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Abstract. The main limiting factor of the model checker SPIN is cur-
rently the amount of available physical memory. This paper explores the
possibility of exploiting a distributed-memory execution environment,
such as a network of workstations interconnected by a standard LAN] to
extend the size of the verification problems that can be successfully han-
dled by SPIN. A distributed version of the algorithm used by SPIN to
verify safety properties is presented, and its compatibility with the main
memory and complexity reduction mechanisms of SPIN is discussed. Fi-
nally, some preliminary experimental results are presented.

1 Introduction

The model checker SPIN [4] is a tool widely used to verify concurrent system
models. Its success depends on many factors, among which its amazing efficiency
in performing model checking and its portability, i.e. the fact that, being written
in ANSI C, it runs on most computer platforms.

The main limitation of SPIN, of course shared by all other verification tools
based on reachability analysis, is that it can deal with models up to a given max-
imum size. As a model gets larger and larger, also the memory usage increases,
and when the amount of memory used becomes greater than the available phys-
ical memory, the workstation is forced to use virtual memory. Since the memory
is mainly allocated for a hash table, which is accessed randomly, the system will
proceed slowly due to thrashing. In practice, it can be observed with SPIN that
when the memory used is less than the physical available memory the perfor-
mance of the model checker is excellent, and execution time is generally at most
in the order of minutes, but as soon as the physical memory is exhausted the per-
formance drops down dramatically. As a consequence, the maximum model size
that SPIN can deal with depends essentially on the amount of physical memory
that is available.

Various techniques are used by SPIN to reduce the amount of memory needed
for verification, thus making the analysis of larger models possible. The main
examples are state compression, partial order reductions and bit state hashing.
A different technique that could be applied to further extend the size of the
verification problems that can be successfully handled by SPIN is the use of
a distributed-memory environment such as a network of workstations (NOW),



which is ultimately a way to increase the amount of actually available physi-
cal memory, and to increase the speed of the verification process by exploiting
parallel processing. In this paper we explore this possibility and present some
preliminary results. Attention is focused here only on verification of safety prop-
erties such as deadlocks and assertions, and not on LTL model checking, which
is left for further study.

As memory in SPIN is used mainly to store states, the distributed version
of SPIN that we consider is based on a partition of the state space into as
many state regions as the number of network nodes. Each node is assigned a
different state region, and holds only the states belonging to that subset. In
this way, the state table is distributed over a NOW. Each node computes the
successors of the states that it holds and, if it finds any successors belonging to
other state regions, it sends them to the nodes that are in charge of processing
them. Of course, performance depends on how the state space is partitioned, the
best results being obtained if the workload is well balanced and communication
is minimized. In this paper we consider different possible approaches to the
partitioning problem and compare them.

Another important issue that must be taken into consideration is that a
distributed version of SPIN should not exclude the use of the other main memory
and complexity reduction techniques available in the centralized version, such as
state compression, partial order reduction, and bit state hashing. The approach
that we consider in this paper is characterized by good compatibility with such
mechanisms.

Since one of the strengths of SPIN stands in its portability and widespread
use, we decided to develop an experimental distributed version of SPIN that can
run on a very common platform: a NOW made up of heterogeneous worksta-
tions, interconnected with a standard 10Mbps Ethernet and using the TCP /IP
protocol. Of course, more sophisticated communication infrastructures may yield
better performance, but the basic environment that we considered is generally
available to everyone, and its performance can be considered a reasonable lower
bound.

A parallel/distributed version of a reachability analysis model checker, based
on the Muryp Verifier [2], was proposed in [8]. The approach taken in [8] is similar
to our one, but we use different ways to partition the state space. Moreover, in
contrast with SPIN, the Muryp model checker uses a model where the computa-
tion of the next states may be quite complex, so with Mury the most critical
resource is not memory, but time. As documented in [8], there are cases where
a verification run may take up to several days to complete. For this reason, the
main purpose of the distributed version of Muryp is to speed up the verification
process, exploiting parallel processing. With our distributed version of SPIN
instead we mainly aim at making tractable models that otherwise would be in-
tractable. Moreover, any speed up attained thanks to parallel processing tends
to be obscured by communication overhead, which is generally predominant with
respect to the short time taken by SPIN in computing the next states.



There has been also a previous proposal to develop a distributed model
checker [1], in which the future state computation and the storage function are
located at different nodes. This architecture is more complex than our one and
the communication overhead is higher because each state is transferred at least
two times over the network, since it has to go from the computation node that
generated it to the storing node where it is kept for future reference and then
back again from it to the computation node that must find its successors.

The rest of the paper is organized as follows. First, the distributed version
of the SPIN verification algorithm is described, along with some implementa-
tion issues. Then the compatibility of this algorithm with the main memory
and complexity reduction mechanisms of SPIN is discussed, and some prelim-
inary experimental results are given. Finally, some conclusions are drawn and
perspectives for further research are discussed.

2 The Distributed Verification Algorithm

2.1 The Centralized Algorithm

When SPIN must verify safety properties of a concurrent system, such as proper
termination and state properties, it generates a verification program that makes
a depth first visit of the system state space graph. The following pseudo code
represents the centralized version of such a program:

procedure Start(start_state);

begin
V := {}; { already visited states }
DFS(start_state);

end;

procedure DFS(state);
begin
if not state in V then
begin
V := V + state;
for each sequential process P do
begin
nxt = all transitions of P enabled in state
for each t in nxt do

begin
st = successor of state after t
DFS(st);
end;
end;
end;

end;



The procedure DFS makes a depth first visit of the graph, and is first called
on the initial state (start_state). If the state to visit is not already present in the
set of visited states V, it is added to V, and the DFS procedure is recursively
called for each of its possible successors st. The computation of the successors
consists of identifying the enabled transitions of the processes making up the
model and determining the successor of the current state after each of such
transitions. When an already visited state is found, the visit does not proceed
any deeper.

For efficiency, the recursive DFS procedure is simulated by means of a user
defined stack that contains the moves made from the initial state to the current
state, along with all the information needed to restore the current state after a
simulated recursive call of DFS(st). The set of visited states V is implemented by
an hash table with collision lists, which is generally the most memory consuming
data structure, its size being proportional to the number of states in the state
graph. Also the stack data structure can consume a considerable amount of
memory, because its size is proportional to the depth of the state graph, which,
in some cases, can be comparable with the number of states.

2.2 The Distributed Algorithm

The idea at the basis of the distributed version of the verification algorithm is to
partition the state space into as many subsets as the number of network nodes.
Every node owns one of the state subsets, and is responsible for holding the
states it owns and for computing their successors. When a node computes a new
state, first it checks if the state belongs to its own state subset or to the subset
of another node. If the state is local, the node goes ahead as usual, otherwise a
message containing the state is sent to the owner of the state. Received messages
are held in a queue and processed in sequence. When all queues are empty and
all nodes are idle the verification ends.

The following pseudocode illustrates the algorithm used in the distributed
version:

procedure Start(i, start_state);

begin
V[i] := {}; { already visited states }
U[i] := {}; { pending queue }
j := Partition(start_state);
if 1 = j then
begin
U[i] := U[i] + start_state;
end;
Visit(i);
end;

procedure Visit(i);
begin



while true do

begin
while U[i] = {} do
begin
end;
S := extract(U[i]);
DFV(i,S);

end;

end;

procedure DFV(i, state);
begin
if not state in V then
begin
V[i] := V[i] + state;
for each sequential process P do
begin
nxt = all transitions of P enabled in state
for each t in nxt do
begin
st = successor of state after t
j Partition(st);
if j = i then
begin
DFV(i, st);
end else begin
UL§T := UL§] + st;
end;
end;
end;
end;
end;

The nodes that participate in the algorithm execute all the same program,
but each one of them calls the Start procedure with a different value of i, which
is an integer index that identifies it. The set of visited states V is partitioned,
VI[i] being the subset assigned to node i, and Partition(s) being the function that
takes a state s and returns the identifier of the node that owns s. Each node
is coupled asynchronously with the other ones by means of an input pending
requests queue. UJi] indicates the queue of node i. It is initially empty for every
node but the one that owns the initial state.

Every node starts the visit (procedure Visit) waiting until a state is present
in its input pending requests queue. At the beginning, only one node, the one
that owns the initial state, has a non-empty queue and can proceed calling the
DFV procedure. This procedure is almost the same as the previous procedure
DFS. It performs a depth first visit of the state space graph, starting from the



argument state, but the visit is restricted within the state space region owned
by the node. The visit is not performed if the state has already been visited.
If instead the state is new, it is added to the visited states set VI[i]. Then each
successor of the current state is computed in the usual way and checked with the
Partition function. If the state st is local, i.e. it is owned by the same node, the
procedure DFV is recursively called for that state, otherwise DFV is not called
and the state is added to the pending requests queue of the corresponding node,
which will continue the interrupted visit in its own state space region.

The main consequence of using this algorithm instead of the centralized one
is that the visit does no longer follow the depth first order globally. ; From the
correctness point of view, this is not a problem with the standard reachability
analysis verification of safety properties that we consider in this paper, because
it works with a non depth first visit as well. LTL verification instead needs a
(nested) depth first visit to give the correct results so the algorithm presented
here is not adequate for this kind of verification. Of course it would be possible
to modify the algorithm to make the visit depth first, but this would cut off most
of the parallel processing involved in the algorithm. ;From the memory usage
point of view, a new data structure UJi] has been introduced, which increases
the overall amount of memory needed. On the other hand, the non depth first
order of the visit makes it possible to use a smaller stack structure, which can
compensate for this memory increase. Moreover, the amount of memory needed
for the pending requests queue can be bounded if some kind of flow control policy
is applied.

2.3 The Partition Function

The Partition function that takes a state and returns the identifier of the region
to which it belongs must depend exclusively on the state itself. Moreover, to bal-
ance the workload among the nodes, in terms of both memory and computation
time, it should divide the state space evenly. Finally, to minimize communi-
cation overhead, it should minimize cross-transitions, i.e. transitions between
states belonging to different regions.

A first simple possibility for partitioning is to use the same hash function
that is applied to the state when it is stored in the hash table, as suggested
in [8] for the parallelization of Mury. In the case of an homogeneous network
of workstations, this solution can be implemented very easily in a distributed
SPIN program working with the above algorithm, but in the case of an hetero-
geneous one it cannot be implemented unless the hash function used by SPIN
is modified. In fact, state vectors, i.e. the binary representations that SPIN uses
for states, are different on different computer architectures, and the hash func-
tion of SPIN depends on such representations. Another problem with the hash
partition function is that, although as shown in [8] it statistically divides the
state space evenly, it does not address the problem of minimizing the number of
cross-transitions.

Here we propose also another way to solve the partitioning problem, that
exploits the structure of the global system states in SPIN.



SPIN is used to verify models of systems made up of synchronously or asyn-
chronously coupled concurrent processes, where each process is described by a
state machine. In such models, a global state contains a state component for
each concurrent process. Since a state transition generally involves only few pro-
cesses, generally one process for local actions or asynchronous interactions and
two processes for synchronous interactions, when the system evolves from one
state to another state only few state components change, the majority of them
remaining unaffected. Based on these considerations, a convenient yet simple
partitioning rule consists of defining the partition subsets according to the val-
ues taken by just one of the state components. In practice, the state region to
which a state belongs depends only on the state component of one of the con-
current processes making up the model, called the designated process. Such a
process can be for instance the one in a particular position in the state vector or
the first one of a particular type. A table gives the correspondence between the
states of the designated process and the state space subsets. With this kind of
partition function, cross-transitions are transitions that determine a state change
in the designated process, and, because of the above considerations, they are a
limited fraction of the total. Moreover, some preliminary experiments show that
partitions generated in this way are sufficiently well balanced.

The intuitive results that have just been presented can be confirmed by a
simple analysis of the average features of the two partition functions. Let P, S
and T be respectively the number of processes, of states and of state transitions
in the model to be analyzed. Also, let N be the number of nodes used for
distributed-memory reachability analysis. In general, the partition function is a
function 7 : S — {1, ..., N}, mapping global states to integers in the range from
1to N.

With hash partitioning, states are mapped randomly and uniformly over
state space regions. Hence, the average fraction of states belonging to a given
region is 1/N. For what concerns cross transitions, let us consider a generic state
s € S, and let T be the set of transitions starting from s, and Dy be the set
of destination states of transitions in T,. If we assume that there are no self
transitions (i.e. transitions that do not change the global model state), because
of the uniform distribution of states over regions, we can say that the average
fraction of elements of Dy belonging to the same state region of s is 1/N. Hence,
the average fraction of elements of D, belonging to other regions is 1 — 1/N,
and this represents also the average fraction of cross-transitions. Although this
result does not take into account self-transitions, it can be considered a good
approximation, because generally the fraction of self transitions is negligible in
that it is very uncommon that a transition does neither change the values of any
of the variables nor the ”program counter” of any of the processes in the model.

Let us now consider the case of a partition function that depends on one state
component only. Each state s of the model to be analyzed is composed of several
state components, s; € S;, i.e. s = (s1,...,5m). Let sq be the state component
representing the state of the designated process, and 74 : Sy — {1,..., N} be the
local partition function defined on the designated process state space Sy. The



partition function that we are considering is one such that w(sy, ..., $;m) = 7a(sq).
Let us assume that 74 is selected so as to divide Sy into N equally sized subsets.
In this case, the average fraction of global states s = (s1, ..., s ) such that m4(sq)
takes a given value is 1/N, and this is also the average fraction of global states
belonging to a given region. With a partition function depending on one state
component only, a cross transition is a transition that implies a change in the
designated process state component from sq to s/, such that 74(sq) # m4(s!). Let
k be the average number of processes involved in a transition, which is a value
ranging between 1 and 2. Then, k/P represents the average fraction of processes
involved in a transition. Assuming that each process has the same chance of being
involved in a transition, k/P represents also the average fraction of transitions
that a given process is involved into. So we can say that the designated process is
involved on average in a fraction k/P of the transitions. If we call ¢4 the fraction
of cross transitions in the designated process state machine, i.e. the fraction of
local transitions of the designated process such that the starting state and the
ending state are mapped to different regions, then we can conclude that the
average fraction of cross transitions in the global state machine is ¢qk/P.

This simplified analysis shows that on average the two partition functions
both divide evenly the state space. However, the average fraction of cross transi-
tions is (IV —1)/N with hash partitioning whereas it is ¢4k/P with a partitioning
function based on one state component only. It can be observed that the first
ratio tends to approach 1 as N becomes large, whereas in the second one only
the ¢4 factor gets close to 1, the average fraction of cross transitions remaining
always less than k/P.

2.4 Keeping Track of Error Traces

If an error is found during the visit of the state space graph, the verification
program must produce the trace of the model actions that lead to the error. In
the centralized version of the program, this is done simply traversing the stack
structure. In the distributed version, a similar approach is possible, but each
node must hold the whole stack, containing the moves from the initial state to
the current state, and not only the part of it corresponding to the execution of
the DFV procedure. To make this possible, the message used to send a state to
another node contains not only the state representation, but also the path that
leads to that state, represented as a sequence of moves. The receiver uses the
state representation to decide if the state has already been visited and eventually
discards the message. If instead the state is new, the path is added to a list of
paths representing the UJ[i] queue. Later on, when a path is dequeued, it is used
to recreate the corresponding state: the path is followed, and every move in it
is executed. In this way, the stack is automatically initialized to contain the
execution path that leads to the current state. When an error occurs, the node
behaves as in the centralized program.

For efficiency, in our experimental implementation of the algorithm, paths
sent together with state representations are not absolute, but relative to the
previous path sent. Moreover, they are represented in a compact way, using a



simple run-length compression. In this way, the average message sizes are kept
within reasonable values.

2.5 Algorithm Termination

The distributed algorithm must terminate when the UJ[i] queues are all empty
and all nodes are idle. The detection of this condition is a typical problem of a
class of distributed algorithms, including parallel discrete event simulation, and
can be solved in different ways [7]. Here we sketch a possible solution, which has
been used in the experimental implementation of the algorithm.

We use a manager process that is in charge of starting the verification pro-
gram in a predetermined set of network nodes, and of stopping it after having
detected termination and collected the results. Each node sends to the man-
ager a message when it becomes idle and a different one when it becomes busy,
i.e. when its queue becomes non-empty. In this way, the manager has a local
representation of the current status of all the nodes.

When the manager detects on its local copy that all nodes are idle, it asks for
a confirmation, because the local copy of the manager could be non consistent
with the actual status of the nodes. If in the meanwhile a node has received a new
message containing a new state to be visited, and then has become busy, it sends
back a negative acknowledgment. Positive acknowledgments also contain the
total number of messages sent and received by the node. The manager commands
the nodes to terminate if each of them sent a positive acknowledgment and the
overall number of messages sent is equal to the overall number of messages
received. If this is not the case, there are some messages still traveling in the
network. In this case the manager does not know if such messages will cause a
node to start a new visit, because they may contain already visited states, so
the manager needs to reset the procedure and then ask for a new confirmation
round from all the nodes again.

2.6 Other Implementation Issues

An experimental modified version of the model checker SPIN that generates a
distributed version of the verification program according to the above algorithm
has been implemented. The generated source files can be used to make both the
centralized and the distributed versions of the program, depending on a macro
definition.

One of the main objectives (and also a main problem to solve) was to get
the verification work on a network of heterogeneous workstations. Our first try
was to use the PVM library [3], which is a widely used package that provides
a transparent message passing interface for networks of heterogeneous worksta-
tions. This possibility was later abandoned, because of the overhead introduced
and because of the need to implement flow control over the PVM layer. In fact
the PVM library buffers messages in the receiving machine memory without lim-
itations, and this may cause memory overflow problems. We decided then to use
the socket interface, that provides standard bidirectional connections where flow



control is already implemented. On top of it we used an XDR, (eXternal Data
Representation) layer, to make the transfer of data between different architec-
tures transparent. The program has been successfully tested on three different
platforms: Intel - Linux, Alpha - Digital Unix, and Sparc - SunOS.

3 Compatibility with Memory and Complexity Reduction
Mechanisms

Whenever a new technique to extend the capabilities of a tool like SPIN is
introduced, it is important to verify that it is compatible with the memory
and complexity reduction mechanisms available in the basic version of the tool,
otherwise the implied risk is that the overall performance of the tool is not really
extended by the introduction of the new technique, but possibly reduced.

In this section, the main reduction mechanisms of SPIN are considered and
compatibility with each of them is discussed. Some of them have already been
implemented in our experimental distributed version of SPIN, whereas others
can be easily added.

3.1 State Compression

SPIN implements various schemes of compression, that are used for reducing the
amount, of memory needed for storing states, but whichever compression tech-
nique is used, the state is always computed in its uncompressed form, and then
it is compressed before being stored. In the distributed version of the program,
the hash table is divided into different sub-tables, and for each of them any
compression mechanism can be applied for storing states, without limitations.

Although the use of any compression technique is always possible, there may
be performance implications. In its simplest form, compression is a function
f that transforms a state s into a compact representation f(s). The original
representation s can be retrieved applying the inverse of f. Other compression
schemes are characterized by memory, i.e. the result of the compression function
depends on the history of compression operations previously performed. In the
distributed version of the program, two aspects play an important role: the kind
of compression that is used (with or without memory) and the heterogeneity of
the network nodes.

If the network nodes are homogeneous, the state representation is the same
on any network node. If a memoryless compression scheme is used, states can be
sent in their compressed form and the amount of memory needed to store states
is the same as in the centralized version. Moreover, in this case compression
contributes to reduce the communication overhead. If instead a compression
scheme with memory is used, states must be sent in their uncompressed form,
and compression must be performed at the receiver side, otherwise the receiver
may not be able to reconstruct the uncompressed state from the compressed one.
In addition, the behavior of the compression function may be different from the
one in the centralized version.



In an heterogeneous environment, the representations of a given state differ
from node to node. For this reason, the state must be transformed into a machine-
independent representation such as XDR before being sent to another network
node. Let us call g the function that transforms a state s into its machine-
independent form g(s). Since the compression mechanisms of SPIN work on the
machine-dependent representation of s, in this case the sender must send g(s),
and the receiver will reconstruct s from g(s) and then apply f before storing s.

In our experimental implementation we included the two main compression
schemes of SPIN, i.e. standard compression and collapse compression.

3.2 Partial Order Reduction

SPIN uses a static partial order reduction technique [6], which is a means to
avoid the exploration of some execution sequences that are not strictly required
to prove the safety or liveness properties of the concurrent system being ana-
lyzed. When this reduction method is applied, the expansion step in which the
successors of a state are computed is modified, with the aim of computing only
a minimal subset of all the possible successors. The expansion step is performed
expanding each concurrent process, i.e. computing the possible state transitions
of each process, and, for each of such transitions, computing the global successor
state. Before the actual expansion step is carried out, processes are examined se-
quentially, to identify the ones that can execute only so-called safe transitions [6].
In fact, it has been shown that it is enough to expand just one of such processes,
provided that the successors fulfill a condition, known as the reduction proviso.
The verification program computes the successors generated by the transitions
of each of the above processes first, and as soon as it finds one of them that
generates a set of successors satisfying the reduction proviso, it interrupts the
expansion, thus ignoring the successors generated by the other processes. In the
worst case, all the processes are expanded, and no reduction occurs. The reduc-
tion proviso can be different according to the kind of properties that reduction
must preserve. If only safety properties must be preserved, as we assume in this
paper, it is enough to require, as a reduction proviso, that there is at least one
successor not, contained in the stack [5].

In the distributed version of the verification program, the static information
about which transitions are safe is known by all the nodes, so any node can
make a preselection of the processes, and examine first those that can execute
only such transitions. However a problem arises when one of the nodes must
check if the reduction proviso is fulfilled. If some of the successors are stored
outside the node that has computed them, such a node cannot know by itself
if they are currently in the stack, because this information is hold by SPIN in
the state table. Obliging any node to hold a copy of all the states currently in
the stack is cumbersome and memory-consuming. This problem can be avoided
taking a conservative (worst case) assumption: successors that are hold outside
the node where they are computed are always assumed to be currently in the
stack. In this way, safety properties are preserved, but it is possible that some



of the reductions that are carried out in the centralized version of the program
cannot be carried out also in the distributed version.

It is interesting to note that, if we consider specifically the case of a parti-
tion function that depends on one of the state components only, it is possible
to increase the number of reductions that can be performed. The reason is that
in this case any transition that does not involve the designated process is not
a cross-transition, i.e. it leads to a successor state that is in the same region as
the current state. Therefore, the reduction proviso can always be checked for all
such transitions. Moreover, if the designated process is arranged so as to always
be the last process that is examined in the preselection phase, it is expanded
only when no other process can be expanded. In this way, the number of reduc-
tions performed is maximized, and, as an additional side-effect, the fraction of
cross-transitions is further reduced. This happens because, whenever different al-
ternative reductions can be applied, always a reduction without cross-transitions
is selected.

3.3 Bit State Hashing

Bit state hashing is a complexity reduction mechanism that affects the way in
which states are stored in the hash table. It can be considered as a compression
mechanism with loss of information, because a state is stored in a single bit.
Consequently, the considerations made for compression also apply for bit state
hashing, i.e. the distributed version of the program is compatible with it.

4 Experimentation and Results

The experimental distributed version of SPIN has been tested on some test
cases, to measure its performance. The testbed that has been used is a NOW
composed of 300Mhz Pentium II Linux workstations with 64Mbytes of RAM
each, interconnected with a standard 10Mbps Ethernet LAN. The selected test
samples are all scalable using one or more parameters, and experiments have been
carried out with values of the parameters that are critical for the workstations
that have been used.

Table 1 contains the results obtained using three scalable samples named
Bakery, Leader, and Philo. For each sample and each set of values of the param-
eters the number of states and transitions are reported. Of course, the number of
states mainly influences memory usage while the number of transitions mainly
influences computation time. The tests were executed on a single workstation
with the original centralized program and on two and four workstations with
the distributed one. For each test case the average memory usage per node in
megabytes and the execution time in seconds are reported. All the results are
referred to an exhaustive verification and have been obtained using the XDR
layer and a partition function that depends on a single state component. Miss-
ing results mean that verification could not be completed because of memory
allocation failure.



Bakery is a description of the Lamport’s Bakery algorithm for mutual exclu-
sion with N processes that make at most K attempts. The Bakery sample was
tested using the standard compression and partial order reduction features of
SPIN. Since partial order reduction can alter the number of states and transi-
tions actually explored, the data in the second and third rows are those reported
by the centralized version. The partial order reduction is slightly less effective on
the distributed version, and its effectiveness decreases as the state subsets get
smaller, so the numbers of states and transitions with the distributed version
are greater than with the centralized version. While in the other samples the
memory per node nearly halves when doubling the number of workstations, in
this case the memory used decreases but not so rapidly. Nevertheless, it can be
observed that, when the total memory usage is higher than the physical memory
available on a single workstation (second and third columns), the distributed
version performs better than the centralized one.

Leader is the leader election algorithm model that can be found in the SPIN
distribution. It was compiled with collapse compression, but without partial or-
der reductions. The Leader sample memory usage grows very fast. While with
N=6 the distribution of the verification program is still not convenient because
of the modest memory usage, with N=7 the load is too heavy for a single work-
station, and gives the best results with 4 workstations. This is an example of a
verification that cannot be completed on a single workstation, because of memory
allocation failure, but can be completed on multiple workstations. The results
of distributed verification with N=7 are not so good as they could be, because
the partition function used in the experiment is not so fair. In fact, even if the
average memory usage for each node is less than the physical memory, we found
that at least one node was thrashing due to its higher number of states to visit.

Philo is a model describing the dining philosophers problem. It was compiled
using collapse compression and no partial order reduction. Also with this sample
the growth is very fast and we pass from N=12, where the most efficient technique
is centralized verification, to N=14, where it is necessary to resort to distributed
verification, and the best results are obtained with four workstations.

In the rest of this section, additional results are presented that are useful to
analyze a few aspects of the experimental distributed version of SPIN.

Table 2 illustrates the differences in terms of number of messages exchanged,
partition rates, and execution time when using different partition strategies. The
partition rate is the ratio of the minimum to maximum values of the state space
region sizes, which gives a measure of how the workload is balanced.

The first strategy, called ad hoc partitioning, is based on a user defined parti-
tion function that depends on a single state component, and is the same used in
the previous tests. This function has been defined empirically, trying to obtain
a well balanced partition. The second partitioning function, called hash parti-
tioning, is the one based on the same hash function used by SPIN for the hash
table. Finally, modified hash partitioning uses the same hash-based approach,
while retaining the principle of having a partition function that depends on one



Table 1. Performances of centralized and distributed SPIN

Bakery |
Model Parameters N=2 K=20|N=3 K=10|N=4 K=4
States 106063 1877341 2336892
Transitions 129768 2463669 3101854
1 workstation|Memory per node 4.68MB| 76.45MB|103.06MB
Execution time 1s 908s 6306s
2 workstation|Memory per node 3.01MB 39.7MB| 53.57MB
Execution time 2s 24s 481s
4 workstation|Memory per node 2.55MB 34.7TMB| 51.82MB
Execution time 23s 235s 330s
Leader |
Model Parameters N=5 N=6 N=7
States 41692 341316/ 2801653
Transitions 169690 1667887 15976645
1 workstation|Memory per node 3.78MB 24.57TMB -
Execution time 2s 27s -
2 workstation|Memory per node 2.52MB 12.92MB| 109.5MB
Execution time 3s 130s 6687s
4 workstation|Memory per node 1.89MB 7.1MB| 55.40MB
Execution time 23s 219s 4577s
Philo
Model Parameters N=12 N=14
States 94376 636810
Transitions 503702 3965261
1 workstation|Memory per node 18.1MB -
Execution time 11s -
2 workstation|Memory per node 6.70MB 63.1MB
Execution time 23s 248s
4 workstation|Memory per node 3.94MB| 20.89MB
Execution time 35s 196s




Table 2. A comparison of different partition functions

|Test Sample |Partiti0ning |Messages|Partition rate|Executi0n time|
Ad Hoc 38874 0.7749 10s
Bakery (N=2,K=20)|Hash 883297 0.9870 113s
Modified Hash| 343340 0.7470 50s
Ad Hoc 139293 0.7361 46s
Leader (N=6) Hash 373023 0.9679 121s
Modified Hash| 113378 0.7161 45s
Ad Hoc 242984 0.9155 155s
Philo (N=14) Hash 1185761 0.9871 403s
Modified Hash| 234328 0.8961 155s

state component only. This is achieved computing the hash function on one state
component only.

For the Bakery example, we decided to present the results obtained without
partial order reduction, because when this mechanism is used the number of
states varies with the partition function, and in this case we found that the
variance was so high that verification could not be completed when using hash
partitioning, so we were not able to give any data for this kind of partitioning.
This result of course confirms the expected better performance of the partition
functions based on one state component with respect to partial order reductions.

Another difference with respect to the experiments presented in Table 1 is
that here the results are referred to experiments made without the XDR layer,
because in our implementation hash partitioning works only with this configu-
ration. The parameters for the samples are shown in the table. All the results
are relative to a 2 workstations testbed.

The results show that hash partitioning gives the best results in terms of
balancing, but the number of messages cannot be controlled. This causes an in-
crement in network overhead due to an increased amount of data transferred,
and, consequently, an increment in execution times. Partition functions depend-
ing on one state component only do not give perfectly balanced workloads, but
they are the most effective ones in terms of completion time, because they give
sufficiently well balanced partitions and, at the same time, a low number of
cross-transitions.

Partition functions based on one state component only could be improved
exploiting knowledge about the system behavior, and statistical data such as
transition counts that SPIN can compute. For example, it is possible to let
SPIN compute the transition counts for a smaller sized (scaled down) model
and then using these data to drive the definition of the partitioning function
for the bigger one. However, a manual definition of a good partition function is
not always easy. A possible improvement may be to introduce a tool that, on a
statistical base, automatically determinates the partition function.



Table 3. Evaluation of the overhead due to heterogeneity

|Test Sample |Transfer|Memory per node|Execution time|
Bakery (N=3,K=10)|Binary 9.36MB 21s
XDR 13.3MB 24s
Leader (N=6) Binary 50MB 46s
XDR 149.9MB 130s
Philo (N=14) Binary 142.3MB 155s
XDR 195.0MB 248s

One of the main goals of the project was to develop a distributed version of
SPIN that can run on a network of heterogeneous workstations. This require-
ment introduces an overhead, mainly due to internal representation conversions.
Of course, when using an homogeneous network of workstations, conversions can
be avoided, and the XDR layer can be eliminated. This can speed up the ver-
ification process, reducing message size, and hence network overhead, but also
memory requirements and and computation time. Table 3 can be useful to eval-
uate the amount of overhead implied by the XDR layer. It reports the results
obtained using unformatted binary transfer in an homogeneous architecture (Bi-
nary Transfer), and those obtained using platform independent transfers (XDR
Transfer), in the same architecture. In this case partial order reduction does not
affect the results, so it has been used in the Bakery sample.

5 Conclusions and Perspectives

We have described a distributed-memory algorithm for verification of safety
properties and its experimental implementation within the SPIN model checker.
It has been shown that the algorithm can extend the capabilities of a verifi-
cation tool like SPIN, adding up the physical memory of several workstations
interconnected via a standard LAN, so implementing a distributed virtual ver-
ifier. When this algorithm is applied, it becomes possible to deal with models
larger than those that can be analyzed with a single workstation running the
standard version of SPIN.

Since SPIN is very efficient in analyzing the models that fit in the physical
memory of the machine where it runs, the distributed version of the verification
program performs worse than the centralized version on such models. Therefore,
the distributed version of SPIN may be useful as a complementary tool, to be
used instead of the standard version when the model size exceeds the available
physical memory.

The distributed algorithm that has been presented is compatible with the
main techniques used by SPIN to improve performance. In particular, it is com-
patible with compression techniques, static partial order reduction techniques,
and bit state hashing.



One of the most critical aspects of the distributed verification algorithm is the
function that defines the partition of the state space graph. We have considered
various possibilities and showed that a function that depends on a single state
component is advantageous under several points of view, because it can yield not
only sufficiently well balanced workloads, but also low communication overhead,
and wide applicability of partial order reductions.

In this paper, the possibility of implementing a distributed LTL model check-
ing based on a nested depth first visit of the state space was not considered. This
is however an interesting area for future research. The main problem that re-
mains to be solved is that the algorithm as it has been proposed here performs
a non depth first visit of the state space. If we introduce some form of synchro-
nization, the network nodes can be forced to perform a depth first visit. For
example, each node would be obliged to wait for a reply from the destination
node whenever it sends a message, and the destination node would communi-
cate back when it has finished. This kind of algorithm would cut off most of
the parallel processing, and its implications in terms of needed memory must be
investigated.

Another important issue for further study on the distributed verification
algorithm is the automatic generation of good partitioning functions. Of course,
optimality cannot be achieved, because this is an np-hard problem, but good
heuristics, such as the principle of having a partition function that depends
on a single state component, can be found. This point has a relevant practical
importance, because asking users to define partition functions by themselves
may not be acceptable.

Finally, the experiments presented in this paper are only preliminary. We
plan to perform more extensive tests to get additional experimental results and
so be able to give a more comprehensive view of the performance of this technique
and of its scalability.
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