
 Open access Book Chapter DOI:10.1007/3-540-48234-2_3

Distributed-Memory Model Checking with SPIN — Source link

Flavio Lerda, Riccardo Sisto

Institutions: Polytechnic University of Turin

Published on: 21 Sep 1999 - International workshop on Model Checking Software

Topics: Distributed memory, Distributed algorithm and Model checking

Related papers:

 Parallel state space construction for model-checking

 Distributed LTL model-checking in SPIN

 Parallelizing the Murphi Verifier

 Parallelizing the Murϕ verifier

 Parallelizing the Murφ verifier

Share this paper:

View more about this paper here: https://typeset.io/papers/distributed-memory-model-checking-with-spin-
1z3sek186w

https://typeset.io/
https://www.doi.org/10.1007/3-540-48234-2_3
https://typeset.io/papers/distributed-memory-model-checking-with-spin-1z3sek186w
https://typeset.io/authors/flavio-lerda-37hwkq62c7
https://typeset.io/authors/riccardo-sisto-3am9hc67mi
https://typeset.io/institutions/polytechnic-university-of-turin-yu84abwm
https://typeset.io/conferences/international-workshop-on-model-checking-software-bg09fiug
https://typeset.io/topics/distributed-memory-3uk95ox4
https://typeset.io/topics/distributed-algorithm-1xu89jqp
https://typeset.io/topics/model-checking-sm4abkf0
https://typeset.io/papers/parallel-state-space-construction-for-model-checking-rr8lyts8o5
https://typeset.io/papers/distributed-ltl-model-checking-in-spin-2ufrp4qz6h
https://typeset.io/papers/parallelizing-the-murphi-verifier-31seg1w4rd
https://typeset.io/papers/parallelizing-the-murph-verifier-3bwytsk29u
https://typeset.io/papers/parallelizing-the-murph-verifier-5brcg9g0q1
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/distributed-memory-model-checking-with-spin-1z3sek186w
https://twitter.com/intent/tweet?text=Distributed-Memory%20Model%20Checking%20with%20SPIN&url=https://typeset.io/papers/distributed-memory-model-checking-with-spin-1z3sek186w
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/distributed-memory-model-checking-with-spin-1z3sek186w
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/distributed-memory-model-checking-with-spin-1z3sek186w
https://typeset.io/papers/distributed-memory-model-checking-with-spin-1z3sek186w

Distributed-Memory Model Cheking with SPIN

Flavio Lerda and Riardo Sisto

Dipartimento di Automatia e Informatia
Politenio di Torino

Corso Dua degli Abruzzi, 24, I-10129 Torino (Italy)
e-mail: flerda�athena.polito.it, sisto�polito.it

Abstrat. The main limiting fator of the model heker SPIN is ur-
rently the amount of available physial memory. This paper explores the
possibility of exploiting a distributed-memory exeution environment,
suh as a network of workstations interonneted by a standard LAN, to
extend the size of the veri�ation problems that an be suessfully han-
dled by SPIN. A distributed version of the algorithm used by SPIN to
verify safety properties is presented, and its ompatibility with the main
memory and omplexity redution mehanisms of SPIN is disussed. Fi-
nally, some preliminary experimental results are presented.

1 Introdution

The model heker SPIN [4℄ is a tool widely used to verify onurrent system
models. Its suess depends on many fators, among whih its amazing eÆieny
in performing model heking and its portability, i.e. the fat that, being written
in ANSI C, it runs on most omputer platforms.

The main limitation of SPIN, of ourse shared by all other veri�ation tools
based on reahability analysis, is that it an deal with models up to a given max-
imum size. As a model gets larger and larger, also the memory usage inreases,
and when the amount of memory used beomes greater than the available phys-
ial memory, the workstation is fored to use virtual memory. Sine the memory
is mainly alloated for a hash table, whih is aessed randomly, the system will
proeed slowly due to thrashing. In pratie, it an be observed with SPIN that
when the memory used is less than the physial available memory the perfor-
mane of the model heker is exellent, and exeution time is generally at most
in the order of minutes, but as soon as the physial memory is exhausted the per-
formane drops down dramatially. As a onsequene, the maximum model size
that SPIN an deal with depends essentially on the amount of physial memory
that is available.

Various tehniques are used by SPIN to redue the amount of memory needed
for veri�ation, thus making the analysis of larger models possible. The main
examples are state ompression, partial order redutions and bit state hashing.
A di�erent tehnique that ould be applied to further extend the size of the
veri�ation problems that an be suessfully handled by SPIN is the use of
a distributed-memory environment suh as a network of workstations (NOW),

whih is ultimately a way to inrease the amount of atually available physi-
al memory, and to inrease the speed of the veri�ation proess by exploiting
parallel proessing. In this paper we explore this possibility and present some
preliminary results. Attention is foused here only on veri�ation of safety prop-
erties suh as deadloks and assertions, and not on LTL model heking, whih
is left for further study.

As memory in SPIN is used mainly to store states, the distributed version
of SPIN that we onsider is based on a partition of the state spae into as
many state regions as the number of network nodes. Eah node is assigned a
di�erent state region, and holds only the states belonging to that subset. In
this way, the state table is distributed over a NOW. Eah node omputes the
suessors of the states that it holds and, if it �nds any suessors belonging to
other state regions, it sends them to the nodes that are in harge of proessing
them. Of ourse, performane depends on how the state spae is partitioned, the
best results being obtained if the workload is well balaned and ommuniation
is minimized. In this paper we onsider di�erent possible approahes to the
partitioning problem and ompare them.

Another important issue that must be taken into onsideration is that a
distributed version of SPIN should not exlude the use of the other main memory
and omplexity redution tehniques available in the entralized version, suh as
state ompression, partial order redution, and bit state hashing. The approah
that we onsider in this paper is haraterized by good ompatibility with suh
mehanisms.

Sine one of the strengths of SPIN stands in its portability and widespread
use, we deided to develop an experimental distributed version of SPIN that an
run on a very ommon platform: a NOW made up of heterogeneous worksta-
tions, interonneted with a standard 10Mbps Ethernet and using the TCP/IP
protool. Of ourse, more sophistiated ommuniation infrastrutures may yield
better performane, but the basi environment that we onsidered is generally
available to everyone, and its performane an be onsidered a reasonable lower
bound.

A parallel/distributed version of a reahability analysis model heker, based
on the Mur' Veri�er [2℄, was proposed in [8℄. The approah taken in [8℄ is similar
to our one, but we use di�erent ways to partition the state spae. Moreover, in
ontrast with SPIN, the Mur' model heker uses a model where the omputa-
tion of the next states may be quite omplex, so with Mur' the most ritial
resoure is not memory, but time. As doumented in [8℄, there are ases where
a veri�ation run may take up to several days to omplete. For this reason, the
main purpose of the distributed version of Mur' is to speed up the veri�ation
proess, exploiting parallel proessing. With our distributed version of SPIN
instead we mainly aim at making tratable models that otherwise would be in-
tratable. Moreover, any speed up attained thanks to parallel proessing tends
to be obsured by ommuniation overhead, whih is generally predominant with
respet to the short time taken by SPIN in omputing the next states.

There has been also a previous proposal to develop a distributed model
heker [1℄, in whih the future state omputation and the storage funtion are
loated at di�erent nodes. This arhiteture is more omplex than our one and
the ommuniation overhead is higher beause eah state is transferred at least
two times over the network, sine it has to go from the omputation node that
generated it to the storing node where it is kept for future referene and then
bak again from it to the omputation node that must �nd its suessors.

The rest of the paper is organized as follows. First, the distributed version
of the SPIN veri�ation algorithm is desribed, along with some implementa-
tion issues. Then the ompatibility of this algorithm with the main memory
and omplexity redution mehanisms of SPIN is disussed, and some prelim-
inary experimental results are given. Finally, some onlusions are drawn and
perspetives for further researh are disussed.

2 The Distributed Veri�ation Algorithm

2.1 The Centralized Algorithm

When SPIN must verify safety properties of a onurrent system, suh as proper
termination and state properties, it generates a veri�ation program that makes
a depth �rst visit of the system state spae graph. The following pseudo ode
represents the entralized version of suh a program:

proedure Start(start_state);

begin

V := {}; { already visited states }

DFS(start_state);

end;

proedure DFS(state);

begin

if not state in V then

begin

V := V + state;

for eah sequential proess P do

begin

nxt = all transitions of P enabled in state

for eah t in nxt do

begin

st = suessor of state after t

DFS(st);

end;

end;

end;

end;

The proedure DFS makes a depth �rst visit of the graph, and is �rst alled
on the initial state (start state). If the state to visit is not already present in the
set of visited states V, it is added to V, and the DFS proedure is reursively
alled for eah of its possible suessors st. The omputation of the suessors
onsists of identifying the enabled transitions of the proesses making up the
model and determining the suessor of the urrent state after eah of suh
transitions. When an already visited state is found, the visit does not proeed
any deeper.

For eÆieny, the reursive DFS proedure is simulated by means of a user
de�ned stak that ontains the moves made from the initial state to the urrent
state, along with all the information needed to restore the urrent state after a
simulated reursive all of DFS(st). The set of visited states V is implemented by
an hash table with ollision lists, whih is generally the most memory onsuming
data struture, its size being proportional to the number of states in the state
graph. Also the stak data struture an onsume a onsiderable amount of
memory, beause its size is proportional to the depth of the state graph, whih,
in some ases, an be omparable with the number of states.

2.2 The Distributed Algorithm

The idea at the basis of the distributed version of the veri�ation algorithm is to
partition the state spae into as many subsets as the number of network nodes.
Every node owns one of the state subsets, and is responsible for holding the
states it owns and for omputing their suessors. When a node omputes a new
state, �rst it heks if the state belongs to its own state subset or to the subset
of another node. If the state is loal, the node goes ahead as usual, otherwise a
message ontaining the state is sent to the owner of the state. Reeived messages
are held in a queue and proessed in sequene. When all queues are empty and
all nodes are idle the veri�ation ends.

The following pseudoode illustrates the algorithm used in the distributed
version:

proedure Start(i, start_state);

begin

V[i℄ := {}; { already visited states }

U[i℄ := {}; { pending queue }

j := Partition(start_state);

if i = j then

begin

U[i℄ := U[i℄ + start_state;

end;

Visit(i);

end;

proedure Visit(i);

begin

while true do

begin

while U[i℄ = {} do

begin

end;

S := extrat(U[i℄);

DFV(i,S);

end;

end;

proedure DFV(i, state);

begin

if not state in V then

begin

V[i℄ := V[i℄ + state;

for eah sequential proess P do

begin

nxt = all transitions of P enabled in state

for eah t in nxt do

begin

st = suessor of state after t

j := Partition(st);

if j = i then

begin

DFV(i, st);

end else begin

U[j℄ := U[j℄ + st;

end;

end;

end;

end;

end;

The nodes that partiipate in the algorithm exeute all the same program,
but eah one of them alls the Start proedure with a di�erent value of i, whih
is an integer index that identi�es it. The set of visited states V is partitioned,
V[i℄ being the subset assigned to node i, and Partition(s) being the funtion that
takes a state s and returns the identi�er of the node that owns s. Eah node
is oupled asynhronously with the other ones by means of an input pending
requests queue. U[i℄ indiates the queue of node i. It is initially empty for every
node but the one that owns the initial state.

Every node starts the visit (proedure Visit) waiting until a state is present
in its input pending requests queue. At the beginning, only one node, the one
that owns the initial state, has a non-empty queue and an proeed alling the
DFV proedure. This proedure is almost the same as the previous proedure
DFS. It performs a depth �rst visit of the state spae graph, starting from the

argument state, but the visit is restrited within the state spae region owned
by the node. The visit is not performed if the state has already been visited.
If instead the state is new, it is added to the visited states set V[i℄. Then eah
suessor of the urrent state is omputed in the usual way and heked with the
Partition funtion. If the state st is loal, i.e. it is owned by the same node, the
proedure DFV is reursively alled for that state, otherwise DFV is not alled
and the state is added to the pending requests queue of the orresponding node,
whih will ontinue the interrupted visit in its own state spae region.

The main onsequene of using this algorithm instead of the entralized one
is that the visit does no longer follow the depth �rst order globally. >From the
orretness point of view, this is not a problem with the standard reahability
analysis veri�ation of safety properties that we onsider in this paper, beause
it works with a non depth �rst visit as well. LTL veri�ation instead needs a
(nested) depth �rst visit to give the orret results so the algorithm presented
here is not adequate for this kind of veri�ation. Of ourse it would be possible
to modify the algorithm to make the visit depth �rst, but this would ut o� most
of the parallel proessing involved in the algorithm. >From the memory usage
point of view, a new data struture U[i℄ has been introdued, whih inreases
the overall amount of memory needed. On the other hand, the non depth �rst
order of the visit makes it possible to use a smaller stak struture, whih an
ompensate for this memory inrease. Moreover, the amount of memory needed
for the pending requests queue an be bounded if some kind of ow ontrol poliy
is applied.

2.3 The Partition Funtion

The Partition funtion that takes a state and returns the identi�er of the region
to whih it belongs must depend exlusively on the state itself. Moreover, to bal-
ane the workload among the nodes, in terms of both memory and omputation
time, it should divide the state spae evenly. Finally, to minimize ommuni-
ation overhead, it should minimize ross-transitions, i.e. transitions between
states belonging to di�erent regions.

A �rst simple possibility for partitioning is to use the same hash funtion
that is applied to the state when it is stored in the hash table, as suggested
in [8℄ for the parallelization of Mur'. In the ase of an homogeneous network
of workstations, this solution an be implemented very easily in a distributed
SPIN program working with the above algorithm, but in the ase of an hetero-
geneous one it annot be implemented unless the hash funtion used by SPIN
is modi�ed. In fat, state vetors, i.e. the binary representations that SPIN uses
for states, are di�erent on di�erent omputer arhitetures, and the hash fun-
tion of SPIN depends on suh representations. Another problem with the hash
partition funtion is that, although as shown in [8℄ it statistially divides the
state spae evenly, it does not address the problem of minimizing the number of
ross-transitions.

Here we propose also another way to solve the partitioning problem, that
exploits the struture of the global system states in SPIN.

SPIN is used to verify models of systems made up of synhronously or asyn-
hronously oupled onurrent proesses, where eah proess is desribed by a
state mahine. In suh models, a global state ontains a state omponent for
eah onurrent proess. Sine a state transition generally involves only few pro-
esses, generally one proess for loal ations or asynhronous interations and
two proesses for synhronous interations, when the system evolves from one
state to another state only few state omponents hange, the majority of them
remaining una�eted. Based on these onsiderations, a onvenient yet simple
partitioning rule onsists of de�ning the partition subsets aording to the val-
ues taken by just one of the state omponents. In pratie, the state region to
whih a state belongs depends only on the state omponent of one of the on-
urrent proesses making up the model, alled the designated proess. Suh a
proess an be for instane the one in a partiular position in the state vetor or
the �rst one of a partiular type. A table gives the orrespondene between the
states of the designated proess and the state spae subsets. With this kind of
partition funtion, ross-transitions are transitions that determine a state hange
in the designated proess, and, beause of the above onsiderations, they are a
limited fration of the total. Moreover, some preliminary experiments show that
partitions generated in this way are suÆiently well balaned.

The intuitive results that have just been presented an be on�rmed by a
simple analysis of the average features of the two partition funtions. Let P , S
and T be respetively the number of proesses, of states and of state transitions
in the model to be analyzed. Also, let N be the number of nodes used for
distributed-memory reahability analysis. In general, the partition funtion is a
funtion � : S ! f1; :::; Ng, mapping global states to integers in the range from
1 to N .

With hash partitioning, states are mapped randomly and uniformly over
state spae regions. Hene, the average fration of states belonging to a given
region is 1=N . For what onerns ross transitions, let us onsider a generi state
s 2 S, and let Ts be the set of transitions starting from s, and Ds be the set
of destination states of transitions in Ts. If we assume that there are no self
transitions (i.e. transitions that do not hange the global model state), beause
of the uniform distribution of states over regions, we an say that the average
fration of elements of Ds belonging to the same state region of s is 1=N . Hene,
the average fration of elements of Ds belonging to other regions is 1 � 1=N ,
and this represents also the average fration of ross-transitions. Although this
result does not take into aount self-transitions, it an be onsidered a good
approximation, beause generally the fration of self transitions is negligible in
that it is very unommon that a transition does neither hange the values of any
of the variables nor the "program ounter" of any of the proesses in the model.

Let us now onsider the ase of a partition funtion that depends on one state
omponent only. Eah state s of the model to be analyzed is omposed of several
state omponents, si 2 Si, i.e. s = (s1; :::; sm). Let sd be the state omponent
representing the state of the designated proess, and �d : Sd ! f1; :::; Ng be the
loal partition funtion de�ned on the designated proess state spae Sd. The

partition funtion that we are onsidering is one suh that �(s1; :::; sm) = �d(sd).
Let us assume that �d is seleted so as to divide Sd into N equally sized subsets.
In this ase, the average fration of global states s = (s1; :::; sm) suh that �d(sd)
takes a given value is 1=N , and this is also the average fration of global states
belonging to a given region. With a partition funtion depending on one state
omponent only, a ross transition is a transition that implies a hange in the
designated proess state omponent from sd to s

0

d
, suh that �d(sd) 6= �d(s

0

d
). Let

k be the average number of proesses involved in a transition, whih is a value
ranging between 1 and 2. Then, k=P represents the average fration of proesses
involved in a transition. Assuming that eah proess has the same hane of being
involved in a transition, k=P represents also the average fration of transitions
that a given proess is involved into. So we an say that the designated proess is
involved on average in a fration k=P of the transitions. If we all �d the fration
of ross transitions in the designated proess state mahine, i.e. the fration of
loal transitions of the designated proess suh that the starting state and the
ending state are mapped to di�erent regions, then we an onlude that the
average fration of ross transitions in the global state mahine is �dk=P .

This simpli�ed analysis shows that on average the two partition funtions
both divide evenly the state spae. However, the average fration of ross transi-
tions is (N�1)=N with hash partitioning whereas it is �dk=P with a partitioning
funtion based on one state omponent only. It an be observed that the �rst
ratio tends to approah 1 as N beomes large, whereas in the seond one only
the �d fator gets lose to 1, the average fration of ross transitions remaining
always less than k=P .

2.4 Keeping Trak of Error Traes

If an error is found during the visit of the state spae graph, the veri�ation
program must produe the trae of the model ations that lead to the error. In
the entralized version of the program, this is done simply traversing the stak
struture. In the distributed version, a similar approah is possible, but eah
node must hold the whole stak, ontaining the moves from the initial state to
the urrent state, and not only the part of it orresponding to the exeution of
the DFV proedure. To make this possible, the message used to send a state to
another node ontains not only the state representation, but also the path that
leads to that state, represented as a sequene of moves. The reeiver uses the
state representation to deide if the state has already been visited and eventually
disards the message. If instead the state is new, the path is added to a list of
paths representing the U[i℄ queue. Later on, when a path is dequeued, it is used
to rereate the orresponding state: the path is followed, and every move in it
is exeuted. In this way, the stak is automatially initialized to ontain the
exeution path that leads to the urrent state. When an error ours, the node
behaves as in the entralized program.

For eÆieny, in our experimental implementation of the algorithm, paths
sent together with state representations are not absolute, but relative to the
previous path sent. Moreover, they are represented in a ompat way, using a

simple run-length ompression. In this way, the average message sizes are kept
within reasonable values.

2.5 Algorithm Termination

The distributed algorithm must terminate when the U[i℄ queues are all empty
and all nodes are idle. The detetion of this ondition is a typial problem of a
lass of distributed algorithms, inluding parallel disrete event simulation, and
an be solved in di�erent ways [7℄. Here we sketh a possible solution, whih has
been used in the experimental implementation of the algorithm.

We use a manager proess that is in harge of starting the veri�ation pro-
gram in a predetermined set of network nodes, and of stopping it after having
deteted termination and olleted the results. Eah node sends to the man-
ager a message when it beomes idle and a di�erent one when it beomes busy,
i.e. when its queue beomes non-empty. In this way, the manager has a loal
representation of the urrent status of all the nodes.

When the manager detets on its loal opy that all nodes are idle, it asks for
a on�rmation, beause the loal opy of the manager ould be non onsistent
with the atual status of the nodes. If in the meanwhile a node has reeived a new
message ontaining a new state to be visited, and then has beome busy, it sends
bak a negative aknowledgment. Positive aknowledgments also ontain the
total number of messages sent and reeived by the node. The manager ommands
the nodes to terminate if eah of them sent a positive aknowledgment and the
overall number of messages sent is equal to the overall number of messages
reeived. If this is not the ase, there are some messages still traveling in the
network. In this ase the manager does not know if suh messages will ause a
node to start a new visit, beause they may ontain already visited states, so
the manager needs to reset the proedure and then ask for a new on�rmation
round from all the nodes again.

2.6 Other Implementation Issues

An experimental modi�ed version of the model heker SPIN that generates a
distributed version of the veri�ation program aording to the above algorithm
has been implemented. The generated soure �les an be used to make both the
entralized and the distributed versions of the program, depending on a maro
de�nition.

One of the main objetives (and also a main problem to solve) was to get
the veri�ation work on a network of heterogeneous workstations. Our �rst try
was to use the PVM library [3℄, whih is a widely used pakage that provides
a transparent message passing interfae for networks of heterogeneous worksta-
tions. This possibility was later abandoned, beause of the overhead introdued
and beause of the need to implement ow ontrol over the PVM layer. In fat
the PVM library bu�ers messages in the reeiving mahine memory without lim-
itations, and this may ause memory overow problems. We deided then to use
the soket interfae, that provides standard bidiretional onnetions where ow

ontrol is already implemented. On top of it we used an XDR (eXternal Data
Representation) layer, to make the transfer of data between di�erent arhite-
tures transparent. The program has been suessfully tested on three di�erent
platforms: Intel - Linux, Alpha - Digital Unix, and Spar - SunOS.

3 Compatibility with Memory and Complexity Redution

Mehanisms

Whenever a new tehnique to extend the apabilities of a tool like SPIN is
introdued, it is important to verify that it is ompatible with the memory
and omplexity redution mehanisms available in the basi version of the tool,
otherwise the implied risk is that the overall performane of the tool is not really
extended by the introdution of the new tehnique, but possibly redued.

In this setion, the main redution mehanisms of SPIN are onsidered and
ompatibility with eah of them is disussed. Some of them have already been
implemented in our experimental distributed version of SPIN, whereas others
an be easily added.

3.1 State Compression

SPIN implements various shemes of ompression, that are used for reduing the
amount of memory needed for storing states, but whihever ompression teh-
nique is used, the state is always omputed in its unompressed form, and then
it is ompressed before being stored. In the distributed version of the program,
the hash table is divided into di�erent sub-tables, and for eah of them any
ompression mehanism an be applied for storing states, without limitations.

Although the use of any ompression tehnique is always possible, there may
be performane impliations. In its simplest form, ompression is a funtion
f that transforms a state s into a ompat representation f(s). The original
representation s an be retrieved applying the inverse of f . Other ompression
shemes are haraterized by memory, i.e. the result of the ompression funtion
depends on the history of ompression operations previously performed. In the
distributed version of the program, two aspets play an important role: the kind
of ompression that is used (with or without memory) and the heterogeneity of
the network nodes.

If the network nodes are homogeneous, the state representation is the same
on any network node. If a memoryless ompression sheme is used, states an be
sent in their ompressed form and the amount of memory needed to store states
is the same as in the entralized version. Moreover, in this ase ompression
ontributes to redue the ommuniation overhead. If instead a ompression
sheme with memory is used, states must be sent in their unompressed form,
and ompression must be performed at the reeiver side, otherwise the reeiver
may not be able to reonstrut the unompressed state from the ompressed one.
In addition, the behavior of the ompression funtion may be di�erent from the
one in the entralized version.

In an heterogeneous environment, the representations of a given state di�er
from node to node. For this reason, the state must be transformed into a mahine-
independent representation suh as XDR before being sent to another network
node. Let us all g the funtion that transforms a state s into its mahine-
independent form g(s). Sine the ompression mehanisms of SPIN work on the
mahine-dependent representation of s, in this ase the sender must send g(s),
and the reeiver will reonstrut s from g(s) and then apply f before storing s.

In our experimental implementation we inluded the two main ompression
shemes of SPIN, i.e. standard ompression and ollapse ompression.

3.2 Partial Order Redution

SPIN uses a stati partial order redution tehnique [6℄, whih is a means to
avoid the exploration of some exeution sequenes that are not stritly required
to prove the safety or liveness properties of the onurrent system being ana-
lyzed. When this redution method is applied, the expansion step in whih the
suessors of a state are omputed is modi�ed, with the aim of omputing only
a minimal subset of all the possible suessors. The expansion step is performed
expanding eah onurrent proess, i.e. omputing the possible state transitions
of eah proess, and, for eah of suh transitions, omputing the global suessor
state. Before the atual expansion step is arried out, proesses are examined se-
quentially, to identify the ones that an exeute only so-alled safe transitions [6℄.
In fat, it has been shown that it is enough to expand just one of suh proesses,
provided that the suessors ful�ll a ondition, known as the redution proviso.
The veri�ation program omputes the suessors generated by the transitions
of eah of the above proesses �rst, and as soon as it �nds one of them that
generates a set of suessors satisfying the redution proviso, it interrupts the
expansion, thus ignoring the suessors generated by the other proesses. In the
worst ase, all the proesses are expanded, and no redution ours. The redu-
tion proviso an be di�erent aording to the kind of properties that redution
must preserve. If only safety properties must be preserved, as we assume in this
paper, it is enough to require, as a redution proviso, that there is at least one
suessor not ontained in the stak [5℄.

In the distributed version of the veri�ation program, the stati information
about whih transitions are safe is known by all the nodes, so any node an
make a preseletion of the proesses, and examine �rst those that an exeute
only suh transitions. However a problem arises when one of the nodes must
hek if the redution proviso is ful�lled. If some of the suessors are stored
outside the node that has omputed them, suh a node annot know by itself
if they are urrently in the stak, beause this information is hold by SPIN in
the state table. Obliging any node to hold a opy of all the states urrently in
the stak is umbersome and memory-onsuming. This problem an be avoided
taking a onservative (worst ase) assumption: suessors that are hold outside
the node where they are omputed are always assumed to be urrently in the
stak. In this way, safety properties are preserved, but it is possible that some

of the redutions that are arried out in the entralized version of the program
annot be arried out also in the distributed version.

It is interesting to note that, if we onsider spei�ally the ase of a parti-
tion funtion that depends on one of the state omponents only, it is possible
to inrease the number of redutions that an be performed. The reason is that
in this ase any transition that does not involve the designated proess is not
a ross-transition, i.e. it leads to a suessor state that is in the same region as
the urrent state. Therefore, the redution proviso an always be heked for all
suh transitions. Moreover, if the designated proess is arranged so as to always
be the last proess that is examined in the preseletion phase, it is expanded
only when no other proess an be expanded. In this way, the number of redu-
tions performed is maximized, and, as an additional side-e�et, the fration of
ross-transitions is further redued. This happens beause, whenever di�erent al-
ternative redutions an be applied, always a redution without ross-transitions
is seleted.

3.3 Bit State Hashing

Bit state hashing is a omplexity redution mehanism that a�ets the way in
whih states are stored in the hash table. It an be onsidered as a ompression
mehanism with loss of information, beause a state is stored in a single bit.
Consequently, the onsiderations made for ompression also apply for bit state
hashing, i.e. the distributed version of the program is ompatible with it.

4 Experimentation and Results

The experimental distributed version of SPIN has been tested on some test
ases, to measure its performane. The testbed that has been used is a NOW
omposed of 300Mhz Pentium II Linux workstations with 64Mbytes of RAM
eah, interonneted with a standard 10Mbps Ethernet LAN. The seleted test
samples are all salable using one or more parameters, and experiments have been
arried out with values of the parameters that are ritial for the workstations
that have been used.

Table 1 ontains the results obtained using three salable samples named
Bakery, Leader, and Philo. For eah sample and eah set of values of the param-
eters the number of states and transitions are reported. Of ourse, the number of
states mainly inuenes memory usage while the number of transitions mainly
inuenes omputation time. The tests were exeuted on a single workstation
with the original entralized program and on two and four workstations with
the distributed one. For eah test ase the average memory usage per node in
megabytes and the exeution time in seonds are reported. All the results are
referred to an exhaustive veri�ation and have been obtained using the XDR
layer and a partition funtion that depends on a single state omponent. Miss-
ing results mean that veri�ation ould not be ompleted beause of memory
alloation failure.

Bakery is a desription of the Lamport's Bakery algorithm for mutual exlu-
sion with N proesses that make at most K attempts. The Bakery sample was
tested using the standard ompression and partial order redution features of
SPIN. Sine partial order redution an alter the number of states and transi-
tions atually explored, the data in the seond and third rows are those reported
by the entralized version. The partial order redution is slightly less e�etive on
the distributed version, and its e�etiveness dereases as the state subsets get
smaller, so the numbers of states and transitions with the distributed version
are greater than with the entralized version. While in the other samples the
memory per node nearly halves when doubling the number of workstations, in
this ase the memory used dereases but not so rapidly. Nevertheless, it an be
observed that, when the total memory usage is higher than the physial memory
available on a single workstation (seond and third olumns), the distributed
version performs better than the entralized one.

Leader is the leader eletion algorithm model that an be found in the SPIN
distribution. It was ompiled with ollapse ompression, but without partial or-
der redutions. The Leader sample memory usage grows very fast. While with
N=6 the distribution of the veri�ation program is still not onvenient beause
of the modest memory usage, with N=7 the load is too heavy for a single work-
station, and gives the best results with 4 workstations. This is an example of a
veri�ation that annot be ompleted on a single workstation, beause of memory
alloation failure, but an be ompleted on multiple workstations. The results
of distributed veri�ation with N=7 are not so good as they ould be, beause
the partition funtion used in the experiment is not so fair. In fat, even if the
average memory usage for eah node is less than the physial memory, we found
that at least one node was thrashing due to its higher number of states to visit.

Philo is a model desribing the dining philosophers problem. It was ompiled
using ollapse ompression and no partial order redution. Also with this sample
the growth is very fast and we pass from N=12, where the most eÆient tehnique
is entralized veri�ation, to N=14, where it is neessary to resort to distributed
veri�ation, and the best results are obtained with four workstations.

In the rest of this setion, additional results are presented that are useful to
analyze a few aspets of the experimental distributed version of SPIN.

Table 2 illustrates the di�erenes in terms of number of messages exhanged,
partition rates, and exeution time when using di�erent partition strategies. The
partition rate is the ratio of the minimum to maximum values of the state spae
region sizes, whih gives a measure of how the workload is balaned.

The �rst strategy, alled ad ho partitioning, is based on a user de�ned parti-
tion funtion that depends on a single state omponent, and is the same used in
the previous tests. This funtion has been de�ned empirially, trying to obtain
a well balaned partition. The seond partitioning funtion, alled hash parti-
tioning, is the one based on the same hash funtion used by SPIN for the hash
table. Finally, modi�ed hash partitioning uses the same hash-based approah,
while retaining the priniple of having a partition funtion that depends on one

Table 1. Performanes of entralized and distributed SPIN

Bakery

Model Parameters N=2 K=20 N=3 K=10 N=4 K=4

States 106063 1877341 2336892

Transitions 129768 2463669 3101854

1 workstation Memory per node 4.68MB 76.45MB 103.06MB
Exeution time 1s 908s 6306s

2 workstation Memory per node 3.01MB 39.7MB 53.57MB
Exeution time 2s 24s 481s

4 workstation Memory per node 2.55MB 34.7MB 51.82MB
Exeution time 23s 235s 330s

Leader

Model Parameters N=5 N=6 N=7

States 41692 341316 2801653

Transitions 169690 1667887 15976645

1 workstation Memory per node 3.78MB 24.57MB -
Exeution time 2s 27s -

2 workstation Memory per node 2.52MB 12.92MB 109.5MB
Exeution time 3s 130s 6687s

4 workstation Memory per node 1.89MB 7.1MB 55.40MB
Exeution time 23s 219s 4577s

Philo

Model Parameters N=12 N=14

States 94376 636810

Transitions 503702 3965261

1 workstation Memory per node 18.1MB -
Exeution time 11s -

2 workstation Memory per node 6.70MB 63.1MB
Exeution time 23s 248s

4 workstation Memory per node 3.94MB 20.89MB
Exeution time 35s 196s

Table 2. A omparison of di�erent partition funtions

Test Sample Partitioning Messages Partition rate Exeution time

Ad Ho 38874 0.7749 10s
Bakery (N=2,K=20) Hash 883297 0.9870 113s

Modi�ed Hash 343340 0.7470 50s

Ad Ho 139293 0.7361 46s
Leader (N=6) Hash 373023 0.9679 121s

Modi�ed Hash 113378 0.7161 45s

Ad Ho 242984 0.9155 155s
Philo (N=14) Hash 1185761 0.9871 403s

Modi�ed Hash 234328 0.8961 155s

state omponent only. This is ahieved omputing the hash funtion on one state
omponent only.

For the Bakery example, we deided to present the results obtained without
partial order redution, beause when this mehanism is used the number of
states varies with the partition funtion, and in this ase we found that the
variane was so high that veri�ation ould not be ompleted when using hash
partitioning, so we were not able to give any data for this kind of partitioning.
This result of ourse on�rms the expeted better performane of the partition
funtions based on one state omponent with respet to partial order redutions.

Another di�erene with respet to the experiments presented in Table 1 is
that here the results are referred to experiments made without the XDR layer,
beause in our implementation hash partitioning works only with this on�gu-
ration. The parameters for the samples are shown in the table. All the results
are relative to a 2 workstations testbed.

The results show that hash partitioning gives the best results in terms of
balaning, but the number of messages annot be ontrolled. This auses an in-
rement in network overhead due to an inreased amount of data transferred,
and, onsequently, an inrement in exeution times. Partition funtions depend-
ing on one state omponent only do not give perfetly balaned workloads, but
they are the most e�etive ones in terms of ompletion time, beause they give
suÆiently well balaned partitions and, at the same time, a low number of
ross-transitions.

Partition funtions based on one state omponent only ould be improved
exploiting knowledge about the system behavior, and statistial data suh as
transition ounts that SPIN an ompute. For example, it is possible to let
SPIN ompute the transition ounts for a smaller sized (saled down) model
and then using these data to drive the de�nition of the partitioning funtion
for the bigger one. However, a manual de�nition of a good partition funtion is
not always easy. A possible improvement may be to introdue a tool that, on a
statistial base, automatially determinates the partition funtion.

Table 3. Evaluation of the overhead due to heterogeneity

Test Sample Transfer Memory per node Exeution time

Bakery (N=3,K=10) Binary 9.36MB 21s
XDR 13.3MB 24s

Leader (N=6) Binary 50MB 46s
XDR 149.9MB 130s

Philo (N=14) Binary 142.3MB 155s
XDR 195.0MB 248s

One of the main goals of the projet was to develop a distributed version of
SPIN that an run on a network of heterogeneous workstations. This require-
ment introdues an overhead, mainly due to internal representation onversions.
Of ourse, when using an homogeneous network of workstations, onversions an
be avoided, and the XDR layer an be eliminated. This an speed up the ver-
i�ation proess, reduing message size, and hene network overhead, but also
memory requirements and and omputation time. Table 3 an be useful to eval-
uate the amount of overhead implied by the XDR layer. It reports the results
obtained using unformatted binary transfer in an homogeneous arhiteture (Bi-
nary Transfer), and those obtained using platform independent transfers (XDR
Transfer), in the same arhiteture. In this ase partial order redution does not
a�et the results, so it has been used in the Bakery sample.

5 Conlusions and Perspetives

We have desribed a distributed-memory algorithm for veri�ation of safety
properties and its experimental implementation within the SPIN model heker.
It has been shown that the algorithm an extend the apabilities of a veri�-
ation tool like SPIN, adding up the physial memory of several workstations
interonneted via a standard LAN, so implementing a distributed virtual ver-
i�er. When this algorithm is applied, it beomes possible to deal with models
larger than those that an be analyzed with a single workstation running the
standard version of SPIN.

Sine SPIN is very eÆient in analyzing the models that �t in the physial
memory of the mahine where it runs, the distributed version of the veri�ation
program performs worse than the entralized version on suh models. Therefore,
the distributed version of SPIN may be useful as a omplementary tool, to be
used instead of the standard version when the model size exeeds the available
physial memory.

The distributed algorithm that has been presented is ompatible with the
main tehniques used by SPIN to improve performane. In partiular, it is om-
patible with ompression tehniques, stati partial order redution tehniques,
and bit state hashing.

One of the most ritial aspets of the distributed veri�ation algorithm is the
funtion that de�nes the partition of the state spae graph. We have onsidered
various possibilities and showed that a funtion that depends on a single state
omponent is advantageous under several points of view, beause it an yield not
only suÆiently well balaned workloads, but also low ommuniation overhead,
and wide appliability of partial order redutions.

In this paper, the possibility of implementing a distributed LTL model hek-
ing based on a nested depth �rst visit of the state spae was not onsidered. This
is however an interesting area for future researh. The main problem that re-
mains to be solved is that the algorithm as it has been proposed here performs
a non depth �rst visit of the state spae. If we introdue some form of synhro-
nization, the network nodes an be fored to perform a depth �rst visit. For
example, eah node would be obliged to wait for a reply from the destination
node whenever it sends a message, and the destination node would ommuni-
ate bak when it has �nished. This kind of algorithm would ut o� most of
the parallel proessing, and its impliations in terms of needed memory must be
investigated.

Another important issue for further study on the distributed veri�ation
algorithm is the automati generation of good partitioning funtions. Of ourse,
optimality annot be ahieved, beause this is an np-hard problem, but good
heuristis, suh as the priniple of having a partition funtion that depends
on a single state omponent, an be found. This point has a relevant pratial
importane, beause asking users to de�ne partition funtions by themselves
may not be aeptable.

Finally, the experiments presented in this paper are only preliminary. We
plan to perform more extensive tests to get additional experimental results and
so be able to give a more omprehensive view of the performane of this tehnique
and of its salability.

Referenes

[1℄ S. Aggarwal, R. Alonso, and C. Couroubetis. Distributed reahability analysis
for protool veri�ation environments. In P. Varaiya and H. Kurzhanski, editors,
Disrete Event Systems: Models and Appliation, volume 103 of LNCIS, pages 40{
56, Berlin, Germany, August 1987. Springer-Verlag.

[2℄ D. L. Dill. The murphi veri�ation system. In Rajeev Alur and Thomas A. Hen-
zinger, editors, Proeedings of the Eighth International Conferene on Computer
Aided Veri�ation CAV, volume 1102 of Leture Notes in Computer Siene, pages
390{393, New Brunswik, NJ, USA, July/August 1996. Springer Verlag.

[3℄ J. Green�eld. An overview of the PVM software system. In Ideas in Siene
and Eletronis Exposition and Symposium. Proeedings: Albuquerque, NM, USA,
May 1995, volume 17 of Annual Ideas in Siene and Eletronis Exposition and
Symposium Conferene, pages 17{23. IEEE Computer Soiety Press, 1995.

[4℄ G. J. Holzmann. The model heker spin. IEEE Trans. on Software Engineering,
23(5):279{295, May 1997.

[5℄ G. J. Holzmann, P. Godefroid, and D. Pirottin. Coverage preserving redution
strategies for reahability analysis. In Pro. 12th Int. Conf on Protool Spei�ation,
Testing, and Veri�ation, INWG/IFIP, Orlando, Fl., June 1992.

[6℄ G. J. Holzmann and Doron Peled. An improvement in formal veri�ation. In
Pro. Formal Desription Tehniques, FORTE94, pages 197{211, Berne, Switzer-
land, Otober 1994. Chapman & Hall.

[7℄ D. M. Niol. Nonommittal barrier synhronization. Parallel Computing,
21(4):529{549, April 1995.

[8℄ U. Stern and D. L. Dill. Parallelizing the murphi veri�er. In Proeedings of the
Nineth International Conferene on Computer Aided Veri�ation CAV, 1997.

