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[Basics, problems, and

recent advances] A
growing percentage of the world population now uses image and

video coding technologies on a regular basis. These technologies

are behind the success and quick deployment of services and prod-

ucts such as digital pictures, digital television, DVDs, and Internet

video communications. Today’s digital video coding paradigm rep-

resented by the ITU-T and MPEG standards mainly relies on a hybrid of block-

based transform and interframe predictive coding approaches. In this coding

framework, the encoder architecture has the task to exploit both the temporal and

spatial redundancies present in the video sequence, which is a rather complex

exercise. As a consequence, all standard video encoders have a much higher com-

putational complexity than the decoder (typically five to ten times more complex),

mainly due to the temporal correlation exploitation tools, notably the motion esti-

mation process. This type of architecture is well-suited for applications where the

video is encoded once and decoded many times, i.e., one-to-many topologies, such

as broadcasting or video-on-demand, where the cost of the decoder is more critical

than the cost of the encoder. 

Distributed source coding (DSC) has emerged as an enabling technology for

sensor networks. It refers to the compression of correlated signals captured by
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different sensors that do not communicate between themselves.

All the signals captured are compressed independently and

transmitted to a central base station, which has the capability

to decode them jointly. Tutorials on distributed source coding

for sensor networks, presenting the underlying theory as well

as first practical solutions, have already been published in IEEE

Signal Processing Magazine in 2002 [1] and 2004 [2]. Video

compression has been recast into a distributed source coding

framework, leading to distributed video coding (DVC) systems

targeting low coding complexity and error resilience. A com-

prehensive survey of first DVC solutions can be found in [3].

While, for sake of completeness, basics about DSC are reviewed,

this article focuses on DVC latest developments for both

monoview and multiview set-ups. 

DSC: THEORETICAL BACKGROUND

DSC finds its foundation in the seminal Slepian-Wolf (SW) [4]

and Wyner-Ziv (WZ) [11] theorems. Due to space limitation, only

the main concepts are recalled. For more details, see [1]–[3].

SLEPIAN-WOLF CODING

Let X and Y be two binary correlated memoryless sources to be

losslessly encoded. If the two coders communicate, it is well

known from Shannon’s theory that the minimum lossless rate

for X and Y is given by the joint entropy H(X, Y ). Slepian and

Wolf have established in 1973 [4] that this lossless compression

rate bound can be approached with a vanishing error probability

for long sequences, even if the two sources are coded separately,

provided that they are decoded jointly and that their correlation

is known to both the encoder and the decoder. The achievable

rate region is thus defined by RX ≥ H(X|Y ), RY ≥ H(Y|X ) and

RX + RY ≥ H(X, Y ), where H(X|Y ) and H(Y|X ) denote the

conditional entropies between the two sources. Let us consider

the particular case where Y is available at the decoder, and has

been coded separately at its entropy rate RY = H(Y ). According

to the SW theorem, the source X can be coded losslessly at a rate

arbitrarily close to the conditional entropy H(X|Y), if the

sequence length tends to infinity. The minimum total rate for

the two sources is thus H(Y) + H(X|Y ) = H(X, Y ). This set-up

where one source is transmitted at full rate [e.g., RY = H(Y )]

and used as side information (SI) to decode the other one (imply-

ing RX = H(X|Y ) or reciprocally) corresponds to one of the

corner points of the SW rate region (see [1]).

The proof of the SW theorem is based on random binning

[4], which is nonconstructive, i.e., it does not reveal how practi-

cal code design should be done. In 1974, Wyner suggested the

use of parity check codes to approach the corner points of the

SW rate region [5]. The bins partitioning the space of all possi-

ble source realizations are constructed from the cosets of the

parity check code. The correlation between X and the side infor-

mation Y is modelled as a virtual channel, where Y is regarded

as a noisy version of X. Channel capacity-achieving codes, block

codes [6], turbo codes [7]–[9] or Low Density Parity Check

(LDPC) codes [10], have been shown to approach the corner

points of the SW region. The compression of X is achieved by

transmitting only a bin index, i.e., a syndrome, or parity bits.

The decoder corrects the virtual channel noise, and thus esti-

mates X given the received syndrome or parity bits and the SI Y

regarded as a noisy version of the codeword systematic bits. 

WYNER-ZIV CODING

In 1976, Wyner and Ziv considered the problem of coding of two

correlated sources X and Y, with respect to a fidelity criterion

[11]. They have established the rate-distortion (RD) function

R ∗X|Y (D ) for the case where the SI Y is perfectly known to the

decoder only. For a given target distortion D, R ∗X|Y (D ) in gen-

eral verifies RX|Y(D ) ≤ R ∗X|Y (D ) ≤ RX(D ), where RX|Y(D )

is the rate required to encode X if Y is available to both the

encoder and the decoder, and RX is the minimal rate for encod-

ing X without SI. Wyner and Ziv have shown that, for correlated

Gaussian sources and a mean square error distortion measure,

there is no rate loss with respect to joint coding and joint decod-

ing of the two sources, i.e., R ∗X|Y (D ) = RX|Y(D ). This no rate

loss result has been extended in [12] to the case where only the

innovation between X and Y needs to be Gaussian, that is where

X and Y can follow any arbitrary distribution. 

Practical code constructions based on the WZ theorem thus

naturally rely on a quantizer (source code) followed by an SW

coder (channel code). The quantizer partitions the continuous-

valued source space into 2Rs regions (or quantization cells),

where Rs is defined as the source rate in bits/sample. A code-

word is associated to each region, thus constructing the source

codebook. The SW coder then partitions the source codebook

into 2R cosets, each containing 2Rc (with R = Rs − Rc) code-

words, and computes the index of the coset containing the

source codeword. Only the index I of the coset is transmitted

with a transmission rate R ≤ Rs. The SW decoder recovers the

source codeword (or an estimate X̂q of the quantization index)

in a given coset by finding the codeword which is the closest to

the observed SI Y. The SW decoder is followed by a Minimum

Mean Square Error (MMSE) estimation which searches for X̂,

the reconstructed value of X , minimizing the expectation

E [(X − X̂)2|X̂q, Y ]. A graphical illustration of the WZ coding

steps can be found in [6] with the example of scalar quantiza-

tion. Under ideal Gaussianity assumptions, the WZ limit can be

asymptotically achieved with nested lattice quantizers [13], [14].

FROM DSC TO DVC AND POTENTIAL BENEFITS

Video compression solutions today mostly rely on motion-com-

pensated prediction techniques to remove the redundancy

between adjacent frames. The encoder searches for the best tem-

poral predictors using motion estimation techniques. It then

computes a prediction error which is usually transformed and

entropy coded to remove the remaining redundancy in the

signal. The motion fields are transmitted and used by the

decoder to find the predictors and do the reverse operations.

This results in asymmetric systems with a significantly higher

encoder complexity due, for a large part, to the motion estima-

tion. This asymmetric structure is well suited for current appli-

cations of video compression such as transmission of digital TV,



or video retrieval from servers. However, a large deployment of

mobile devices induces the need for a structure with inverted

complexity, where video will be encoded using low cost devices

and decoded on powerful platforms.

The SW and WZ theorems suggest that, under Gaussianity

assumptions, correlated samples of the input video sequence can

be quantized and coded independently with minimum loss in

terms of RD performance, if they are decoded jointly. This, in

principle, implies avoiding the time and energy consuming steps

of motion estimation and predictor search in the encoder, with

the effect of a complexity shift from coder to decoder as well as

increased error resilience. Ideally, only the statistical dependence

(or correlation model parameters) between the WZ encoded sam-

ples and SI needs to be known to the encoder. However, the

application of the WZ principles to video compression requires

solving a number of issues which will be discussed in the sequel. 

DVC: TOWARDS PRACTICAL SOLUTIONS

FOR MONOVIEW SYSTEMS

FIRST DVC ARCHITECTURES

First DVC architectures appeared in 2002

[15], [16]. The WZ principles are applied

either in the pixel domain or in the trans-

form domain. Transposing WZ coding

from the pixel to transform domain

allows us to exploit the spatial redundan-

cy within images, as well as to have cor-

relation models adapted to the different

frequency components. A comprehensive

overview of the DVC state-of-the-art in

2004 can be found in [3].

A first architecture, called PRISM

[15], is depicted in Figure 1. The

encoder, based on frame differences, clas-

sifies each 16 × 16 block of the frame

into not coded, intracoded, or WZ coded

with a set of predefined rates. The rate

chosen for a given block depends on the

variance of the frame difference which is

assumed to follow a Laplacian distribu-

tion. Each block is transformed using a

discrete cosine transform (DCT). Since

only the low frequency coefficients have

significant correlation with the corre-

sponding estimated block (SI), the high

frequency coefficients are Intra coded.

The WZ data (low frequency coefficients)

are quantised and encoded with a trellis

code. Furthermore, the encoder sends a

cyclic redundancy check (CRC) word

computed on the quantised low frequen-

cy coefficients of a block to help motion

estimation/compensation at the decoder.

A set of motion-compensated candidate

SI blocks extracted from previously decoded frames is consid-

ered at the decoder. The CRC of each decoded block is compared

with the transmitted CRC. In case of deviation, the decoder

chooses another candidate block. 

A second DVC architecture (see Figure 2) has been proposed

in [16] in which the WZ coding decision is taken at a frame

level. The sequence is thus structured into groups of pictures

(GOP), in which selected frames (for example every N frames

for a GOP size equal to N ), called key frames, are intracoded

(typically using a standard codec such as JPEG-2000 or

H.264/AVC Intra) and intermediate frames are WZ coded. Each

WZ frame is encoded independently of the other frames. The

WZ data are quantised and fed into a punctured turbo coder.

The systematic bits are discarded and only the parity bits of the

turbo coder are stored in a buffer. The encoder sends only a

subset of the parity bits. The SI is constructed via motion-

compensated interpolation (or extrapolation) of previously

decoded key frames. If the bit error rate (BER) at the output of

the turbo decoder exceeds a given value, more parity or syn-

drome bits are requested to the encoder via a feedback channel.

This allows controlling the bit rate in a more accurate manner

[FIG1] DVC architecture with block-based coding mode selection and rate control at the
encoder.
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[FIG2] DVC architecture with frame-based coding mode selection and rate control at the
decoder.
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and handling changing statistics between the SI and the origi-

nal frame, at the expense of latency, bandwidth usage, and

decoder complexity. The decoder generates the SI (e.g., even

frames for a group of pictures of size two) via motion-compen-

sated interpolation of key frames (e.g., odd frames). After turbo

decoding, MMSE estimates of the quantized values, given the

received quantization index and the SI, are computed. 

OPEN PROBLEMS AND RECENT ADVANCES

RD performances superior to that of H.263+ intraframe coding

(a gain of 2 dB for sequences having low motion such as

Salesman and Hall monitor [3]) have been reported. However, a

significant performance gap relative to H.263+ motion-compen-

sated interframe coding, and H.264/AVC, remains. This gap can

be explained by several factors. 

SIDE INFORMATION CONSTRUCTION

The decoder must construct SI with minimum distance with the

WZ encoded data (i.e., with smallest correlation noise) from pre-

viously decoded data. Similarly to predictive coding, it is a prob-

lem of reference finding, but this time performed by the

decoder. In predictive coding, the encoder searches for the best

temporal predictor of the data to encode with block-based

motion estimation techniques. The goal is to minimize the error

between the predictor and the data to encode (which it knows).

In DVC, the decoder must find a predictor (the SI) for data

which it does not know. 

The first problem is thus to estimate the motion of WZ data

(unknown to the decoder) with respect to previously decoded

frames. The decoder can only compute motion fields between

previously decoded frames which may be distant from one

another. An interpolated (or an extrapolated) version of these

motion fields, assuming linear motion, is then used to generate

a motion field for each WZ frame, which is in turn used for

frame interpolation (or extrapolation) to construct the SI. But,

the resulting motion fields are unlikely to minimize the distance

between SI and WZ data, especially in moving and

covered/uncovered regions [see Figure 3(a)]. Slight improve-

ments can be obtained by removing motion discontinuities at

the boundaries and outliers in homogeneous regions [17].

Covered/uncovered regions can also be better handled by con-

structing multiple SI by forward and backward extrapolation

rather than by frame interpolation [18].

To help the decoder in its search for the best SI, the encoder

can send extra information (CRCs [15] or hash codes [19], [20]),

which is some a priori information on the WZ data. The motion-

based extrapolation/interpolation step is then embedded in a

framework where the decoder has access to multiple candidate SI

blocks and checks whether the decoded CRC (or the hash) with

each candidate block matches the transmitted CRC. This

approach for searching the best SI requires multiple WZ decoding

steps, which increases the decoder complexity, and implies trans-

mission rate overhead. Feature points extracted in the WZ frame

are transmitted as extra information in [21] to help correcting

misalignments in three-dimensional (3-D) model-based frame

[FIG3] Correlation noise (difference between interpolated and
actual WZ frame) with (a) original sequence, (b) block-based
motion-compensated interpolation, and (c) 3-D model and
feature points to correct misalignments.

(a)

(b)

(c)
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interpolation which accounts for scene geometric constraints. In

the case of static scenes captured by a moving camera, the

approach significantly improves the SI quality (see Figure 3).

CORRELATION MODELLING AND ESTIMATION

The no loss result of the Wyner-Ziv theorem comes under the

assumption that the statistical dependence between WZ data and

SI is perfectly known to both encoder

and decoder, and that it follows a

Gaussian distribution. Exact knowl-

edge of the statistical dependence

between X and Y is required 1) to

characterize the channel in the SW

decoder, 2) to perform MMSE estima-

tion in the inverse quantizer, and 3) to

help controlling the SW code rate. The

RD performance of a DVC system thus strongly depends on its

capability to estimate the correlation model parameters.

Let us consider the case where WZ coding is performed in a

transform domain (as depicted in Figure 1 and 2). The coeffi-

cients corresponding to the same frequency information are

grouped in a subband, and the correlation parameters are then

estimated per subband. Let X denote a WZ sample in a given

subband and Y the corresponding SI sample. In practice, the

correlation model between X and Y [i.e., the probability density

function (pdf) of the difference Y − X ] is assumed to be

Laplacian. In first DVC implementations, the Laplacian parame-

ters were off-line computed for each sequence. A method for on-

line estimation of these parameters at the decoder has been

described in [22]. The pdf of the difference Y − X is assumed to

match the pdf of the residue (or of its transformed version)

between decoded key frames—which the decoder knows—and

their motion-compensated versions. The correlation model

parameters can then be used to estimate the SW code rate

required, and the corresponding value transmitted to the

encoder via a feedback channel. This approach implies no pro-

cessing related to correlation estimation at the encoder, but

induces latency and feedback channel usage. Alternatively,

depending on latency and/or complexity constraints, the

encoder can first estimate the SI which the decoder is likely to

have, and then derive the correlation model parameters from

the residue X − Ỹ between the WZ data and the SI estimate Ỹ

[37]. To avoid increasing too much the encoder complexity, the

estimate Ỹ is usually taken as the previously decoded frame (i.e.,

assuming null motion). 

In practice, the samples X are first quantized on K bits

(Xi, i = 1 . . . K, where Xi is an independent identically distrib-

uted (i.i.d) binary random variable) to be coded bitplane per

bitplane with a binary SW code. A bitplane-wise correlation

model thus needs to be derived for controlling both the SW

coder and decoder. A first model assumes the correlation chan-

nel between bitplanes of same significance of WZ and SI data

to be binary symmetric, characterized by a crossover probabili-

ty pco,i ≡ Pr(Xi �= Yi) which varies from bitplane to bitplane.

A second model considers the conditional probability

Pr(Xi|Y, Xi−1, ..., X2, X1) . Both probabilities pco,i and

Pr(Xi|Y, Xi−1, ..., X2, X1) can be easily derived from the

Laplacian distribution Pr(X|Y ) or Pr(X − Y ). The crossover

probabilities pco,i can also be deduced by measuring, bitplane-

wise, the Hamming distance between WZ data and SI estimate Ỹ, if

the approach retained, e.g., to avoid latency induced by the use of a

feedback channel, is to have some estimate of SI at the encoder. 

Video signals being highly noner-

godic, the correlation channel is in

general nonstationary, and the estima-

tion of its parameters may not be accu-

rate. In particular, in regions of

occlusions, motion estimation and

interpolation are likely to fail, leading

to SI with very little correlation with

the original data to be WZ coded. This

effect can be reflected in the noise model by considering a mix-

ture of Laplacian pdf distributions with higher variance for

regions of occlusions [23]. The estimation error is going to

impact the SW decoder and MMSE estimation performance, as

well as the accuracy of the rate control. 

RATE ALLOCATION AND CODING MODE SELECTION

The rate allocation problem involves two aspects: the source

code rate control (i.e., the number of quantization levels) and

the SW code (i.e. channel coder) rate control. The number of

quantization levels is adjusted for a target distortion, assuming

perfect SW coding/decoding and targeting a stable PSNR over

time for the reconstructed signal. The SW code rate then

depends on the correlation between SI and original data. 

Let us again consider the case the SW coding is performed bit-

plane-wise per subband. The rate of the SW code can be estimated

from the entropy of the bitplane crossover probability

(H(Xi|Yi) = −pco,i log 2 pco,i − (1 − pco,i) log 2(1 − pco,i)) . In

[25], the entropy of the probability Pr(Xi �= X̂i) averaged over the

entire bitplane of a given band, where X̂i is given by

X̂i ≡ arg max b= 0,1 Pr(Xi = b|Y, Xi−1, . . . , X2, X1) , is shown

to be a relatively good estimate of the actual rate needed for the

SW code. This derivation makes the assumptions that the correla-

tion model is accurate and that the SW code is perfect, which is

obviously not the case. This initial rate control can be comple-

mented with a feedback mechanism. If, after sending this initial

amount of parity bits, the BER estimated at the output of the SW

decoder remains above a given threshold, extra information is

requested via a feedback channel. This BER can be estimated from

the log likelihood ratios available at the output of the SW decoder

[25]. Having an initial rate estimate limits the use of the feedback

channel, hence leads to a reduction of delay and decoder complexi-

ty. Controlling the rate via a feedback channel requires a rate-adap-

tive SW code, using e.g., puncturing mechanisms. Syndrome

based approaches using punctured LDPC codes are shown to per-

form poorly because the graph resulting from the puncturing con-

tains unconnected and single-connected nodes [26]. LDPC-based

rate-adaptive codes with accumulated syndromes perserving good

performance at high compression ratios are described in [26].

ALL STANDARD VIDEO

ENCODERS HAVE A MUCH

HIGHER COMPUTATIONAL

COMPLEXITY THAN THE

DECODER.



In regions of occlusion, given the low correlation between SI

and original data, separate encoding and decoding may outper-

form WZ coding. As in predictive coding systems, it may thus be

beneficial to introduce at the encoder a block-based coding

mode (Intra, WZ coded) selection [15], [24]. For deciding the

coding mode, the encoder needs to estimate the SI which will be

available at the decoder (see previous section). The coding mode

selection can be combined with a rate control of the SW code: a

rate is thus chosen among a fixed set of possible rates depending

on the correlation with the estimated SI [15]. The rate, function

of an estimate Ỹ of the SI and not of the actual SI Y available at

the decoder, does not match the actual correlation channel.

CAN DSC THEORY AND DVC PRACTICE MEET?

Despite recent advances, DVC RD performance is not yet at the

level of predictive coding. The critical steps with respect to RD

performance are: 1) finding the best SI (or predictor) at the

decoder and 2) accurately modeling and estimating the correla-

tion channel. It is shown in [27] that, WZ coding using motion

estimation at the encoder for accurate modelling of the dis-

placed frame difference (DFD) statistics and for signalling the

best SI to the decoder, give performances close to those of pre-

dictive coding. However, this comes at the cost of an encoder

complexity comparable to the one in predictive coding systems.

The suboptimality of these two steps shifted to the decoder

depends on the motion characteristics of the video sequence.

Fast motion negatively impacts the SI quality. Figure 4 illus-

trates the performance gap between a DVC architecture based

on the feedback channel (as depicted in Figure 2) with punc-

tured turbo and LDPC codes [26] for two sequences (with fast

and low motion) at 15 Hz. For sequences with low motion or

higher frame rates (e.g., 30 Hz), a RD performance gain close to

3 dB is achieved, with a significantly lower complexity, com-

pared with H.264/AVC Intra. With fast motion or low frame

rates, this is not always the case. Dynamic GOP size adaptation

at the encoder, according to sequence motion characteristics,

further improves the RD performance, however at the expense

of increased encoding complexity.

The DVC paradigm brings flexibility for shifting part of the

encoder complexity to the decoder, i.e., for coder/decoder com-

plexity balancing. Low encoding complexity constraints have so

far been central to the design of first DVC solutions. But, the

various trade-offs between RD performance and coder/decoder

complexity balancing, according to applications constraints, are

not yet fully understood and remain to be explored. Beyond the

complexity-performance trade-off advantage, the DVC paradigm

presents interesting features in terms of error resilience and for

scalable coding.

WZ CODING FOR ERROR-RESILIENT VIDEO TRANSMISSION

Predictive video coding is very sensitive to channel errors: Bit

errors or packet losses lead to predictive mismatch, also known

as the drift effect, which may result in a significant quality

degradation of the reconstructed signal. Predictive decoders,

when used in noisy transmission environments, are followed by

a post-processing step known as error concealment to limit the

catastrophic effect of drift and error propagation. The recon-

structed signal remains however significantly impaired.

In DVC, in presence of errors, the SI quality is also going to

degrade, resulting, similarly to predictive coding, into a drift effect

or predictive mismatch at the decoder. The SI Y can only be con-

structed from concealed data, and will be denoted Ỹ. The virtual

channel for the WZ coding problem is then defined by the distri-

bution of X − Ỹ instead of X − Y. The corresponding errors will

be corrected if they remain within the power of correction of the

SW code, which then operates as a joint source-channel code. The

rate of the SW coder can thus be set in order to correct the noise

of the degraded correlation channel [28]. Note that architectures

in which the decoder searches—with methods close to motion

estimation—for the best SI are more amenable to reduce the

noise of the degraded correlation channel. 

[FIG4] PSNR-rate performance of H.264/AVC Intra, H.264/AVC
Inter, DVC with punctured turbo codes, DVC with punctured
LDPCA codes.
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Alternatively, WZ coding can be used as a systematic lossy for-

ward error correction (FEC) technique. Extra information is sent

on an auxiliary channel to mitigate the drift effect. This idea has

been initially suggested in [29] for analog transmission enhanced

with WZ encoded digital information. The analog version serves

as SI to decode the output of the digital channel. This principle

has been applied in [30]–[32] to the problem of robust video

transmission. The video sequence is first conventionally encoded,

e.g., using an MPEG coder. The sequence is also WZ encoded. In

case of errors, once the conventional bitstream is decoded, error

concealment techniques are applied to construct the SI used to

decode the WZ stream. In [32], for some frames called peg

frames, the indexes of the coset to which belong the symbols of a

given image Ip are transmitted in addition to the residue of the

temporal prediction performed by the conventional coder. The

error propagation due to the drift effect is thus confined between

two peg frames. In [30], the correlation noise of the global chan-

nel (correlation plus transmission-induced SI distortion) is mod-

elled, and a subset of transform coefficients of the conventional

stream is WZ coded by the auxiliary coder. In the above

approaches, the predictively encoded bitstream constitutes the

systematic part of the information which can be protected with

classical FEC. The WZ encoded stream is an extra coarser

description of the video sequence, and is redundant if there is no

transmission error. This can be regarded as unbalanced multiple

description coding. 

Avoiding the cliff effect of conventional FEC, systematic lossy

error protection based on WZ coding has been shown to lead to a

more graceful degradation of the reconstructed video quality

[33]. However, the research in the area of WZ coding based

robust video transmission is still at the level of preliminary

proofs of concepts. A mature solution with precise assessment of

its error resilience benefits under realistic communication sce-

narios and against conventional FEC is still missing. How to esti-

mate the channel parameters (which has also to account for the

distortion induced on the SI by the transmission noise), and con-

trol the rate of the codes accordingly, also remain open issues.

LAYERED WZ CODING

Scalable video coding (SVC) is attractive for applications such as

streaming on heterogeneous networks and/or towards terminals

having different resolutions and capabilities. SVC solutions are

often based on layered signal representations including closed-

loop inter-layer prediction. The problem of layered predictive

coding, similarly as temporal predictive coding, can be re-cast

into a problem of distributed source coding, with similar fea-

tures in terms of coder/decoder load balancing and error

resilience. While in layered coding, the refinement signals are

computed from coded and decoded realizations of lower layers,

with WZ coding, only the correlation model between WZ data

(within one layer) and SI reconstructed from lower layers needs

to be known. 

The encoding of the refinement signals becomes to some

extent independent of the codec used in lower layers, the only

constraint being that the correlation noise between the SI

reconstructed from lower layers and the WZ data is within the

power of correction of the SW code. Theoretic conditions so that

successive refinement in a WZ setting can asymptotically

achieve the WZ RD function in each layer, i.e., so that

R1 + �R = R∗
X|Y2

(D2) , where R1 = R∗
X|Y1

(D1) is the WZ

bound for a layer 1, have been formulated in [34]. In practical

systems, this condition which assumes that SI Y2 in layer 2 does

not bring extra information to the one used in layer 1 is rarely

verified. SI constructed from previously decoded frames on the

enhancement layer is likely to bring extra information to the

one used on the base layer.

Let X̂b
k

and X̂ e
k

denote the decoded base and enhancement

layers for frame k. Let X̂
e, j
k

, j = 1, . . . l − 1 be the l first decoded

bitplanes of X̂ e
k
. A SNR scalable scheme is proposed in [35] where

the base layer uses a standard codec, and bit planes of the

enhancement layers are WZ encoded (as shown in Figure 5). The

image reconstructed from decoded base X̂b
k

and enhancement

layers X̂
j
k
, j = 1, . . . l − 1 is used as SI to decode X l

k
.The tem-

poral redundancy in enhancement layers is not exploited. In

[36], a spatial and temporal scalable codec based on PRISM is

described. For spatial scalability, motion vectors estimated in

the conventional base layer codec are used to choose between

spatial, temporal and spatio-temporal prediction, as well as

between correlation parameters (trained off-line) for each type

of predictor. For the temporal scalability, higher layer motion

vectors are inferred from those of the base layer. In [37], X̂b
k

is

used to compute a residue Uk = Xk − X̂b
k

using closed-loop

inter-layer prediction. This residue is then either coded with

entropy source codes or WZ coded using Vk = X̃ e
k

as SI,

depending on whether the temporal correlation is low or high.

MULTIVIEW DISTRIBUTED VIDEO COMPRESSION

Storage and transmission of multiview video sequences of the

same scene involve large volumes of redundant data. These

data can be efficiently compressed with techniques which

compress the signals jointly, exploiting correlation in the

temporal direction as well as correlation between views.

Techniques compensating the displacement of an object from

one view to the other, called disparity, are used to remove

inter-view correlation. Disparity vectors are function of depth,

i.e., of the focal length and positions of the cameras. These

techniques are referred to as—pixel-based or block-based—

disparity-compensated view prediction techniques. Prediction

[FIG5] Layered WZ coding/decoding structure with predictive
coder in the base layer.
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techniques based on a synthesis of

intermediate views are alternatives

to disparity-compensated techniques

[38]. These approaches are however

more complex as they require esti-

mating depth maps and construct-

ing 3-D models of the scene. 

The promise of DVC is to allow

exploiting correlation between views

without—or with limited—inter-sen-

sor (that is inter-camera) communication, for infrastructures

with limited bandwidth and power consumption contraints. The

problem of distributed multiview coding has been first

addressed for arrays of video cameras capturing static scenes

and for light fields. Here, we concentrate on distributed multi-

view video compression. Same questions related to SI construc-

tion (or prediction) at the decoder side, and on correlation

modelling and estimation, as in monoview systems, arise.

However, in addition to temporal

and/or inter-layer dependencies, in

multiview DVC, the SI has to also

account for inter-view dependencies.

Capturing inter-view dependency

turns out to be more difficult than for

temporal dependencies, as, in general,

multi-view images contain disparities

much larger than displacements

between successive frames. The source

of occlusions also differs: in multi-view, occlusion occurs when

part of the scene can only be observed by one of the cameras due

to depth discontinuities or finite viewing, while, in monoview,

occlusion results from objects motion. Several set-ups (two

examples are depicted in Figure 6) with different implications

on sensor nodes communication and coding/decoding complexi-

ty, have been considered. The RD performance gap between

joint and distributed compression of multi-view sequences

remains large.

INTER-VIEW SIDE INFORMATION

In joint coding systems, disparity vector fields are estimated by

the encoders, in order to find the best inter-view predictors.

The disparity vector fields are perfectly known to all encoders of

the multi-view sequences. In a DVC scenario with no inter-

camera exchange, disparity estimation must be performed by

the decoder. One approach is to use, for the current frames of

the multiview sequences, disparity vector fields estimated on

previously decoded frames [39]. The disparity-based SI, estimat-

ed from previously decoded frames at time k − 1, is used to WZ

decode the frame at instant k. The resulting uncertainty on the

disparity vector fields translates into a rate loss for distributed

coding. In [39], it is however shown that decoding with disparity-

compensated SI reduces the bit rate by up to 10% over decod-

ing without SI.

Block-based disparity compensation is only applicable in the

case of rectified views on a co-linear line, with a viewing axis per-

pendicular to the baseline. Alternatively, and provided that the

scene can be approximated by a planar surface (i.e., all objects lie

on a plane), that the scene is static or that the camera motion is

a pure rotation around its optical center, disparities can be better

represented by global models instead of simple block-based

translational models. An eight-parameter homography is used in

[40]. The homography is a 3 × 3 matrix that relates one view to

another in the homogenous coordinates system. 

The disparity between corresponding points in different

views depends on camera positions and scene geometry. The dis-

parity search can thus be constrained on the epipolar geometry:

given a point in one view, its corresponding point in the other

view lies on the epipolar line. The epipolar constraint is actually

used to reduce the search of correspondences to a one-dimen-

sional (1-D) problem [41]. Motion vectors are estimated on each

view of the stereo set-up and exchanged between sensors.

Together with epipolar constraints the motion vectors help the

disparity search. However, the complexity of each sensor node

[FIG6] SI estimation: (a) disparity estimation based on previously
decoded frames; (b) switch between temporal and disparity-
based inter-view SI.
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which supports the motion estimation constrained along the

epipole line remains high. A disparity search constrained along

the epipolar line is also performed in each view of the multiview

set-up of [42] and depicted in Figure 6(b). 

FUSION OF TEMPORAL AND INTER-VIEW 

SIDE INFORMATION

In [39] and [41], the temporal correlation is exploited at the

encoder using classical techniques such as a motion-

compensated wavelet transform and predictive coding respec-

tively. In [39], one view is considered as the reference view

encoded with a motion-compensated temporal filtering

approach. The other views are also first temporally transformed

with a motion-compensated wavelet transform. Each temporal

subband is WZ coded using inter-view disparity-compensated SI.

The encoder on each sensor node then remains rather complex.

In wireless scenarios, with constraints of low-power con-

sumption, distributed compression may be preferable to predic-

tive coding also along the temporal direction, in which case

both temporal and inter-view SI need to be constructed.

Depending on cameras positions, on spatial and temporal reso-

lutions of the sequences, on motion in the scene, temporal cor-

relation may be higher than inter-view correlation or vice-versa.

A switch between temporal and disparity-based SI is used in

[42]. All the views are first decoded using temporal SI. If decod-

ing fails for a particular block, then disparity search is per-

formed on the available reconstructions [see Figure 6(b)]. These

two types of SI also lead to increased error-resilience. In [40],

considering a particular set-up in which some views are intra-

coded while others are encoded with a structure as shown in

Figure 2, including both intracoded and WZ-coded frames, a

fusion is done between temporal SI constructed by interpolation

of key frames and homography-based inter-view SI. The decision

mask is estimated from the best prediction on temporally adja-

cent key frames. Preliminary results show PSNR improvements

between 0.2 and 0.5 dB when compared to schemes exploiting

no fusion, and making use of solely temporal or homographic

predictions.

CONCLUDING REMARKS

Compared with predictive coding, DVC holds promises for a

number of applications: a more flexible coder/decoder complex-

ity balancing, increased error resilience, and the capability to

exploit inter-view correlation, with limited inter-camera com-

munication, in multiview set-ups. DVC shows benefits in lay-

ered representations, with increased error resilience, and to

some extent, independence between codecs used in the differ-

ent layers. However, despite the growing number of research

contributions in the past, key questions remain to bring

monoview and multiview DVC to a level of maturity closer to

predictive coding: estimating at encoder or decoder the virtual

correlation channel from unknown—or only partially known—

data; finding the best SI at the decoder for data not—or only

partially—known. Solutions to the above questions have vari-

ous implications on coder/decoder complexity balancing, on

delay and communication topology (e.g., need for a feedback

channel), and RD performance. These various trade-offs, the RD

performance limits versus application constraints in terms of

delay, coder/decoder complexity trade-offs, precise error

resilience benefits under realistic communication scenarios,

remain to be carefully addressed for real application take-up. 
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