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Abstract This paper studies connectivity maintenance of robotic networks that
communicate at discrete times and move in continuous space. We propose a dis-
tributed coordination algorithm that allows the robots to decide whether a desired
collective motion breaks connectivity. We build on this procedure to design a second
coordination algorithm that allows the robots to modify a desired collective motion
to guarantee that connectivity is preserved. These algorithms work under imperfect
information caused by delays in communication and the robots’ mobility. Under very
outdated information, the proposed algorithms might prevent some or all of the
robots from moving. We analyze the correctness of our algorithms by formulating
them as games against a hypothetical adversary who chooses system states consistent
with observed information. The technical approach combines tools from algebraic
graph theory, linear algebra, and nonsmooth analysis.

Keywords Robotic networks · Cooperative control · Graph connectivity · Flocking

Mathematics Subject Classifications (2000) 93C85 · 05C50 · 05C40 · 68W15

1 Introduction

Network connectivity is a critical issue in cooperative robotics. In many applications,
connectivity is needed in order to guarantee the successful completion of a desired
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coordination task. Examples include rendezvous at a point and distributed sensor
fusion. In sensor fusion, distributed agreement protocols have convergence rates
which depend on the degree of connectivity of the underlying communication net-
work. Since connectivity is a global property, it is difficult to maintain it in a
distributed manner. The objective of this paper is to develop a distributed approach
to preserving network connectivity that allows for flexibility of individual robot
motions and, at the same time, does not impose a heavy communication burden on
the operation of the overall network.

Literature Review We classify previous work on connectivity of robotic networks
into two main categories. The first category deals with how to design the network
motion so that some desired measure of connectivity is maximized under a given set
of position constraints. In [1], convex optimization is used to solve a connectivity
problem in the presence of convex constraints on the strength of each inter-agent
communication link. A solution to a related problem with nonconvex constraints
is presented in [11]. An extension of similar methods to provide a distributed
algorithm when the strength of each communication link is a convex function of
inter-robot distance is presented in [5]. Potential fields are used in [24] to maximize
algebraic connectivity. The second category deals with a measure of the connectivity
of the interaction graph, a connectivity threshold, and some coordination task. In
this category, algorithms are designed so that the robots’ motion achieve the task
subject to the value of the measure of connectivity never crossing the threshold. A
solution to such a problem is proposed in [22]. This solution allows for a general
range of agent motions, but is not distributed. A distributed approach to maintaining
connectivity from a hybrid systems perspective is proposed in [23]. A distributed
solution that makes agents with second-order dynamics maintain a fixed set of edges
appears in [17]. A distributed solution which allow for varying set of edges to be
preserved is presented in [19]. Connectivity problems have been studied also in the
context of formation control. In [20], connectivity-preserving motions between pairs
of formations are generated. Control laws based on the Laplacian matrix of the
interconnection graph are designed in [10] to solve formation control problems while
preserving connectivity.

Statement of Contributions In this paper, our approach starts by considering a
measure of the connectivity of the interaction graph based on its Laplacian matrix.
The Laplacian matrix of a graph, G, is an analog to the Laplacian operator over G; its
second smallest eigenvalue, λ2, determines many connectivity properties of the graph
G. Given a pre-specified (arbitrary) threshold on λ2, and a proposed instantaneous
direction of physical motion, we set out to solve the following version of the
connectivity maintenance problem: how can the robots cooperatively decide which
proposed motions can safely be taken without causing the measure of connectivity
(λ2) to cross below the threshold? An added difficulty is the fact that the gradient
of the second smallest eigenvalue of the Laplacian matrix is a nonsmooth function
of the edge weights of the underlying graph. Our solution uses an information
dissemination algorithm to compute upper and lower bounds on the Laplacian
matrix of the interaction graph computed individually by each robot based on partial
information. Each robot then plays a game against an opponent who picks graphs
consistent with the information available to that robot. A given robot wins the game
if it moves in a direction close to the proposed motion which is guaranteed not to
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decrease λ2 whenever λ2 is below the given threshold. Each robots is free to pick
“stand still” as an allowable motion should it fail to find an actual motion which
satisfies the criteria for winning the game. The proposed coordination algorithm
works under imperfect information caused by delays in communication and the
robots’ mobility, and has the added advantage of allowing for nonconvex mappings
from inter-robot distance to edge weights. We provide correctness guarantees for the
proposed coordination algorithm and show several simulations when combined with
algorithms that implement random motion, trajectory following, and flocking.

Organization The paper is organized as follows. Section 2 introduces basic notation
and notions from nonsmooth analysis and graph theory. Section 3 formally defines
the robotic network model and the connectivity problem we address. Section 4
formulates this problem as a game against a world-picking opponent and presents
algorithmic solutions to it. This section also introduces the communication protocol
used by the network for position information dissemination. Section 5 ties all the
ingredients together to propose a distributed coordination algorithm for connectivity
maintenance and presents various simulation results. Finally, Section 6 presents our
conclusions and ideas for future work.

Notation Throughout the paper, R, R≥0, and R>0 denote the sets of real, non-
negative real, and positive real numbers, respectively. For a set S, F(S) denotes the
collection of all finite subsets of S. Whenever we provide algorithm pseudo-code, we
use a ← b to mean “a is assigned a value of b .” We denote by R

m×n the space of
matrices of size m × n, and by Sym(n) the space of symmetric square matrices of size
n. The Frobenius inner product of A ∈ R

m×n and B ∈ R
m×n is defined by

A • B =
m∑

i=1

n∑

j=1

Ai, jBi, j.

The 2-norm of M ∈ R
n×n, denoted ‖M‖2, is the norm induced by the Frobenius

inner product, i.e., ‖M‖2 = √
M • M. The strong norm of M ∈ R

n×n, denoted ‖M‖s,
is maxx∈Sn{xT Mx}. Note that ‖M‖s ≤ ‖M‖2. For convenience, we introduce the
“vectorization” vec : R

n×n → R
n2

of a matrix defined by vec(M)in+ j = Mi, j. Note
that (vec(A))Tvec(B) = A • B. Finally, we denote 1 = (1, . . . , 1)T ∈ R

n and 0 =
(0, . . . , 0)T ∈ R

n.

2 Preliminaries

This section presents preliminary notions on algebraic graph theory, proximity
graphs, and nonsmooth analysis. As we illustrate later, nonsmooth analysis is needed
in order to characterize the smoothness properties of the algebraic connectivity
function associated to the robotic network.

2.1 The Graph Laplacian and its Spectrum

An (undirected) graph G = (V, E) consists of a vertex set V and an edge set E ⊂
V × V of unordered pairs of vertexes, i.e., (i, j) ∈ E implies that ( j, i) ∈ E . A weighted
graph is an undirected graph where each edge (i, j) ∈ E has an associated weight
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wi, j ∈ R≥0. For a weighted graph G = (V, E), the (weighted) adjacency A(G) ∈ R
n×n

and the Laplacian L(G) ∈ R
n×n are given by

A(G)i, j = wi, j

L(G)i, j =
{∑

k 
=i wi,k i = j,
−wi, j i 
= j.

When the specific graph is clear from the context, we simply use A and L. Note that
both matrices are symmetric. For convenience, we denote by Λ : Sym(n) → Sym(n)

the linear map that transforms an adjacency matrix A into the Laplacian L defined
by

Λ(A) = diag(A1) − A = L.

Properties of the Laplacian matrix include [7]: the vector 1 ∈ R
n is an eigenvector

with eigenvalue 0; L(G) is positive semidefinite; and the dimensionality of the
null space of L(G) is equal to the number of connected components of G. As a
consequence of these properties, an undirected graph is connected if and only if the
second smallest eigenvalue of its Laplacian is greater than zero. Another convenient
property of Laplacians is that adding weight to an edge is guaranteed not to decrease
any of its eigenvalues [21].

2.2 Proximity Graphs and Proximity Functions

We use proximity graphs as an abstraction of network connectivity among spatially
distributed robots. A proximity graph is an association of a set of positions with a
weighted graph. Let P = (p1, . . . , pn) ∈ (Rd)n be a vector of n robot positions, where
each robot evolves in R

d. Let G(n) be the set of weighted graphs whose vertex set
is the set of integers between 1 and n, denoted by {1, . . . , n}. Then, we have the
following definition [9].

Definition 1 A proximity graph G : (Rd)n → G(n) associates to P ∈ (Rd)n a graph
with vertex set {1, . . . , n}, edge set EG(P), where EG : (Rd)n → {1, . . . , n} ×
{1, . . . , n}, and weights wi, j ∈ R>0 for all (i, j) ∈ EG(x). A proximity graph must satisfy
that G(pσ(1), . . . , pσ(n)) is isomorphic to G(p1, . . . , pn) for any n-permutation σ and
(p1, . . . , pn) ∈ (Rd)n.

We refer the reader to [4] for several examples of proximity graphs. For a given
proximity graph, we often use the associated proximity function (Rd)n → Sym(n)

that maps a tuple P ∈ (Rd)n to the adjacency matrix A(G(P)) ∈ Sym(n). Note that a
proximity graph can be alternatively defined by specifying a proximity function.

Remark 1 Examples of proximity functions include the following:

(i) the r-disk proximity function,

fr-disk(p1, . . . , pn)i, j =
{

1, ‖pi − pj‖ ≤ r,
0, otherwise,
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(ii) the exponentially-decaying proximity function,

fexp(p1, . . . , pn)i, j = exp(−‖pi − pj‖),
(iii) the approximate r-disk graph, for a sharpness value k ∈ R,

fr-disk-cont(p1, . . . , pn)i, j = 1

1 + exp(k(‖pi − pj‖ − r))
.

(iv) the spline graph, with 0 < rmin < rmax, an approximation of fr-disk, with r ∈
[rmin, rmax]. The (i, j) entry fspline(p1, . . . , pn)i, j is given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, ‖pi − pj‖ < rmin,

1 − 3

(‖pi − pj‖ − rmin

rmax − rmin

)2

+ 2
( ‖pi−pj‖−rmin

rmax−rmin

)3
, rmin ≤ ‖pi − pj‖ ≤ rmax,

1, s = ‖pi − pj‖ > rmax,

These examples are particular classes of a larger class of proximity functions
defined by f (p1, . . . , pn)i, j = gwgt(‖pi − pj‖), with gwgt : R≥0 → R. For this paper
we consider proximity functions of this form with the added restrictions that gwgt

is C2 and monotonically decreasing, like in examples (ii)–(iv). Some properties of
our proposed algorithms will require that the second derivative of gwgt is bounded
and gwgt has zero derivative at 0, like in example (iv).

2.3 Elements of Nonsmooth Analysis

It is possible to define a notion of gradient for locally Lipschitz functions [3]. Let
f : R

d → R be locally Lipschitz at x ∈ R
d. For any v ∈ R

d, the generalized directional
derivative of f at x in the direction v, denoted f ◦(x; v), is

f ◦(x; v) = lim sup
y→x,t↓0

f (y + tv) − f (y)

t
.

In contrast, the one-sided directional derivative, of f at x in the direction v, denoted
f ′(x; v), is

f ′(x; v) = lim
t→0

f (y + tv) − f (y)

t
.

The generalized directional derivative has the property of always being well-defined,
whereas the one-sided directional derivative might not exist in some cases. The
generalized gradient of f at x ∈ X, denoted ∂ f (x), is the subset

∂ f (x) = {
ξ ∈ X| f ◦(x; v) ≥ ξTv for all v in X

}
.

If f is continuously differentiable at x, then ∂ f (x) = {∇ f (x)}.

2.4 Nonsmooth Analysis of the Algebraic Connectivity Function

Here we specify our scalar measure of network connectivity. Denote the (not
necessarily distinct) eigenvalues of M ∈ Sym(n) by λ1(M) ≤ λ2(M) ≤ · · · ≤ λn(M).
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We denote by fλi : Sym(n) → R the function that maps the matrix M to λi(M). Given
a proximity function f : (Rd)n → Sym(n), we let

fi−conn = fλi ◦ Λ ◦ f : (Rd)n → R. (1)

We refer to f2−conn as the algebraic connectivity function.
Next, we analyze the smoothness properties of the functions fi−conn, for i ∈

{1, . . . , n}. We are particularly interested in f2−conn, but the same results are valid
for any fi−conn, and therefore we present them in general.

Lemma 1 For i ∈ {1, . . . , n}, the function fλi is globally Lipschitz with Lipschitz
constant 1.

Since the composition of Lipschitz functions is also Lipschitz, we have the follow-
ing corollary.

Corollary 1 For i ∈ {1, . . . , n} and a locally Lipschitz proximity function f , the
connectivity function fi−conn is also locally Lipschitz.

The following result [12] gives gradients of functions fλi .

Theorem 1 For i ∈ {1, . . . , n}, the generalized directional derivative (in the direction
X ∈ Sym(n)) and the generalized gradient of fλi at M ∈ Sym(n) are given by

f ◦
λi
(M; X) = max

{v∈Sn | Mv=λiv}
vvT • X,

∂ fλi(M) = co{v∈Sn | Mv=λiv}
{
vvT}

.

The next result is a consequence of (1) and the nonsmooth chain rule [3, Theorem
2.3.10].

Theorem 2 Given a continuously differentiable proximity function, f : (Rd)n →
Sym(n), we have at P ∈ (Rd)n, and L = Λ( f (P)),

∂ fi−conn(P) ⊆ (vec(∂ fλi(L)))T(∇vec(L)).

3 Robotic Network Model and Problem Formulation

Here, we describe our assumptions on the robotic network and state the problem we
address in this paper.

3.1 Robotic Network Model

In this section, we informally describe our robotic network model and its operation
under a coordination algorithm. A more formal description would be possible, for
instance within the modeling framework introduced in [14], but here we have chosen
to keep the presentation simpler. We consider a network of n physical agents moving
in R

d according to the first-order dynamics

ṗi = ui, i ∈ {1, . . . , n}. (2)
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We assume this model for simplicity, although the algorithms proposed later
work equally for any controllable agent model with bounded inputs. We let P =
(p1, . . . , pn) ∈ (Rd)n refer to the vector of all robot positions. Robots communicate
over a spatially-induced proximity graph at discrete-time instants. The proximity
graph is defined via a proximity function as introduced in Section 2.2. A coordination
algorithm specifies a set of time instants when communication takes place. At these
time instants, each robot sends a finite number of real numbers to each of its neigh-
bors, performs computation on those numbers as specified by the algorithm, and
stores the results. The set F(R ∪ {true, false}) is the space of possible collections of
stored variables at each robot. In between communication rounds, the motion of each
agent motion is governed by a control law specified by the coordination algorithm.
This law specifies robot motion as a function of physical state and the variables stored
during the discrete-time communication and computation. Finally, an evolution
of the robotic network under a coordination algorithm is the iterative execution
of discrete-time communication, discrete-time computation, and continuous-time
motion from a valid initial state.

3.2 Problem Formulation

Assume we are given a specific algorithm which achieves a coordination task. Our
objective is to design a procedure that modifies the directions of motion specified by
the given algorithm as little as possible while preserving network connectivity. Let us
start by formalizing this idea.

Definition 2 An Underlying Control Law for n robots in R
d is a specification, for

each network configuration P , of a control input ugoal−i for each robot i ∈ {1, . . . , n},
a bound θmax−i on the angle by which the true motion of the ith robot is allowed to
deviate from ugoal−i, and a time step δT > 0 over which ugoal−i and θmax−i are valid. A
set of inputs (ui)i∈{1,...,n} is compatible with the Underlying Control Law if and only
if the following two conditions hold for all i ∈ {1, . . . , n},

‖ui‖ ≤ ‖ugoal−i‖, |∠(ugoal−i, ui)| ≤ θmax−i.

The first problem we address is that of deciding when a proposed motion can be
made while safely maintaining connectivity of the robotic network.

Problem 1 (Spectral Connectivity Decision Problem) Given a control input, ui

known to the ith agent, for i ∈ {1, . . . , n}, a control bound, vmax, known to all agents,
such that each agent’s control input, ui must always satisfy ‖ui‖ ≤ vmax, a time
interval [t0, t0 + δT], and [λ−, λ+] ⊂ R>0, Spectral Connectivity Decision Problem
consists of providing a (distributed) procedure which, for each robot i returns a value,
fsafe ∈ R having fsafe ≥ 0 only if the following hold for all t ∈ [t0, t0 + δT] for all
{ũ j, ‖ũ j‖ ≤ vmax} j∈{1,...,n}\{i} and for all network configurations, P , consistent with the
information available to the ith robot.

– f2−conn(P(t)) 
∈ [λ−, λ+], or
– f ◦

2−conn(P(t);[0, . . . , uT
i , . . . , 0]T) ≥ 0.

where P(t) denotes the network evolution under control (ũ1, . . . , ũi−1, ui,

ũi+1, . . . , ũn) starting from P .
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We follow with an informal description of Definition 1

[Informal description:] Our goal is to determine (in a distributed manner)
whether a given motion could, potentially, cause λ2 to drop below the threshold
λ+. Under ideal conditions with exact computation, it would suffice to ensure
that no motion causes the time derivative of λ2 to be less than zero whenever
λ2 is exactly equal to λ+. Because exact computation is, at best, infeasible
(and at worst impossible), we instead ensure that the time derivative of λ2

is never less than zero whenever λ2 inhabits a range around λ+, in this case
[λ−, λ+] (while we have not characterized an optimal value for λ− given λ+, in
practice λ− = 0.0 works just fine, and elegantly handles cases where the initial
connectivity is lower than planned for). We further specify that our solution
answer this decision problem by returning a number, fsafe, which is greater than
or equal to zero only if we can guarantee that our proposed robot motion is safe.

The second problem we address is the problem of determining directions of
motion that are compatible with the given algorithm and preserve connectivity.

Problem 2 (Spectral Connectivity Problem) Given an Underlying Control Law,
a bound, vmax, on agent control input, a time interval, [t0, t0 + δT], and an interval
[λ−, λ+] ⊂ R>0, Spectral Connectivity Problem consists of providing a procedure
which, for each robot, i ∈ {1, . . . , n} finds an input ui, having ‖ui‖ ≤ vmax, compatible
with the Underlying Control Law such that Spectral Connectivity Decision
Problem returns a value fsafe ≥ 0 when provided with [t0, t0 + δT], [λ−, λ+], and ui.

For clarity, we also present an informal description of Definition 2

[Informal description:] In Definition 2 we are describing the process of, given
a procedure to solve Spectral Connectivity Decision Problem, determine
whether we can find a set of robot motions close to the motions specified
by the underlying control law which are allowed by our solution to Spectral
Connectivity Decision Problem. In our case, “close” means “the direction
taken by each robot is close in angle to the direction proposed by the under-
lying control law.” This is somewhat like expressing Spectral Connectivity
Decision Problem as a function from “angle of motion” to fsafe, and searching
for roots of fsafe.

4 Eigenvalue Games and Information Dissemination

In this section we introduce the main algorithmic components of our solution to
the problems presented in Section 3.2. In Section 4.1, we reformulate Spectral
Connectivity Decision Problem as a game, termed Graph Picking Game, which can
be played with out-of-date information on the state of the network and in Section 4.2
we study the properties of its space of solutions. Next, we present in Section 4.3
a distributed procedure that allows network agents to decide whether an intended
motion wins Graph Picking Game. The other algorithmic component of our solution
is a distributed information dissemination algorithm, presented in Section 4.4, which
provides each robot with the information needed to play Graph Picking Game.
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4.1 Graph Picking Game

We are interested in characterizing the rates of change of Laplacian matrices arising
from instantaneous robot motions which solve Spectral Connectivity Decision
Problem. To do this, we reformulate this problem as a game and study the properties
of the solutions to the game.

In order to present a clean formulation, let us introduce some notation. Let

LAP±(n) = {M ∈ Sym(n) | M1 = 0},
LAP(n) = {M ∈ LAP±(n) | Mi, j ≤ 0 for all i 
= j }.

Note that, given M ∈ LAP(n), it is possible to define a graph, G, with Laplacian
M, by assigning to each edge (i, j) ∈ E the weight −Mi, j. We consider the following
partial order in LAP±(n). For A, B ∈ LAP±(n), we write A <LAP B if and only if
Ai, j > Bi, j for all i 
= j ∈ {1, . . . n}. Likewise, A ≤LAP B if and only if Ai, j ≥ Bi, j for
all i 
= j ∈ {1, . . . n}. For A ≤LAP B, we define the interval

[A, B]LAP = {L ∈ LAP±(n) | A ≤LAP L ≤LAP B}.
Note that A, B ∈ LAP(n) and L ∈ [A, B]LAP imply L ∈ LAP(n). The following
result provides more properties of the matrices in the interval [A, B]LAP.

Lemma 2 Let A, B ∈ LAP(n) and L ∈ [A, B]LAP. Then,

(i) fλ2(L) ∈ [ fλ2(A), fλ2(B)],
(ii) vvT • L ∈ [vvT • A, vvT • B] for v ∈ R

n.

Proof Fact (i) follows from the monotonicity of λ2(G) on the edge weights of G.
To prove fact (ii), note that vvT • L = vT Lv for any L ∈ Sym(n) and any v ∈ R

n.
Because any graph Laplacian is positive semidefinite, and L − A, B − L ∈ LAP(n),
we have

vvT • (L − A) = vvT • L − vvT • A ≥ 0,

vvT • (B − L) = vvT • B − vvT • L ≥ 0,

and the result follows. ��

We can now formulate the core question we need to solve to obtain a solution
to Spectral Connectivity Decision Problem as a game played against a graph-
picking opponent.

Definition 3 (Graph Picking Game) Given A, B ∈ LAP(n) with A ≤LAP B, we pick
Y ∈ [A, B]LAP. Our opponent then selects L ∈ [A, B]LAP. We win if either of the
following conditions hold

– fλ2(L) 
∈ [λ−, λ+], or
– f ◦

λ2
(L; Y) ≥ 0.

Our objective is to characterize the choices Y that ensure that Graph Picking
Game is won (specifically, we characterize the choices X such that all Y having
X ≤LAP Y win Graph Picking Game). This is what we tackle next.
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4.2 Bounds on Matrices which Win Graph Picking Game

A direction that a robot can take in physical space induces an instantaneous rate
of change of the Laplacian matrix of the underlying communication graph of the
network. Given out-of-date information on the state of the network, each robot can
produce bounds on the actual Laplacian of the graph. In this section we answer the
following question: given a matrix lower bound A ∈ LAP(n) and a matrix upper
bound B ∈ LAP(n) on the Laplacian matrix of the communication graph and a range
of possible instantaneous rates of change of the Laplacian matrix due to a proposed
physical motion, can we guarantee that the proposed motion will not decrease
the second smallest eigenvalue of the graph Laplacian? We do this by answering
the related question: given the information listed above, and a range of “unsafe”
eigenvalues, [λ−, λ+], can we guarantee the proposed motion will not decrease the
second smallest eigenvalue of the Laplacian matrix whenever the said eigenvalue is
outside of the range [λ−, λ+]?

More formally, we bound the union of all possible gradients of fλ2 evaluated
at L ∈ [A, B]LAP. Consider L ∈ [A, B]LAP such that fλ2(L) ∈ [λ−, λ+]. Following
the formula for the gradient of fλ2 in Theorem 1, we examine the vectors w ∈ S

n

such that Lw = λ2(L)w. For such vectors, we have L • (wwT) = wT Lw = fλ2(L),
and therefore, using Lemma 2, it follows that A • (wwT) ≤ λ+. Our strategy is then
to bound the set of w ∈ R

n which satisfy A • (wwT) ≤ λ+. The fact that the non-
smooth gradient of fλ2 is actually the convex closure of such wwT is addressed in
Proposition 1.

Let {u1, . . . , um} be the m eigenvectors of A corresponding to eigenvalues λ j ≤ λ+
and let {um+1, . . . , un} be the n − m eigenvectors of A corresponding to eigenvalues
λ j > λ+. Given m̃ ≥ m, define

εA(m̃) =
√

λ+ − λ2(A)

λm̃+1(A) − λ2(A)
,

uspan-A(m̃) = span{u1, . . . , um̃},
U A(m̃) = {

w ∈ S
n | ∃u ∈ uspan-A(m̃) with ‖u‖ = 1 such that w ∈ B(u, εA(m̃))

}
.

We have chosen U A(m̃) to contain the elements w satisfying wwT ∈ ∂ fλ2(L) for
any m̃ ≥ m, as we show next.

Proposition 1 Let A, B ∈ LAP(n), L ∈ [A, B]LAP, fλ2(L) ≤ λ+, w ∈ S
n, m̃ ≥ m. If

w 
∈ U A(m̃), then wwT 
∈ ∂ fλ2(L).

Proof If w 
∈ U A(m̃), then the component of w outside span(v1(A), . . . , vm̃−1(A))

has magnitude at least εA(m̃). Since w ∈ S
n, the remaining component has magnitude

at most
√

1 − ε2
A(m̃), and therefore we can deduce

wT Aw >
(√

1 − εA(m̃)2
)2

fλ2(A) + εA(m̃)2 fλm̃+1(A)

= fλ2(A) + εA(m̃)2( fλm̃+1(A) − fλ2(A)) = λ+.

Since L ∈ [A, B]LAP, wT Lw ≥ wT Aw > λ+. By λ+ > fλ2(L), w 
∈ {v ∈ S
n | vT Lv =

fλ2(L)}. To show wwT 
∈ ∂ fλ2(L) we recall that ∂ fλ2(L) = co{v∈Sn | Lv= fλ2 (L)v}{vvT} =
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co{v∈Sn | vT Lv= fλ2 (L)}{vvT}. Noting that there is only one combination of vectors in
{vvT | v ∈ S

n} which can have a convex combination of wwT for w ∈ S
n, namely the

singleton set {wwT}, we deduce that w 
∈ {v ∈ S
n | vT Lv = fλ2(L)} implies wwT 
∈

co{v∈Sn | vT Lv= fλ2 (L)}{vvT} = ∂ fλ2(L). ��

The bound induced by U A(m̃) works for any m̃ ≥ m. Our idea is to check the
bounds induced by all such m̃ ≥ m, in the hope of finding one which verifies that our
proposed motion is allowable.

The following result is a consequence of Proposition 1 and Theorems 1 and 2.

Corollary 2 Any instantaneous change in robot positions, (ui)i∈{1,...,n}, inducing an
instantaneous rate of change of the Laplacian Y ∈ LAP±(n) satisfying Y • (uuT) ≥ 0
for all u ∈ U A(m̃) for some m̃ ≥ m, satisfies f ◦

2−conn(P; (ui)i∈{1,...,n}) ≥ 0.

Given some m̃ ≥ m, we can conclude from Proposition 1 and Corollary 2 that
any Y satisfying Y • (wwT) ≥ 0 for all w ∈ U A(m̃) wins Graph Picking Game on
A, B, λ−, λ+. To determine whether a given Y satisfies this property, it is sufficient to
find the vector umin ∈ uspan-A(m̃) which minimizes Y • (uuT) = uTYu (and then tack
a fudge factor based on εA(m̃) onto this minimum). We justify this in the following.

Let Mu(m̃) ∈ R
n×m̃ be a matrix whose column vectors are an orthonormal basis

of uspan-A(m̃). Note that any vector in uspan-A(m̃) ∩ S
n can be expressed in the form

Mu(m̃)x for some x ∈ S
m̃. Likewise any x ∈ S

m̃ satisfies Mu(m̃)x ∈ uspan-A(m̃) ∩ S
n.

Proposition 2 Finding the vector u ∈ uspan-A(m̃) ∩ S
n which minimizes Y • (uuT) is

equivalent to finding the vector x ∈ S
m̃ which minimizes xT MT

u(m̃)
Y Mu(m̃)x. Since

MT
u(m̃)

Y Mu(m̃) is symmetric, minimization is achieved when uTYu equals the smallest
eigenvalue of MT

u(m̃)
Y Mu(m̃).

Proof Let umin be the vector in uspan-A(m̃) ∩ S
n that minimizes uTYu. Since

there exists xmin ∈ S
m̃ having Mu(m̃)xmin = umin, we have xT

min MT
u(m̃)

Y Mu(m̃)xmin ≤
minu∈uspan-A(m̃)∩Sn(uTYu), and hence minλ∈eigs(MT

u(m̃)
Y Mu(m̃))

(λ) ≤ uT
minYumin. Since each

x ∈ S
m̃ satisfies Mu(m̃)x ∈ uspan-A(m) ∩ S

n, then xT MT
u(m̃)

Y Mu(m̃)x ≥ uT
minYumin for

all x ∈ S
m̃. Thus minλ∈eigs(MT

u(m̃)
Y Mu(m̃))

(λ) ≥ uT
minYumin. We conclude that

minλ∈eigs(MT
u(m̃)

Y Mu(m̃))
(λ) = uT

minYumin. ��

The next results provides a sufficient criterion to check if a matrix is a winning
solution to Graph Picking Game.

Proposition 3 (1 − εA(m̃)2)Y • (uuT) + εA(m̃)2min(min(eigs(Y)), 0) ≥ 0 for all u ∈
uspan-A(m̃) implies that Y • (wwT) ≥ 0 for all w ∈ U A(m̃).

Proof Any w ∈ U A(m̃) can be decomposed into αu + √
1 − α2v for u ∈ uspan-A(m̃)

and v ∈ complement(uspan-A(m̃)) where
√

1 − α2 ≤ εA(m̃). Since Proposition 2 gives

us Y • (vvT) ≥ min(eigs(Y)), we have Y • (
√

1 − α22
vvT) ≥ ε2

A(m̃) min(eigs(Y)) if

min(eigs(Y)) ≤ 0 and Y • (
√

1 − α22
vvT)≥min(eigs(Y))≥0 if min(eigs(Y))≥0. Thus
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Y • (
√

1 − α22
vvT) ≥ ε2

A(m̃) min(min(eigs(Y)), 0) and Y • (wwT) ≥ (1 − εA(m̃)2)Y •
(uuT) + εA(m̃)2min(min(eigs(Y)), 0) ≥ 0. ��

4.3 Direction Checking Algorithm

We introduce Direction Checking Algorithm in Table 1. Given A, B ∈ LAP(n),
and a lower bound, X ∈ LAP±(n) of the candidate instantaneous rate of change
of the Laplacian matrix, Y ∈ LAP±(n), Y ≥LAP X, the algorithm returns a value
Scheck ≥ 0 if it can verify that any Y ≥LAP X wins Graph Picking Game on A and
B, and returns Scheck < 0 otherwise.

Lemma 3 Direction Checking Algorithm returns Scheck ≥ 0 only if X satisfies X •
M ≥ 0 for every M ∈ ∂ fλ2(L) with L ∈ [A, B]LAP.

Proof If Direction Checking Algorithm returns Scheck ≥ 0, Proposition 2 im-
plies that there must be some m̃ ≥ m having min{wwT |w∈B(u,εA(m̃)),u∈Sn∩uspan-A(m̃)}(X •
(uuT)) ≥ 0 thus, by Proposition 3, X • wwT ≥ 0 for all w ∈ U A(m̃) and, by

Table 1 Direction checking algorithm

Name: Direction Checking Algorithm
Goal: Let Y be the (unknown) instantaneous rate of change of the Laplacian matrix of

the communication graph of a robotic network. Given X (known) such that Y − X
is known to be positive semidefinite, determine whether Y can be proved to win
Graph Picking Game on A and B and eigenvalue bounds λ− and λ+

Inputs: • Matrices A, B ∈ LAP(n)

• Eigenvalue bounds λ− ≤ λ+ ∈ R

• Lower bound, X ∈ LAP±(n), on candidate direction in matrix space, Y ∈ LAP±(n)

Outputs: Scheck ∈ R. Scheck ≥ 0 means each Y ≥LAP X wins Graph Picking Game on A, B
and [λ−, λ+]

1: Let λ+ ← min(λ+, λ2(B))

2: Let λ− ← max(λ−, λ2(A))

3: if λ− > λ+ then
4: return 0
5: end if
6: Let λmin ← min(eigs(X))

7: Let mmin ← min{m | λm ∈ eigs(A), λm > λ+}
8: Initialize Scheck ← −1.
9: for all m̃ ∈ {mmin − 1, . . . , n} do

10: if m̃ < n then
11: Let εA(m̃) ←

√
λ+−λ2(A)

λm̃+1(A)−λ2(A)
and uspan-A(m̃) ← span(u j, j ∈ {1, . . . , m})

12: else
13: Let εA(m̃) ← 0
14: end if
15: Let Mu(m̃) ∈ R

n×m̃ whose columns are orthogonal basis of uspan-A(m̃)

16: Let S ← (1 − εA(m̃)2) min
(
eigs

(
MT

u(m̃)
X Mu(m̃)

)) + εA(m̃)2 min(λmin, 0) /*Does current m̃
verify X is safe?*/

17: Let Scheck ← max(S, Scheck) /*Does any m̃ checked so far verify X is safe?*/
18: end for
19: return Scheck /*Does any m̃ verify X is safe?*/
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Proposition 1, X • wwT ≥ 0 for all w ∈ S
n having wwT ∈ ∂ fλ2(L). Since any M ∈

∂ fλ2(L) is the convex combination of some set of wwT ∈ ∂ fλ2(L), X • M must be the
sum of X • (wwT) for such a set of wwT and thus X • M ≥ 0. ��

The following result shows that Direction Checking Algorithm is successful in
determining if we win Graph Picking Game.

Theorem 3 Direction Checking Algorithm returns Scheck ≥ 0 only when each Y
having Y ≥LAP X satisfies Y • M ≥ 0 for M ∈ ∂ fλ2(L) with L ∈ [A, B]LAP.

Proof The conditions Scheck ≥ 0 holds only if

min(eigs(MT
u(m̃) X Mu(m̃))) + εA(m̃) min(λmin(X), 0) ≥ 0,

for some m̃ > m. For any Y having Y ≥LAP X, Y − X is positive semidefinite, thus
each eigenvalue of Y is greater than or equal to the corresponding eigenvector
of X, making λmin(Y) > λmin(X). Likewise, we can express MT

u(m̃)
Y Mu(m̃) as

MT
u(m̃)

X Mu(m̃)+MT
u(m̃)

(Y−X)Mu(m̃) where Y−X, and therefore MT
u(m̃)

(Y−X)Mu(m̃)

as well, are each positive semidefinite. This means that each eigenvalue of
MT

u(m̃)
Y Mu(m̃) = MT

u(m̃)
X Mu(m̃) + MT

u(m̃)
(Y − X)Mu(m̃) is greater than or equal to

the corresponding eigenvalue of MT
u(m̃)

X Mu(m̃). So min(eigs(MT
u(m̃)

X Mu(m̃))) +
εA(m̃) min( λmin(X), 0) ≤ min(eigs(MT

u(m̃)
Y Mu(m̃))) + εA(m̃) min(λmin(Y), 0),

thus Scheck > 0 only if

min
(
eigs

(
MT

u(m̃)Y Mu(m̃)

)) + εA(m̃) min(λmin(Y), 0) > 0,

for some m̃ > m. By Lemma 3 this holds only if Y satisfies Y • M ≥ 0 for M ∈
∂ fλ2(L) with L ∈ [A, B]LAP. ��

4.4 Information Dissemination of Robot Positions

In order to execute Direction Checking Algorithm, robots first need information
about the past states of the network to come up with reasonable bounds on the
Laplacian matrix. Before specifying the protocol to disseminate information about
each node throughout the network, we first address what it means for each node
to hold information which is consistent with the real world. A formal definition is
given next.

Definition 4 (Consistency of stored network information) Let Ptruth ∈ R
n×n be the

actual position of the robots at time tcurr, and let vmax be a bound on the maximum
velocity of each individual robot. A tuple, (P, T, D), P ∈ R

d×n, T ∈ R
n, D ∈ R

n×n, is
called consistent with Ptruth at time tcurr if the following hold:

(i) For each i ∈ {1, . . . , n}, Pi ∈ B(Ptruthi, (tcurr − Ti)vmax).
(ii) For each i, j ∈ {1, . . . , n} × {1, . . . , n}, ‖Ptruthi − Ptruth j‖ ∈ [Di, j − vmax(tcurr −

Ti + tcurr − T j ), Di, j + vmax(tcurr − Ti + tcurr − T j )].

In other words, a set of information is consistent with an actual state of the world,
(i) if the position of each robot, i, in the actual state of the world is within the range
it could have reached by traveling with speed vmax starting from position Pi for time
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tcurr − Ti and (ii) Di, j stores the distance between Pi and P j and relates to the actual
distance in the natural way.

Next we provide an algorithm which correctly disseminates consistent informa-
tion on the state of the network to all robots. We start with the bookkeeping data
necessary for this task. Each robot i ∈ {1, . . . , n} holds the following data structures

– For each other robot, j, a position, P [i]
j ∈ R

d and a time T [i]
j ∈ R since it was last

known that the position of j was P [i]
j .

– For each other robot, j, Sk, j(i) ∈ {true, false} is true if and only if the most recent
copy of

(
P [i]

k , T [i]
k

)
needs to be sent from i to j.

The All-to-all Broadcast Algorithm is described in Table 2.

Table 2 All-to-all broadcast algorithm

Name: All-to-all Broadcast Algorithm
Goal: Disseminate information about robot positions throughout the network
Inputs: • tcurr ∈ R indicating the current time
Messages • j ∈ {1, . . . , n} is identifier of the robot from which the signal originated
from neighbors: • tvalid ∈ R indicating the time at which message from j originated

• P j ∈ R
d, the position of j at time tvalid

Sensor Data • Pid ∈ R
d, current position of this robot, acquired via sensing

Persistent • id ∈ {1, . . . , n}, current robot’s unique identifier
data: • T ∈ R

n, array of last recorded time information
• P ∈ R

d×n, array of last recorded position information
• S ∈ {true, false}n×n where Si, j indicates whether the most up-to-date
information about i needs to be sent to j (value true) or not (value false)
• D ∈ R

n×n, matrix of approximate inter-robot distances

1: Let Pid ← Pid and Tid ← tcurr /*Update self */
2: for all m ∈ {1, . . . , n} \ {id} do
3: Let Sid,m ← true /*Sending phase*/
4: end for
5: for all k ∈ N do
6: Randomly select j from elements having S j,k = true
7: Push ( j, T j,P j ) onto the queue of items to be sent to agent k
8: Push (id, Tid,Pid) onto the queue of items to be sent to agent k
9: end for

10: Send two items from each queue to corresponding destination
11: for all k ∈ N do
12: for all message {1, 2} /*Each neighbor sent two messages previously*/ do
13: Receive j, tvalid, P j from k. /*Receiving phase*/
14: if tvalid > T j then
15: for all m ∈ {1, . . . , n} \ {id} do
16: Let S j,m ← true
17: end for
18: Let S j,k ← false, T j ← tvalid, and P j ← P j

19: for all i ∈ {1, . . . , n} \ { j} do
20: Let Di, j ← ‖Pi − P j‖ and D j,i ← ‖Pi − P j‖
21: end for
22: end if
23: end for
24: end for
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Note that, in lines 7:-8: of All-to-all Broadcast Algorithm, each robot pushes
its own updated information in its queue, as well as that of a randomly selected robot,
at each communication round. While this is not necessary for our proof, in practice
it leads to much better bounds on the instantaneous rates of change of the Laplacian
due to individual robot motions, which primarily depend on accurate information on
each agent’s immediate neighbors.

Because this algorithm is randomized, we discuss its expected performance. In the
following result, let path j,k(t) denote the shortest path between robots j and k at
time t.

Lemma 4 For j ∈ {1, . . . , n}, let k ∈ {1, . . . , n} be the robot that maximizes tcurr − T [k]
j

at time tcurr, in other words, k’s estimate of j is the most out of date estimate on the
network. If the communication graph is connected between rounds at time t and t + δT,
then the expectation of

∑
i∈pathj,k(t) T [i]

j , increases by at least 1
n

∣∣T [k]
j − T [ j]

j

∣∣ between t

and t + δT for any j ∈ {1, . . . , n}. Likewise, if tcurr is the current time, the expectation
of

∑
i∈pathj,k(t)(tcurr − T [i]

j ) (the sum of the amount by which the timestamps for j are

out of date along the path from j to k) decreases by at least 1
n maxk,l∈{1,...,n}

(∣∣T [k]
j −

T [l]
j

∣∣) − |path j,k(t)|δT between t and t + δT for any j ∈ {1, . . . , n}.

Proof Let iless and igreater be the two agent identities adjacent to an edge, e, having

T [iless]
j ≤ T

[igreater]
j . With probability at least 1

n agent igreater will broadcast its estimate

of j to agent iless increasing T [iless]
j by

∣∣T [igreater]
j − T [iless]

j

∣∣. Broadcasting j the other
direction does not affect any agents state estimate. Since G(P(T)) is connected for
T ∈ [t, t + δT], there must be at least one path between the agents with the least and
greatest value of T [i]

j , and a set of edges must exist along this path for which the

sum of the differences of T
[igreater]
j − T [iless]

j must exceed maxk∈{1,...,n}
(∣∣T [k]

j − T [ j]
j

∣∣). The
second half of the statement follows from the first. ��

The next result characterizes the expected time by which the information held by
each node may be out of date.

Corollary 3 For any robot, j ∈ {1, . . . , n}, the average expectation, over all robots, i ∈
{1, . . . , n} of (tcurr − T [i]

j ) never exceeds (n2 + 1)δT. Likewise the expected maximum,

over all i ∈ {1, . . . , n} of tcurr − T [i]
j never exceeds n(n2 + 1)δT, and the expected

maximum, over all i, j ∈ {1, . . . , n} of tcurr − T [i]
j never exceeds n(n2 + 1).

Proof By Lemma 4,
(

1
n

∑
i∈1,...n

(
tcurr − T [i]

j

))
decreases whenever

1

n
max

k,l∈{1,...,n}

∣∣∣T [k]
j − T [l]

j

∣∣∣ − nδT > 0.

Since at least one node ( j ) has the fresh value of j
(
T [ j]

j = tcurr
)
, the expectation of

maxk,l∈{1,...,n}
(∣∣T [k]

j − T [l]
j

∣∣) is at least the average (over i) of the expectation of tcurr −
T [i]

j and the average expectation of tcurr − T [i]
j decreases whenever the expectation

of maxk,l∈{1,...,n}
(∣∣T [k]

j − T [l]
j

∣∣) is above n2δT. The expectation of the average over i
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of tcurr − T [i]
j , being a lower bound of maxk,l∈{1,...,n}

(∣∣T [k]
j − T [l]

j

∣∣), must decrease if it
exceeds n2δT. This quantity goes up by at most δT each round and thus never exceeds
n2δT + δT. Since the expectation of tcurr − T [i]

j is never below 0, the expectation of
the maximum must be at most n times the average, thus it never exceeds n(n2 + 1)δT.

For the last part of the statement, the average over all i of the expectation of
tcurr − T [i]

j never exceeds (n2 + 1)δT for any fixed j, and so the average over all i, j

of the expectation of tcurr − T [i]
j also never exceeds (n2 + 1)δT. Since the maximum

over all i, j ∈ {1, . . . , n} of tcurr − T [i]
j is at most n2 times the average over all i, j of

tcurr − T [i]
j , this value never exceeds n2(n2 + 1)δT. ��

Finally, we establish that the information stored by the network is consistent with
the actual robot positions in the sense of Definition 4.

Theorem 4 Assume each robot moves with velocity at most vmax. At all times, each
robot holds values of T,P, D which are consistent, in the sense of Definition 4, with
the state of the network at time tcurr.

Proof Each broadcast message, as sent in All-to-all Broadcast Algorithm, con-
tains a position of a robot, and the time at which that position was valid. Since
the time and the position are both stored, the results always verify condition 1 of
Definition 4. Condition 2 of Definition 4 holds for any (P, T, D) where condition 1
holds for P and T, and Di, j = ‖Pi − P j‖ for all i and j. ��

5 Algorithmic Solutions to the Connectivity Problems

In this section, we combine the algorithmic procedures developed in Section 4 to
decide if a proposed network motion is safe for connectivity maintenance and to
disseminate position information across the network. This allows us to synthesize
the Motion Test Algorithm and the Motion Projection Algorithm to solve the
Spectral Connectivity Decision Problem and the Spectral Connectivity Problem,
respectively.

5.1 Motion Test Algorithm

Here we combine the Direction Checking Algorithm and the All-to-all Broad-
cast Algorithm to synthesize a motion coordination algorithm that solves the
Spectral Connectivity Decision Problem. First, we provide the Matrix Bound
Generator in Table 3 to compute lower A ∈ LAP(n) and upper B ∈ LAP(n) bounds
on the Laplacian matrix of the communication graph from the data disseminated via
the All-to-all Broadcast Algorithm.

Lemma 5 Let tcurr be the current time. Given a proximity graph induced by a
monotonic function gwgt : R → R, for (P, T, D) consistent with the current set of
robot positions, Matrix Bound Generator returns two matrices which bound the
Laplacian of the graph induced by Ptruth at any time between tcurr and tcurr + δT.
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Table 3 Matrix bound generator

Name: Matrix Bound Generator
Goal: Compute bounds A, B ∈ LAP(n) of Laplacian of communication graph
Inputs: • Current time tcurr ∈ R

• Maximum velocity of any robot, vmax

• Maximum time between communication rounds, δT
Persistent • T ∈ R

n, array of last recorded time information
data: • P ∈ R

d×n, array of last recorded position information
• D ∈ R

n×n, matrix of approximate inter-robot distances
Outputs: A, B ∈ LAP(n), are the matrix bounds

1: for all i ∈ {1, . . . , n} do
2: for all j ∈ {1, . . . , n} do
3: Let Ai, j ← gwgt(Di, j − vmax((tcurr − Ti + δT) + (tcurr − T j + δT)))

4: Let Bi, j ← gwgt(Di, j + vmax((tcurr − Ti + δT) + (tcurr − T j + δT)))

5: end for
6: end for
7: Let A ← diag(1T A) − A
8: Let B ← diag(1T B) − B

Proof Let t ∈ [tcurr, tcurr + δT]. By monotonicity of gwgt and consistency of (P, T, D),
the distance between i and j is between Di, j − vmax((tcurr − Ti + δT) + (tcurr − T j +
δT)) and Di, j + vmax((tcurr − Ti) + (tcurr − T j + δT)), yielding the (i, j)-th element
of the adjacency matrix in the interval [gwgt(Di, j − vmax((tcurr − Ti + δT) + (tcurr −
T j + δT))), gwgt(Di, j − vmax((tcurr − Ti + δT) + (tcurr − T j + δT)))]. Since all the off-
diagonal elements of the Laplacian matrices, A and B, are defined this way, and
the diagonal elements are consistent with the definition of LAP±(n), the actual
Laplacian matrix of the graph is in [A, B]LAP for all t ∈ [tcurr, tcurr + δT]. ��

Next, we characterize the expected gap between the off-diagonal elements of A
and B generated by Matrix Bound Generator.

Lemma 6 Let gmax = maxx∈R≥0(|g′
wgt(x)|). For i 
= j ∈ {1, . . . , n}, the expected gap,

Bi, j − Ai, j never exceeds 4gmaxvmax(n(n2 + 2)δT). The expected maximum over i 
=
j, i ∈ {1, . . . , n}, j ∈ {1, . . . , n} Bi, j − Ai, j never exceeds 4gmaxvmax(n2(n2 + 2)δT).

Proof The expectations of tcurr − Ti and tcurr − T j never exceed (n(n2 + 1)δT) by
Corollary 3. Since Ai, j = gwgt(Di, j − vmax((tcurr − Ti + δT) + (tcurr − T j + δT))) and
Bi, j = gwgt(Di, j − vmax((tcurr − Ti + δT) + (tcurr − T j + δT))), their difference never
exceeds 2gmaxvmax(n(n2 + 1 + 1)δT + n(n2 + 1 + 1)δT).

By similar reasoning, the expected maximum over all i 
= j of Bi, j − Ai, j never
exceeds 4gmaxvmax(n2(n2 + 1 + 1)δT) since this is at most twice 2gmaxvmax times
maxi∈{1,...,n}(tcurr − Ti + δT). ��

Finally, we combine the Direction Checking Algorithm which verifies winning
solutions to Graph Picking Game with the All-to-all Broadcast Algorithm and
the Matrix Bound Generator which provide position information to the network
robots. This combination allows us to synthesize a solution to Spectral Connectivity
Decision Problem. This solution, Motion Test Algorithm, is presented in Table 4.
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Table 4 Motion test algorithm

Name: Motion Test Algorithm
Goal: Solve Spectral Connectivity Decision Problem.
Inputs: • Current time tcurr ∈ R

• Maximum velocity of any robot, vmax

• Maximum time between communication rounds, δT
• Proposed direction of motion, v

• Eigenvalue bounds λ− ≤ λ+ ∈ R

Persistent • T ∈ R
n, an array of last recorded time information

data: • P ∈ R
d×n, an array of last recorded position information

• D ∈ R
n×n, a matrix of rough inter-robot distances

• A, B ∈ LAP(n)

• id ∈ {1, . . . , n}, unique identifier of current robot
Outputs: • fsafe ∈ R such that fsafe ≥ 0 if, for any time t ∈ [tcurr, tcurr + δT], the instantaneous

change in the Laplacian matrix due to motion in the direction v wins Graph Picking
Game at time t

1: Initialize Xupper ← 0
2: Initialize Xlower ← 0
3: for all i ∈ {1, . . . , n} do
4: Xlowerid,i ← − minp∈B(Pi,vmax(t−Ti+δT))(g′

wgt(p,Pid; v, 0)) /*Compute bounds on
direction matrix*/

5: Let Xupperid,i ← − maxp∈B(Pi,vmax(t−Ti+δT)) g′
wgt(p,Pid; v, 0)

6: Let Xupperid,id ← Xupperid,id − Xupperid,i
7: Let Xlowerid,id ← Xlowerid,id − Xlowerid,i
8: end for
9: Let λ− ← max(λ−, λ2(A))

10: Let λ+ ← min(λ+, λ2(B))

11: if λ− ≥ λ+ then
12: return 0 /*There are no possible matrices with eigenvalues in the disallowed

range*/
13: end if
14: Let fsafe ← Direction Checking Algorithm on A, B, Xlower, λ−, λ+
15: return fsafe

The next result shows that Motion Test Algorithm returns a value of fsafe ≥ 0 only
if the instantaneous change in the Laplacian due to motion in direction v wins Graph
Picking Game.

Theorem 5 Assuming that each robot moves with velocity at most vmax, Motion Test
Algorithm solves Spectral Connectivity Decision Problem.

Proof By Theorem 4 the information received by each robot is consistent with the
state of the network. Lemma 5 shows, given consistent data, that the matrices A
and B properly bound the graph Laplacian of the communication graph. The motion
in matrix space induced by the proposed instantaneous motion in R

d×n is bounded
from below by Xlower, i.e., it is a member of {Y ∈ LAP±(n) | Y ≥LAP Xlower}. Finally
Theorem 3 and Corollary 2 show that Direction Checking Algorithm called on line
14: of Motion Test Algorithm returns fsafe ≤ 0 only when the proposed direction
of motion wins Graph Picking Game, and hence is allowable under Spectral
Connectivity Decision Problem. ��
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The next result shows that solutions to the Spectral Connectivity Decision
Problem keep the algebraic connectivity of the network above the desired threshold.

Corollary 4 If each robot runs an algorithm which solves Spectral Connectivity
Decision Problem, then the algebraic connectivity λ2 of the network never drops
below λ+.

Proof Since each robot’s individual motion solves Spectral Connectivity Deci-
sion Problem, whenever λ2 ≤ λ+, we know f ◦

2−conn(P(t);[0, . . . , uT
i , . . . , 0]T) ≥ 0, for

i ∈ {1, . . . , n}, for all times t. Since [u1, . . . , un]T = ∑n
i=1[0, . . . , uT

i , . . . , 0]T , by [3,
Proposition 2.3.3],

f ◦
2−conn

(
P(t);[u1, . . . , un]T) ⊆

[
n∑

i=1

min
(

f ◦
2−conn

(
P(t);[0, . . . , uT

i , . . . , 0
]T

))
,

×
n∑

i=1

max
(

f ◦
2−conn

(
P(t);[0, . . . , uT

i , . . . , 0
]T

))]
,

and thus f ◦
2−conn(P(t);[u1, . . . , un]T) ≥ 0. ��

5.2 Analysis of Motion Test Algorithm Under Perfect Information

We wish to show that Motion Test Algorithm exhibits reasonable behavior as δT
becomes small. To do so, we compare it to an idealized variant of Motion Test
Algorithm under which each robot has perfect information.

We let Idealized Motion Test Algorithm be the algorithm defined by executing
Motion Test Algorithm in continuous time, with δT = 0, and with perfect infor-
mation about the state of the network available to each robot. We expound on how
this is an idealized variant of Motion Test Algorithm in Lemma 7, which shows
that Idealized Motion Test Algorithm allows any collective motion such that no
individual robot’s motion instantaneously decreases λ2 unless λ2 > λ+.

Lemma 7 Under Idealized Motion Test Algorithm, a direction proposed by robot
j is accepted if and only if it does not decrease λ2 when taken by itself or if λ2 > λ+.

Proof Consider a direction of motion, u j, which induces an instantaneous rate of
change, X ∈ LAP±(n) of the Laplacian matrix L ∈ LAP(n). Consider the case when
X • (vvT) < 0 for some vvT ∈ δλ2(L) and λ+ ≥ λ2(L). Line 1: of Direction Check-
ing Algorithm ensures that λ2 is used in place of λ+ in picking mmin. Since each
such (vvT) satisfies Lv = λ2(L), v ∈ uspan-L(m) for any m having λm+1(L) > λ2(L).
Thus the eigenvector calculation in line 17: of Direction Checking Algorithm
returns a value less than 0 and the proposed motion is rejected. If λ+ ≥ λ2(L) and
the direction, X, does not satisfy X • (vvT) < 0 for any vvT ∈ δλ2(L), then there is
no basis element, u, in uspan-L(mmin − 1) having uT Xu < 0, so there is at least one
m which produces a value greater than or equal to zero in line 17: of Direction
Checking Algorithm. In the case in which λ+ < λ2(L), lines 3: and 4: of Direction
Checking Algorithm force the direction to be allowed. ��
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The following lemma establishes various useful facts that hold with high probabil-
ity as δT approaches zero.

Lemma 8 If the second derivative of gwgt is bounded, and gwgt has zero derivative at 0,
then for any configuration, for any k ∈ R and any proposed physical motion of robot
j, u j, there exists a time step δT such that, with high probability, the following are true:

(i) The actual Laplacian, L ∈ LAP(n) is within k of the estimated lower and
upper bounds on the Laplacian (A, B ∈ LAP(n)), i.e., ‖A − L‖2 < k and
‖B − L‖2 < k.

(ii) The actual instantaneous direction of motion, Y ∈ LAP±(n), is within k of the
lower bound on the direction of motion, X ∈ LAP±(n), i.e., ‖Y − X‖2 < k.

(iii) For some m, εA(m) < k.

Proof Fact (i) follows from Lemma 6. Corollary 3 allows us to bound the expected
time by which the information robot i holds about robot j is out of date. The bound is
a decreasing function of δT. This bound is linearly related to the bound on the radius
of a sphere known to contain robot j, which induce decreasing bounds on both the
range of angles i can be relative to j and the range of distances i can be from j. If the
second derivative of gwgt is also bounded, these induce a bound on the computations
in lines 4: and 5: of Matrix Bound Generator. Since the results of these computa-
tions form upper and lower bounds for Y, we can deduce that the distance from the
lower bound to Y can be bounded by a decreasing function of δT, thus showing fact
(ii). Regarding fact (iii), note that g′

wgt(0) = 0, thus the proximity graph is smooth
with bounded second derivative even where two robots are coincident. Assume
λn(L) 
= λ2(L). Let l be the index such that λl(A) > λl−1(A) = λ2(A). From part 1,
δT can be picked such that, with high probability, ‖(B − L)‖2 < λ+ − λ2(L). Thus
we can replace the expression in line 11: of Direction Checking Algorithm with√

λ2(B)−λ2(A)

λl(A)−λ2(A)
There exists a δT such that the maximum eigenvalue of the expected

difference between A and B is less than any constant, thus allow εA(l) to be chosen
to be less than any given constant. If λn(L) = λ2(L), let l = n + 1, and note that
εA(n) = 0. ��

The next result shows that, as δT approaches zero, the behavior of Motion Test
Algorithm approaches that of Idealized Motion Test Algorithm.

Theorem 6 For any configuration, and any proposed direction of motion, v, for robot
j, which is permitted under Idealized Motion Test Algorithm, there exists a time
step, δT, such that when communication happens every δT time units, with high
probability robot j will be allowed to move in direction v.

Proof Let Y be the instantaneous change in the Laplacian matrix induced by v.
Let −3k > min{v | Lv=λ2v}(Y • (vvT)) Let l be defined as in Lemma 8, i.e., λl(L) >

λl−1(L) = λ2(L) or l = n + 1 and λl−1(L) = λn(L). By Lemma 8 there is a δT such
that εA(l − 1) < k and |λmin − min(eigs(Y))| < k. Likewise, by Lemma 8, we can
pick X and A sufficiently close to Y and L respectively that |(Y − X) • A)| +
|Y • (L − A)| ≤ k thus guaranteeing that MT

u((l−1))
X Mu((l−1))(1 − ε2

A(l − 1)) + ε2
A(l −

1) min(λmin, 0) ≥ 0. ��
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5.3 Motion Projection Algorithm

In this section, we introduce Motion Projection Algorithm to solve the Spectral
Connectivity Problem, see Table 5. For this algorithm, we set the dimensionality of
physical space, d, to be 2. In other words, each robot lives in R

2. Roughly speaking,
Motion Projection Algorithm is a root-finder procedure wrapped around Motion
Test Algorithm. The idea is to find the minimum angle by which to deviate a
proposed direction of motion so that Motion Test Algorithm returns fsafe ≥ 0 when
executed with the resulting projected direction. If this is the case, then Theorem 5
guarantees that the change in the Laplacian due to motion in the projected direction
wins Graph Picking Game.

Let us start by introducing some useful notation. Given a vector v = [v1, v2]T ∈
R

2, let fmotion : R �→ R be defined as follows: for each θ ∈ R, fmotion(θ) is the result
of evaluating Motion Test Algorithm with the direction of motion [v1 cos(θ) −

Table 5 Motion projection algorithm

Name: Motion Projection Algorithm
Goal: Solve Spectral Connectivity Problem
Inputs: • Current time tcurr ∈ R

• Maximum velocity of any robot, vmax

• Maximum time between communication rounds, δT
• Proposed direction of motion, v

• Eigenvalue bounds λ− ≤ λ+ ∈ R

Persistent • T ∈ R
n, an array of last recorded time information

data: • P ∈ R
2×n, an array of last recorded position information

• D ∈ R
n×n, a matrix of approximate inter-robot distances

• A, B ∈ LAP(n)

• id ∈ {1, . . . , n}, unique identifier of current robot
• Maximum angle deflection, θmax−id
• xincr ∈ R, step-size for root finder.

Outputs: • ṽ ∈ R
2, safe projected direction.

• θ ∈ S1, angle by which to rotate v to get safe direction

1: Let D ← call All-to-all Broadcast Algorithm on tcurr

2: Let (A, B) ← Matrix Bound Generator on tcurr, vmax and δT
3: Let v⊥ ← [−v1, v2]T and θ ← 0 /*Perpendicular direction, for computing rotations*/
4: while θ ≤ θmax−id do
5: for all xsgn ∈ {−1, 1} do
6: Let ṽ ← v cos(θ) + xsgnv⊥ sin(θ) /*Rotated direction*/
7: Let Scheck ← Motion Test Algorithm on tcurr, vmax, δT, ṽ

8: if xsgn = −1 or |Scheck| < k then
9: Let k ← |Scheck| /*For stepsize computation*/

10: end if
11: if Scheck ≥ 0 then
12: return (ṽ, xsgnθ) /*Found good direction*/
13: end if
14: end for
15: Let θ ← θ + max(xincr,

k
nvmax maxs∈R(g′

wgt(s))
) /*Step θ*/

16: end while /*At this point, no safe direction has been found.*/
17: return ([0, 0]T , 0)
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v2 sin(θ), v2 cos(θ) + v1 sin(θ)]T . The following result provides an upper bound on
how fmotion changes with θ .

Lemma 9 fmotion is globally Lipschitz with Lipschitz constant nvmax maxs∈R(g′
wgt(s)).

Proof We begin by noting that fmotion(θ) is the minimum, over m̃ > m, of

min
(
eigs

(
MT

u(m̃) X Mu(m̃)

)) + εA(m̃),

where Mu(m̃) and εA(m̃) do not depend on θ . Each off-diagonal element of X
has a Lipschitz constant bounded by vmax maxs∈R(g′

wgt(s)). From here on, let vedg =
vmax maxs∈R(g′

wgt(s)). Let Lclique(n) ∈ LAP(n) satisfy Lclique(n)i, j = −1 for each i 
= j.
The change in X due to a change in θ of Δθ lives in LAP±(n) and is bounded from
above by vedg Lclique(n)Δθ and from below by −vedg Lclique(n)Δθ . Let Δexpression
be the change in the value of expression due to a change in θ of Δθ . Since Mu(m̃)

is defined by a subset of the columns of an orthogonal basis, each element of
eigs

(
MT

u(m̃)
X

)
has a Lipschitz constant contained in

[ − vedg max
(
eigs

(
Lclique(n)

))
, vedg max

(
eigs

(
Lclique(n)

))] = [−vedgn, vedgn].
Because

min(eigs(A + B)) ∈ [min(eigs(A) + min(eigs(B)), min(eigs(A)) + max(eigs(B))],
we deduce that

Δ min
(
eigs

(
MT

u(m̃) X Mu(m̃)

))

∈ [
min

(
eigs

(
MT

u(m̃)ΔX Mu(m̃)

))
, max

(
eigs

(
MT

u(m̃)ΔX Mu(m̃)

))]

and therefore Δ min
(
eigs(MT

u(m̃)
X Mu(m̃))

) ∈ [−vedgn, vedgn]. ��

The following result establishes that the root finder embedded in Motion Projec-
tion Algorithm uses a reasonable step size.

Lemma 10 Let vedg = vmax maxs∈R(g′
wgt(s)). If fmotion(θ) < −k for some k ∈ R≥0,

fmotion
(
θ + k

nvedg

)
< 0.

Proof The bound that the Lipschitz constant for fmotion(θ) lies in [−nvedg, nvedg]
holds for all θ . So the change in fmotion from θ to θ + k

nvedg
is bounded within

k
nvedg

[−nvedg, nvedg]. ��

Finally, we are ready to show that Motion Projection Algorithm is a solution to
Spectral Connectivity Problem.

Theorem 7 The Motion Projection Algorithm solves the Spectral Connectiv-
ity Problem. If there is an interval, [θ−, θ+] ⊆ S1, such that fmotion(α) ≥ 0 for all
α ∈ [θ−, θ+] and θ+ − θ− ≥ xincr then Motion Projection Algorithm will return a
direction other than [0, 0]T.
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Proof The outer loop in Motion Projection Algorithm checks possible directions
and evaluates Motion Test Algorithm on them. If one of these directions results
in Motion Test Algorithm returning a non-negative value, Motion Projection
Algorithm returns that direction, otherwise it returns [0, 0]T . Let the current angle
be θ . If θ steps by k

nvmax maxs∈R(g′
wgt(s))

, where k is the max of fmotion over {θ,−θ}, then
fmotion will be less than zero for the next θ . If θ steps by more than this, then θ steps
by xincr. To pass the boundaries of the region [θ−, θ+], θ must step by xincr, and must,
therefore land in [θ−, θ+]. Because each step of θ is at least xincr, θ covers the entire
region from 0 to θmax−id in finite time. ��

5.4 Analysis of the Communication Complexity

At each communication round, the above solutions to the Spectral Connectivity
Decision Problem and the Spectral Connectivity Problem require each robot to
perform computations whose memory requirements are polynomial in the number
of robots and whose time complexity is polynomial in the number of robots times the
time required to calculate the eigenspace of an n × n matrix.

As is typically the case with any coordination algorithm, multiple communication
rounds are required in order to complete the assigned task. Therefore, it is also
important to study the complexity of our algorithm in terms of the required rate
of communication to achieve a desired performance. This is related, in some sense,
to the notion of communication complexity, commonly discussed in the literature
on distributed algorithms [2, 13, 16], in which one studies the number of messages
that need to be sent during an algorithm execution in order to achieve a given task,
usually written as a function of the size of the network.

In addition to the size of the network, there are additional factors that need
to be considered to accurately characterize the required rate of communication,
including the required performance (represented here as the probability that an
agent will move, pmove ∈ (0, 1)), the amount we expect λ2(G) to be above the
threshold λ+, the maximum velocity with which the robots move, vmax, the time
between communication rounds, δT, and a bound, gmax, on the magnitude of the
gradient of the proximity function.

We begin by characterizing a property of the matrices A and B generated by
the Matrix Bound Generator which we will use to bound the gap between λ2(A)

and λ2(L(G)).

Lemma 11 For any pmove ∈ (0, 1), the following holds

Pr

(
max

i, j∈{1,...,n}
(Bi, j − Ai, j)

)
≤ 4

1 − pmove
gmaxvmax

(
n2

(
n2 + 2

)
δT

) ≤ pmove.

Proof Follows from Markov’s inequality, Pr(|X| > α) ≤ E(|X|)
α

and Lemma 6. ��

We next proceed to combine this result with some general properties of graph
Laplacians to bound the transmission rate necessary for each robot to be allowed
to move in any direction with high probability (and thus be allowed to move in the
direction specified by the underlying control algorithm).
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Theorem 8 Let gmax = maxx∈R≥0(|g′
wgt(x)|). If the time between communication

rounds is such that δT ≤ (1−pmove)(λ2(L(G))−λ+)

4gmaxvmax(n2(n2+2)
, then each robot will move on each

timestep with probability at least pmove.

Proof By Lemma 11, with probability at least pmove, maxi 
= j,i∈{1,...,n}, j∈{1,...,n} Bi, j −
Ai, j never exceeds 4

1−pmove
gmaxvmax(n2(n2 + 2)δT). Thus, with probability at least

pmove, B − A satisfies B − A ≤LAP
4

1−pmove
gmaxvmax(n2(n2 + 2)δT)Lunit where Lunit ∈

LAP(n) has off-diagonal entries consisting solely of 0 and 1. The maximum possible
eigenvalue of such a matrix is n, as shown in [6], and λ2(B) ≤ λ2(A) + λn(B − A),
thus λ2(B) − λ2(A) ≤ λ2(B − A) Whenever λ2(L) satisfies λ2(L(G)) ≥ λ+ + δλ, set-
ting δT ≤ (1−pmove)δλ

4gmaxvmax(n2(n2+2)
, or equivalently, setting the transmission rate to approxi-

mately 8
1−pmove

gmaxvmaxn4 real numbers per time unit allows the robots to move at
each timestep with probability at least pmove. ��

We note that this result does not fully characterize the communication complexity
of our solutions because, among other things, does not account explicitly for the
proposed direction of motion of the robots. We discuss this topic among our ideas
for future research later in Section 6.

5.5 Simulations

In this section, we present simulations of the Motion Projection Algorithm to
further validate the results presented in the previous sections. We have developed
a custom Java-based platform [18] for the simulation of algorithms running on
networks of robotic agents following the modeling framework proposed in [14]. The
platform has a user interface layer which allows the simulations to be graphically
displayed in real time in a Java applet.

In all simulations, Motion Projection Algorithm is implemented with the r-disk
graph for the actual communication network, and the nonconvex weight function
of the spline graph defined in Remark 1, where rmax ∈ R was chosen to be slightly
less than r and rmin ∈ R was slightly bigger than zero. Note that the function gwgt

satisfies the conditions of Lemma 8. The maximum velocity of each individual robot
is vmax = 0.125 and the time step is δT = 0.125.

We consider four sets of underlying control laws. In the first simulation, shown in
Fig. 1, all robots attempt to follow a Laplacian-based flocking algorithm. Each robot
moves at unit speed and, at each time step, updates its heading to its own heading
plus a scalar (0.1) times the average of the differences between its own heading and
those of its neighbors. This is in fact a discrete-time implementation of the Laplacian-
based averaging consensus [15], see also [8]. Each robot tries to move in the direction
of its own heading, subject to maintaining connectivity.

In the second simulation, shown in Fig. 2, all robots attempt to follow a Laplacian-
based rendezvous algorithm. Each robot moves at unit speed and, at each time step,
moves towards the average of its neighbors positions, while maintaining connectivity.

In the third simulation, shown in Fig. 3, five agents with different conflicting con-
trol laws attempt to follow their own directives while maintaining connectivity. Note
that the simulations in which the control directives naturally align with maintaining
connectivity tend to require far fewer iterations to converge than those in which this
is not the case (particularly those with random or conflicting motion).
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a b

Fig. 1 Execution of Motion Projection Algorithm with 12 robotic agents. The underlying control
law is determined by the robots moving at unit speed and running a Laplacian-based consensus to
update its heading. Plot (a) shows the paths taken by the robots and plot (b) shows the evolution
of the algebraic connectivity and the proportion of robots actively moving as functions of the
communication round. The angle of motion each robot is allowed to deviate from is 0.95π

a b

Fig. 2 Execution of Motion Projection Algorithm with 12 robotic agents. The underlying control
law is determined by the robots moving at unit speed and running a Laplacian-based consensus
to update its target position. Plot (a) shows the paths taken by the robots and plot (b) shows the
evolution of the algebraic connectivity and the proportion of robots actively moving as functions of
the communication round. The angle of motion each robot is allowed to deviate from is π
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a b

Fig. 3 Execution of Motion Projection Algorithm with 5 robotic agents. The underlying control
law corresponds to following scenario: Four leaders each attempt to follow different control laws
each of which converges on a different fixed trajectory. The remaining agent moves randomly. Plot
(a) shows the paths taken by the robots and plot (b) shows the evolution of the algebraic connectivity,
the fraction of robots moving at each round, and the evolution of the angle of each robot’s position
relative to the origin

a b

Fig. 4 Execution of Motion Projection Algorithm with 4 robotic agents. The underlying control
law corresponds to one leader following a fixed trajectory and the remaining agents moving
randomly. Plot (a) shows the paths taken by the robots and plot (b) shows the evolution of the
algebraic connectivity, the fraction of robots moving at each round, and the evolution of the angle of
each robot’s position relative to the origin
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In the fourth simulation, shown in Fig. 4, one leader robot attempts to follow
a fixed trajectory while the remaining robots try to move randomly subject to the
constraint of maintaining connectivity. For each robot, we specify the threshold
θmax−i = 0.2.

These simulations validate the preliminary results in Section 5.4 linking the
communication complexity of the algorithm to the difference between λ2 and λ+.
In particular, we observe that the fraction of agents moving at any given time is
correlated to the difference between λ2 and λ+, and that the fraction of agents moving
together with vmax affect the time required for the network to complete the given
task. We also find that, in situations where λ2 stays well above λ+, the complexity is
reasonable. On the other hand, the complexity degrades as the algorithm begins to
push λ2 up against the threshold. Adding a single agent whose underlying motion is
random may help to maintain connectivity, but assigning random underlying motion
to the majority of the agents, as in the simulation shown in Fig. 4, may slow down
collective agent motion.

6 Conclusions and Future Work

We have studied the problem of connectivity maintenance in robotic networks
performing spatially-distributed tasks. In our approach, the edge weights of the
connectivity graph are not necessarily convex functions of the inter-robot distances.
We have proposed a distributed procedure to synthesize motion constraints on the
individual robots so that the algebraic connectivity of the overall network remains
above a desired threshold. The algorithm works even though individual robots only
have partial information about the network state due to communication delays and
network mobility. We have shown that as the communication rate increases, the
performance of the proposed algorithm approaches that of the ideal centralized
solution of Spectral Connectivity Decision Problem.

Future work will evaluate the communication complexity of the proposed co-
ordination algorithm. We are especially interested in calculating lower bounds on
the communication complexity required by the computation of the gradient of the
algebraic connectivity function in a distributed way. We also plan to study the
relationship between the rate of information transmission and the rate of robot
motion in terms of the number of robots and the exact value of f2−conn. Finally,
we will explore the combination of the proposed approach with algorithms for
deployment and exploration.
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