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This work focuses on a class of nonlinear control problems that arise when new con-
trol systems which may use networked sensors and/or actuators are added to already
operating control loops to improve closed-loop performance. In this case, it is desirable
to design the pre-existing control system and the new control system in a way such that
they coordinate their actions. To address this control problem, a distributed model pre-
dictive control method is introduced where both the pre-existing control system and the
new control system are designed via Lyapunov-based model predictive control. Working
with general nonlinear models of chemical processes and assuming that there exists a
Lyapunov-based controller that stabilizes the nominal closed-loop system using only the
pre-existing control loops, two separate Lyapunov-based model predictive controllers are
designed that coordinate their actions in an efficient fashion. Specifically, the proposed
distributed model predictive control design preserves the stability properties of the Lya-
punov-based controller, improves the closed-loop performance, and allows handling
input constraints. In addition, the proposed distributed control design requires reduced
communication between the two distributed controllers since it requires that these con-
trollers communicate only once at each sampling time and is computationally more effi-
cient compared to the corresponding centralized model predictive control design. The
theoretical results are illustrated using a chemical process example. VVC 2009 American
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Introduction

The chemical process industries constitute a key economic
sector in the U.S. and globally. While the range of valuable

assets in a plant is large, nearly all the economic value in
terms of operating profit is a direct result of plant operations.
Therefore, optimal process operation and management of
abnormal situations during plant operation are major chal-
lenges in the process industries since, for example, abnormal
situations account for at least $10 billion in annual lost reve-
nue in the U.S. alone.1 This realization has motivated exten-
sive research in the area of chemical process control to
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ensure safe and efficient process operation. From a control
architecture standpoint, control systems traditionally utilize
dedicated, point-to-point wired communication links to mea-
surement sensors and control actuators to regulate process
variables at desired values. While this paradigm to process
control has been successful, we are currently witnessing an
augmentation of the existing, dedicated local control net-
works, with additional networked (wired and/or wireless) ac-
tuator/sensor devices which have become cheap and easy-to-
install the last few years. Such an augmentation in sensor in-
formation and networked-based availability of data has the
potential2–6 to be transformative in the sense of dramatically
improving the ability of the control systems to optimize pro-
cess performance (i.e., achieving control objectives that go
well beyond the ones that can be achieved with dedicated,
local control systems) and prevent or deal with abnormal sit-
uations more quickly and effectively (fault-tolerance). The
addition of networked sensors and actuators allows for easy
modification of the control strategy by rerouting signals,
having redundant systems that can be activated automatically
when failures occur, and in general, they allow having
improved control over the entire plant.
However, augmenting dedicated, local control systems

(LCS) with control systems that may utilize real-time sensor
and actuator networks gives rise to the need to design/rede-
sign and coordinate separate control systems that operate on
a process. Model predictive control (MPC) is a natural con-
trol framework to deal with the design of coordinated, dis-
tributed control systems because of its ability to handle input
and state constraints, and also because it can account for the
actions of other actuators in computing the control action of
a given set of control actuators in real-time. Motivated by
the lack of available methods for the design of networked
control systems (NCS) for chemical processes, in a recent
work7, we introduced a networked control architecture for
nonlinear processes, shown in Figure 1. In this architecture,
the local, pre-existing control system uses continuous sens-
ing and actuation and an explicit control law (for example,
the local controller is a classical controller, like a propor-
tional-integral-derivative controller, or a nonlinear controller
designed via geometric or Lyapunov-based control methods
for which an explicit formula for the calculation of the con-
trol action is available). On the other hand, the NCS uses
networked (wired or wireless) sensors and actuators and has
access to heterogeneous, asynchronous measurements that
are not available to the LCS. The NCS is designed via Lya-
punov-based model predictive control (LMPC). An important
feature of the NCS architecture of Figure 1 is that there is
no communication between the LCS and NCS since the net-
worked LMPC can estimate the control actions of the local
controller using the explicit formula of this controller, and
thus, it can take into account the actions of the local control-

ler in the computation of its optimal input trajectories. In
this sense, the networked control architecture of Figure 1
can be thought of as a decentralized one. This lack of com-
munication is an appealing feature because the addition of
the NCS does not lead to any modification of the pre-exist-
ing LCS and improves the overall robustness of the com-
bined NCS/LCS architecture (i.e., the achievable closed-loop
performance is invariant to disruptions in the communication
between the NCS and LCS). Within process control, other
important recent work on the subject of networked process
control includes the development of a quasi-decentralized
control framework for multiunit plants that achieves the
desired closed-loop objectives with minimal cross communi-
cation between the plant units.8

Despite this progress, there are important controller design
problems that remain unresolved. For example, when the
LCS is a model predictive control system for which there is
no explicit controller formula to calculate its future control
actions, it is necessary to redesign both the NCS and the
LCS and establish some, preferably small, communication
between them so that they coordinate their actions. To this
end, we will adopt in this work a distributed MPC approach
to the design of the NCS and LCS, as shown in Figure 2. It
is important to remark, at this point, that an alternative
approach to address the integrated design of the NCS and
LCS would be to design a fully centralized MPC to decide
the manipulated inputs of all the control actuators (i.e., both
u1 and u2 in Figure 2). However, the computational com-
plexity of MPC grows significantly with the increase of opti-
mization (decision) variables, which may prohibit certain on-
line centralized MPC applications with a large number of de-
cision variables.
With respect to available results on distributed MPC

design, several distributed MPC methods have been proposed
in the literature that deal with the coordination of separate
MPC controllers that communicate to obtain optimal input
trajectories in a distributed manner; see Refs. 9 and 10 for
reviews of results in this area. In Ref. 11, the problem of dis-
tributed control of dynamically coupled nonlinear systems
that are subject to decoupled constraints was considered. In
Refs. 12 and 13, the effect of the coupling was modeled as a
bounded disturbance compensated using a robust MPC for-
mulation. In Ref. 14, it was proven that through multiple
communications between distributed controllers and using
system-wide control objective functions, stability of the
closed-loop system can be guaranteed. In Ref. 15, distributed
MPC of decoupled systems (a class of systems of relevance
in the framework of multiagents systems) was studied. In

Figure 1. Decentralized networked control architec-
ture.

Figure 2. Distributed LMPC control architecture for
networked control system design.

[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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Ref. 16, an MPC algorithm was proposed under the main
assumptions that the system is nonlinear, discrete-time and
no information is exchanged between local controllers, and
in Ref. 17, MPC for nonlinear systems was studied from an
input-to-state stability point of view.
In the present work, we introduce a distributed model pre-

dictive control method for the design of networked control
systems where both the pre-existing local control system and
the networked control system are designed via Lyapunov-
based model predictive control. The proposed distributed
MPC design—see Figure 2—uses a hierarchical control
architecture in the sense that the LCS stabilizes the closed-
loop system and the NCS takes advantage of additional con-
trol inputs to improve the closed-loop performance. This
hierarchically distributed MPC design is different from pre-
vious distributed MPC designs which decompose a central-
ized control problem spatially. In particular, the proposed
design provides the potential of maintaining stability and
performance in the face of new/failing actuators, (for exam-
ple, the failure of the actuator of the NCS (zero input) does
not affect the closed-loop stability). Working with general
nonlinear models of chemical processes and assuming that
there exists a Lyapunov-based controller that stabilizes the
nominal closed-loop system using only the pre-existing con-
trol loops, two separate Lyapunov-based model predictive
controllers are designed that coordinate their actions in an
efficient fashion. Specifically, the proposed distributed MPC
design preserves the stability properties of the Lyapunov-
based controller, improves the closed-loop performance and
allows handling input constraints. In addition, the proposed
distributed control design requires reduced communication
between the two distributed controllers since it requires that
these controllers communicate only once at each sampling
time and is computationally more efficient compared to the
corresponding centralized MPC design. The theoretical
results are illustrated using a chemical process example.

Preliminaries

Problem formulation

We consider nonlinear process systems described by the
following state-space model

_x tð Þ ¼ f x tð Þ; u1 tð Þ; u2 tð Þ;w tð Þð Þ (1)

where x(t) [ Rnx denotes the vector of process state variables,
u1(t) [ R

nu1 and u2(t) [ R
nu2 are two separate sets of control

(manipulated) inputs and w(t) [ Rnw denotes the vector of
disturbance variables. The two inputs are restricted to be in
two nonempty convex sets U1 ( Rnu1 and U2 ( Rnu2 and the
disturbance vector is bounded, i.e., w(t) [ W where

W :¼ fw 2 Rnws:t:jwj � h; h > 0g:�

We assume that f is a locally Lipschitz vector function
and f(0,0,0,0) ¼ 0. This means that the origin is an equilib-
rium point for the nominal system (system of Eq. 1 with
w(t) ¼ 0 for all t) with u1 ¼ 0 and u2 ¼ 0. System of Eq. 1
is controlled with the two sets of manipulated inputs u1 and

u2, which could be multiple inputs of a system or a single
input divided artificially into two terms (i.e.,
_xðtÞ ¼ f̂ ðxðtÞ; uðtÞ;wðtÞÞ with u(t) ¼ u1(t) þ u2(t)). We also
assume that the state x of the system is sampled synchro-
nously and continuously and the time instants in which we
have measurement samplings are indicated by the time
sequence {tk�0} with tk ¼ t0 þ kD, k ¼ 0, 1, … where t0 is
the initial time and D is the sampling time.

Remark 1. In general, distributed control systems are for-
mulated based on the assumption that the controlled systems
are decoupled or partially decoupled. However, we consider a
fully coupled process model with two sets of possible manipu-
lated inputs; this is a very common occurrence in chemical
process control as we will illustrate in the example of ‘‘Appli-
cation to a Reactor-Separator Process’’ section. It is important
to note that even though we have motivated the control prob-
lem of Eq. 1 by the augmentation of LCS with NCS, the same
control formulation could be used when a new control system
which may use a local control network is added to a process
that already operates under an MPC; see example in ‘‘Applica-
tion to a Reactor-Separator Process’’ section.

Remark 2. We have considered that the full state measure-
ments are available to simplify the notation. The results can be
extended to controllers based on partial state measurement,
continuous/asynchronous measurements, continuous/delayed
measurements, but the complete theoretical development for
these cases is outside the scope of the present manuscript.

Lyapunov-based controller

We assume that there exists a Lyapunov-based controller
u1(t) ¼ h(x(t)) which satisfies the input constraint on u1 for
all x inside a given stability region and renders the origin of
the nominal closed-loop system asymptotically stable with
u2(t) ¼ 0. Using converse Lyapunov theorems, this assump-
tion implies that there exist functions ai(�), i ¼ 1,2,3,4 of
class K† and a control Lyapunov function V for the nominal
closed-loop system which is continuous and bounded in Rnx,
that satisfy the following inequalities

a1 jxjð Þ � V xð Þ � a2 jxjð Þ
@V xð Þ

@x
f x; h xð Þ; 0; 0ð Þ � �a3 jxjð Þ

j @V xð Þ
@x

j � a4 jxjð Þ
h xð Þ 2 U1

for all x [ D ( Rnx where D is an open neighborhood of the
origin. We denote the region Xq

‡ ( D as the stability region of
the closed-loop system under the control u1 ¼ h(x) and u2 ¼ 0.
By continuity, the local Lipschitz property assumed for

the vector field f(x,u1,u2,w) and the fact that the manipulated
inputs u1 and u2 are bounded in convex sets, there exists a
positive constant M such that

f x; u1; u2;wð Þj j � M (3)

for all x [ Xq, u1 [ U1, u2 [ U2 and w [ W. In addition, by the
continuous differentiable property of the Lyapunov function V

*|�| denotes Euclidean norm of a vector.

†A continuous function a : [0,a) ! [0,1) is said to belong to class K if it is
strictly increasing and a(0) ¼ 0.
‡We use Xr to denote the set Xr :¼ {x [ Rnx|V(x) � r}.
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and the Lipschitz property assumed for the vector field
f(x,u1,u2,w), there exist positive constants Lx, Lw such that

j @V

@x
f x; u1; u2;wð Þ � @V

@x
f x0; u1; u2; 0ð Þj � Lxjx� x0j þ Lwjwj:

(4)

for all x,x0 [ Xq, u1 [ U1, u2 [ U2, and w [ W. These constants
will be used in the proof of Theorem 1 in ‘‘Distributed LMPC
stability’’ section.

Remark 3. The assumption that there exists a controller
u1 ¼ h(x) which can stabilize the closed-loop system with u2
¼ 0 implies that, in principle, it is not necessary to use the
extra input u2 in order to achieve closed-loop stability. How-
ever, one of the main objectives of the proposed distributed
control method is to profit from the extra control effort to
improve the closed-loop performance while maintaining the
stability properties achieved by only implementing u1.

Remark 4. Different state feedback control laws for non-
linear systems have been developed using Lyapunov techni-
ques; the reader may refer to Refs. 18–20 for results in this
area including results on the design of bounded Lyapunov-
based controllers by taking explicitly into account input con-
straints for broad classes of nonlinear systems. In the exam-
ple of ‘‘Application to a Reactor-Separator Process’’ section,
we will use the Lyapunov-based feedback control law pro-
posed in Ref. 21 (see also Refs. 22 and 23) which is based
on a control Lyapunov function of the open-loop system.

Remark 5. Note that while there are currently no general
methods for constructing Lyapunov functions for general
nonlinear systems, for broad classes of nonlinear models
arising in the context of chemical process control applica-
tions, quadratic Lyapunov functions are widely used and pro-
vide very good estimates of closed-loop stability regions.

Centralized Lyapunov-based MPC

To take advantage of both sets of manipulated inputs u1
and u2, one option is to design a centralized MPC. To guar-
antee robust stability of the closed-loop system, the MPC
must include a set of stability constraints. To do this, we
propose to use the LMPC method proposed in Refs. 24 and
25 which guarantees practical stability of the closed-loop
system, allows for an explicit characterization of the stability
region and gives a reduced complexity optimization problem.
LMPC is based on uniting receding horizon control with
Lyapunov functions and computes the manipulated input tra-
jectory solving a finite horizon constrained optimal control
problem. The LMPC controller is based on the previously
designed Lyapunov-based controller h. The controller h is
used to define a contractive constraint for the LMPC method
which guarantees that the LMPC inherits the stability and
robustness properties of the Lyapunov-based controller. The
LMPC method introduced in Refs. 24 and 25 is based on the
following optimization problem

min
uc1;uc22SðDÞ

ZND
0

~xT sð ÞQc~x sð ÞþuTc1 sð ÞRc1uc1 sð ÞþuTc2 sð ÞRc2uc2 sð Þ� �
ds

(5a)

s:t: ~x sð Þ ¼ f ~x sð Þ; uc1 sð Þ; uc2 sð Þ; 0ð Þ (5b)

~x 0ð Þ ¼ x tkð Þ (5c)

uc1 sð Þ 2 U1 (5d)

uc2 sð Þ 2 U2 (5e)

@V xð Þ
@x

f x tkð Þ; uc1 0ð Þ; uc2 0ð Þ; 0ð Þ � @V xð Þ
@x

f x tkð Þ; h x tkð Þð Þ; 0; 0ð Þ
(5f)

where S(D) is the family of piece-wise constant functions with
sampling period D, Qc, Rc1, and Rc2 are positive definite
weight matrices that define the cost, x(tk) is the state
measurement obtained at tk, ~x is the predicted trajectory of
the nominal system for the input trajectory computed by the
LMPC, N is the prediction horizon and V is the Lyapunov
function corresponding to the controller h(x).
The optimal solution to this optimization problem is

denoted by u�c1(s|tk) and u
�
c2(s|tk). The LMPC controller is

implemented with a receding horizon method; that is, at
each sampling time tk, the new state x(tk) is received from
the sensors, the optimization problem of Eq. 5 is solved, and
u�c1(t�tk|tk) and u�c2(t�tk|tk) are applied to the closed-loop
system for t [ [tk, tkþ1). In what follows, we refer to this
controller as the centralized LMPC. Figure 3 shows a sche-
matic of this kind of control system.
The optimization problem of Eq. 5 does not depend on

the uncertainty and assures that the system in closed-loop
with the LMPC controller of Eq. 5 maintains the stability
properties of the Lyapunov-based controller u1 ¼ h(x) with
u2 ¼ 0. The contractive constraint of Eq. 5f guarantees that
the value of the time derivative of the Lyapunov function at
the initial evaluation time of the centralized LMPC is lower
or equal to the value obtained if only the Lyapunov-based
controller u1 ¼ h(x(tk)) is implemented in the closed-loop
system. This is the contractive constraint that allows one to
prove that the centralized LMPC inherits the stability and
robustness properties of the Lyapunov-based controller h.
The manipulated inputs of the closed-loop system under

the above centralized LMPC are defined as follows

u1 tð Þ ¼ u�c1 t� tkjtkð Þ; 8t 2 ½tk; tkþ1Þ
u2 tð Þ ¼ u�c2 t� tkjtkð Þ; 8t 2 ½tk; tkþ1Þ:

(6)

The main property of the centralized LMPC is that the or-
igin of the closed-loop system is practically stable for all ini-
tial states inside the stability region Xq for a sufficient small
sampling time D and disturbance upper bound y. This

Figure 3. Centralized control system.
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property is also guaranteed by the Lyapunov-based controller
when this controller is implemented in a sample-and-hold
fashion (see Refs. 26 and 27 for results on sampled-data sys-
tems). The main advantage of LMPC approaches with
respect to the Lyapunov-based controller is that optimality
considerations can be taken explicitly into account (as well
as constraints on the inputs and the states25) in the computa-
tion of the controller within an online optimization frame-
work while improving the closed-loop performance.

Distributed LMPC

Distributed LMPC formulations

The objectives of this work are to propose a control archi-
tecture that has the potential to maintain the closed-loop sta-
bility and performance in face of new or failing actuators
and to reduce the computational burden in the evaluation of
the optimal manipulated inputs for systems with a high-num-
ber of control inputs that can be divided into two sets. Note
that in general, the coordination of two controllers to regu-
late the same process is a difficult problem. In the present
work, we design two separate LMPCs to compute u1 and u2
and refer to the LMPC computing the trajectories of u1 and
u2 as LMPC 1 and LMPC 2, respectively. Figure 2 shows a
schematic of the proposed distributed method. We propose
to use the following implementation strategy:
(1) At each sampling instant tk, both LMPC 1 and LMPC

2 receive the state measurement x(tk) from the sensors.
(2) LMPC 2 evaluates the optimal input trajectory of u2

based on the current state measurement and sends the first
step input value to its corresponding actuators and the entire
optimal input trajectory to LMPC 1.
(3) Once LMPC 1 receives the entire optimal input trajec-

tory for u2 from LMPC 2, it evaluates the future input trajec-
tory of u1 based on x(tk) and the entire optimal input trajec-
tory of u2 computed by LMPC 2.
(4) LMPC 1 sends the first step input value of u1 to the

corresponding actuators.
First we define the optimization problem of LMPC 2. This

optimization problem depends on the latest state measure-
ment x(tk), however, LMPC 2 does not have any information
about the value that u1 will take. In order to make a deci-
sion, LMPC 2 must assume a trajectory for u1 along the pre-
diction horizon. To this end, the Lyapunov-based controller
u1 ¼ h(x) is used. To inherit the stability properties of this
controller, u2 must satisfy a contractive constraint that guar-
antees a given minimum decrease rate of the Lyapunov func-
tion V. The proposed LMPC 2 is based on the following
optimization problem:

min
ud22SðDÞ

ZND
0

~xT sð ÞQc~x sð Þ þ uTd1 sð ÞRc1ud1 þ uTd2 sð ÞRc2ud2 sð Þ� �
ds

(7a)

_~x sð Þ ¼ f ~x sð Þ; ud1 sð Þ; ud2 sð Þ; 0ð Þ (7b)

ud1 sð Þ ¼ h ~x jDð Þð Þ; 8s 2 ½jD; jþ 1ð ÞDÞ; j ¼ 0;…;N � 1 (7c)

~x 0ð Þ ¼ x tkð Þ (7d)

ud2 sð Þ 2 U2 (7e)

@V xð Þ
@x

f x tkð Þ;h x tkð Þð Þ;ud2 0ð Þ;0ð Þ�@V xð Þ
@x

f x tkð Þ;h x tkð Þð Þ;0;0ð Þ
ð7fÞ

where ~x is the predicted trajectory of the nominal system with
u2 being the input trajectory computed by the LMPC of Eq. 7
(i.e., LMPC 2) and u1 being the Lyapunov-based controller
h(x(tk)) applied in a sample and hold fashion. The optimal
solution to this optimization problem is denoted by u�d2(s|tk).
This information is sent to LMPC 1. The constraint of Eq. 7e
defines the constraint on the manipulated input u2 and the
contractive constraint of Eq. 7f guarantees that the value of the
time derivative of the Lyapunov function at the initial
evaluation time, if u1 ¼ h(x(tk)) and u2 ¼ u�d2(0|tk) are applied,
is lower or equal to the value obtained when u1 ¼ h(x) and u2
¼ 0 are applied.
The optimization problem of LMPC 1 depends on the lat-

est state measurement x(tk) and the decision taken by LMPC
2 (i.e., u�d2(s|tk)). This allows LMPC 1 to compute an input
u1 such that the closed-loop performance is optimized, while
guaranteeing that the stability properties of the Lyapunov-
based controller are preserved. Specifically, LMPC 1 is
based on the following optimization problem:

min
ud12SðDÞ

ZND
0

~xT sð ÞQc~x sð Þ þ uTd1 sð ÞRc1ud1
�

þ u�Td2 sjtkð ÞRc2u�d2 sjtkð Þ�ds ð8aÞ

_~x sð Þ ¼ f ~x sð Þ; ud1 sð Þ; u�d2 sjtkð Þ; 0� �
(8b)

~x 0ð Þ ¼ x tkð Þ (8c)

ud1 sð Þ 2 U1 (8d)

@V xð Þ
@x

f x tkð Þ; ud1 0ð Þ; u�d2 0jtkð Þ; 0� � � @V xð Þ
@x

f x tkð Þ; h x tkð Þð Þ;ð
u�d2 0jtkð Þ; 0Þ ð8eÞ

where ~x is the predicted trajectory of the nominal system
with u2 being the optimal input trajectory u�

d2(s|tk)
computed by LMPC 2 and u1 being the input trajectory
computed by the LMPC of Eq. 8d (i.e., LMPC 1). The
optimal solution to this optimization problem is denoted by
u�
d1(s|tk). The constraint of Eq. 8d defines the constraint on
the manipulated input u1 and the contractive constraint of
Eq. 8e guarantees that the value of the time derivative of
the control Lyapunov function at the initial evaluation time,
if u1 ¼ u�d1(0|tk) and u2 ¼ u�

d2(0|tk) are applied, is lower or
equal to the value obtained when u1 ¼ h(x(tk)) and u2 ¼
u�
d2(0|tk) are applied.
Once both optimization problems are solved, the mani-

pulated inputs of the proposed distributed LMPC design
based on the above LMPC 1 and LMPC 2 are defined as
follows:

u1 tð Þ ¼ u�d1 t� tkjtkð Þ; 8t 2 ½tk; tkþ1Þ
u2 tð Þ ¼ u�d2 t� tkjtkð Þ; 8t 2 ½tk; tkþ1Þ:

(9)
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Remark 6. We do not consider delays introduced in the
system by the communication network or by the time needed
to solve each of the LMPC optimization problems. In future
works, these delays will be taken into account in the formu-
lation of the controllers.

Remark 7. At step 2 of the proposed implementation
strategy, the whole optimal input trajectory of LMPC 2 is
sent to LMPC 1. From the stability point of view, it is
unnecessary to send the whole optimal input trajectory. Only
the first step of the optimal input trajectory of LMPC 2 is
needed to send to LMPC 1 in order to guarantee the stability
of the closed-loop system under the distributed LMPC
method (please see ‘‘Distributed LMPC stability’’ section for
the proof of the closed-loop stability). Thus, the communica-
tion between the two LMPCs can be minimized by only
sending the first step of an optimal input trajectory without
loss of the closed-loop stability. However, the transmission
of the whole optimal trajectory at a sampling time can, to
some extend, improve the closed-loop performance because
LMPC 1 has more information on the possible future input
trajectory of LMPC 2.

Remark 8. The key idea of the proposed distributed LMPC
formulation is to impose a hierarchy on the order in which the
controllers are evaluated in order to guarantee that the result-
ing control action stabilizes the system. In this paper, we
assume flawless communications. If data losses are taken into
account, the control method has to be modified because at
each time step coordination between both LMPCs is not guar-
anteed.

Remark 9. Since the computational burden of nonlinear
MPC methods is usually high, the proposed distributed
LMPC design only requires LMPC2 and LMPC 1 to ‘‘talk’’
once every sampling time (that is, LMPC 2 sends its optimal
input trajectory to LMPC 1) to minimize the communication
between the two LMPCs. This strategy is more robust when
communication between the distributed LMPCs can be sub-
ject to disruption.

Remark 10. Constraints of Eqs. 7f, 8b and 8e are a key
element of the distributed LMPC design. In general, guaran-
teeing closed-loop stability of a distributed control method is
a difficult task because of the interactions between the sepa-
rate controllers and can only be done under certain assump-
tions (see, for example, Refs. 9 and 10). Constraint of Eq.
8b guarantees that LMPC 1 takes into account the effect of
LMPC 2 to the applied inputs (recall that LMPC 2 is
designed without taking LMPC 1 into account). Constraints
of Eqs 7f and 8e together with the hierarchical control strat-
egy (i.e., LMPC 2 is solved first and LMPC 1 is solved sec-
ond) guarantee that the value of the Lyapunov function of
the closed-loop system is a decreasing sequence of time with
a lower bound.

Remark 11. Note that the stability of the closed-loop sys-
tem is inherited from the Lyapunov-based controller u1 ¼
h(x). Once the contractive constraints of Eqs. 7f and 8e are
satisfied, the closed-loop stability is guaranteed. The main
purpose of LMPC 1 and LMPC 2 is to optimize the inputs u1
and u2. Thus, during the evaluation of the optimal solutions
of LMPC 1 and LMPC 2 within a sampling period, we can
terminate the optimization (i.e., limit the function evaluation
times in the process of searching for the optimal solutions) to
obtain suboptimal input trajectories without loss of the closed-

loop stability. An extreme application of this idea is when the
optimization process is terminated at the beginning of every
optimization process which gives the inputs: u1(t) ¼ h(x(tk))
and u2(t) ¼ 0 for t [ [tk,tkþ1), which guarantees stability of
the closed-loop system but not optimal performance.

Remark 12. In the distributed LMPC design, LMPC 2 and
LMPC 1 are evaluated in sequence, which implies that the
minimal sampling time of the system should be greater than or
equal to the sum of the evaluation times of LMPC 2 and
LMPC 1. To achieve that the two distributed LMPC optimiza-
tion problems can be solved in parallel, LMPC 1 can use old
input trajectories of LMPC 2, that is, at tk, LMPC 1 uses
u�2(t�tk�1|tk�1) to define its optimization problem. This strat-
egy may introduce extra errors in the optimization problem,
however, and may not guarantee closed-loop stability.

Remark 13. In this work, state constraints have not been
considered but the proposed distributed LMPC approach can
be extended to handle state constraints by restricting the
closed-loop stability region further to satisfy the state con-
straints; please see Ref. 25 for more results on this issue.

Remark 14. The contractive constraints of Eqs. 7f and 8e
guarantee that the choice of u2 cannot render LMPC 1 infea-
sible. In addition, the two constraints guarantee that the pro-
posed scheme inherits the stability region of the Lyapunov-
based controller h(x).

Distributed LMPC stability

Statement of Stability Results and Discussion. In this
subsection, we present the stability properties of the distrib-
uted LMPC design. The proposed distributed LMPC method
computes the inputs u1 and u2 applied to the system in a
way such that in the closed-loop system, the value of the
Lyapunov function at time instant tk (i.e., V(x(tk))) is a
decreasing sequence of values with a lower bound. Follow-
ing Lyapunov arguments, this property guarantees practical
stability of the closed-loop system. This is achieved due to
the contractive constraints of Eqs. 7f and 8e. This property
is presented in Theorem 1 below.

Theorem 1. Consider system of Eq. 1 in closed-loop
under the distributed LMPC design of Eq. 9 based on a con-
troller u1 ¼ h(x) that satisfies the conditions of Eq. 2. Let ew
[ 0, D[ 0 and q[ qs[ 0 satisfy the following constraint:

� a3 a�1
2 qsð Þ� �þ LxMDþ Lwh � ��w=D: (10)

If x(t0) [ Xq and if q* � q where

q� ¼ maxfVðxðtþ DÞÞ : VðxðtÞÞ � qsg;

then the state x(t) of the closed-loop system is ultimately
bounded in Xq*.

Proof of Theorem 1. Proof. The proof consists of two
parts. We first prove that the optimization problems of Eqs.
7 and 8 are feasible for all states x [ Xq. Then we prove
that, under the distributed LMPC design of Eq. 9, the state
of the system of Eq. 1 is ultimately bounded in a region that
contains the origin.
Part 1: We prove the feasibility of LMPC 2 first, and

then the feasibility of LMPC 1. All input trajectories of
u2(s) such that u2(s) ¼ 0, Vs [ [0,D) satisfy all the
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constraints (including the input constraint of Eq. 7e and con-
tractive constraint of Eq. 7f) of LMPC 2, thus the feasibility
of LMPC 2 is guaranteed. The feasibility of LMPC 1 fol-
lows because all input trajectories u1(s) such that u1(s) ¼
h(x(tk)), Vs [ [0,D) are feasible solutions to the optimization
problem of LMPC 1 since all such trajectories satisfy the
input constraint of Eq. 8d; this is guaranteed by the closed-
loop stability property of the Lyapunov-based controller h
and the contractive constraint of Eq. 8e.
Part 2: From conditions of Eq. 2 and the constraints of

Eqs. 7f and 8e, if x(tk) [ Xq it follows that:

@V xð Þ
@x

f x tkð Þ; u�d1 0jtkð Þ; u�d2 0jtkð Þ; 0� �
� @V xð Þ

@x
f x tkð Þ; h x tkð Þð Þ; u�d2 0jtkð Þ; 0� �

� @V xð Þ
@x

f x tkð Þ; h x tkð Þð Þ; 0; 0ð Þ
� �a3 jx tkð Þjð Þ: ð11Þ

The time derivative of the Lyapunov function along the
actual state trajectory x(t) of system of Eq. 1 in t [ [tk,tkþ1)
is given by:

_VðxðtÞÞ ¼ @V

@x
f ðxðtÞ; u�d1ð0jtkÞ; u�d2ð0jtkÞ;wðtÞÞ:

Adding and subtracting @V
@x
f ðxðtkÞ; u�d1ð0jtkÞ; u�d2ð0jtkÞ; 0Þ

and taking into account the Eq. 11, we obtain the following
inequality:

_V x tð Þð Þ��a3 jx tkð Þjð Þþ@V xð Þ
@x

f x tð Þ;u�d1 sjtkð Þ;u�d2 sþ tkð Þ;w tð Þ� �
�@V

@x
f x tkð Þ;u�d1 0jtkð Þ;u�d2 0jtkð Þ;0� �

: ð12Þ

From Eqs. 2, 4, and 12, the following inequality is
obtained for all x(tk) [ Xq/Xqs:

_VðxðtÞÞ � �a3ða�1
2 ðqsÞÞ þ LxjxðtÞ � xðtkÞj þ Lwjwj:

Taking into account Eq. 3 and the continuity of x(t), the
following bound can be written for all t [ [tk,tkþ1)

jxðtÞ � xðtkÞj � MD:

Using this expression, we obtain the following bound on
the time derivative of the Lyapunov function for t [ [tk,tkþ1),
for all initial states x(tk) [ Xq/Xqs:

_VðxðtÞÞ � �a3ða�1
2 ðqsÞÞ þ LxMDþ Lwh:

If condition of Eq. 10 is satisfied, then there exists ew [
0 such that the following inequality holds for x(tk) [ Xq/
Xqs:

_VðxðtÞÞ � ��w=D

in t ¼ [tk,tkþ1). Integrating this bound on t [ [tk,tkþ1), we obtain
that:

V x tkþ1ð Þð Þ � V x tkð Þð Þ � �w

V x tð Þð Þ � V x tkð Þð Þ; 8t 2 ½tk; tkþ1Þ
(13)

for all x(tk) [ Xq/Xqs. Using Eq. 13 recursively it is proved that,
if x(t0) [ Xq/Xqs, the state converges to Xqs in a finite number
of sampling times without leaving the stability region. Once
the state converges to Xqs ( Xq*, it remains inside Xq* for all
times. This statement holds because of the definition of q*.
This proves that the closed-loop system under the distributed
LMPC design is ultimately bounded in Xq*.

Remark 15. Referring to Theorem 1, condition of Eq. 10
guarantees that if the state of the closed-loop system at a
sampling time tk is outside the level set V(x(tk)) ¼ qs but
inside the level set V(x(tk)) ¼ q, the derivative of the Lyapu-
nov function of the state of the closed-loop system is nega-
tive under the distributed LMPC design.

Remark 18. For continuous-time systems under continu-
ous control implementation, a sufficient condition for invari-
ance is that the derivative of a Lyapunov function is nega-
tive on the boundary of a set. For systems with continuous-
time dynamics and sample-and-hold control implementation,
this condition is not sufficient because the derivative may
become positive during the sampling period and the system
may leave the set before a new sample is obtained. Referring
to Theorem 1, q* is the maximum value that the Lyapunov
function can achieve in a time period of length D when x(tk)
[ Xqs. Xq* defines an invariant set for the state x(t) under
sample-and-hold implementation of the inputs of the distrib-
uted LMPC design.

Remark 17. Although the proof of Theorem 1 is construc-
tive, the constants obtained are conservative. In practice, the
sampling time and disturbance upper bound are better esti-
mated through closed-loop simulations. Condition of Eq. 10
is more useful as a guideline on the interaction between the
various parameters that define the system and may be used
as a guideline to design the distributed controllers, see Refs.
27 and 28 for further discussion on this issue.

Application to a Reactor-Separator Process

The process considered in this example is a three vessel,
reactor-separator process consisting of two continuously
stirred tank reactors (CSTRs) and a flash tank separator (see
Figure 4). A feed stream to the first CSTR F10 contains the
reactant A which is converted into the desired product B.
The desired product B can then further react into an unde-
sired side-product C. The effluent of the first CSTR along
with additional fresh feed F20 makes up the inlet to the sec-
ond CSTR. The reactions A ! B and B ! C (referred to as
1 and 2, respectively) take place in the two CSTRs in series
before the effluent from CSTR 2 is fed to a flash tank. The
overhead vapor from the flash tank is condensed and
recycled to the first CSTR and the bottom product stream is
removed. A small portion of the overhead is purged before
being recycled to the first CSTR. All the three vessels are
assumed to have static holdup. The dynamic equations
describing the behavior of the system, obtained through
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material and energy balances under standard modeling
assumptions, are given below:

dxA1
dt

¼ F10
V1

ðxA10 � xA1Þ þ Fr
V1

ðxAr � xA1Þ � k1e
�E1
RT1 xA1

dxB1
dt

¼ F10
V1

ðxB10 � xB1Þ þ Fr
V1

ðxBr � xB1Þ

þ k1e
�E1
RT1 xA1 � k2e

�E2
RT1 xB1

dT1
dt

¼ F10
V1

ðT10 � T1Þ þ Fr
V1

ðT3 � T1Þ þ �DH1
Cp

k1e
�E1
RT1 xA1

þ �DH2
Cp

k2e
�E2
RT1 xB1 þ Q1

qCpV1

dxA2
dt

¼ F1
V2

ðxA1 � xA2Þ þ F20
V2

ðxA20 � xA2Þ � k1e
�E1
RT2 xA2

dxB2
dt

¼ F1
V2

ðxB1 � xB2Þ þ F20
V2

ðxB20 � xB2Þ

þ k1e
�E1
RT2 xA2 � k2e

�E2
RT2 xB2

dT2
dt

¼ F1
V2

ðT1 � T2Þ þ F20
V2

ðT20 � T2Þ þ �DH1
Cp

k1e
�E1
RT2 xA2

þ �DH2
Cp

k2e
�E2
RT2 xB2 þ Q2

qCpV2

dxA3
dt

¼ F2
V3

ðxA2 � xA3Þ � Fr þ Fp
V3

ðxAr � xA3Þ
dxB3
dt

¼ F2
V3

ðxB2 � xB3Þ � Fr þ Fp
V3

ðxBr � xB3Þ
dT3
dt

¼ F2
V3

ðT2 � T3Þ þ Q3
qCpV3

ð14Þ

where the definitions for the variables can be found in Table 1.
The model of the flash tank separator was derived under the
assumption that the relative volatility for each of the species
remains constant within the operating temperature range of the
flash tank. This assumption allows calculating the mass
fractions in the overhead based upon the mass fractions in
the liquid portion of the vessel. It has also been assumed that
there is a negligible amount of reaction taking place in the
separator. The following algebraic equations model the
composition of the overhead stream relative to the composi-
tion of the liquid holdup in the flash tank:

xAr ¼ aAxA3
aAxA3 þ aBxB3 þ aCxC3

xBr ¼ aBxB3
aAxA3 þ aBxB3 þ aCxC3

xCr ¼ aCxC3
aAxA3 þ aBxB3 þ aCxC3

(15)

Each of the tanks has an external heat input. The manipu-
lated inputs to the system are the heat inputs to the three
vessels, Q1, Q2, and Q3, and the feed stream flow rate to
vessel 2, F20.
The process of Eq. 14 was numerically simulated using a

standard Euler integration method. Process noise was added
to the right-hand side of each equation in the process of Eq.
14 to simulate disturbances/model uncertainty and it was
generated as autocorrelated noise of the form wk ¼ /wk�1 þ
nk where k ¼ 0,1,… is the discrete time step of 0.001 hr, nk
is generated by a normally distributed random variable with
standard deviation rp, and / is the autocorrelation factor and
wk is bounded by yp, that is |wk| � yp. Table 2 contains the
parameters used in generating the process noise.
We assume that the measurements of the temperatures T1,

T2, T3 and the measurements of mass fractions xA1, xB1, xA2,
xB2, xA3, xB3 are available synchronously and continuously at
time instants {tk�0} with tk ¼ t0 þ kD, k ¼ 0,1,… where t0 is
the initial time and D is the sampling time. For the simula-
tions carried out in this section, we pick the initial time to be
t0 ¼ 0 and the sampling time to be D ¼ 0.02 h ¼ 1.2 min.
The control objective is to regulate the system to the sta-

ble steady-state xs corresponding to the operating point
defined by Q1s, Q2s, Q3s of u1s and F20s of u2s. The steady-
state values for u1s and u2s and the values of the steady-state
are given in Tables 3 and 4, respectively. Taking this control
objective into account, the process model of Eq. 14 belongs
to the following class of nonlinear systems:

_xðtÞ ¼ f ðxðtÞÞ þ g1ðxðtÞÞu1ðtÞ þ g2ðxðtÞÞu2ðtÞ þ wðtÞ

Table 1. Process Variables

xA1, xA2, xA3 Mass fractions of A in vessels 1, 2, 3
xB1, xB2, xB3 Mass fractions of B in vessels 1, 2, 3
xC3 Mass fraction of C in vessel 3
xAr, xBr, xCr Mass fractions of A, B, C in the

recycle
T1, T2, T3 Temperatures in vessels 1, 2, 3
T10, T20 Feed stream temperatures to vessels

1, 2
F1, F2 Effluent flow rate from vessels 1, 2
F10, F20 Steady-state feed stream flow rates

to vessels 1, 2
Fr, Fp Flow rates of the recycle and purge
V1, V2, V3 Volumes of vessels 1, 2, 3
E1, E2 Activation energy for reactions 1, 2
k1, k2 Pre-exponential values for reactions

1, 2
DH1, DH2 Heats of reaction for reactions 1, 2
aA, aB, aC Relative volatilities of A, B, C
Q1, Q2, Q3 Heat inputs into vessels 1, 2, 3
Cp, R, q Heat capacity, gas constant and so-

lution density

Figure 4. Reactor-separator process.
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where xT ¼ [x1 x2 x3 x4 x5 x6 x7 x8 x9] ¼ [xA1 � xA1s xB1 � xB1s
T1 � T1s xA2 � xA2s xB2 � xB2s T2 � T2s xA3 � xA3s xB3 � xB3s
T3 � T3s] is the state, u

T
1 ¼ [u11 u12 u13] ¼ [Q1 � Q1s Q2 � Q2s

Q3 � Q3s] and u2 ¼ F20 � F20s are the manipulated inputs
which are subject to the constraints |u1i| � 106 KJ/h (i ¼ 1,2,3)
and |u2| � 3 m3/h, and w ¼ wk is a time varying bounded noise.
The process of Eq. 14 with the distributed LMPC control
architecture is shown in Figure 5.
To illustrate the theoretical results, we first design the

Lyapunov-based controller u1 ¼ h(x) which can stabilize the
closed-loop system as follows2:

h xð Þ ¼ � Lf Vþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lf V2þLg1V4

p
Lg1V2

Lg1V ifLg1V 6¼ 0

0 ifLg1V ¼ 0

(
(16)

where Lf V ¼ @V

@x
jxf ðxÞ and Lg1V ¼ @V

@x
jxg1ðxÞ denote the Lie

derivatives of the scalar function V with respect to the vector

fields f and g1, respectively. We consider a control Lyapunov

function V(x) ¼ xT Px with P being the following weight matrix

P ¼ diag§ð5:2� 1012 4 4 10�4 4 4 10�4 4 4 10�4Þ� �Þ:
The values of the weights in P have been chosen in such

a way that the Lyapunov-based controller of Eq. 16 satisfies
the input constraints, stabilizes the closed-loop system and
provides good closed-loop performance.
Based on the Lyapunov-based controller of Eq. 16, we

design the centralized and the distributed LMPCs. In the
simulations, the same parameters are used for both control
designs. The prediction step is the same as the sampling
time, that is D ¼ 0.02 h ¼ 1.2 min; the prediction horizon is
chosen to be N ¼ 6; and the weight matrices for the LMPC
designs are chosen as:

Qc ¼
diagð 2 � 103 2 � 103 2:5 2 � 103 2 � 103 2:5 2 � 103 2 � 103 2:5� �Þ
and Rc1 ¼ diag([5�10�12 5�10�12 5�10�12]) and Rc2 ¼ 100.
The state and input trajectories of process of Eq. 14 under

the distributed LMPC design and the centralized LMPC
design from the initial state:

xð0ÞT
¼ ½0:890 0:110 388:7 0:886 0:113 386:3 0:748 0:251 390:6�:

are shown in Figures 6 and 7. Figure 6 shows that both the
distributed and the centralized LMPC designs give similar

closed-loop performance and drive the temperatures and the
mass fractions in the closed-loop system close to the desired
steady-state in about 0.3 and 0.5 h, respectively.
We have also carried out a set of simulations to compare

the distributed LMPC design with the centralized LMPC
design with the same parameters from a performance index
point of view. Table 5 shows the total cost computed for 15
different closed-loop simulations under the distributed
LMPC design and the centralized LMPC design. To carry
out this comparison, we have computed the total cost of
each simulation with different operating conditions (different
initial states and process noise) based on the index of the
following form

XM
i¼0
xðtiÞTQcxðtiÞ þ u1ðtiÞTRc1u1ðtiÞ þ u2ðtiÞTRc2u2ðtiÞ

where t0 is the initial time of the simulations and tM ¼ 1 h
is the end of the simulations. As we can see in Table 5, the
distributed LMPC design has a cost lower than the central-
ized LMPC design in 10 out of 15 simulations. This illus-
trates that in this example, the closed-loop performance of
the distributed LMPC design is comparable to the one of the
centralized LMPC design.

Remark 18. Table 5 shows that both controllers yield a
similar performance for this particular process, but in general
there is no guarantee that the total performance cost along
the closed-loop system trajectories of either control scheme
should be better than the other because the solution provided
by the centralized LMPC and the proposed distributed
LMPC are proved to be feasible and stabilizing but the con-
vergence of the cost under distributed MPC to the one under
centralized MPC is not established. This is because the com-
munication between the two distributed MPCs is limited to
one directional and moreover, the controllers are imple-
mented in a receding horizon scheme and the prediction ho-
rizon is finite. In addition, there are disturbances modeled
by stochastic noise in the simulations which introduce uncer-
tainty in the results.
Moreover, we have studied the importance of communi-

cating optimal input trajectories of LMPC 2 to LMPC 1. We
have carried out a set of simulations in which both LMPC
controllers operate in a decentralized manner; that is, LMPC
2 does not send its optimal input trajectory to LMPC 1 each
sampling time (there is no communication between the two
LMPCs). To evaluate its control input, LMPC 1 assumes
that LMPC 2 applies the steady-state input F20s; that is u2 ¼
0. The same parameters as in previous simulations are used
for the controllers. Figures 8 and 9 show the results under

Table 2. Noise Parameters

rp / yp rp / yp rp / yp

xA1 1 0.7 0.25 xA2 1 0.7 0.25 xA3 1 0.7 0.25
xB1 1 0.7 0.25 xB2 1 0.7 0.25 xB3 1 0.7 0.25
T1 10 0.7 2.5 T2 10 0.7 2.5 T3 10 0.7 2.5

Table 3. Steady-State Values for u1s and u2s

Q1s 12.6 � 105[KJ/h] Q3s 11.88 � 105[KJ/h]
Q2s 13.32 � 105[KJ/h] F20s 5.04 � [m3/h]

Table 4. Steady-State Values for xs

xA1s 0.605 xA2s 0.605 xA3s 0.346
xB1s 0.386 xB2s 0.386 xB3s 0.630
T1s 425.9[K] T2s 422.6[K] T3s 427.3[K]§diag(v) denotes a matrix with its diagonal elements being the elements of vec-

tor v and all the other elements being zeros.
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the decentralized LMPC design. From Figure 8, we can see
that for this particular example, this control scheme can not
stabilize the system at the required steady-state. This result
is expected because when there is no communication
between the two distributed controllers, they can not coordi-
nate their control actions and each controller views the input
of the other controller as a disturbance that has to be
rejected.
We have also carried out a set of simulations to compare

the computation time needed to evaluate the distributed
LMPC with that of the centralized LMPC. The simulations
have been carried out using Matlab in a Pentium 3.20 GHz.

The optimization problems have been solved using the built-
in function fmincom of Matlab. To solve the ODE model of
Eq. 14, an Euler method with a fixed integration time of
0.001 h has been implemented in a mex DLL using C pro-
gramming language. For 50 evaluations, the mean time to
solve the centralized LMPC is 9.40 s; the mean times to
solve LMPC 1 and LMPC 2 are 3.19 and 4.53 s, respec-
tively. From this set of simulations, we see that the computa-
tion time needed to solve the centralized LMPC is larger
than the sum of the values for LMPC 1 and LMPC 2 even
though the closed-loop performance in terms of the total per-
formance cost is comparable to the one of the distributed
LMPC method. This is because the centralized LMPC has to
optimize both the inputs u1 and u2 in one optimization prob-
lem and the distributed LMPC has to solve two smaller (in
terms of decision variables) optimization problems.
Following Remark 10, we have also carried out a set of

simulations to illustrate that the optimization processes of
LMPC 1 and LMPC 2 can be terminated at any time to get
sub-optimal solutions without loss of the closed-loop stabil-
ity. In this set of simulations, we assume that the allowable
evaluation times of LMPC 1 and LMPC 2 at each sampling
time are 1 and 2, and we terminate the optimization proc-
esses of LMPC 1 and LMPC 2 when they have been carried
out for 1 and 2, respectively. The closed-loop state and input
trajectories under the distributed LMPC design with limited
and unconstrained computation time are shown in Figures 10
and 11. From Figure 10, we see that the distributed LMPC
design with limited evaluation time can stabilize the closed-

Figure 6. State trajectories of the process of Eq. 14 under the distributed LMPC design (solid lines) and centralized
LMPC design (dashed lines).

[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 5. Reactor-separator process with distributed
LMPC control architecture.
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Figure 7. Input trajectories of the process of Eq. 14 under the distributed LMPC design (solid lines) and centralized
LMPC design (dashed lines).

[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Table 5. Total Performance Cost Along the Closed-Loop System Trajectories

Sim. Distr. Centr. sim. Distr. Centr. sim. Distr. Centr.

1 65216 70868 6 83776 66637 11 62714 70951
2 70772 73112 7 61360 68897 12 76348 70547
3 57861 67723 8 47070 66818 13 49914 66869
4 62396 70914 9 79658 64342 14 89059 72431
5 60407 67109 10 65735 72819 15 78197 70257

Figure 8. State trajectories of the process of Eq. 14 under the decentralized LMPC design (solid) and distributed
LMPC design (dashed).

[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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loop system but the state responses are slower, leading to a
higher cost (57778) compared with the one (47117) obtained
under the distributed LMPC design with unconstrained com-
putation time.

Conclusion

Currently, process control systems utilize dedicated, wired
control networks to achieve key closed-loop properties like

Figure 10. State trajectories of the process of Eq. 14 under the distributed LMPC design with limited (solid lines)
and unconstrained (dashed lines) evaluation time.

[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 9. Input trajectories of system Eq. 14 under the decentralized LMPC design (solid) and distributed LMPC
design (dashed).

[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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stability, set-point tracking, and robustness to disturbances.
With the advent of sensor and actuator network (both wired
and wireless) technology, however, there is a growing real-
ization that low-cost sensor and actuator networks can play
an important auxiliary role to the existing control systems by
collecting and transferring additional data to the control sys-
tem and by utilizing additional control actuators. Chemical
plant operation could substantially benefit from an efficient
integration of the existing, point-to-point control networks
with additional networked actuator/sensor devices. Motivated
by these considerations, in the present work, we focused on
a class of nonlinear control problems that arise when new
control systems which may use networked sensors and/or
actuators are added to already operating control loops to
improve closed-loop performance. To address this control
problem, a distributed model predictive control method was
introduced where both the pre-existing control system and
the new control system are designed via Lyapunov-based
model predictive control theory. The proposed distributed
model predictive control design preserves the stability prop-
erties of the Lyapunov-based controller, improves the
closed-loop performance, and allows handling input con-
straints. In addition, the proposed distributed control design
requires reduced communication between the two distributed
controllers since it requires that these controllers communi-
cate only once at each sampling time and is computationally
more efficient compared to the corresponding centralized
model predictive control design. Extensive simulations using
a benchmark chemical plant example, described by a nonlin-
ear model, demonstrated the applicability and effectiveness
of the proposed control method.
Our future work includes to extend the distributed MPC

scheme to systems with asynchronous measurements and
communication data losses and to generalize the proposed
design approach to include multiple distributed MPC controllers.
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