1303.2837.

[64] F. Kuhn and R. Wattenhofer, “On the complexity of distributed graph
coloring,” in Proc. 25th Ann. ACM Symp. Principles Distrib. Comput.,
Denver, CO, USA, Jul. 2006, pp. 7–15.



SIMONETTO AND LEUS: DISTRIBUTED MAXIMUM LIKELIHOOD SENSOR NETWORK LOCALIZATION 1437

[65] K. Duffy, N. O’Connell, and A. Sapozhnikov, “Complexity analysis
of a decentralised graph colouring algorithm,” Inf. Process. Lett., vol.
107, no. 2, pp. 60–63, 2008.

[66] D. Kempe and F. McSherry, “A decentralized algorithm for spectral
analysis,” J. Comput. Syst. Sci., vol. 74, no. 1, pp. 70–83, 2008.

[67] M. Leng and Y.-C. Wu, “On joint synchronization of clock offset and
skew for wireless sensor networks under exponential delay,” in Proc.
2010 IEEE Int. Symp. Circuits Syst., Paris, France, May 2010, pp.
461–464.

[68] J. F. Sturm, “Using SeDuMi 1.02, a Matlab toolbox for optimization
over symmetric cones,” Optim. Methods Softw., vol. 11, no. 1–4, pp.
625–653, 1999.

Andrea Simonetto received the M.Sc. degree in

space engineering (cum laude) from both Politecnico

di Milano and Politecnico di Torino, Italy, in 2008,

and the Ph.D. degree in systems and control from

the Delft University of Technology, Delft, The

Netherlands, in 2012.

He is currently a Post-Doctoral Researcher with

the Circuits and Systems Group, Electrical Engi-

neering Department, Delft University of Technology.

He was a Visiting Researcher with the Robotics

Institute, Carnegie Mellon University, Pittsburgh,

PA, USA and with KTH, Royal Institute of Technology, Stockholm, Sweden.

His current research interests include distributed estimation, control, and

optimization with applications in sensor networks and mobile robotics. For his

Ph.D. work, he was awarded the DISC Ph.D. Thesis award 2012.

Geert Leus (F’12) received the electrical engi-

neering degree and the Ph.D. degree in applied

sciences from the Katholieke Universiteit Leuven,

Belgium, in June 1996 and May 2000, respectively.

Currently, he is an “Antoni van Leeuwenhoek”

Full Professor with the Faculty of Electrical Engi-

neering, Mathematics and Computer Science, the

Delft University of Technology, The Netherlands.

His research interests are in the area of signal

processing for communications. He received a 2002

IEEE Signal Processing Society Young Author

Best Paper Award and a 2005 IEEE Signal Processing Society Best Paper

Award. He is a Fellow of the IEEE. He was the Chair of the IEEE Signal

Processing for Communications and Networking Technical Committee and

an Associate Editor for the IEEE TRANSACTIONS ON SIGNAL PROCESSING,

the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, the IEEE SIGNAL

PROCESSING LETTERS, and the EURASIP Journal on Advances in Signal Pro-

cessing. Currently, he is a member of the IEEE Sensor Array and Multichannel

Technical Committee and serves as the Editor in Chief of the EURASIP Journal

on Advances in Signal Processing .


