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Abstra
t. The main limiting fa
tor of the model 
he
ker SPIN is 
ur-
rently the amount of available physi
al memory. This paper explores the
possibility of exploiting a distributed-memory exe
ution environment,
su
h as a network of workstations inter
onne
ted by a standard LAN, to
extend the size of the veri�
ation problems that 
an be su

essfully han-
dled by SPIN. A distributed version of the algorithm used by SPIN to
verify safety properties is presented, and its 
ompatibility with the main
memory and 
omplexity redu
tion me
hanisms of SPIN is dis
ussed. Fi-
nally, some preliminary experimental results are presented.

1 Introdu
tion

The model 
he
ker SPIN [4℄ is a tool widely used to verify 
on
urrent system
models. Its su

ess depends on many fa
tors, among whi
h its amazing eÆ
ien
y
in performing model 
he
king and its portability, i.e. the fa
t that, being written
in ANSI C, it runs on most 
omputer platforms.

The main limitation of SPIN, of 
ourse shared by all other veri�
ation tools
based on rea
hability analysis, is that it 
an deal with models up to a given max-
imum size. As a model gets larger and larger, also the memory usage in
reases,
and when the amount of memory used be
omes greater than the available phys-
i
al memory, the workstation is for
ed to use virtual memory. Sin
e the memory
is mainly allo
ated for a hash table, whi
h is a

essed randomly, the system will
pro
eed slowly due to thrashing. In pra
ti
e, it 
an be observed with SPIN that
when the memory used is less than the physi
al available memory the perfor-
man
e of the model 
he
ker is ex
ellent, and exe
ution time is generally at most
in the order of minutes, but as soon as the physi
al memory is exhausted the per-
forman
e drops down dramati
ally. As a 
onsequen
e, the maximum model size
that SPIN 
an deal with depends essentially on the amount of physi
al memory
that is available.

Various te
hniques are used by SPIN to redu
e the amount of memory needed
for veri�
ation, thus making the analysis of larger models possible. The main
examples are state 
ompression, partial order redu
tions and bit state hashing.
A di�erent te
hnique that 
ould be applied to further extend the size of the
veri�
ation problems that 
an be su

essfully handled by SPIN is the use of
a distributed-memory environment su
h as a network of workstations (NOW),



whi
h is ultimately a way to in
rease the amount of a
tually available physi-

al memory, and to in
rease the speed of the veri�
ation pro
ess by exploiting
parallel pro
essing. In this paper we explore this possibility and present some
preliminary results. Attention is fo
used here only on veri�
ation of safety prop-
erties su
h as deadlo
ks and assertions, and not on LTL model 
he
king, whi
h
is left for further study.

As memory in SPIN is used mainly to store states, the distributed version
of SPIN that we 
onsider is based on a partition of the state spa
e into as
many state regions as the number of network nodes. Ea
h node is assigned a
di�erent state region, and holds only the states belonging to that subset. In
this way, the state table is distributed over a NOW. Ea
h node 
omputes the
su

essors of the states that it holds and, if it �nds any su

essors belonging to
other state regions, it sends them to the nodes that are in 
harge of pro
essing
them. Of 
ourse, performan
e depends on how the state spa
e is partitioned, the
best results being obtained if the workload is well balan
ed and 
ommuni
ation
is minimized. In this paper we 
onsider di�erent possible approa
hes to the
partitioning problem and 
ompare them.

Another important issue that must be taken into 
onsideration is that a
distributed version of SPIN should not ex
lude the use of the other main memory
and 
omplexity redu
tion te
hniques available in the 
entralized version, su
h as
state 
ompression, partial order redu
tion, and bit state hashing. The approa
h
that we 
onsider in this paper is 
hara
terized by good 
ompatibility with su
h
me
hanisms.

Sin
e one of the strengths of SPIN stands in its portability and widespread
use, we de
ided to develop an experimental distributed version of SPIN that 
an
run on a very 
ommon platform: a NOW made up of heterogeneous worksta-
tions, inter
onne
ted with a standard 10Mbps Ethernet and using the TCP/IP
proto
ol. Of 
ourse, more sophisti
ated 
ommuni
ation infrastru
tures may yield
better performan
e, but the basi
 environment that we 
onsidered is generally
available to everyone, and its performan
e 
an be 
onsidered a reasonable lower
bound.

A parallel/distributed version of a rea
hability analysis model 
he
ker, based
on the Mur' Veri�er [2℄, was proposed in [8℄. The approa
h taken in [8℄ is similar
to our one, but we use di�erent ways to partition the state spa
e. Moreover, in

ontrast with SPIN, the Mur' model 
he
ker uses a model where the 
omputa-
tion of the next states may be quite 
omplex, so with Mur' the most 
riti
al
resour
e is not memory, but time. As do
umented in [8℄, there are 
ases where
a veri�
ation run may take up to several days to 
omplete. For this reason, the
main purpose of the distributed version of Mur' is to speed up the veri�
ation
pro
ess, exploiting parallel pro
essing. With our distributed version of SPIN
instead we mainly aim at making tra
table models that otherwise would be in-
tra
table. Moreover, any speed up attained thanks to parallel pro
essing tends
to be obs
ured by 
ommuni
ation overhead, whi
h is generally predominant with
respe
t to the short time taken by SPIN in 
omputing the next states.



There has been also a previous proposal to develop a distributed model

he
ker [1℄, in whi
h the future state 
omputation and the storage fun
tion are
lo
ated at di�erent nodes. This ar
hite
ture is more 
omplex than our one and
the 
ommuni
ation overhead is higher be
ause ea
h state is transferred at least
two times over the network, sin
e it has to go from the 
omputation node that
generated it to the storing node where it is kept for future referen
e and then
ba
k again from it to the 
omputation node that must �nd its su

essors.

The rest of the paper is organized as follows. First, the distributed version
of the SPIN veri�
ation algorithm is des
ribed, along with some implementa-
tion issues. Then the 
ompatibility of this algorithm with the main memory
and 
omplexity redu
tion me
hanisms of SPIN is dis
ussed, and some prelim-
inary experimental results are given. Finally, some 
on
lusions are drawn and
perspe
tives for further resear
h are dis
ussed.

2 The Distributed Veri�
ation Algorithm

2.1 The Centralized Algorithm

When SPIN must verify safety properties of a 
on
urrent system, su
h as proper
termination and state properties, it generates a veri�
ation program that makes
a depth �rst visit of the system state spa
e graph. The following pseudo 
ode
represents the 
entralized version of su
h a program:

pro
edure Start(start_state);

begin

V := {}; { already visited states }

DFS(start_state);

end;

pro
edure DFS(state);

begin

if not state in V then

begin

V := V + state;

for ea
h sequential pro
ess P do

begin

nxt = all transitions of P enabled in state

for ea
h t in nxt do

begin

st = su

essor of state after t

DFS(st);

end;

end;

end;

end;



The pro
edure DFS makes a depth �rst visit of the graph, and is �rst 
alled
on the initial state (start state). If the state to visit is not already present in the
set of visited states V, it is added to V, and the DFS pro
edure is re
ursively

alled for ea
h of its possible su

essors st. The 
omputation of the su

essors

onsists of identifying the enabled transitions of the pro
esses making up the
model and determining the su

essor of the 
urrent state after ea
h of su
h
transitions. When an already visited state is found, the visit does not pro
eed
any deeper.

For eÆ
ien
y, the re
ursive DFS pro
edure is simulated by means of a user
de�ned sta
k that 
ontains the moves made from the initial state to the 
urrent
state, along with all the information needed to restore the 
urrent state after a
simulated re
ursive 
all of DFS(st). The set of visited states V is implemented by
an hash table with 
ollision lists, whi
h is generally the most memory 
onsuming
data stru
ture, its size being proportional to the number of states in the state
graph. Also the sta
k data stru
ture 
an 
onsume a 
onsiderable amount of
memory, be
ause its size is proportional to the depth of the state graph, whi
h,
in some 
ases, 
an be 
omparable with the number of states.

2.2 The Distributed Algorithm

The idea at the basis of the distributed version of the veri�
ation algorithm is to
partition the state spa
e into as many subsets as the number of network nodes.
Every node owns one of the state subsets, and is responsible for holding the
states it owns and for 
omputing their su

essors. When a node 
omputes a new
state, �rst it 
he
ks if the state belongs to its own state subset or to the subset
of another node. If the state is lo
al, the node goes ahead as usual, otherwise a
message 
ontaining the state is sent to the owner of the state. Re
eived messages
are held in a queue and pro
essed in sequen
e. When all queues are empty and
all nodes are idle the veri�
ation ends.

The following pseudo
ode illustrates the algorithm used in the distributed
version:

pro
edure Start(i, start_state);

begin

V[i℄ := {}; { already visited states }

U[i℄ := {}; { pending queue }

j := Partition(start_state);

if i = j then

begin

U[i℄ := U[i℄ + start_state;

end;

Visit(i);

end;

pro
edure Visit(i);

begin



while true do

begin

while U[i℄ = {} do

begin

end;

S := extra
t(U[i℄);

DFV(i,S);

end;

end;

pro
edure DFV(i, state);

begin

if not state in V then

begin

V[i℄ := V[i℄ + state;

for ea
h sequential pro
ess P do

begin

nxt = all transitions of P enabled in state

for ea
h t in nxt do

begin

st = su

essor of state after t

j := Partition(st);

if j = i then

begin

DFV(i, st);

end else begin

U[j℄ := U[j℄ + st;

end;

end;

end;

end;

end;

The nodes that parti
ipate in the algorithm exe
ute all the same program,
but ea
h one of them 
alls the Start pro
edure with a di�erent value of i, whi
h
is an integer index that identi�es it. The set of visited states V is partitioned,
V[i℄ being the subset assigned to node i, and Partition(s) being the fun
tion that
takes a state s and returns the identi�er of the node that owns s. Ea
h node
is 
oupled asyn
hronously with the other ones by means of an input pending
requests queue. U[i℄ indi
ates the queue of node i. It is initially empty for every
node but the one that owns the initial state.

Every node starts the visit (pro
edure Visit) waiting until a state is present
in its input pending requests queue. At the beginning, only one node, the one
that owns the initial state, has a non-empty queue and 
an pro
eed 
alling the
DFV pro
edure. This pro
edure is almost the same as the previous pro
edure
DFS. It performs a depth �rst visit of the state spa
e graph, starting from the



argument state, but the visit is restri
ted within the state spa
e region owned
by the node. The visit is not performed if the state has already been visited.
If instead the state is new, it is added to the visited states set V[i℄. Then ea
h
su

essor of the 
urrent state is 
omputed in the usual way and 
he
ked with the
Partition fun
tion. If the state st is lo
al, i.e. it is owned by the same node, the
pro
edure DFV is re
ursively 
alled for that state, otherwise DFV is not 
alled
and the state is added to the pending requests queue of the 
orresponding node,
whi
h will 
ontinue the interrupted visit in its own state spa
e region.

The main 
onsequen
e of using this algorithm instead of the 
entralized one
is that the visit does no longer follow the depth �rst order globally. >From the

orre
tness point of view, this is not a problem with the standard rea
hability
analysis veri�
ation of safety properties that we 
onsider in this paper, be
ause
it works with a non depth �rst visit as well. LTL veri�
ation instead needs a
(nested) depth �rst visit to give the 
orre
t results so the algorithm presented
here is not adequate for this kind of veri�
ation. Of 
ourse it would be possible
to modify the algorithm to make the visit depth �rst, but this would 
ut o� most
of the parallel pro
essing involved in the algorithm. >From the memory usage
point of view, a new data stru
ture U[i℄ has been introdu
ed, whi
h in
reases
the overall amount of memory needed. On the other hand, the non depth �rst
order of the visit makes it possible to use a smaller sta
k stru
ture, whi
h 
an

ompensate for this memory in
rease. Moreover, the amount of memory needed
for the pending requests queue 
an be bounded if some kind of 
ow 
ontrol poli
y
is applied.

2.3 The Partition Fun
tion

The Partition fun
tion that takes a state and returns the identi�er of the region
to whi
h it belongs must depend ex
lusively on the state itself. Moreover, to bal-
an
e the workload among the nodes, in terms of both memory and 
omputation
time, it should divide the state spa
e evenly. Finally, to minimize 
ommuni-

ation overhead, it should minimize 
ross-transitions, i.e. transitions between
states belonging to di�erent regions.

A �rst simple possibility for partitioning is to use the same hash fun
tion
that is applied to the state when it is stored in the hash table, as suggested
in [8℄ for the parallelization of Mur'. In the 
ase of an homogeneous network
of workstations, this solution 
an be implemented very easily in a distributed
SPIN program working with the above algorithm, but in the 
ase of an hetero-
geneous one it 
annot be implemented unless the hash fun
tion used by SPIN
is modi�ed. In fa
t, state ve
tors, i.e. the binary representations that SPIN uses
for states, are di�erent on di�erent 
omputer ar
hite
tures, and the hash fun
-
tion of SPIN depends on su
h representations. Another problem with the hash
partition fun
tion is that, although as shown in [8℄ it statisti
ally divides the
state spa
e evenly, it does not address the problem of minimizing the number of

ross-transitions.

Here we propose also another way to solve the partitioning problem, that
exploits the stru
ture of the global system states in SPIN.



SPIN is used to verify models of systems made up of syn
hronously or asyn-

hronously 
oupled 
on
urrent pro
esses, where ea
h pro
ess is des
ribed by a
state ma
hine. In su
h models, a global state 
ontains a state 
omponent for
ea
h 
on
urrent pro
ess. Sin
e a state transition generally involves only few pro-

esses, generally one pro
ess for lo
al a
tions or asyn
hronous intera
tions and
two pro
esses for syn
hronous intera
tions, when the system evolves from one
state to another state only few state 
omponents 
hange, the majority of them
remaining una�e
ted. Based on these 
onsiderations, a 
onvenient yet simple
partitioning rule 
onsists of de�ning the partition subsets a

ording to the val-
ues taken by just one of the state 
omponents. In pra
ti
e, the state region to
whi
h a state belongs depends only on the state 
omponent of one of the 
on-

urrent pro
esses making up the model, 
alled the designated pro
ess. Su
h a
pro
ess 
an be for instan
e the one in a parti
ular position in the state ve
tor or
the �rst one of a parti
ular type. A table gives the 
orresponden
e between the
states of the designated pro
ess and the state spa
e subsets. With this kind of
partition fun
tion, 
ross-transitions are transitions that determine a state 
hange
in the designated pro
ess, and, be
ause of the above 
onsiderations, they are a
limited fra
tion of the total. Moreover, some preliminary experiments show that
partitions generated in this way are suÆ
iently well balan
ed.

The intuitive results that have just been presented 
an be 
on�rmed by a
simple analysis of the average features of the two partition fun
tions. Let P , S
and T be respe
tively the number of pro
esses, of states and of state transitions
in the model to be analyzed. Also, let N be the number of nodes used for
distributed-memory rea
hability analysis. In general, the partition fun
tion is a
fun
tion � : S ! f1; :::; Ng, mapping global states to integers in the range from
1 to N .

With hash partitioning, states are mapped randomly and uniformly over
state spa
e regions. Hen
e, the average fra
tion of states belonging to a given
region is 1=N . For what 
on
erns 
ross transitions, let us 
onsider a generi
 state
s 2 S, and let Ts be the set of transitions starting from s, and Ds be the set
of destination states of transitions in Ts. If we assume that there are no self
transitions (i.e. transitions that do not 
hange the global model state), be
ause
of the uniform distribution of states over regions, we 
an say that the average
fra
tion of elements of Ds belonging to the same state region of s is 1=N . Hen
e,
the average fra
tion of elements of Ds belonging to other regions is 1 � 1=N ,
and this represents also the average fra
tion of 
ross-transitions. Although this
result does not take into a

ount self-transitions, it 
an be 
onsidered a good
approximation, be
ause generally the fra
tion of self transitions is negligible in
that it is very un
ommon that a transition does neither 
hange the values of any
of the variables nor the "program 
ounter" of any of the pro
esses in the model.

Let us now 
onsider the 
ase of a partition fun
tion that depends on one state

omponent only. Ea
h state s of the model to be analyzed is 
omposed of several
state 
omponents, si 2 Si, i.e. s = (s1; :::; sm). Let sd be the state 
omponent
representing the state of the designated pro
ess, and �d : Sd ! f1; :::; Ng be the
lo
al partition fun
tion de�ned on the designated pro
ess state spa
e Sd. The



partition fun
tion that we are 
onsidering is one su
h that �(s1; :::; sm) = �d(sd).
Let us assume that �d is sele
ted so as to divide Sd into N equally sized subsets.
In this 
ase, the average fra
tion of global states s = (s1; :::; sm) su
h that �d(sd)
takes a given value is 1=N , and this is also the average fra
tion of global states
belonging to a given region. With a partition fun
tion depending on one state

omponent only, a 
ross transition is a transition that implies a 
hange in the
designated pro
ess state 
omponent from sd to s

0

d
, su
h that �d(sd) 6= �d(s

0

d
). Let

k be the average number of pro
esses involved in a transition, whi
h is a value
ranging between 1 and 2. Then, k=P represents the average fra
tion of pro
esses
involved in a transition. Assuming that ea
h pro
ess has the same 
han
e of being
involved in a transition, k=P represents also the average fra
tion of transitions
that a given pro
ess is involved into. So we 
an say that the designated pro
ess is
involved on average in a fra
tion k=P of the transitions. If we 
all �d the fra
tion
of 
ross transitions in the designated pro
ess state ma
hine, i.e. the fra
tion of
lo
al transitions of the designated pro
ess su
h that the starting state and the
ending state are mapped to di�erent regions, then we 
an 
on
lude that the
average fra
tion of 
ross transitions in the global state ma
hine is �dk=P .

This simpli�ed analysis shows that on average the two partition fun
tions
both divide evenly the state spa
e. However, the average fra
tion of 
ross transi-
tions is (N�1)=N with hash partitioning whereas it is �dk=P with a partitioning
fun
tion based on one state 
omponent only. It 
an be observed that the �rst
ratio tends to approa
h 1 as N be
omes large, whereas in the se
ond one only
the �d fa
tor gets 
lose to 1, the average fra
tion of 
ross transitions remaining
always less than k=P .

2.4 Keeping Tra
k of Error Tra
es

If an error is found during the visit of the state spa
e graph, the veri�
ation
program must produ
e the tra
e of the model a
tions that lead to the error. In
the 
entralized version of the program, this is done simply traversing the sta
k
stru
ture. In the distributed version, a similar approa
h is possible, but ea
h
node must hold the whole sta
k, 
ontaining the moves from the initial state to
the 
urrent state, and not only the part of it 
orresponding to the exe
ution of
the DFV pro
edure. To make this possible, the message used to send a state to
another node 
ontains not only the state representation, but also the path that
leads to that state, represented as a sequen
e of moves. The re
eiver uses the
state representation to de
ide if the state has already been visited and eventually
dis
ards the message. If instead the state is new, the path is added to a list of
paths representing the U[i℄ queue. Later on, when a path is dequeued, it is used
to re
reate the 
orresponding state: the path is followed, and every move in it
is exe
uted. In this way, the sta
k is automati
ally initialized to 
ontain the
exe
ution path that leads to the 
urrent state. When an error o

urs, the node
behaves as in the 
entralized program.

For eÆ
ien
y, in our experimental implementation of the algorithm, paths
sent together with state representations are not absolute, but relative to the
previous path sent. Moreover, they are represented in a 
ompa
t way, using a



simple run-length 
ompression. In this way, the average message sizes are kept
within reasonable values.

2.5 Algorithm Termination

The distributed algorithm must terminate when the U[i℄ queues are all empty
and all nodes are idle. The dete
tion of this 
ondition is a typi
al problem of a

lass of distributed algorithms, in
luding parallel dis
rete event simulation, and

an be solved in di�erent ways [7℄. Here we sket
h a possible solution, whi
h has
been used in the experimental implementation of the algorithm.

We use a manager pro
ess that is in 
harge of starting the veri�
ation pro-
gram in a predetermined set of network nodes, and of stopping it after having
dete
ted termination and 
olle
ted the results. Ea
h node sends to the man-
ager a message when it be
omes idle and a di�erent one when it be
omes busy,
i.e. when its queue be
omes non-empty. In this way, the manager has a lo
al
representation of the 
urrent status of all the nodes.

When the manager dete
ts on its lo
al 
opy that all nodes are idle, it asks for
a 
on�rmation, be
ause the lo
al 
opy of the manager 
ould be non 
onsistent
with the a
tual status of the nodes. If in the meanwhile a node has re
eived a new
message 
ontaining a new state to be visited, and then has be
ome busy, it sends
ba
k a negative a
knowledgment. Positive a
knowledgments also 
ontain the
total number of messages sent and re
eived by the node. The manager 
ommands
the nodes to terminate if ea
h of them sent a positive a
knowledgment and the
overall number of messages sent is equal to the overall number of messages
re
eived. If this is not the 
ase, there are some messages still traveling in the
network. In this 
ase the manager does not know if su
h messages will 
ause a
node to start a new visit, be
ause they may 
ontain already visited states, so
the manager needs to reset the pro
edure and then ask for a new 
on�rmation
round from all the nodes again.

2.6 Other Implementation Issues

An experimental modi�ed version of the model 
he
ker SPIN that generates a
distributed version of the veri�
ation program a

ording to the above algorithm
has been implemented. The generated sour
e �les 
an be used to make both the

entralized and the distributed versions of the program, depending on a ma
ro
de�nition.

One of the main obje
tives (and also a main problem to solve) was to get
the veri�
ation work on a network of heterogeneous workstations. Our �rst try
was to use the PVM library [3℄, whi
h is a widely used pa
kage that provides
a transparent message passing interfa
e for networks of heterogeneous worksta-
tions. This possibility was later abandoned, be
ause of the overhead introdu
ed
and be
ause of the need to implement 
ow 
ontrol over the PVM layer. In fa
t
the PVM library bu�ers messages in the re
eiving ma
hine memory without lim-
itations, and this may 
ause memory over
ow problems. We de
ided then to use
the so
ket interfa
e, that provides standard bidire
tional 
onne
tions where 
ow




ontrol is already implemented. On top of it we used an XDR (eXternal Data
Representation) layer, to make the transfer of data between di�erent ar
hite
-
tures transparent. The program has been su

essfully tested on three di�erent
platforms: Intel - Linux, Alpha - Digital Unix, and Spar
 - SunOS.

3 Compatibility with Memory and Complexity Redu
tion

Me
hanisms

Whenever a new te
hnique to extend the 
apabilities of a tool like SPIN is
introdu
ed, it is important to verify that it is 
ompatible with the memory
and 
omplexity redu
tion me
hanisms available in the basi
 version of the tool,
otherwise the implied risk is that the overall performan
e of the tool is not really
extended by the introdu
tion of the new te
hnique, but possibly redu
ed.

In this se
tion, the main redu
tion me
hanisms of SPIN are 
onsidered and

ompatibility with ea
h of them is dis
ussed. Some of them have already been
implemented in our experimental distributed version of SPIN, whereas others

an be easily added.

3.1 State Compression

SPIN implements various s
hemes of 
ompression, that are used for redu
ing the
amount of memory needed for storing states, but whi
hever 
ompression te
h-
nique is used, the state is always 
omputed in its un
ompressed form, and then
it is 
ompressed before being stored. In the distributed version of the program,
the hash table is divided into di�erent sub-tables, and for ea
h of them any

ompression me
hanism 
an be applied for storing states, without limitations.

Although the use of any 
ompression te
hnique is always possible, there may
be performan
e impli
ations. In its simplest form, 
ompression is a fun
tion
f that transforms a state s into a 
ompa
t representation f(s). The original
representation s 
an be retrieved applying the inverse of f . Other 
ompression
s
hemes are 
hara
terized by memory, i.e. the result of the 
ompression fun
tion
depends on the history of 
ompression operations previously performed. In the
distributed version of the program, two aspe
ts play an important role: the kind
of 
ompression that is used (with or without memory) and the heterogeneity of
the network nodes.

If the network nodes are homogeneous, the state representation is the same
on any network node. If a memoryless 
ompression s
heme is used, states 
an be
sent in their 
ompressed form and the amount of memory needed to store states
is the same as in the 
entralized version. Moreover, in this 
ase 
ompression

ontributes to redu
e the 
ommuni
ation overhead. If instead a 
ompression
s
heme with memory is used, states must be sent in their un
ompressed form,
and 
ompression must be performed at the re
eiver side, otherwise the re
eiver
may not be able to re
onstru
t the un
ompressed state from the 
ompressed one.
In addition, the behavior of the 
ompression fun
tion may be di�erent from the
one in the 
entralized version.



In an heterogeneous environment, the representations of a given state di�er
from node to node. For this reason, the state must be transformed into a ma
hine-
independent representation su
h as XDR before being sent to another network
node. Let us 
all g the fun
tion that transforms a state s into its ma
hine-
independent form g(s). Sin
e the 
ompression me
hanisms of SPIN work on the
ma
hine-dependent representation of s, in this 
ase the sender must send g(s),
and the re
eiver will re
onstru
t s from g(s) and then apply f before storing s.

In our experimental implementation we in
luded the two main 
ompression
s
hemes of SPIN, i.e. standard 
ompression and 
ollapse 
ompression.

3.2 Partial Order Redu
tion

SPIN uses a stati
 partial order redu
tion te
hnique [6℄, whi
h is a means to
avoid the exploration of some exe
ution sequen
es that are not stri
tly required
to prove the safety or liveness properties of the 
on
urrent system being ana-
lyzed. When this redu
tion method is applied, the expansion step in whi
h the
su

essors of a state are 
omputed is modi�ed, with the aim of 
omputing only
a minimal subset of all the possible su

essors. The expansion step is performed
expanding ea
h 
on
urrent pro
ess, i.e. 
omputing the possible state transitions
of ea
h pro
ess, and, for ea
h of su
h transitions, 
omputing the global su

essor
state. Before the a
tual expansion step is 
arried out, pro
esses are examined se-
quentially, to identify the ones that 
an exe
ute only so-
alled safe transitions [6℄.
In fa
t, it has been shown that it is enough to expand just one of su
h pro
esses,
provided that the su

essors ful�ll a 
ondition, known as the redu
tion proviso.
The veri�
ation program 
omputes the su

essors generated by the transitions
of ea
h of the above pro
esses �rst, and as soon as it �nds one of them that
generates a set of su

essors satisfying the redu
tion proviso, it interrupts the
expansion, thus ignoring the su

essors generated by the other pro
esses. In the
worst 
ase, all the pro
esses are expanded, and no redu
tion o

urs. The redu
-
tion proviso 
an be di�erent a

ording to the kind of properties that redu
tion
must preserve. If only safety properties must be preserved, as we assume in this
paper, it is enough to require, as a redu
tion proviso, that there is at least one
su

essor not 
ontained in the sta
k [5℄.

In the distributed version of the veri�
ation program, the stati
 information
about whi
h transitions are safe is known by all the nodes, so any node 
an
make a presele
tion of the pro
esses, and examine �rst those that 
an exe
ute
only su
h transitions. However a problem arises when one of the nodes must

he
k if the redu
tion proviso is ful�lled. If some of the su

essors are stored
outside the node that has 
omputed them, su
h a node 
annot know by itself
if they are 
urrently in the sta
k, be
ause this information is hold by SPIN in
the state table. Obliging any node to hold a 
opy of all the states 
urrently in
the sta
k is 
umbersome and memory-
onsuming. This problem 
an be avoided
taking a 
onservative (worst 
ase) assumption: su

essors that are hold outside
the node where they are 
omputed are always assumed to be 
urrently in the
sta
k. In this way, safety properties are preserved, but it is possible that some



of the redu
tions that are 
arried out in the 
entralized version of the program

annot be 
arried out also in the distributed version.

It is interesting to note that, if we 
onsider spe
i�
ally the 
ase of a parti-
tion fun
tion that depends on one of the state 
omponents only, it is possible
to in
rease the number of redu
tions that 
an be performed. The reason is that
in this 
ase any transition that does not involve the designated pro
ess is not
a 
ross-transition, i.e. it leads to a su

essor state that is in the same region as
the 
urrent state. Therefore, the redu
tion proviso 
an always be 
he
ked for all
su
h transitions. Moreover, if the designated pro
ess is arranged so as to always
be the last pro
ess that is examined in the presele
tion phase, it is expanded
only when no other pro
ess 
an be expanded. In this way, the number of redu
-
tions performed is maximized, and, as an additional side-e�e
t, the fra
tion of

ross-transitions is further redu
ed. This happens be
ause, whenever di�erent al-
ternative redu
tions 
an be applied, always a redu
tion without 
ross-transitions
is sele
ted.

3.3 Bit State Hashing

Bit state hashing is a 
omplexity redu
tion me
hanism that a�e
ts the way in
whi
h states are stored in the hash table. It 
an be 
onsidered as a 
ompression
me
hanism with loss of information, be
ause a state is stored in a single bit.
Consequently, the 
onsiderations made for 
ompression also apply for bit state
hashing, i.e. the distributed version of the program is 
ompatible with it.

4 Experimentation and Results

The experimental distributed version of SPIN has been tested on some test

ases, to measure its performan
e. The testbed that has been used is a NOW

omposed of 300Mhz Pentium II Linux workstations with 64Mbytes of RAM
ea
h, inter
onne
ted with a standard 10Mbps Ethernet LAN. The sele
ted test
samples are all s
alable using one or more parameters, and experiments have been

arried out with values of the parameters that are 
riti
al for the workstations
that have been used.

Table 1 
ontains the results obtained using three s
alable samples named
Bakery, Leader, and Philo. For ea
h sample and ea
h set of values of the param-
eters the number of states and transitions are reported. Of 
ourse, the number of
states mainly in
uen
es memory usage while the number of transitions mainly
in
uen
es 
omputation time. The tests were exe
uted on a single workstation
with the original 
entralized program and on two and four workstations with
the distributed one. For ea
h test 
ase the average memory usage per node in
megabytes and the exe
ution time in se
onds are reported. All the results are
referred to an exhaustive veri�
ation and have been obtained using the XDR
layer and a partition fun
tion that depends on a single state 
omponent. Miss-
ing results mean that veri�
ation 
ould not be 
ompleted be
ause of memory
allo
ation failure.



Bakery is a des
ription of the Lamport's Bakery algorithm for mutual ex
lu-
sion with N pro
esses that make at most K attempts. The Bakery sample was
tested using the standard 
ompression and partial order redu
tion features of
SPIN. Sin
e partial order redu
tion 
an alter the number of states and transi-
tions a
tually explored, the data in the se
ond and third rows are those reported
by the 
entralized version. The partial order redu
tion is slightly less e�e
tive on
the distributed version, and its e�e
tiveness de
reases as the state subsets get
smaller, so the numbers of states and transitions with the distributed version
are greater than with the 
entralized version. While in the other samples the
memory per node nearly halves when doubling the number of workstations, in
this 
ase the memory used de
reases but not so rapidly. Nevertheless, it 
an be
observed that, when the total memory usage is higher than the physi
al memory
available on a single workstation (se
ond and third 
olumns), the distributed
version performs better than the 
entralized one.

Leader is the leader ele
tion algorithm model that 
an be found in the SPIN
distribution. It was 
ompiled with 
ollapse 
ompression, but without partial or-
der redu
tions. The Leader sample memory usage grows very fast. While with
N=6 the distribution of the veri�
ation program is still not 
onvenient be
ause
of the modest memory usage, with N=7 the load is too heavy for a single work-
station, and gives the best results with 4 workstations. This is an example of a
veri�
ation that 
annot be 
ompleted on a single workstation, be
ause of memory
allo
ation failure, but 
an be 
ompleted on multiple workstations. The results
of distributed veri�
ation with N=7 are not so good as they 
ould be, be
ause
the partition fun
tion used in the experiment is not so fair. In fa
t, even if the
average memory usage for ea
h node is less than the physi
al memory, we found
that at least one node was thrashing due to its higher number of states to visit.

Philo is a model des
ribing the dining philosophers problem. It was 
ompiled
using 
ollapse 
ompression and no partial order redu
tion. Also with this sample
the growth is very fast and we pass from N=12, where the most eÆ
ient te
hnique
is 
entralized veri�
ation, to N=14, where it is ne
essary to resort to distributed
veri�
ation, and the best results are obtained with four workstations.

In the rest of this se
tion, additional results are presented that are useful to
analyze a few aspe
ts of the experimental distributed version of SPIN.

Table 2 illustrates the di�eren
es in terms of number of messages ex
hanged,
partition rates, and exe
ution time when using di�erent partition strategies. The
partition rate is the ratio of the minimum to maximum values of the state spa
e
region sizes, whi
h gives a measure of how the workload is balan
ed.

The �rst strategy, 
alled ad ho
 partitioning, is based on a user de�ned parti-
tion fun
tion that depends on a single state 
omponent, and is the same used in
the previous tests. This fun
tion has been de�ned empiri
ally, trying to obtain
a well balan
ed partition. The se
ond partitioning fun
tion, 
alled hash parti-
tioning, is the one based on the same hash fun
tion used by SPIN for the hash
table. Finally, modi�ed hash partitioning uses the same hash-based approa
h,
while retaining the prin
iple of having a partition fun
tion that depends on one



Table 1. Performan
es of 
entralized and distributed SPIN

Bakery

Model Parameters N=2 K=20 N=3 K=10 N=4 K=4

States 106063 1877341 2336892

Transitions 129768 2463669 3101854

1 workstation Memory per node 4.68MB 76.45MB 103.06MB
Exe
ution time 1s 908s 6306s

2 workstation Memory per node 3.01MB 39.7MB 53.57MB
Exe
ution time 2s 24s 481s

4 workstation Memory per node 2.55MB 34.7MB 51.82MB
Exe
ution time 23s 235s 330s

Leader

Model Parameters N=5 N=6 N=7

States 41692 341316 2801653

Transitions 169690 1667887 15976645

1 workstation Memory per node 3.78MB 24.57MB -
Exe
ution time 2s 27s -

2 workstation Memory per node 2.52MB 12.92MB 109.5MB
Exe
ution time 3s 130s 6687s

4 workstation Memory per node 1.89MB 7.1MB 55.40MB
Exe
ution time 23s 219s 4577s

Philo

Model Parameters N=12 N=14

States 94376 636810

Transitions 503702 3965261

1 workstation Memory per node 18.1MB -
Exe
ution time 11s -

2 workstation Memory per node 6.70MB 63.1MB
Exe
ution time 23s 248s

4 workstation Memory per node 3.94MB 20.89MB
Exe
ution time 35s 196s



Table 2. A 
omparison of di�erent partition fun
tions

Test Sample Partitioning Messages Partition rate Exe
ution time

Ad Ho
 38874 0.7749 10s
Bakery (N=2,K=20) Hash 883297 0.9870 113s

Modi�ed Hash 343340 0.7470 50s

Ad Ho
 139293 0.7361 46s
Leader (N=6) Hash 373023 0.9679 121s

Modi�ed Hash 113378 0.7161 45s

Ad Ho
 242984 0.9155 155s
Philo (N=14) Hash 1185761 0.9871 403s

Modi�ed Hash 234328 0.8961 155s

state 
omponent only. This is a
hieved 
omputing the hash fun
tion on one state

omponent only.

For the Bakery example, we de
ided to present the results obtained without
partial order redu
tion, be
ause when this me
hanism is used the number of
states varies with the partition fun
tion, and in this 
ase we found that the
varian
e was so high that veri�
ation 
ould not be 
ompleted when using hash
partitioning, so we were not able to give any data for this kind of partitioning.
This result of 
ourse 
on�rms the expe
ted better performan
e of the partition
fun
tions based on one state 
omponent with respe
t to partial order redu
tions.

Another di�eren
e with respe
t to the experiments presented in Table 1 is
that here the results are referred to experiments made without the XDR layer,
be
ause in our implementation hash partitioning works only with this 
on�gu-
ration. The parameters for the samples are shown in the table. All the results
are relative to a 2 workstations testbed.

The results show that hash partitioning gives the best results in terms of
balan
ing, but the number of messages 
annot be 
ontrolled. This 
auses an in-

rement in network overhead due to an in
reased amount of data transferred,
and, 
onsequently, an in
rement in exe
ution times. Partition fun
tions depend-
ing on one state 
omponent only do not give perfe
tly balan
ed workloads, but
they are the most e�e
tive ones in terms of 
ompletion time, be
ause they give
suÆ
iently well balan
ed partitions and, at the same time, a low number of

ross-transitions.

Partition fun
tions based on one state 
omponent only 
ould be improved
exploiting knowledge about the system behavior, and statisti
al data su
h as
transition 
ounts that SPIN 
an 
ompute. For example, it is possible to let
SPIN 
ompute the transition 
ounts for a smaller sized (s
aled down) model
and then using these data to drive the de�nition of the partitioning fun
tion
for the bigger one. However, a manual de�nition of a good partition fun
tion is
not always easy. A possible improvement may be to introdu
e a tool that, on a
statisti
al base, automati
ally determinates the partition fun
tion.



Table 3. Evaluation of the overhead due to heterogeneity

Test Sample Transfer Memory per node Exe
ution time

Bakery (N=3,K=10) Binary 9.36MB 21s
XDR 13.3MB 24s

Leader (N=6) Binary 50MB 46s
XDR 149.9MB 130s

Philo (N=14) Binary 142.3MB 155s
XDR 195.0MB 248s

One of the main goals of the proje
t was to develop a distributed version of
SPIN that 
an run on a network of heterogeneous workstations. This require-
ment introdu
es an overhead, mainly due to internal representation 
onversions.
Of 
ourse, when using an homogeneous network of workstations, 
onversions 
an
be avoided, and the XDR layer 
an be eliminated. This 
an speed up the ver-
i�
ation pro
ess, redu
ing message size, and hen
e network overhead, but also
memory requirements and and 
omputation time. Table 3 
an be useful to eval-
uate the amount of overhead implied by the XDR layer. It reports the results
obtained using unformatted binary transfer in an homogeneous ar
hite
ture (Bi-
nary Transfer), and those obtained using platform independent transfers (XDR
Transfer), in the same ar
hite
ture. In this 
ase partial order redu
tion does not
a�e
t the results, so it has been used in the Bakery sample.

5 Con
lusions and Perspe
tives

We have des
ribed a distributed-memory algorithm for veri�
ation of safety
properties and its experimental implementation within the SPIN model 
he
ker.
It has been shown that the algorithm 
an extend the 
apabilities of a veri�-

ation tool like SPIN, adding up the physi
al memory of several workstations
inter
onne
ted via a standard LAN, so implementing a distributed virtual ver-
i�er. When this algorithm is applied, it be
omes possible to deal with models
larger than those that 
an be analyzed with a single workstation running the
standard version of SPIN.

Sin
e SPIN is very eÆ
ient in analyzing the models that �t in the physi
al
memory of the ma
hine where it runs, the distributed version of the veri�
ation
program performs worse than the 
entralized version on su
h models. Therefore,
the distributed version of SPIN may be useful as a 
omplementary tool, to be
used instead of the standard version when the model size ex
eeds the available
physi
al memory.

The distributed algorithm that has been presented is 
ompatible with the
main te
hniques used by SPIN to improve performan
e. In parti
ular, it is 
om-
patible with 
ompression te
hniques, stati
 partial order redu
tion te
hniques,
and bit state hashing.



One of the most 
riti
al aspe
ts of the distributed veri�
ation algorithm is the
fun
tion that de�nes the partition of the state spa
e graph. We have 
onsidered
various possibilities and showed that a fun
tion that depends on a single state

omponent is advantageous under several points of view, be
ause it 
an yield not
only suÆ
iently well balan
ed workloads, but also low 
ommuni
ation overhead,
and wide appli
ability of partial order redu
tions.

In this paper, the possibility of implementing a distributed LTL model 
he
k-
ing based on a nested depth �rst visit of the state spa
e was not 
onsidered. This
is however an interesting area for future resear
h. The main problem that re-
mains to be solved is that the algorithm as it has been proposed here performs
a non depth �rst visit of the state spa
e. If we introdu
e some form of syn
hro-
nization, the network nodes 
an be for
ed to perform a depth �rst visit. For
example, ea
h node would be obliged to wait for a reply from the destination
node whenever it sends a message, and the destination node would 
ommuni-

ate ba
k when it has �nished. This kind of algorithm would 
ut o� most of
the parallel pro
essing, and its impli
ations in terms of needed memory must be
investigated.

Another important issue for further study on the distributed veri�
ation
algorithm is the automati
 generation of good partitioning fun
tions. Of 
ourse,
optimality 
annot be a
hieved, be
ause this is an np-hard problem, but good
heuristi
s, su
h as the prin
iple of having a partition fun
tion that depends
on a single state 
omponent, 
an be found. This point has a relevant pra
ti
al
importan
e, be
ause asking users to de�ne partition fun
tions by themselves
may not be a

eptable.

Finally, the experiments presented in this paper are only preliminary. We
plan to perform more extensive tests to get additional experimental results and
so be able to give a more 
omprehensive view of the performan
e of this te
hnique
and of its s
alability.
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