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Abstract. Developing applications over a distributed and asynchronous
architecture without the need for synchronization services is going to be-
come a central track for distributed computing. This research track will
be central for the domain of autonomic computing and self-management.
Distributed constraint solving, distributed observation, and distributed
optimization, are instances of such applications. This paper is about
distributed observation: we investigate the problem of distributed mo-
nitoring of concurrent and asynchronous systems, with application to
distributed fault management in telecommunications networks.
Our approach combines two techniques: compositional unfoldings to
handle concurrency properly, and a variant of graphical algorithms and
belief propagation, originating from statistics and information theory.
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1 Introduction

Concurrent and distributed systems have been at the heart of computer science
and engineering for decades. Distributed algorithms [18, 25] have provided the
sound basis for distributed software infrastructures, providing correct commu-
nication and synchronization mechanisms, and fault tolerance for distributed
applications. Consensus and group membership have become basic services that
a safe distributed architecture should provide. Formal models and mathematical
theories of concurrent systems have been essential to the development of langu-
ages, formalisms, and validation techniques that are needed for a correct design
of large distributed applications.

However, the increasing power of distributed computing allows the develop-
ment of applications in which the distributed underlying architecture, the func-
tion to be performed, and the data involved, are tightly interacting. Distributed
optimization is a generic example. In this paper, we consider another instance of
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those problems, namely the problem of inferring, from measurements, the hidden
internal state of a distributed and asynchronous system. Such an inference has
to be performed also in a distributed way. An important application is distribu-
ted alarm correlation and fault diagnosis in telecomunications networks, which
motivated this work.

The problem of recovering state histories from observations is pervasive
throughout the general area of information technologies. As said before, it is
central in the area of distributed algorithms [18, 25], where it consists in sear-
ching for globally coherent sets of available local states, to form the global state.
In this case the local states are available. Extending this to the case when the
local states themselves must be inferred from observations, has been considered
in other areas than computer science. For instance, estimating the state trajec-
tory from noisy measurements is central in control engineering, with the Kalman
filter as its most popular instance [16]; the same problem is considered in the
area of pattern recognition, for stochastic finite state automata, in the theory
of Hidden Markov Models [24]. For both cases, however, no extension exists to
handle distributed systems. The theory of Bayesian networks in pattern reco-
gnition addresses the problem of distributed estimation, by proposing so-called
belief propagation algorithms, which are chaotic and asynchronous iterations
to perform state estimation from noisy measurements [19, 20, 23]. On the other
hand, systems with dynamics (e.g., automata) are not considered in Bayesian
networks. Finally, fault diagnosis in discrete event systems (e.g., automata) has
been extensively studied [6, 27], but the problem of distributed fault diagnosis
for distributed asynchronous systems has not been addressed.

This paper is organized as follows. Our motivating application, namely dis-
tributed alarm correlation and fault diagnosis, is discussed in Sect. 2. Its main
features are: the concurrent nature of fault effect propagation, and the need for
distributed supervision, where each supervisor knows only the restriction, to its
own domain, of the global system model. Our goal is to compute a coherent set
of local views for the global status of the system, for each supervisor. We follow
a true concurrency approach. A natural candidate for this are 1-safe Petri nets
with branching processes and unfoldings. Within this framework, we discuss in
Sect. 3 a toy example in detail. The mathematical background is recalled in
Sect. 4.1. As our toy example shows, two non classical operators are needed: a
projection (to formalize what a local view is), and a composition (to formalize
the cooperation of supervisors for distributed diagnosis). Occurrence nets, bran-
ching processes, and unfoldings will be shown to be not closed under projection,
and thus inadequate to support these operations. Therefore, projection and com-
position are introduced for event structures (in fact, for “condition structures”, a
variant of event structures in which events are re-interpreted as conditions). This
material is developed in Sect. 4.2. It allows us to formally express our problem,
which is done in Sect. 5.

With complex interaction and several supervisors, the algorithm quickly be-
comes intractable, with no easy implementation. Fortunately, it is possible to
organize the problem into a high-level orchestration of low-level primitives, ex-
pressed in terms of projections and compositions of condition structures. This
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orchestration is obtained by deriving, for our framework, a set of key properties
relating condition structures, their projections, and their compositions. Further
analysing these key properties shows that they are shared by basic problems such
as: distributed combinatorial constraint solving, distributed combinatorial opti-
mization, and Bayesian networks estimation. Fortunately, chaotic distributed
and asynchronous iterations to solve these problems have been studied; perhaps
the most well-known version of these is that of belief propagation in belief net-
works [19, 20, 23]. Our high-level orchestration is derived from these techniques,
it is explained in Sect. 6. In addition, this approach allows us to consider maxi-
mum likelihood estimation of fault scenarios, by using a probabilistic model for
fault propagation.

Missing details and proofs can be found in the extended version [1].

2 Motivating Application: Fault Management in
Telecommunication Networks 3

Distributed self-management is a key objective in operating large scale infra-
structures. Fault management is one of the five classical components of manage-
ment, and our driving application. Here, we consider a distributed architecture
in which each supervisor is in charge of its own domain, and the different super-
visors cooperate at constructing a set of coherent local views for their repective
domains. Of course, the corresponding global view should never be actually com-
puted.

To ensure modularity, network management systems are decomposed into
interconnected Network Elements (NE), composed in turn of several Managed
Objects (MO). MO’s act as peers providing to each other services for overall fault
management. Consequently, each MO is equipped with its own fault management
function. This involves self-monitoring for possible own internal sources of fault,
as well as propagating, to clients of the considered MO, the effect of one of its
servers getting disabled.

Because of this modularity, faults propagate throughout the management
system: when a primary fault occurs in some MO, that MO emits an alarm to the
supervisor, sends a message to its neigbours, and gets disabled. Its neighbouring
MOs receive the message, recognize their inability to deliver their service, get
disabled, emit alarms, and so on.

Figure 1 shows on the left hand side the SDH/SONET ring in operation
in the Paris area (the locations indicated are subsurbs of Paris). A few ports
and links are shown. The right diagram is a detailed view of the Montrouge
node. The nested light to mid gray rectangles represent the different layers in
the SDH hierarchy, with the largest one being the physical layer. The different
boxes are the MOs, and the links across the different layers are the paths for
upward/downward fault propagation. Each MO can be seen as an automaton
3 This section has been prepared with the help of with Armen Aghasaryan Alcatel

Research & Innovation, Next Generation Network and Service Management Project,
Alcatel R&I, Route de Nozay, Marcoussis, 91461 France
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Fig. 1. The Paris area SDH/SONET ring (left), and a detail of the Montrouge node
(right). The different levels of the SDH hierarchy are shown: SPI, RS, etc.

St Ouen Aubervilliers

Montrouge Gentilly

TFLOS

TF
LOS

MS-AIS

MS-AIS

disabled AU-AIS
AU-AIS

AU-AISAU-AIS

disabled
disabled

AU-AIS AU-AIS disabled

Fig. 2. A fault propagation scenario distributed across the four different sites. The
dashed arrows indicate distant propagation. The cryptic names are SDH/SONET fault
labels.

reacting to input events/messages, changing its state, and emitting events and
alarms to its neighbours, both co-located and distant. Figure 2 shows a realistic
example of a fault propagation scenario distributed across the four different sites.

To summarize, the different supervisors are distributed, and different MO’s
operate concurrently and asynchronously within each supervisor.

3 Informal Discussion of an Example

If all variables involved in the above scenarios possess a finite domain, we can
represent these in an enumerative form. This suggests using safe Petri nets with
a true concurrency semantics to formalize distributed fault diagnosis.
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Presenting the Example, and the Problem. Our example is shown in
Fig. 3–1st diagram, in the form of a labeled Petri net, with two interacting
components, numbered 1 and 2. Component 2 uses the services of component
1, and therefore may fail to deliver its service when component 1 is faulty. The
two components interact via their shared places 3 and 7, represented by the
gray zone; note that this Petri net is safe, and that the two places 3 and 7 are
complementary.

Component 1 has two private states: safe, represented by place 1, and faulty,
represented by place 2. Upon entering its faulty state, component 1 emits an
alarm β. The fault of component 1 is temporary, thus self-repair is possible and
is represented by the label ρ. Component 2 has three private states, represented
by places 4, 5, 6. State 4 is safe, state 6 indicates that component 2 is faulty, and
state 5 indicates that component 2 fails to deliver its service, due to the failure
of component 1. Fault 6 is permanent and cannot be repaired.

The failure of component 2 caused by a fault of component 1 is modeled
by the shared place 3. The monitoring system of component 2 only detects
that component 2 fails to deliver its service, it does not distinguish between
the different reasons for this. Hence the same alarm α is attached to the two
transitions posterior to 4. Since fault 2 of component 1 is temporary, self-repair
can also occur for component 2, when in faulty state 5. This self-repair is not
synchronized with that of component 1, but bears the same label ρ. Finally,
place 7 guarantees that fault propagation, from component 1 to 2, is possible
only when the latter is in safe state.

The initial marking consists of the three states 1, 4, 7. Labels (alarms α,β
or self-repair ρ) attached to the different transitions or events, are generically
referred to as alarms in the sequel.

Three different setups can be considered for diagnosis, assuming that messa-
ges are not lost:

Setup S1: The successive alarms are recorded in sequence by a single supervi-
sor, in charge of fault monitoring. The sensor and communication infrastruc-
ture guarantees that causality is respected: for any two alarms such that α
causes α′, α is recorded before α′.

Setup S2: Each sensor records its local alarms in sequence, while respecting
causality. The different sensors perform independently and asynchronously,
and a single supervisor collects the records from the different sensors. Thus
any interleaving of the records from different sensors is possible, and causa-
lities among alarms from different sensors are lost.

Setup S3: The fault monitoring is distributed, with different supervisors coope-
rating asynchronously. Each supervisor is attached to a component, records
its local alarms in sequence, and can exchange supervision messages with
the other supervisors, asynchronously.

A Simple Solution? For setup S1, there is a simple solution. Call A the
recorded alarm sequence. Try to fire this sequence in the Petri net from the
initial marking. Each time an ambiguity occurs (two transitions may be fired
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explaining the next event in A), a new copy of the trial (a new Petri net) is
instanciated to follow the additional firing sequence. Each time no transition
can be fired in a trial to explain a new event, the trial is abandoned. Then, at
the end of A, all the behaviours explaining A have been obtained. Setup S2 can
be handled similarly, by exploring all interleavings of the two recorded alarm
sequences. However, this direct approach does not represent efficiently the set of
all solutions to the diagnosis problem.

In addition, this direct approach does not work for Setup S3. In this case, no
supervisor knows the entire net and no global interleaving of the recorded alarm
sequences is available. Maintaining a coherent set of causally related local dia-
gnoses becomes a difficult problem for which no straightforward solution works.
The approach we propose below addresses both the Setup S3 and the efficient
representation of all solutions, for all setups.

An Efficient Data Structure to Represent All Runs. Figure 3 shows
our running example. The Petri net P is repeated on the 2nd diagram: the
labels α,β, ρ have been discarded, and transitions are i, ii, iii, iv, v, vi. Places
constituting the initial marking are indicated by thick circles.

The mechanism of constructing a run of P in the form of a partial order is
illustrated in the 2nd and 3rd diagrams. Initialize any run of P with the three
conditions labeled by the initial marking (1, 7, 4). Append to the pair (1, 7) a
copy of the transition (1, 7) → i → (2, 3). Append to the new place labeled 2
a copy of the transition (2) → iii → (1). Append, to the pair (3, 4), a copy of
the transition (3, 4)→ iv → (7, 5) (this is the step shown). We have constructed
(the prefix of) a run of P. Now, all runs can be constructed in this way. Different
runs can share some prefix.

In the 4th diagram we show (prefixes of) all runs, by superimposing their
shared parts. The gray part of this diagram is a copy of the run shown in the

component 1

component 2
5

32 4

1

iiii ii

iv v vi

7

6

ii

11 7 5 6

44

2

11

2 3

ii

2 3

7 511

2 3 4

i

71

6

iii iv v

vi

iii iv v

iii

2

i

1 7

43

11

iii

7 5

3 4

5

32 4

1

ρ β β

α α ρ

7

6

iv

Fig. 3. Running example in the form of a Petri net (left), and representing its runs in
a branching process. Petri nets are drawn by using directed arrows; on the other hand,
since occurrence nets are acylic, we draw them using nondirected branches which have
to be interpreted as implicitly directed toward bottom.
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3rd diagram. The alternative run on the extreme left of this diagram (it involves
successive transitions labeled ii, iii, i) shares only its initial places with the run in
gray. On the other hand, replacing, in the gray run, the transition labeled iv by
the one labeled v yields another run which shares with the gray one its transitions
respectively labeled by i and by iii. This 4th diagram is a branching process of P,
we denote it by UP ; it is a net without cycle, in which the preset of any condition
contains exactly one event. Nodes of UP are labeled by places/transitions of P
in such a way that the two replicate each other, locally around transitions.

Terminology. When dealing with branching processes, to distinguish from the
corresponding concepts in Petri nets, we shall from now on refer to conditi-
ons/events instead of places/transitions.

Asynchronous Diagnosis with a Single Sensor and Supervisor. Here we
consider setup S1, and our discussion is supported by Fig. 4. The 1st diagram of
this figure is the alarm sequence β,α, ρ, ρ,β,α recorded at the unique sensor. It is
represented by a cycle-free, linear Petri net, whose conditions are not labeled—
conditions have no particular meaning, their only purpose is to indicate the
ordering of alarms. Denote by A′ = β → α→ ρ the shaded prefix of A.

The 2nd diagram shows the net UA′×P , obtained by unfolding the product
A′ × P using the procedure explained in the figure 3. The net UA′×P shows how
successive transitions of P synchronize with transitions of A′ having identical
label, and therefore explain them.

Since we are not interested in the conditions originating from A′, we remove
them. The result is shown on the 3rd diagram. The dashed line labeled # ori-

# # #ρ ρ α α

ρ

11 11 7 5 6

44

4322

71

ββ

ρ ρ α α

ρ

11 11 7 5 6

44

4322

71

ββ

κ1

κ2

κ2

6

α

2

β

11

ρ

11

ρ

2

β

11

ρ

2

β

1 7

43

57

α

44

ρ

32

β

57

α

6

α

ρ

β

β

α

ρ

α

Fig. 4. Asynchronous diagnosis with a single sensor: showing an alarm sequence A
(1st diagram), the explanation of the prefix A′ = β → α → ρ as the branching process
UA′×P (2nd and 3rd diagrams), and its full explanation in the form of a net UP,A (4th
diagram). In these diagrams, all branches are directed downwards unless otherwise
explicitly stated.
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component 1

component 2

αβ

αβ

ρ1 ρ2

κ1

κ2

κ2

11

ρ1

2

β

2

β

6

α

2

β

11

ρ1

β

2 3

1 7

4

α

57

β ρ2

32 44

α α

657

5

32 4

1

ρ β β

α α ρ

7

6

Fig. 5. Asynchronous diagnosis with two independent sensors: showing an alarm pat-
tern A (middle) consisting of two concurrent alarm sequences, and its explanation in
the form of a branching process UP,A (right).

component 1

component 2

supervisor 1 supervisor 2

κ2

6

α

κ1

7 5 6

α

3 44

α

7

ρ2

5

α

3 4

7

κ1

κ2

11

ρ1

2

β

2

β

71

β

2 3

ρ1

11 7

ββ

2 2 3

7

β

β

ρ1

α

α

ρ2
32

1

ρ β β

7

5

4

α α ρ

3

7

6

Fig. 6. Distributed diagnosis: constructing two coherent local views of the branching
process UP,A of Fig. 5 by two supervisors cooperating asynchronously.

ginates from the corresponding conflict in UA′×P that is due to two different
conditions explaining the same alarm ρ. Thus we need to remove, as possible
explanations of the prefix, all runs of the 3rd diagram that contain the #-linked
pair of events labeled ρ. All remaining runs are valid explanations of the subse-
quence β,α, ρ.

Finally, the net UP,A shown in the 4th diagram contains a prefix consisting
of the nodes filled in dark gray. This prefix is the union of the two runs κ1 and
κ2 of P, that explain A.
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Asynchronous Diagnosis with Two Independent Sensors but a Single
Supervisor. Focus on setup S2, in which alarms are recorded by two indepen-
dent sensors, and then collected at a single supervisor for explanation. Figure 5
shows the same alarm history as in Fig. 4, except that it has been recorded by
two independent sensors, respectively attached to each component. The super-
visor knows the global model of the system, we recall it in the 1st diagram of
Fig. 5.

The two “repair” actions are now distinguished since they are seen by diffe-
rent sensors, this is why we use different labels: ρ1, ρ2. This distinction reduces
the ambiguity: in Fig. 5 we suppress the white filled path (2) → ρ → (1) that
occured in Fig. 4. On the other hand, alarms are recorded as two concurrent
sequences, one for each sensor, call the whole an alarm pattern. Causalities bet-
ween alarms from different components are lost. This leads to further ambiguity,
as shown by the longer branch (1)→ β → (2)→ ρ1 → (1)→ β → (2) in Fig. 5,
compare with Fig. 4.

The overall result is shown in Fig. 5, and the valid explanations for the entire
alarm pattern are the two configurations κ1 and κ2 filled in dark gray.

Distributed Diagnosis with Two Concurrent Sensors and Supervisors.
Consider setup S3, in which alarms are recorded by two independent sensors,
and processed by two local supervisors which can communicate asynchronously.
Figure 6 shows two branching processes, respectively local to each supervisor.
For completeness, we have shown the information available to each supervisor.
It consists of the local model of the component considered, together with the
locally recorded alarm pattern. The process constructed by supervisor 1 involves
only events labeled by alarms collected by sensor 1, and places that are either
local to component 1 (e.g., 1, 2) or shared (e.g., 3, 7); and similarly for the process
constructed by supervisor 2.

The 3rd diagram of Fig. 5 can be recovered from Fig. 6 in the following
way: glue events sitting at opposite extremities of each thick dashed arrow,
identify adjacent conditions, and remove the thick dashed arrows. These dashed
arrows indicate a communication between the two supervisors, let us detail the
first one. The first event labeled by alarm β belongs to component 1, hence
this explanation for β has to be found by supervisor 1. Supervisor 1 sends an
abstraction of the path (1, 7)→ β → (2, 3) by removing the local conditions 1, 2
and the label β since the latter do not concern supervisor 2. Thus supervisor
2 receives the path (7) → [] → (3) to which it can append its local event
(3, 4)→ α→ (7, 5); and so on.

Discussion. The cooperation between the two supervisors needs only asynchro-
nous communication. Each supervisor can simply “emit and forget.” Diagnosis
can progress concurrently and asynchronously at each supervisor. For example,
supervisor 1 can construct the branch [1 → β → 2 → ρ1 → 1 → β → 2] as
soon as the corresponding local alarms are collected, without ever synchronizing
with supervisor 2. This technique extends to distributed diagnosis with several
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#

Fig. 7. Illustrating the problem of representating causality, conflict, and concurrency
with an occurrence net. The 1st diagram represents a set of conditions together with a
causality relation depicted by branches, and a conflict relation whose source is indicated
by the symbol #. The 2nd diagram interpolates the 1st one as an occurrence net. (Arcs
are assumed directed downwards.)

supervisors. But the algorithm for this general case is indeed very tricky, and its
analysis is even more so. Thus, theoretical study is really necessary, and this is
the main subject of the remainder of this paper.

As Fig. 4 and Fig. 6 indicate, we need projection and composition operations
on branching processes. Focus on projections. Projecting away, from an occur-
rence net, a subset of conditions and events, can be performed by taking the re-
striction, to the subset of remaining conditions, of the two causality and conflict
relations. An instance of resulting structure is shown in Fig. 7–left. A possible
interpolation in the form of an occurrence net is shown in Fig. 7–right. Such an
interpolation is not unique. In addition, the introduction of dummy conditions
and events becomes problematic when combining projections and compositions.

We need a class of data structures equipped with causality and conflict relati-
ons, that is stable under projections. The class of event structures is a candidate.
However, since diagnosis must be explained by sets of state histories, we need
to handle conditions, not events. For this reason, we rather consider condition
structures, as introduced in the next section.

4 Mathematical Framework: Nets, Unfoldings, and
Condition Structures

4.1 Prerequisites on Petri nets and Their Unfoldings [6, 8, 26]

Petri nets. A net is a triple N = (P, T,→), where P and T are disjoint sets of
places and transitions, and→ ⊆ (P ×T )∪ (T ×P ) is the flow relation. Reflexive
and irreflexive transitive closures of a relation are denoted by the superscripts
(.)∗ and (.)+, respectively. Define % =→∗ and ≺ =→+. Places and transitions
are called nodes, generically denoted by x. For x ∈ P ∪T , we denote by •x = {y :
y → x} the preset of node x, and by x• = {y : x→ y} its postset. For X ⊂ P ∪T ,
we write •X =

⋃
x∈X

•x and X• =
⋃

x∈X x•. A homomorphism from a net N to
a net N ′ is a map ϕ : P ∪T )→ P ′∪T ′ such that: (i) ϕ (P ) ⊆ P ′, ϕ (T ) ⊆ T ′, and
(ii) for every transition t of N , the restriction of ϕ to •t is a bijection between
•t and •ϕ (t), and the restriction of ϕ to t• is a bijection between t• and ϕ (t)•.
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For N a net, a marking of N is a multiset M of places, i.e., a map M : P )→
{0, 1, 2, . . .}. A Petri net is a pair P = (N , M0), where N is a net having finite
sets of places and transitions, and M0 is an initial marking. A transition t ∈ T
is enabled at marking M if M(p) > 0 for every p ∈ •t. Such a transition can fire,
leading to a new marking M ′ = M − •t + t•, denoted by M [t〉M ′. Petri net P is
safe if M(P ) ⊆ {0, 1} for every reachable marking M . Throughout this paper,
we consider only safe Petri nets, hence marking M can be regarded as a subset
of places.

For Ni = {Pi, Ti,→i}, i = 1, 2, two nets such that T1 ∩ T2 = ∅, their parallel
composition is the net

N1 ‖N2 =def (P1 ∪ P2, T1 ∪ T2,→1 ∪ →2).

Petri nets and occurrence nets inherit this notion. For Petri nets, we adopt the
convention that the resulting initial marking is equal to M1,0 ∪M2,0, the union
of the two initial markings. We say that N1 ‖N2 has no distributed conflict if:

∀p ∈ P1 ∩ P2, ∃i ∈ {1, 2} : p• ⊆ Ti. (1)

Note that our example of Fig. 3 satisfies (1). This is a reasonable assumption
in our context, since shared places aim at representing the propagation of faults
between components. Having distributed conflict would have no meaning in this
case. A study of this property in the context of the synthesis of distributed
automata via Petri nets is available in [5].

For N = (P, T,→) a net, a labeling is a map λ : T )→ A, where A is some
finite alphabet. A net N = (P, T,→,λ) equipped with a labeling λ is called a
labeled net. For Ni = {Pi, Ti,→i,λi}, i = 1, 2, two labeled nets, their product
N1×N2 is the labeled net (P, T,→,λ) defined as follows: P = P1 1P2, where 1
denotes the disjoint union, and:

T =






{t =def t1 ∈ T1 | λ1(t1) ∈ A1 \ A2} (i)
∪ {t =def (t1, t2) ∈ T1 × T2 | λ1(t1) = λ2(t2)} (ii)
∪ {t =def t2 ∈ T2 | λ2(t2) ∈ A2 \ A1} , (iii)

p→ t iff






p ∈ P1 and p→1 t1 for case (i)
∃i = 1, 2 : p ∈ Pi and p→i ti for case (ii)

p ∈ P2 and p→2 t2 for case (iii)

and t→ p is defined symmetrically. In cases (i,iii) only one net fires a transition
and this transition has a private label, while the two nets synchronize on transi-
tions with identical labels in case (ii). Petri nets and occurrence nets inherit the
above notions of labeling and product.

The language LP of labeled Petri net P is the subset of A∗ consisting of the
words λ(t1),λ(t2),λ(t3), . . ., where M0[t1〉M1[t2〉M2[t3〉M3 . . . ranges over the set
of finite firing sequences of P. Note that LP is prefix closed.

Occurrence Nets and Unfoldings. Two nodes x, x′ of a net N are in conflict,
written x#x′, if there exist distinct transitions t, t′ ∈ T , such that •t ∩ •t′ 2= ∅
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and t % x, t′ % x′. A node x is in self-conflict if x#x. An occurrence net is a net
O = (B, E,→), satisfying the following additional properties:

(i) ∀x ∈ B ∪ E : ¬[x#x] (no node is in self-conflict);
(ii) ∀x ∈ B ∪ E : ¬[x ≺ x] (% is a partial order);
(iii) ∀x ∈ B ∪ E : |{y : y ≺ x}| <∞ (% is well founded);
(iv) ∀b ∈ B : |•b| ≤ 1 (each place has at most one input transition).

We will assume that the set of minimal nodes of O is contained in B, and
we denote by min(B) or min(O) this minimal set. Specific terms are used to
distinguish occurrence nets from general nets. B is the set of conditions, E is
the set of events, ≺ is the causality relation. We say that node x is causally
related to node x′ iff x ≺ x′. Nodes x and x′ are concurrent, written x⊥⊥x′, if
neither x % x′, nor x % x′, nor x#x′ hold. A conflict set is a set A of pairwise
conflicting nodes, i.e. a clique of #; a co-set is a set X of pairwise concurrent
conditions. A maximal (for set inclusion) co-set is called a cut. A configuration
is a sub-net κ of O, which is conflict-free (no two nodes are in conflict), causally
closed (if x′ % x and x ∈ κ, then x′ ∈ κ), and contains min(O). We take the
convention that maximal nodes of configurations shall be conditions.

A branching process of Petri net P is a pair B = (O,ϕ), where O is an
occurrence net, and ϕ is a homomorphism from O to P regarded as nets, such
that: (i) the restriction of ϕ to min(O) is a bijection between min(O) and M0
(the set of initially marked places), and (ii) for all e, e′ ∈ E, •e = •e′ and
ϕ (e) = ϕ (e′) together imply e = e′. By abuse of notation, we shall sometimes
write min(B) instead of min(O). The set of all branching processes of Petri net
P is uniquely defined, up to an isomorphism (i.e., a renaming of the conditions
and events), and we shall not distinguish isomorphic branching processes. For
B,B′ two branching processes, B′ is a prefix of B, written B′ 6 B, if there exists
an injective homomorphism ψ from B′ into B, such that ψ(min(B′)) = min(B),
and the composition ϕ ◦ψ coincides with ϕ′, where ◦ denotes the composition
of maps. By theorem 23 of [9], there exists (up to an isomorphism) a unique
maximum branching process according to 6, we call it the unfolding of P, and
denote it by UP . Maximal configurations of UP are called runs of P.

4.2 Condition Structures

Occurrence nets give rise in a natural way to (prime) event structures [22]: a
prime event structure is a triple E = (E,%, #), where %⊆ E×E is a partial order
such that (i) for all e ∈ E, the set {e′ ∈ E | e′ % e} is finite, and (ii) # ⊆ E ×E
is symmetric and irreflexive, and such that for all e1, e2, e3 ∈ E, e1#e2 and
e2 % e3 imply that e1#e3. Obviously, “forgetting” the net interpretation of an
occurrence net yields an event structure, and even restricting to the event set E
does. This is the usual way of associating nets and event structures, and explains
the name. Below, we will use event structures whose elements are interpreted as
conditions in the sense of occurrence nets. To avoid confusion, we will speak of
condition structures, even if the mathematical properties are invariant under this
change of interpretation. Restricting an occurrence net to its set of conditions
yields a condition structure.
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Condition structures are denoted by C = (B,%, #). Denote by→ the succes-
sor relation, i.e., the transitive reduction of the relation %. For b ∈ B, we denote
by •b and b• the preset and postset of b in (B,→), respectively. For C′ ⊆ C two
condition structures, define the preset •C′ =

⋃
b∈C′

•b ; the postset C′• is defined
similarly. The prefix relation on condition structures is denoted by 6. If C′ 6 C
are two condition structures, we write

C′ → b iff b ∈ C′• but b 2∈ C′, (2)

and we say that b is an extension of C′. Each condition structure C = (B,%, #)
induces a concurrency relation defined by b⊥⊥b′ iff neither b % b′ nor b′ % b nor
b#b′ holds. Two conditions b, b′ are called in immediate conflict iff b#b′ and ∀b′′

such that b′′ ≺ b, then ¬[b′′#b′], and symmetrically.
For C = (B,%, #) a condition structure, a labeling is a map ϕ : B )→ P ,

where P is some finite alphabet 4. We shall not distinguish labeled condition
structures that are identical up to a bijection that preserves labels, causalities,
and conflicts; such condition structures are called

equivalent, denoted by the equality symbol = (3)

For C = (B,%, #,ϕ) and C′ = (B′,%′, #′,ϕ′) two labeled condition structures,

a (partial) morphism ψ : C )→ C′

is a surjective function B ⊇ dom(ψ) )→ B′ such that ψ(%) ⊇%′ and ψ(#) ⊇ #′

(causalities and conflicts can be erased but not created), which is in addition
label preserving, i.e., ∀b ∈ dom(ψ), ϕ′(ψ(b)) = ϕ(b). Note that ψ(%) ⊇%′ is
equivalent to ∀b ∈ B : •ψ(b) ⊆ ψ(•b). For X ⊂ B, define, for convenience:

ψ(X) =def ψ(X ∩ dom(ψ)), with the convention ψ(∅) = nil . (4)

C and C′ are isomorphic, written C ∼ C′, if there exist two morphisms ψ′ : C )→ C′

and ψ′′ : C′ )→ C. It is not true in general that C ∼ C′ implies C = C′ in the sense
of (3). However:

Lemma 1. If C and C′ are finite, then C ∼ C′ implies C = C′.

Be careful that C = C′ means that C and C′ are equivalent, not “equal” in
the naive sense—we will not formulate this warning any more. To be able to
use lemma 1, we shall henceforth assume the following, where the height of a
condition structure is the least upper bound of the set of all lengths of finite
causal chains b0 → b1 → . . .→ bk:
4 The reader may be surprised that we reuse the symbols P and ϕ for objects that

are different from the set of places P of some Petri net and the homomorphism
ϕ associated with its unfolding. This notational overloading is indeed intentional.
We shall mainly use condition structures obtained by erasing events in unfoldings:
restricting the homomorphism ϕ : B ∪ E $→ P ∪ T to the set of conditions B yields
a labeling B $→ P in the above sense.
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Assumption 1 All condition structures we consider are of finite width, meaning
that all prefixes of finite height are finite.

In this paper, we will consider mainly labeled condition structures satisfying the
following property, we call them trimmed condition structures:

∀b, b′ ∈ B :
•b = •b′

and ϕ (b) = ϕ (b′)

}
⇒ b = b′. (5)

Condition (5) is similar to the irreducibility hypothesis found in branching pro-
cesses. It is important when considering the projection operation below, since
projections may destroy irreducibility.

A trimming procedure can be applied to any labeled condition structure C =
(B,%, #,ϕ) as follows: inductively by starting from min(C), identify all pairs
(b, b′) of conditions such that both •b = •b′ and ϕ (b) = ϕ (b′) hold in C. This
procedure yields a triple (B̄, %̄, ϕ̄), and it remains to define the trimmed conflict
relation #̄, or, equivalently, the trimmed concurrency relation ⊥̄⊥. Define b̄ ⊥̄⊥ b̄′ iff
b ⊥⊥ b′ holds for some pair (b, b′) of conditions mapped to (b̄, b̄′) by the trimming
procedure. This defines C̄ = (B̄, %̄, #̄, ϕ̄).

It will be convenient to consider the following canonical form for a labe-
led trimmed condition structure. Its conditions have the special inductive form
(X, p), where X is a co-set of C and p ∈ P . The causality relation % is simply en-
coded by the preset function •(X, p) = X, and the labeling map is ϕ (X, p) = p.
Conditions with empty preset have the form (nil , p), i.e., the distinguished sym-
bol nil is used for the minimal conditions of C. The conflict relation is specified
separately. Unless otherwise specified, trimmed condition structures will be as-
sumed in canonical form.

For C = (B,%, #,ϕ) a trimmed labeled condition structure, and Q ⊂ P a
subset of its labels, the projection of C on Q, denoted by ΠQ(C), is defined as
follows. Take the restriction of C to ϕ−1(Q), we denote it by C | ϕ−1(Q) . By this
we mean that we restrict B as well as the two relations % and #. Note that
C | ϕ−1(Q) is not trimmed any more. Then, applying the trimming procedure to
C | ϕ−1(Q) yields ΠQ(C), which is trimmed and in canonical form. By abuse of
notation, denote by ΠQ(b) the image of b ∈ C | ϕ−1(Q) under this operation. The
projection possesses the following universal property:

∀ψ : C )→ C′, and C′ has label set Q =⇒ ∃ψ′ :
C ΠQ→ ΠQ(C)

ψ
↘ ↓ψ′

C′
(6)

In (6), symbols ψ,ψ′,ΠQ are morphisms, and the diagram commutes.
The composition of the two trimmed condition structures Ci = (Bi,%i

, #i,ϕi), i = 1, 2, where labeling ϕi takes its values in alphabet Pi, is the condi-
tion structure

C1 ∧ C2 = (B,%, #,ϕ), with two associated morphisms
ψi : C1 ∧ C2 )→ Ci, i = 1, 2,

(7)
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satisfying the following universal property:

∀ψ′
1,ψ

′
2 :

C′

ψ′
1↙ ↘ψ′

2

C1 C2

=⇒ ∃ψ′ :
C′

ψ′
1↙ ↓ψ′ ↘ψ′

2

C1 ←ψ1
C1 ∧ C2 ψ2

→ C2

(8)

In (8), the ψ’s denote morphisms, and the second diagram commutes. The com-
position is inductively defined as follows (we use the canonical form):

1. min(C1 ∧ C2) =def min(C1) ∪ min(C2), where we identify (nil , p) ∈ C1 and
(nil , p) ∈ C2 for p ∈ P1 ∩ P2. The causality relation and labeling map follow
from the canonical form, and # =def #1 ∪ #2. The canonical surjections
ψi : min(C1 ∧ C2) )→ min(Ci), i = 1, 2 are morphisms.

2. Assume C′ =def C′
1∧C′

2 together with the morphisms ψi : C′ )→ C′
i are defined,

for C′
i a finite prefix of Ci, and i = 1, 2. Then, using (4) we define, for all

co-sets X of C′:

X ⊂ dom(ψ1), p ∈ P1 \ P2
C′
1 → (ψ1(X), p)

}
⇒ C′ → (X, p) (i)

X ⊂ dom(ψ1), p ∈ P1 ∩ P2
C′
1 → (ψ1(X), p)

}
⇒ C′ → (X, p) (i′)

X ⊂ dom(ψ2), p ∈ P2 \ P1
C′
2 → (ψ2(X), p)

}
⇒ C′ → (X, p) (ii)

X ⊂ dom(ψ2), p ∈ P1 ∩ P2
C′
2 → (ψ2(X), p)

}
⇒ C′ → (X, p) (ii′)

p ∈ P1 ∩ P2
C′
1 → (ψ1(X), p)

C′
2 → (ψ2(X), p)




⇒ C′ → (X, p) (iii)

Some comments are in order. The above five rules overlap: if rule (iii) applies,
then we could have applied as well rule (i’) with Y = X ∩ dom(ψ1) in lieu of
X, and the same for (ii’). Thus we equip rules (i–iii) with a set of priorities
(a rule with priority 2 applies only if no rule with priority 1 is enabled):

rules (i,ii,iii) have priority 1, rules (i’,ii’) have priority 2. (9)

For the five cases (i,i’,ii,ii’,iii), extend ψ, i = 1, 2 as follows:

ψ1(X, p1) =def (ψ1(X), p1) (i, i′)
ψ2(X, p2) =def (ψ2(X), p2) (ii, ii′)

for i = 1, 2 : ψi(X, p) =def (ψi(X), p) (iii),

where convention (4) is used.

Using the above rules, define the triple (B,%,ϕ) as being the smallest5 triple
containing min(C1 ∧ C2), and such that no extension using rules (i,i’,ii,ii’,iii)
5 for set inclusion applied to the sets of conditions.
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applies. It remains to equip the triple (B,%,ϕ) with the proper conflict relation.
The conflict relation # on C1 ∧ C2 is defined as follows:

# is the smallest conflict relation containing ψ−1
1 (#1) ∪ ψ−1

2 (#2). (10)

Comments. The composition of labeled event structures combines features from
the product of labeled nets (its use of synchronizing labels), and from unfoldings
(its inductive construction). Note that this composition is not strictly synchro-
nizing, due to the special rules (i’,ii’), which are essential in ensuring (8).

4.3 Condition Structures Obtained from Unfoldings

Consider a Petri net P = (P, T,→, M0) with its unfolding UP . Let
CP = (B,%, #,ϕ) be the condition structure obtained by erasing the events in
UP . Such condition structures are of finite width.

Lemma 2. If P satisfies the following condition:

∀p ∈ P : t, t′ ∈ •p and t 2= t′ ⇒ •t 2= •t′. (11)

then CP is a trimmed condition structure, i.e., it satisfies (5). Unless otherwise
stated, all Petri nets we shall consider satisfy this condition.

Condition (11) can always be enforced by inserting dummy places and transiti-
ons, as explained next. Assume that •t→ t→ p and •t′ → t′ → p with t′ 2= t but
•t′ = •t. Then, replace the path •t→ t→ p by •t→ t→ qt,p → st,p → p, where
qt,p and st,p are a fresh place and a fresh transition associated to the pair (t, p).
Perform the same for the other path •t′ → t′ → p. This is a mild transformation,
of low complexity cost, which does not modify reachability properties.

Important results about condition structures obtained from unfoldings are
collected below. In this result, 1 =def ∅ denotes the empty condition structure,
and C, C1, C2 denote arbitrary condition structures with respective label sets
P, P1, P2, and label set Q is arbitrary unless otherwise specified.

Theorem 1. The following properties hold:

ΠP1(C) ∧ΠP2(C) = ΠP1∪P2(C) (a0)
ΠP1(ΠP2(C)) = ΠP1∩P2(C) (a1)

ΠP (C) = C (a2)
∀Q ⊇ P1 ∩ P2 : ΠQ(C1 ∧ C2) = ΠQ(C1) ∧ΠQ(C2) (a3)

C ∧ 1 = C (a4)
C ∧ΠQ(C) = C (a5)

4.4 Discussion

To our knowledge, compositional theories for unfoldings or event structures have
received very little attention so far. The work of Esparza and Römer [10] inve-
stigates unfoldings for synchronous products of transition systems. The central
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issue of this reference is the construction of finite complete prefixes. However,
no product is considered, for the unfoldings themselves. To our knowledge, the
work closest to ours is that of J-M. Couvreur et al. [7]–Sect. 4. Their motivati-
ons are different from ours, since they aim at constructing complete prefixes in a
modular way, for Petri nets that have the form P = P1 × . . .×Pk (synchronous
product). It is required that the considered Petri nets are not reentrant, a major
limitation due to the technique used.

We are now ready to formally state our distributed diagnosis problem.

5 Distributed Diagnosis: Formal Problem Setting [3]

We are given the following labeled Petri nets:

P = (P, T,→, M0,λ) : the underlying “true” system. P is subject to faults, thus
places from P are labelled by faults, taken from some finite alphabet (the
non-faulty status is just one particular “fault”). The labeling map λ associa-
tes, to each transition of P, a label belonging to some finite alphabet A of
alarm labels. For its supervision, P produces so-called alarm patterns, i.e.,
sets of causally related alarms.

Q = (P
Q
, T

Q
,→, M

Q

0 ,λ
Q
) : Q represents the faulty behaviour of P, as observed

via the sensor system. Thus we require that: (i) The labeling maps of Q
and P take their values in the same alphabet A of alarm labels, and (ii)
LQ ⊇ LP , i.e., the language of Q contains the language of P. In general,
however, Q 2= P. For example, if a single sensor is assumed, which collects
alarms in sequence by preserving causalities (as assumed in [3]), then Q is the
net which produces all linear extensions of runs of P. In contrast, if several
independent sensors are used, then the causalities between events collected
by different sensors are lost. Configurations of Q are called alarm patterns.

Global Diagnosis. Consider the map: A )→ UA×P , where A ranges over the
set of all finite alarm patterns. This map filters out, during the construction
of the unfolding UP , those configurations which are not compatible with the
observed alarm pattern A. Thanks to Lemma 2, we can replace the unfolding
UA×P by the corresponding condition structure CA×P . Then, we can project
away, from CA×P , the conditions labeled by places from A (all this is detailed
in [3]–Theorem 1). Thus we can state:

Definition 1. Global diagnosis is represented by the following map:

A )−→ ΠP (CA×P), (12)

where A ranges over the set of all finite configurations of Q.

Modular Diagnosis. Assume that Petri net P decomposes as P = ‖i∈IPi.
The different subsystems Pi interact via some shared places, and their sets of
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transitions are pairwise disjoint. In particular, the alphabet A of alarm labels
decomposes as A =

⋃
i∈I Ai, where the Ai are pairwise disjoint. Next, we assume

that each subsystem Pi possesses its own local sets of sensors, and the local sensor
subsystems are independent, i.e., do not interact. Thus Q also decomposes as
Q = ‖i∈IQi, and the Qi possess pairwise disjoint sets of places. Consequently,
in (12), A decomposes as A = ‖i∈IAi, where the Ai, the locally recorded alarm
patterns, possess pairwise disjoint sets of places too.

Definition 2. Modular diagnosis is represented by the following map:

A )−→ [ΠPi(CA×P)]i∈I , (13)

where A ranges over the set of all finite prefixes of runs of Q.

Note that, thanks to Theorem 1, we know that ΠP (CA×P) =
∧

i∈I [ΠPi(CA×P)] ,
i.e., fusing the local diagnoses yields global diagnosis. However, we need to com-
pute modular diagnosis without computing global diagnosis. On the other hand,
the reader should notice that, in general, ΠPi(CA×P) 2= CAi×Pi , expressing the
fact that the different supervisors must cooperate at establishing a coherent
modular diagnosis.

6 Distributed Orchestration of Modular Diagnosis [12, 13]

This section is essential. It provides a framework for the high-level orchestration
of the distributed computation of modular diagnosis. We first link our problem
with the seemingly different areas of distributed constraint solving and distribu-
ted optimization.

6.1 A Link with Distributed Constraint Solving

Consider Theorem 1, and re-interpret, for a while, the involved objects diffe-
rently. Suppose that our above generic label set P is a set of variables, thus
p ∈ P denotes a variable. Then, suppose that all considered variables possess a
finite domain, and that C generically denotes a constraint on the tuple P of varia-
bles, i.e., C is a subset of all possible values for this tuple. For Q ⊂ P , re-interpret
ΠQ(C) as the projection of C onto Q. Then, re-interpret ∧ as the conjunction of
constraints. Finally, 1 is the trivial constraint, having empty set of associated
variables. It is easily seen that, whith this re-interpretation, properties (a0–a5)
are satisfied.

Modular constraint solving consists in computing ΠPi(
∧

j∈I Cj) without com-
puting the global solution

∧
j∈I Cj . Distributed constraint solving consists in

computing ΠPi(
∧

j∈I Cj) in a distributed way. Thus distributed constraint sol-
ving is a simpler problem, which is representative of our distributed diagnosis
problem, when seen at the proper abstract level.
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A Chaotic Algorithm for Distributed Constraint Solving. We build a
graph on the index set I as follows: draw a branch (i, j) iff Pi ∩ Pj 2= ∅, i.e.,
Ci and Cj interact directly. Denote by GI the resulting interaction graph. For
i ∈ I, denote by N(i) the neighbourhood of i, composed of the set of j’s such
that (i, j) ∈ GI . Note that N(i) contains i. The algorithm assumes the existence
of an “initial guess”, i.e., a set of Ci, i ∈ I such that

C =
∧

i∈I

Ci, (14)

and it aims at computing ΠPi(C), for i ∈ I, in a chaotic way. In the following
algorithm, each site i maintains and updates, for each neighbour j, a message
Mi,j toward j. Thus there are two messages per edge (i, j) of GI , one in each
direction:

Algorithm 1

1. Initialization: for each edge (i, j) ∈ GI :

Mi,j = ΠPi∩Pj (1). (15)

2. Chaotic iteration: until stabilization, select an edge (i, j) ∈ GI , and update:

Mi,j := ΠPi∩Pj

(
Ci ∧

[∧
k∈N(i)\j Mk,i

])
. (16)

3. Termination: for each i ∈ I, set:

C#
i = Ci ∧

[∧
k∈N(i) Mk,i

]
. (17)

The following result belongs to the folklore of smoothing theory in statistics
and control. It was recently revitalised in the area of so-called “soft” coding
theory. In both cases, the result is stated in the context of distributed constrained
optimization. In its present form, it has been proved in [13] and uses only the
abstract setting of Sect. 6.1 with properties (a0–a5):

Theorem 2 ([13]). Assume that GI is a tree. Then Algorithm 1 converges in
finitely many iterations, and C#

i = ΠPi(C).

An informal argument of why the result is true is illustrated in Fig. 8. Message
passing, from the leaves to the thick node, is depicted by directed arrows. Thanks
to (16), each directed arrow cumulates the effect, on its sink node, of the con-
straints associated with its set of ancestor nodes, where “ancestor” refers to the
ordering defined by the directed arrows. Now, we provide some elementary cal-
culation to illustrate this mechanism. Apply Algorithm 1 with the particular
policy shown in Fig. 8, for selecting the successive branches of GI . Referring to
this figure, select concurrently the branches (9, 5) and (8, 5), and then select the
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Fig. 8. Illustrating why Algorithm 1 performs well when GI is a tree. Messages are
generated first at the leaves. They meet at some arbitrarily selected node—the “center”,
here depicted in thick. Then they travel backward to the leaves.

branch (5, 3). Then, successive applications of formula (16) yield:

M(9,5) = ΠP9∩P5

(
C9 ∧

[∧
k∈N(9)\5 M(k,i)

])

= ΠP9∩P5(C9) (since N(9) \ 5 = ∅)
M(8,5) = ΠP8∩P5(C8)
M(5,3) = ΠP5∩P3(C5 ∧M(9,5) ∧M(8,5))

= ΠP5∩P3(C5 ∧ C9 ∧ C8)

(18)

The calculations can be further continued. They clearly yield the theorem for
the center node i = 0, for the particular case where the branches are selected
according to the policy shown in Fig. 8. A back-propagation to the leaves yields
the result for all nodes. In this explanation, the messages were partially ordered,
from the leaves to the thick node, and then vice-versa. Due to the monotonic
nature of the algorithm, a chaotic and concurrent emission of the messages yields
the same result, possibly at the price of exchanging a larger number of messages.
Here is a formal proof borrowed from [13], we omit details.

Proof. Write C ≤ C′ iff C = C′ ∧ C′′ for some C′′. Using this notation, note that
(16) is monotonic in the following sense: if ∀k : Mk,i ≤M′

k,i in the right hand
side of (16), then Mi,j ≤M′

i,j in the left hand side of (16). Next, mark Mi,j in
formula (16) with a running subset Ji,j ⊆ I, initialized with Ji,j = ∅:

Mi,j := ΠPi∩Pj

(
Ci ∧

[∧
k∈N(i)\j Mk,i

])

Ji,j := Ji,j ∪ {i} ∪
[⋃

k∈N(i)\j Jk,i

] (19)

Then, by using properties (a0–a5) and the monotonicity of (16), we get (left as
an exercise to the reader):

Mi,j = ΠPi∩Pj

(∧
k∈Ji,j

Ck

)
. (20)

Hint: compare with (18). Verify that the assumption that GI is a tree is used for
applying repeatedly axiom (a3): this assumption guarantees that (

∧
k∈Ji,j

Ck)
and Cj interact only via Pi ∩ Pj . From (20) the theorem follows easily. ?
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6.2 A Link with Distributed Constrained Optimization

As announced before, Theorem 2 generalizes to distributed constrained opti-
mization. For this case, C becomes a pair C =(constraint, cost)=def (C,J). Con-
straints are as before, and costs have the following additive form:

J(x) =
∑

p∈P

jp(xp), (21)

where xp ∈ dom(p), the domain of variable p, x = (xp)p∈P , and the local costs
jp are real-valued, nonnegative cost functions. We require that J be normalized:

∑

x|=C

exp(J(x)) = 1, (22)

where x |= C means that x satisfies constraint C, and exp(.) denotes the expo-
nential. In the following, the notation Cst will denote generically a normalization
factor whose role is to ensure condition (22). Then, define:

ΠQ(J)(xQ) =def
1

Cst
max

x:ΠQ(x)=xQ

J(x), (23)

In (23), ΠQ(x) denotes the projection of x on Q. Then, define ΠQ(C) to be
the projection of constraint C on Q, i.e., the elimination from C, by existential
quantification, of the variables not belonging to Q. Finally, define ΠQ(C) =def
(ΠQ(C),ΠQ(J)). Next, we define the composition ∧. To this end, take for C1∧C2
the conjunction of the considered constraints. And define:

(J1 ∧ J2)(x) =def
1

Cst
(J1(ΠP1(x)) + J2(ΠP2(x))) . (24)

It is easily checked that the properties (a0–a5) are still satisfied. Thus, Algorithm
1 solves, in a distributed way, the following problem:

max
x|=C

J(x), (25)

for the case in which C =def (C,J) decomposes as C =
∧

i∈I Ci.
Problem (25) can also be interpreted as maximum likelihood constraint sol-

ving, to resolve nondeterminism. In this case, the cost function J is interpreted
as the logarithm of the likelihood (loglikelihood)—whence the normalization
constraint (22). Then, the additive decomposition (21) for the loglikelihood me-
ans that the different variables are considered independent with respect to their
prior distribution (i.e., when ignoring the constraints). In fact, the so defined
systems C are Markov random fields, for which Algorithm 1 provides distribu-
ted maximum likelihood estimation. This viewpoint is closely related to belief
propagation in belief networks [19, 20, 23].
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6.3 Application to Off-Line Distributed Diagnosis

As said above, our framework of Sects. 4 and 5 satisfies properties (a0–a5).
We can therefore apply algorithm 1 to perform off-line diagnosis, i.e., compute
ΠPi(CA×P), cf. (13), for A being fixed. Now, we need an initial guess Ci satisfying
(14), i.e., in our case: CA×P =

∧
i∈I Ci. As we said, CAi×Pi is not a suitable initial

guess, since CA×P 2=
∧

i∈I CAi×Pi . Thus we need to find another one. Of course,
we want this initial guess to be “cheap to compute”, meaning at least that
its computation is purely local and does not involve any cooperation between
supervisors.

This is by no means a trivial task in general. However, in our running exam-
ple, we can simply complement P1 by a new path (3) → [] → (7), and P2 by a
path (7) → [] → (3), and the reader can check that (14) is satisfied by taking
Ci =def CAi×P̄i

, where P̄i, i = 1, 2 denote the above introduced completions. In
fact, this trick works for pairs of nets having a simple interaction involving only
one pair of complementary places. It is not clear how to generalize this to more
complex cases—fortunately, this difficulty disappears for the on-line algorithm,
which is our very objective.

Anyway, having a correct initial guess at hand, Algorithm 1 applies, and
yields the desired high-level orchestration for off-line distributed diagnosis. Each
primitive operation of this orchestration is either a projection or a composition.
For both, we have given the detailed definition above. All primitives are local to
each site, i.e., involve only its private labels.

Again, since only properties (a0–a5) are required by Algorithm 1, we can
also address the maximum likelihood extension discussed before (see [4, 17] for
issues of randomizing Petri nets with a full concurrency semantics). This is the
problem of maximum likelihood diagnosis that our prototype software solved, in
the context described in Sect. 2.

6.4 An On-Line Variant of the Abstract Setting

Handling on-line diagnosis amounts to extending the results of Sect. 6.1 to “time-
varying” structures in a certain sense [14]. We shall now complement the set of
abstract properties (a0–a5) to prepare for the on-line case. Equip the set of
condition structures with the following partial order:

C′ 66 C iff C is a prefix of C′, (26)

please note the inversion! To emphasize the analogy with constraint solving,
C′ 66 C reads: C′ refines C. Note that

C′ 66 C holds in particular if : C′ = CA′×P , C = CA×P ,A 6A ′, (27)

this is the situation encountered in incremental diagnosis. The following result
complements Theorem 1:
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Theorem 3. The following properties hold:

C 66 1 (a6)
C1 66 C2 ⇒ C1 ∧ C3 66 C2 ∧ C3 (a7)
C′ 66 C ⇒ ∀Q : ΠQ(C′) 66 ΠQ(C) (a8)

Distributed Constraint Solving with Monotonically Varying Con-
straints. Consider again our re-interpretation as distributed constraint solving.
Now, instead of constraint Ci being given once and for all, we are given a set of
constraints Ci ordered by 66. More precisely, for Ci, C′

i ∈ Ci, write Ci 66 C′
i iff

Ci ⇒ C′
i, i.e., the former refines the latter. We assume that Ci is a lattice, i.e.,

that the supremum of two constraints exists in Ci. Since all domains are finite,
then C∞

i = lim**(Ci) is well defined. Algorithm 1 is then modified as follows,
[14]:

Algorithm 2
1. Initialization: for each edge (i, j) ∈ GI :

Mi,j = ΠPi∩Pj (1). (28)

2. Chaotic nonterminating iteration: Choose nondeterministically, in the follo-
wing steps:
case 1: select a node i ∈ I and update:

read Cnew
i 66 Ccur

i , and update Ccur
i := Cnew

i . (29)

case 2: select an edge (i, j) ∈ GI , and update:

Mi,j := ΠPi∩Pj(Ccur
i ∧ [

∧
k∈N(i)\j Mk,i]). . (30)

case 3: Update subsystems: select i ∈ I, and set:

C#
i = Ccur

i ∧ [
∧

k∈N(i) Mk,i]. (31)

In step 2, Ccur
i denotes the current estimated value for Ci, whereas Cnew

i denotes
the new, refined, version. Algorithm 2 is fairly executed if it is applied in such
a way that every node i of case 1 and case 3, and every edge (i, j) of case 2
is selected infinitely many times.

Theorem 4 ([14]). Assume that GI is a tree, and Algorithm 2 is fairly exe-
cuted. Then, for any given C =

∧
i∈I Ci, where Ci ∈ Ci, after sufficiently many

iterations, one has ∀i ∈ I : C#
i 66 ΠPi(C).

Theorem 4 expresses that, modulo a fairness assumption, Algorithm 2 refines,
with some delay, the solution ΠPi(C) of any given intermediate problem C.

Proof. It refines the proof of Theorem 2. The monotonicity argument applies
here with the special order 66. Due to our fairness assumption, after sufficiently
many iterations, each node i has updated its Ccur

i in such a way that Ccur
i 66 Ci.

Select such a status of Algorithm 2, and then start marking the recursion (30)
as in (19). Applying the same reasoning as for the proof of Theorem 2 yields
that Mi,j 66 ΠPi∩Pj (

∧
k∈Ji,j

Ck), from which Theorem 4 follows. ?
How Algorithms 1 and 2 behave when GI possesses cycles is discussed in [1, 15].
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Application to On-Line Distributed Diagnosis. Here we consider the case
in which a possibly infinite alarm pattern is observed incrementally: A∞ =
‖i∈I A∞

i , meaning that sensor i receives only finite prefixes Ai 6 A∞
i , partially

ordered by inclusion. Now, by (27):

∀i ∈ I : A′
i 6 Ai ⇒ Ci = CAi×Pi 66 CA′

i×Pi
= C′

i. (32)

Thus on-line distributed diagnosis amounts to generalizing Algorithm 1 to the
case in which subsystems Ci are updated on-line while the chaotic algorithm is
running. Theorem 4 expresses that, if applied in a fair manner, then Algorithm
2 explains any finite alarm pattern after sufficiently many iterations.

For the off-line case, we mentioned that obtaining an “initial guess” for the Ci

was a difficult issue. Now, since Algorithm 2 progresses incrementally, the issue
is to compute the increment from Ccur

i to Cnew
i in a “cheap” way. As detailed in

[1], this can be performed locally, provided that the increment from Acur
i to Anew

i

is small enough.

Back to Our Running Example. Here we only relate the different steps of Al-
gorithm 2 to the Fig. 6. Initialization is performed by starting from empty un-
foldings on both supervisors. case 1 of step (a) consists, e.g., for supervisor 1,
in recording the first alarm β (Acur

i = ∅ and Anew
i = {β}), and then explaining

β by the net (1) → β → (2) ∪ (1, 7) → β → (2, 3). case 2 of step (a) con-
sists, e.g., for supervisor 1, in computing the abstraction of this net, for use by
supervisor 2, this is shown by the first thick dashed arrow. Step (b), e.g., con-
sists, for supervisor 2, in receiving the above abstraction and using it to append
(3, 4) → α → (7, 5) as an additional explanation for its first alarm α; another
explanation is the purely local one (4) → α → (6), which does not require the
cooperation of supervisor 1.

7 Conclusion

For the context of fault management in SDH/SONET telecommunications net-
works, a prototype software implementing the method was developed in our
laboratory, using Java threads to emulate concurrency. This software was sub-
sequently deployed at Alcatel on a truly distributed experimental management
platform. No modification was necessary to perform this deployment.

To ensure that the deployed application be autonomous in terms of synchro-
nization and control, we have relied on techniques from true concurrency. The
overall distributed orchestration of the application also required techniques ori-
ginating from totally different areas related to statistics and information theory,
namely belief propagation and distributed algorithms on graphical models. Only
by blending those two orthogonal domains was it possible to solve our problem,
and our work is a contribution in both domains.

Regarding concurrency theory, we have introduced a new compositional
theory of modular event (or condition) structures. These objects form a category
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equipped with its morphisms, with a projection and two composition operati-
ons; it provides the adequate framework to support the distributed construction
of unfoldings or event structures. It opens the way to using unfoldings or event
structures as core data structures for distributed and asynchronous applications.

Regarding belief propagation, the work reported here presents an axiomatic
form not known before. Also, time-varying extensions are proposed. This ab-
stract framework allowed us to address distributed diagnosis, both off-line and
on-line, and to derive types of algorithms not envisioned before in the field of
graphical algorithms.

The application area which drives our research raises a number of additional
issues for further investigation. Getting the model (the net P) is the major one:
building the model manually is simply not acceptable. We are developing appro-
priate software and models for a small number of generic management objects.
These have to be instanciated on the fly at network discovery, by the manage-
ment platform. This is a research topic in itself. From the theoretical point of
view, the biggest challenge is to extend our techniques to dynamically changing
systems. This is the subject of future research. Various robustness issues need to
be considered: messages or alarms can be lost, the model can be approximate,
etc. Probabilistic aspects are also of interest, to resolve nondeterminism by per-
forming maximum likelihood diagnosis. The papers [4, 17] propose two possible
mathematical frameworks for this, and a third one is in preparation.
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