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Distributed Moving Horizon Estimation for Linear
Constrained Systems

Marcello Farina, Giancarlo Ferrari-Trecate and Riccardo Scattolini

Abstract—This paper presents a novel distributed estimation
algorithm based on the concept of moving horizon estimation.
Under weak observability conditions we prove convergence of
the state estimates computed by any sensors to the correct state
even when constraints on noise and state variables are taken
into account in the estimation process. Simulation examples are
provided in order to show the main features of the proposed
method.

Index Terms—Distributed estimation, moving horizon estimation,
consensus algorithms.

I. INTRODUCTION

A sensor network consists of a set of electronic devices,
with sensing and computational capabilities, which coordinate
their activity through a communication network. They can
be employed in wide range of applications, such as monitor-
ing, exploration, surveillance or to track targets over specific
regions. The diffusion of sensor networks is partly due to
the recent developments in wireless communications and to
the availability of low cost devices. Many theoretical and
technological challenges have still to be tackled in order to
fully exploit their potentialities. Among the open problems,
the use of sensor networks for distributed state estimation is
of paramount importance. The problem can be described as
follows. Assume that any sensors of the network measures
some variables, computes a local estimate of the overall state
of the system under monitoring, and transmits to its neighbors
both the measured values and the computed state estimation.
Then, the main challenge is to provide a methodology which
guarantees that all the sensor asymptotically reach a common
reliable estimate of the state variables, i.e. the local estimates
reach a consensus. This goal must be achieved even if the
measurements performed by any sensor are not sufficient
to guarantee observability of the process state (i.e., local
observability), provided that all the sensors, if put together,
guarantee such property (i.e., collective observability). The
transmission of measurements and of estimates among the
sensors must lead to the twofold advantage of enhancing the
property of observability of the sensors and of reducing the
uncertainty of state estimates computed by each node.
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temistica, Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy�
giancarlo.ferrari � @unipv.it

Consensus algorithms for distributed state estimation based
on Kalman filters have recently been proposed in [1], [2], [3],
[4], [5], [6], [7]. In particular, in [3], [4], [5], consensus on
measurements is used to reduce their uncertainty and Kalman
filters are applied by each agent. In [6], three algorithms for
distributed filtering are proposed. The first algorithm is similar
to the one described in [4], save for the fact that sensors
exploit only partial measurements of the state vector. The
second approach relies on communicating the state estimates
among neighboring agents (consensus on estimates). The third
algorithm, named iterative Kalman consensus filter, is based
on the discrete-time version of a continuous-time Kalman filter
plus a consensus step on the state estimates, which is proved
to be stable. However, stability has not been proved for the
discrete-time version of the algorithm and optimality of the
estimates has not been addressed. Recently, convergence in
mean of the local state estimates obtained with the algorithm
presented in [4] has been proved in [7], provided that the
observed process is stable.
In [2] consensus on the estimates is used together with Kalman
filters. The weights of the sensors’ estimates in the consensus
step and the Kalman gain are optimized in order to minimize
the estimation error covariance. A two-step procedure is also
used in [1], where the considered observed signal is a random
walk. A two-step algorithm is proposed, where filtering and
consensus are performed subsequently, and the estimation
error is minimized with respect to both the observer gain
and the consensus weights. This guarantees optimality of the
solution.
More in general, the issue of distributed sensor fusion has been
widely studied in the past years e.g., [8], [9]. The paper [8]
provides an algorithm accounting for dynamically changing
interconnections among sensors, unreliable communication
links, and faults, where convergence of the estimates to the
true values is proved, under suitable hypothesis of “dynam-
ical” graph connectivity, while in [9] the authors propose a
minimum variance estimator for distributed tracking of a noisy
time-varying signal.
Other studies focused on the design of decentralized Kalman
filters based on system decomposition. Different solutions
can be classified according to the model used by each sub-
system for state-estimation purposes and the topology of
the communication network among subsystems. Early works,
e.g. [10], [11] require all-to-all communication and assume
each subsystem has full knowledge of the whole dynamics.
Subsystems with overlapping states are also studied, e.g. in
[12], where a fully decentralized scheme is presented.
In this paper we propose a distributed algorithm based on the
concept of Moving Horizon Estimation (MHE), which has
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been proposed for discrete-time linear [13], [14], nonlinear
[15], [16], [17], [18] and hybrid systems [19]. This approach
has many advantages; first of all, the observer displays opti-
mality properties, since a suitable minimization problem must
be solved on-line at each time instant. Furthermore, we prove
that, under weak observability conditions, convergence of the
state estimate is guaranteed in a deterministic framework.
Finally, constraints on the noise and on the state are taken
into account, as it is common in receding horizon approaches
in control and estimation, [20].
The paper is structured as follows. In Section II we introduce
the observed dynamical system, the structure of the sensor
network, and we define a number of observability properties.
In Section III we describe the distributed state estimation algo-
rithm. In Section IV we investigate the convergence properties
of the algorithm, and in Section V we discuss on how to select
the design parameters in order to guarantee the applicability
of the main results. In Section VI we present a simulation
example, while Section VII reports some concluding remarks.
For the sake of clarity, the proofs are reported in the Appendix.

Notation. In and 000ν � µ denote the n � n identity matrix and
the ν � µ matrix of zero elements, respectively. Given a set
S , �S � denotes its cardinality. The notation � z � 2S stands for
zT Sz, where S is a symmetric positive-semidefinite matrix. The
symbol � denotes the Kronecker product, and � M is the M-
dimensional column vector whose entries are all equal to 1.
The matrix diag � η1 	�
�
�
�	 ηs � is block-diagonal with blocks ηi.
Finally, we use the short-hand v �� v1 	�
�
�
�	 vs � to denote a
column vector with s (not necessarily scalar) components.

II. SYSTEM AND SENSOR NETWORK

We assume that the observed process obeys to the linear
dynamics

xt � 1  Axt � wt 	 (1)

where xt ������� n is the state vector and the term wt ������� n

represents a white noise with covariance equal to Q. We
assume that the sets � and � are convex and contain the
origin. The initial condition x0 ��� is a random variable with
mean µ and covariance Π0. The pair � A 	�� Q � is stabilizable.
Measurements on the state vector are performed by M sensors,
according to the sensing model (in general different from
sensor to sensor)

yi
t  Ci xt � vi

t 	 i  1 	�
 
 
 	 M (2)

where the term vi
t ��� pi represents white noise with covariance

equal to Ri.
The communication network among sensors is described by
the directed graph G �� V 	 E � , where the nodes in V  

1 	 2 	�
�
�
�	 M ! represent the sensors and the edge � j 	 i � in the
set E � V � V models that sensor j can transmit information
to sensor i. We assume � i 	 i � � E , " i � V . We denote with V k

i
the set of k-th order neighbors to node i, i.e., V k

i   j � V :
there is a path of length at most k from j to i in G ! . We will
also use the shorthand Vi  V 1

i .
We introduce now the definition of isolated subgraph. If
the graph G is not strongly connected (i.e., it is reducible),

one can partition G into l nonempty irreducible subgraphs
Gi #� Ni 	 Ai � , i  1 	�
�
�
�	 l (see e.g. [21]). If, for all p � Ni,
q � Vp implies that q � Ni we say that Gi is isolated. Remark
that if G is strongly connected, it is also isolated.
We associate to the graph G the stochastic matrix K ��� M � M ,
with entries

ki j $ 0 if � j 	 i � � E (3a)

ki j  0 otherwise (3b)
M

∑
j % 1

ki j  1 	 " i  1 	�
 
 
 	 M (3c)

Any matrix K with entries satisfying (3) is said to be
compatible with G . Given a graph G , there are many degrees
of freedom for the choice of K, which will be exploited to
guarantee the convergence of the state estimator described in
the following and/or to reduce the uncertainty of the estimates.
It is assumed that, at a generic time instant t, sensor i
collects the measurements produced by itself and its neigh-
boring sensors. Moreover, each sensor transmits and receives
information once within a sampling interval. This means that
measurements available to node i are y j

t , with j � Vi.
Three types of quantities can be distinguished: local, regional,
and collective. Specifically, a quantity is local (with respect to
sensor i) when it is related to the node i solely. A quantity is
regional (with respect to sensor i) if it is related to the nodes in
Vi. Finally, a quantity is collective, if it is related to the whole
network. For the sake of clarity, we use different notations
for local, regional and collective variables. Namely, given a
variable z, zi represents its local version, z̄i is its regional
counterpart, and z the collective one. For instance, we refer to
yi

t in (2) as local measurement. On the other hand, if Vi   ji
1,

..., ji
vi
! , the regional measurement of node i is given by

ȳi
t  C̄i xt � v̄i

t (4)

where ȳi
t &� y ji1

t 	�
�
�
�	 y jivi
t � , C̄i &' � C ji1 � T 
�
�
 � C jivi � T ( T , and v̄i

t � v ji1
t 	�
�
�
�	 v jivi

t � . The dimension of vectors ȳi
t and v̄i

t , and the
number of rows of matrix C̄i is p̄i  ∑vi

k % 1
p jik

. Furthermore,

we denote by R̄i, the covariance matrix related to the regional
noise v̄i

t on sensor i, i.e., R̄i  diag � R ji1 	�
�
�
�	 R jivi
� .

According to the adopted terminology, three different observ-
ability notions can be introduced.
Definition 1: The system is locally observable by sensor i
(sensor i is locally observable) if the pair � A 	 Ci � is observable.
The system is regionally observable by sensor i (sensor i
is regionally observable) if the pair � A 	 C̄i � is observable.
The system is collectively observable if the pair � A 	 C ) � is
observable, where C )*&' � C1 � T 
�
�
 � CM � T ( T . +
Notice that, for a given sensor i, local observability implies
regional observability, and regional observability of any sensor
implies collective observability, while all opposite implications
are false. We partition the set V into the subsets VO   j �
V : � A 	 C̄ j � is an observable pair ! , VNO   j � V : � A 	 C̄ j � is
an unobservable pair ! .
Given a single sensor model (1)-(2), the i-th sensor regional
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observability matrix Ō i
n is

Ō
i
n -,.� C̄i � T � C̄iA � T 
�
�
 � C̄iAn / 1 � T 0 T (5)

Let P̄i
NO be the orthogonal projection matrix on ker � Ō i

n � , that is
the regionally unobservable subspace. Similarly, let P̄i

O be the
orthogonal projection on the regional observability subspace
ker � Ō i

n �21 . Next, we recall how P̄i
O and P̄i

NO can be computed.
Let ri  rank � Ō i

n � and denote with ξri � 1, 
�
�
 , ξn an orthonormal
basis of ker � Ō i

n � . Let also ξ1, 
�
�
 , ξri
be an orthonormal

basis of ker � Ō i
n � 1 and define the orthonormal and non-singular

matrix T̄ i &' ξ i
1 	�
 
 
 	 ξ i

n
( . Defining the matrices S̄i

O and S̄i
NO as

S̄i
O  3 Iri

0 4 n / ri 5 � ri 6 	 S̄i
NO  3 0ri � 4 n / ri 5

In / ri 6 	
we have P̄i

O  T̄ iS̄i
O � S̄i

O � T � T̄ i � / 1 and P̄i
NO 

T̄ iS̄i
NO � S̄i

NO � T � T̄ i � / 1. Furthermore, defining T 
diag 7 T̄1 	�
�
�
�	 T̄M 8 , SO  diag 7 S̄1

O 	�
�
�
�	 S̄M
O 8 , and

SNO  diag 7 S̄1
NO 	�
�
�
�	 S̄M

NO 8 , the collective projection matrices
are PO  TSOST

OT / 1 and PNO  TSNOST
NOT / 1. Note that

S̄i
NO is empty when the system is regionally observable by

sensor i. In this case we assume that P̄i
NO  000n � n.

III. THE DISTRIBUTED ESTIMATION ALGORITHM

Our aim is to design, for a generic sensor i � V , an algorithm
for computing an estimate of the system state based on
regional measurements ȳi

t and further pieces of information
provided by sensors j � Vi. The proposed solution relies on
MHE, in view of its capability to handle state and noise
constraints. More specifically, we propose a Distributed MHE
(DMHE) scheme where each sensor solves a MHE problem.

A. The local minimization problem

For a given estimation horizon N $ 1, each node i � V at time
t determines the estimates x̂i and ŵi of x and w, respectively,
by solving the constrained minimization problem (MHE-i)

Θ ) it  min
x̂i

t 9 N : ; ŵi
k < t 9 1

k = t 9 N

Ji � t > N 	 t 	 x̂i
t / N 	 ŵi 	 ˆ̄vi 	 Γi

t / N � (6)

under the constraints

x̂i
k � 1  Ax̂i

k � ŵi
k 	 k  t > N 	�
�
�
�	 t (7a)

ȳi
k  C̄i x̂i

k � ˆ̄vi
k (7b)

ŵi
k ��� (7c)

x̂i
k �?� (7d)

The local cost function Ji is given by

Ji � t > N 	 t 	 x̂i
t / N 	 ŵi 	 ˆ̄vi 	 Γi

t / N �  1
2 ∑t

k % t / N � ˆ̄vi
k � 2R̄ 9 1

i
�� 1

2 ∑t / 1
k % t / N � ŵi

k � 2Q 9 1 � Γi
t / N � x̂i

t / N ; ˆ̄xi
t / N @ t / 1 � (8)

We denote with x̂i
t / N @ t and with

 
ŵi

k @ t ! t / 1
k % t / N the optimizers

to (6) and with x̂i
k @ t , k  t > N 	�
 
 
 	 t the local state sequence

stemming from x̂i
t / N @ t and

 
ŵi

k @ t ! t / 1
k % t / N . Furthermore

ˆ̄xi
t / N @ t / 1  M

∑
j % 1

ki jx̂
j
t / N @ t / 1

(9)

denotes the weighted average state estimates produced by
sensors j � V i. In (8), the function Γi

t / N � x̂i
t / N ; ˆ̄xi

t / N @ t / 1 � is
the so called initial penalty, defined as follows

Γi
t / N � x̂i

t / N ; ˆ̄xi
t / N @ t / 1 �  1

2
� x̂i

t / N > ˆ̄xi
t / N @ t / 1 � 24 Πi

t 9 N A t 9 1 5 9 1 � Θ ) it / 1

(10)

where Θ ) it / 1 is the optimal cost defined in (6) and the
positive-definite symmetric weighting matrix Πi

t / N @ t / 1 ap-
pearing in (10) plays the role of a covariance matrix whose
choice will be discussed in details in the next paragraphs.
The term Θ ) it / 1 is a constant in (10) and could be neglected
when solving (6). However, since it plays a major role in
establishing the main convergence properties of DMHE, it is
here maintained for clarity of presentation.
Note that, in view of the definition of ki j in (3), Γi �2B � depends
only upon regional quantities and, since also the cost (8) and
the constraints (7) depend only upon regional variables, the
overall estimation scheme is decentralized. Finally, notice that
Γi �2B � embodies a consensus-on-estimates term, in the sense
that it penalizes deviations of x̂i

t / N @ t / 1 from ˆ̄xi
t / N @ t / 1. Con-

sensus, besides increasing accuracy of the local estimates, is
fundamental to guarantee convergence of the state estimates to
the state of the observed system even if regional observability
does not hold. In other words, it allows sensor i to reconstruct
components of the state that cannot be estimated by the i-th
regional model.

B. The collective minimization problem

The local estimation problems (6)-(10) can be given a collec-
tive form more suitable for the following developments. To
this end, let J be the collective cost function given by

J �2B �  M

∑
i % 1

Ji � t > N 	 t 	 x̂i
t / N 	 ŵi 	 ˆ̄vi 	 Γi

t / N � (11)

Define the collective vectors x̂t  7 x̂1
t 	�
�
�
�	 x̂M

t 8 , ˆ̄vt 7 ˆ̄v1
t 	�
�
�
�	 ˆ̄vM

t 8 , ŵt C7 ŵ1
t 	�
�
�
�	 ŵM

t 8 , the quantities ΘΘΘ )t / 1 
∑M

i % 1 Θ ) it / 1, K  K � In,

ΠΠΠt1 @ t2  diag D Π1
t1 @ t2 	�
�
�
�	 ΠM

t1 @ t2 E (12)

and the collective initial penalty

ΓΓΓt / N � x̂t / N ; x̂t / N @ t / 1 �  ΓΓΓo
t / N � x̂t / N @ t ; x̂t / N @ t / 1 � � ΘΘΘ )t / 1 (13)

where ΓΓΓo
t / N � x̂t / N @ t ; x̂t / N @ t / 1 �  1

2 � x̂t / N > Kx̂t / N @ t / 1 � 2ΠΠΠ 9 1
t 9 N A t 9 1

.

Then, using the matrices R̄  diag 7 R̄1 	�
�
�
�	 R̄M 8 , Q 
diag � Q 	�
�
�
�	 Q � ��� nM � nM , the collective cost function J �2B � can
be rewritten as

J � t > N 	 t 	 x̂t / N 	 ŵ 	 ˆ̄v 	 ΓΓΓt / N �  1
2 ∑t

k % t / N � ˆ̄vk � 2R̄ 9 1 �� 1
2 ∑t / 1

k % t / N � ŵk � 2Q 9 1 � ΓΓΓt / N � x̂t / N ; x̂t / N @ t / 1 � (14)

Defining A  diag � A 	�
 
 
 	 A � � � nM � nM and
C̄  diag � C̄1 	�
 
 
 	 C̄M � , also the constraints (7) can be written
in the following collective form

x̂k � 1  Ax̂k � ŵk 	 k  t > N 	�
�
�
�	 t (15a)

ȳk  C̄ x̂k � ˆ̄vi
k (15b)

ŵk �F� M (15c)
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x̂k ��� M (15d)

It is important to note that solving the problem

Θ )t  min
x̂t 9 N : ; ŵk < t 9 1

k = t 9 NG J � t > N 	 t 	 x̂t / N 	 ŵ 	 ˆ̄v 	 ΓΓΓt / N � subject to (15) H
(16)

is equivalent to solve the MHE-i problems (6), in the sense
that x̂i

t / N @ t 	  ŵi
k @ t ! t / 1

k % t / N is a solution to (6) if and only
if x̂t / N @ t 	  ŵk @ t ! t / 1

k % t / N is a solution to (16), where ŵk @ t � ŵ1
k @ t 	�
�
�
�	 ŵM

k @ t � .
Let t1 verify t > N I t1 I t. We define the transit cost of a
generic state z �J� nM , computed at instant t as

ΞΞΞt1 @ t � z �  min
x̂t 9 N : ; ŵk < t 9 1

k = t 9 N G J � t > N 	 t 	 x̂t / N 	 ŵ 	 ˆ̄v 	 ΓΓΓt / N �
subject to (15) and x̂t1

 z ! (17)

As discussed in [20], ΞΞΞt1 @ t � z � provides a measure of the likeli-
hood that x̂t1

is equal to z given the data ȳk, k  t > N 	�
�
�
�	 t and
the prior likelihood ΓΓΓt / N �2B � on xt / N . Specifically, the lower
ΞΞΞt1 @ t � z � , the more likely the equality x̂t1

 z. The prior ΓΓΓt / N �2B �
can be interpreted as an approximation of ΞΞΞt / N @ t / 1 �2B � . The key
condition involving these two terms, that will be fundamental
for proving convergence of DMHE (see Appendix B), is that,
for all z ���

ΓΓΓt / N �K� M � z; x̂t / N @ t / 1 � I ΞΞΞt / N @ t / 1 �K� M � z � (18)

Equation (18) is similar to the assumption (C2) in [15] for
centralized MHE. However, in (18), the transit cost instead of
the arrival cost appears. In fact ΞΞΞt / N @ t / 1 is a smoothing term,
since it takes into account data up to time t, in order to enforce
consensus (in [13] this approach is called smoothing update).
An explicit formula for a lower bound to ΞΞΞt / N @ t / 1 � z � (which
coincides with ΞΞΞt / N @ t / 1 � z � for unconstrained estimation prob-
lems, see the proof of Lemma 1 in Appendix B) is given by
a quadratic cost function, i.e.

ΞΞΞt / N @ t / 1 � z � $ 1
2
� z > x̂t / N @ t / 1 � 24 Π̃ΠΠt 9 N A t 9 1 5 9 1 � ΘΘΘ )t / 1 (19)

for a suitable choice of Π̃ΠΠt / N @ t / 1. The computation of
Π̃ΠΠt / N @ t / 1, and a procedure for updating the matrix ΠΠΠt / N @ t / 1
in (13) satisfying (18) are given in the next section.

C. Update of the weighting matrices

As remarked in the previous section, the first step for updating
matrices Πi

t / N @ t / 1, is to compute Π̃ΠΠt / N @ t / 1 in (19), with the
following diagonal structure

Π̃ΠΠt / N @ t / 1  diag D Π̃1
t / N @ t / 1 	�
�
�
�	 Π̃M

t / N @ t / 1 E (20)

where the update of Π̃i
t / N @ t / 1 is carried out by the sensor

i, based on regional pieces of information. For this reason,
this step is denoted regional weights update. Specifically, the
matrix Π̃i

t / N @ t / 1, i � V , is given by one iteration of the
difference Riccati equation associated to a Kalman filter for
the system L

xt / N  Axt / N / 1 � wt / N / 1
z̄i
t / N  Ō i

Nxt / N � V̄ i
t / N

where matrix Ō i
N is defined in (5). If we define

C
i
N NMOOOP 0 0 
�
�
 0

C̄i 0 
�
�
 0
...

...
. . .

...
C̄iAN / 2 C̄iAN / 3 
�
�
 C̄i

Q RRRS �J� p̄i N � n 4 N / 1 5
(21)

R̄i
N  diag 7 R̄i 	�
�
�
�	 R̄i 8 �J� p̄i N � p̄iN (22)

QN / 1  diag � Q 	�
�
�
�	 Q � �J� n 4 N / 1 5 � n 4 N / 1 5 (23)

Cov 'wt
(  Q (24)

Cov ' V̄ i
t
(  R̄ ) iN  R̄i

N � C
i
NQN / 1 � C i

N � T (25)

and set the covariance of the estimate x̂i
t / N / 1 as

Π ) it / N / 1 @ t / 2 &��� Πi
t / N / 1 @ t / 2 � / 1 � � C̄i � T � R̄i � / 1C̄i � / 1 (26)

the resulting Riccati recursion is given by

Π̃i
t T N U t T 1 V R

i W Π X it T N T 1 U t T 2;Q Y R̄ X iN Z (27)V AΠ X it T N T 1 U t T 2AT [ Q \ AΠ X it T N T 1 U t T 2 ] Ō i
N ^ T __ W

Ō
i
NΠ X it T N T 1 U t T 2 ] Ō i

N ^ T [ R̄ X iN Z T 1
Ō

i
NΠ X it T N T 1 U t T 2AT

Once the matrices Π̃i
t / N @ t / 1 have been computed, we perform

a consensus weights update, in order to compute the matrices
Πi

t / N @ t / 1 appearing in (10), which must satisfy the fundamen-
tal inequality (18). As stated in Lemma 1 in Appendix B, (18)
is verified if ΠΠΠt / N @ t / 1 fulfills the Linear Matrix Inequality
(LMI)

ΠΠΠt / N @ t / 1 $ KΠ̃ΠΠt / N @ t / 1KT (28)

The LMI (28) deserves a few comments. In order to make the
initial penalty ΓΓΓt / N �2B � a good approximation of the transit cost
ΞΞΞt / N @ t / 1 �2B � , one would require the matrix ΠΠΠt / N @ t / 1 to be “as
close as possible” to KΠ̃ΠΠt / N @ t / 1KT . Therefore, in our case,
one would make the matrix ΠΠΠt / N @ t / 1 “as small as possible”,
subject to the constraint (28). A way for achieving this is to
solve the LMI problem

min D trace � ΠΠΠt / N @ t / 1 � E , subject to (28), (29)

where ΠΠΠt / N @ t / 1 has the block-diagonal structure (12). Notice
that (29) could be solved by each sensor since, similarly to
the formula for updating covariances in Kalman filtering, the
computation of Πi

t / N @ t / 1 does not depend upon the collected
measurements. However, problem (29) has a centralized flavor.
This limitation is severe since, for instance, the LMI (28)
has size n � M which implies that the computational burden
for solving (29) scales with the number of sensors, hence
hampering the application of DMHE to large networks. The
next proposition provides a way to circumvent this problem.
Proposition 1: The matrices Πi

t / N @ t / 1 which satisfy, " i � V

Πi
t / N @ t / 1 $ 2

M

∑
j % 1

k2
i jΠ̃

j
t / N @ t / 1

(30)

also satisfy the LMI (28).
Proof: See Appendix A.
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Notice that, in the solution provided by Proposition 1, each
node computes Πi

t / N @ t / 1 solely on the basis of Π̃ j
t / N @ t / 1

,
provided by its neighbors, j � Vi. In view of this, the LMI (28)
can be solved in a decentralized fashion by setting

Πi
t / N @ t / 1  2

M

∑
j % 1

k2
i jΠ̃

j
t / N @ t / 1

(31)

D. DMHE algorithm

In the following we sketch the steps that have to be carried out,
in practice, in order to apply the proposed DMHE algorithm.` Initialization: at t  0 all nodes store the matrix Π0 and

the estimate x̂0 @ 0  µ of x0, where µ is given. Recall that
Π0 is the covariance matrix related to the initial condition
x0` if 1 I t I N, the estimation horizon N is reduced to Ñ  t
and node i � V performs the following steps

– compute Πi
t / Ñ @ t / 1  Πi

0 @ t / 1 from Π0 according
to (31), for all i � V ,

– solve the problem MHE-i, with initial penalty

Γi
t / Ñ  1

2
� x̂i

0 > ˆ̄xi
0 @ t / 1 � 24 Πi

0 A t 9 1 5 9 1` if t a N, at each time instant, every node i � V ,
– computes Πi

t / N @ t / 1 from ΠΠΠt / N / 1 @ t / 2 according
to (26), (27) and (31),

– solves the problem MHE-i, with initial penalty

Γi
t / N  1

2
� x̂i

t / N > ˆ̄xi
t / N @ t / 1 � 24 Πi

t 9 N A t 9 1 5 9 1

IV. CONVERGENCE PROPERTIES OF DMHE

The main purpose of this section is to extend the convergence
results of [13] for centralized MHE to the proposed DMHE
scheme.
Definition 2: Let Σ be system (1) with w  0 and denote by
xΣ � t 	 x0 � the state reached by Σ at time t starting from initial
condition x0. Assume that the trajectory xΣ � t 	 x0 � is feasible,
i.e., xΣ � t 	 x0 � �b� for all t. DMHE is convergent if � x̂i

t @ t >
xΣ � t 	 x0 � � t c ∞>ed 0 for all i � V . +
Note that, as in [13], convergence is defined assuming that
the model generating the data is noiseless, but the possible
presence of noise is taken into account in the state estimation
algorithm. Now, defining the collective vector xΣ � t 	 x0 � f� M �
xΣ � t 	 x0 � and εεεk @ t  x̂k @ t > xΣ � k 	 x0 � , the following result can be
stated.
Theorem 1: If: � i � matrices Πi

t / N @ t / 1 are computed according
to (26), (27) and (28), � ii � Πi

t / N @ t / 1 are bounded for all t, and
for all i � V , � iii � N $ n > 1 and N $ 1, then

a) there exists an asymptotically vanishing sequence αt (i.e.,� αt � t c ∞>gd 0) such that the dynamics of the state estimation
error provided by the DMHE scheme is given by

εεεt / N @ t  Φεεεt / N / 1 @ t / 1 � αt (32)

where Φ  PNOKAPNO;
b) if � iv � Φ is Schur, then DMHE is convergent.

Proof: See Appendix B.
In Section V we will provide a method to choose a matrix
K compatible with G such that conditions � ii � and � iv � of
Theorem 1 are satisfied.

We highlight that Condition � iv � does not require the asymp-
totic stability of system (1). Moreover, Theorem 1 does not
hinge on observability properties. In fact, convergence of the
estimation error can be achieved even if a weaker detectability
property is satisfied, i.e. if matrix Φ inherits only stable eigen-
values of A. However, it is of interest to determine conditions
guaranteeing that the matrix Φ does not inherit any (non-zero)
eigenvalue of A. The reason is twofold. First, this is tantamount
to requiring that the unobservable dynamics of all regional
systems are affected by the communication network. Second,
the study is a preliminary step towards the goal of choosing K
and, when possible, the network topology, in order to assign
the eigenvalues of Φ at will. Let λ i

A and vi
A be the eigenvalues

and the eigenvectors of A, respectively, with i  1 	�
 
 
 	 n. Then,
the eigenvalues of A are λ i

A (i  1 	�
�
�
�	 n), each one with
multiplicity M. Moreover, denoting by e j, j  1 	�
 
 
 	 M the
canonical basis vectors of � M , the eigenspace related to λ i

A is
span(e1 � vi

A 	�
 
 
 	 eM � vi
A). In view of the previous discussion,

we want to investigate the following property.
Property 1: If λi is a non-zero eigenvalue of A, for all
x � span(e1 � vi

A 	�
 
 
 	 eM � vi
A), λ i

A and x are not an eigen-
value/eigenvector pair for Φ. +
Conditions guaranteeing that Property 1 holds are given in the
following Theorem, which is illustrated in Fig. 1.
Theorem 2: Consider a partition of G into the irreducible
subgraphs Gi h� Ni 	 Ai � , i  1 	�
�
�
�	 l. If for all the isolated
strongly connected subgraphs Gi it holdsi

j j Ni

ker � Ō j
n �  0 (33)

then Property 1 is verified.
Proof: See Appendix C.

1G

2G
3G

2

31

4

5

Fig. 1. The graph is decomposed into three connected subgraphs G1, G2
and G3. Notice that the node 2 of G2 is a neighbor to node 3 of G3.
Therefore, graph G3 is not isolated. Analogously, the subgraph G2 is not
isolated, while the the subgraph G1 is isolated. Condition (33) states that
collective observability is required for the subgraph G1, i.e., the pair k A l C m

G1 n
is observable, where C m

G1 o�p k C1 n T k C4 n T k C5 n T q T .

In the case of strongly connected graphs we have the following
result.
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Corollary 1: If G is strongly connected and the system is
collectively observable, then Property 1 is verified.

Proof: See Appendix C.
As a trivial case, assume that all sensors are regionally
observable and arranged in a strongly connected graph G . This
yields PNO  Φ  000nM � nM and convergence of DMHE follows
from Theorem 1. Moreover, Property 1 trivially holds.

V. SELECTION OF THE DESIGN PARAMETER K

The key assumption of Theorem 1 that the sequence 
Πt / N @ t / 1 ! ∞t % 0 is bounded is not a-priori guaranteed by for-

mula (31). However, under weak assumptions, boundedness
of
 
Πt / N @ t / 1 ! ∞t % 0 can be enforced by properly choosing the

entries ki j, "r� i 	 j � � E of K. Interestingly, we will also prove
that the proposed choice of K results in assigning all the
eigenvalues of Φ equal to zero, that guarantees convergence
of DMHE and Property 1.
Theorem 3: If VO is non-empty and, for all i � VNO, there
exists k a 0 such that V k

i s VO t /0, then there exists K,
compatible with G , such that matrices Πi

t / N @ t / 1 (i  1 	�
�
�
�	 M),
resulting from (27) and (31) are bounded for all i � V .

Proof: See Appendix D.
The assumption of Theorem 3 that, for each node in VNO, there
exists an incoming directed path stemming from a node in VO
requires that at least one sensor is regionally observable. This
condition, although not necessary to guarantee the existence
of a suitable K, allows one to identify at least a “reference”
node, which provides reliable estimates even without commu-
nication, see the proof of Theorem 3 in Appendix D. The
proof of Theorem 3 is constructive and leads to the following
algorithm for computing the matrix K.
Algorithm 1: 1) for each i � VO, set kii  1;
2) for each i � VNO, select kii u 1v

2σ w i x 4 A 5 , where

σ
4 i 5 � A � =max

 �λ 4 i 5
j
� A � � : λ

4 i 5
j
� A � is an unobservable

eigenvalue for the pair � A 	 C̄i � ! ;
3) for each i � VNO select a node j � VO and a path from j

to i, in such a way that each node in the path has at most
one neighbor. We denote with E ) the set of edges selected
in this way;

4) for all edges � i 	 j � � E ) , choose ki j  1 > kii, while for all
edges � i 	 j � � E y E ) , set ki j  0. +

Algorithm 1 is illustrated in Fig. 2. Given the availability of
methods for computing paths with a computational complexity
that scales polynomially with �V � [22], the overall algorithm
is polynomial. Moreover, if G is complete graph, Algorithm 1
provides a method for designing a not a-priori fixed communi-
cation network. Furthermore, Algorithm 1 implicitly provides
a rule for connecting a new regionally observable/unobservable
sensor to the network without spoiling the boundedness of the
sequence

 
Πt / N @ t / 1 ! ∞t % 0.

Finally, by selecting K according to Algorithm 1, the following
result holds.
Corollary 2: Under the assumption of Theorem 3, if K is se-
lected according to Algorithm 1, then Φ has all the eigenvalues
equal to zero.

Proof: See Appendix E.

2

3

4

56

7

2

3

4

56

7

1 1

G G

Fig. 2. The original graph G (left panel) presents two types of sensors: nodes
1 and 2 are regionally observable (black circles), and nodes 3-7 are regionally
unobservable (white circles). Therefore, VO o�z 1 l 2 { and VNO o|z 3 l 4 l 5 l 6 l 7 { .The graph G̃ (right panel) is defined by selecting a subset of edges (black
ones) of the original graph, according to step 2 of Algorithm 1. Below each
graph we show the corresponding matrix K.

A final remark is due. Under the assumption of Theorem 3,
the choice of a matrix K is not unique and details on the
available degrees of freedom in the definition of a suitable K
(see Remark 1 after the proof of Theorem 3) can be used to
reduce the conservativeness imposed by Algorithm 1. In fact
the generated matrix K is lower triangular, up to a permutation
of the node indexes. However, the same arguments of the
proof of Theorem 3 can be used to show that boundedness
of Πi

t / N } t / 1 is guaranteed also by any stochastic matrix K
compatible with G with: (i) the same diagonal elements of the
matrix K obtained with Algorithm 1; (ii) arbitrary (non a-priori
zero) elements in the lower triangular part; (iii) sufficiently
small (non a-priori zero) elements in the upper triangular part.
Details on point (iii) are given in Remark 1 in Appendix D.
This choice allows for a full exploitation of the communication
links. In view of this, and the fact that connected components
of the graph produced by Algorithm 1 can be linked through
arcs, one expects to increase convergence rates of the estimates
to a common value. Moreover, the presence of more links
results in an increased reliability against communication faults.

VI. EXAMPLE

We consider the fourth-order system

xt ~ 1 V���� 0 � 9962 0 � 1949 0 0\ 0 � 1949 0 � 3819 0 0
0 0 0 1
0 0 \ 1 � 21 1 � 98 � �� xt

[ wt (34)

where xt h' x1 : t x2 : t x3 : t x4 : t ( T . Notice that the eigenvalues of
the matrix A are 0 
 9264, 0 
 4517, 0 
 99 � 0 
 4795 i and, since� 0 
 99 � 0 
 4795 i ��a 1, the system is unstable.
Let et ��� 4 , be white noise with covariance Qe 
diag � 0 
 0012 	 0 
 038 	 0 
 0012 	 0 
 038 � . In the following we con-
sider two cases

A. wt  et , Q  Qe and �  � 4 (unconstrained input
noise)

B. wt #� et � , Q  Qe and �  � 4�
0 (constrained input

noise)
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In both cases, we set µ �' 0 0 0 0 ( T , Π0  100In and N  2 in
the DMHE algorithm.
The state of (34) is measured by M  4 sensors with sensing
model

yi
t  ' 1 0 0 0 ( xt � vi

t if i  1 	 2
yi

t  ' 0 0 1 0 ( xt � vi
t if i  3 	 4

where Var � vi
t �  Ri  1, i  1 	�
�
�
�	 4. Sensors are connected

according to the graph in Fig. 3, where the matrix K is also
given. It is apparent that the information available, at each

34

21

Fig. 3. Communication network and associated matrix K

instant, to node 1 consists of the measurements of x1 : t and x3 : t(transmitted by sensor 4). Analogously, the information avail-
able to node 3 consists of x1 : t (transmitted by sensor 2) and x3 : t .It is easy to check that the system is regionally observable by
sensors 1 and 3. On the other hand, at each time instant sensor
2 can only use two different measurements of x1 : t (produced by
sensors 1 and 2). Similarly, sensor 4 can only use two different
measures of x3 : t (produced by sensors 3 and 4). Therefore, the
system is not regionally observable by sensors 2 and 4. In fact,
P̄2

NO  diag � 0 	 0 	 1 	 1 � , P̄4
NO  diag � 1 	 1 	 0 	 0 � . The eigenvalues of

the matrix Φ are 0, 0 
 4632, 0 
 2258 and 0 
 4950 � 0 
 2397i.
Since Φ is Schur, convergence of DMHE is guaranteed by
Theorem 1. Moreover, since the graph is strongly connected
and collective observability holds, Corollary 1 guarantees that
also Property 1 holds.
In Fig. 4(a) the estimation errors produced by all sensors in
the case A are shown. It is worth noticing that the estimates
produced by sensors 2 [resp. 4], relative to states x3 : t , x4 : t [resp.
x1 : t , x2 : t ] display big errors for t u 6. In fact, these states cannot
be observed by these sensors using regional measurements.
Nonetheless, the estimation errors of all sensors asymptotically
tend to the same values, thanks to the consensus action
embodied in the DMHE scheme. The estimation errors for
case B are depicted in Fig. 4(b). Analogously to case A,
convergence of DMHE can be noticed. Fig. 5 depicts the
evolution of the eigenvalues of matrices Πi

t @ t � N / 1 over time.
Note that these matrices are the same in the cases A and
B. Indeed, the update procedure described in Section III-C
does not depend on the estimates and can be run off-line.
Further simulation experiments have been performed (results
not shown for space limitations), in order to assess the effect
of the variation of the horizon length N on the estimation
performances. As expected, the larger the horizon length, the
more accurate the results. In fact, as N increases, a larger
set of data is taken into account in the optimization problem.
However, the need of increasing N for optimality reasons is
conflicting with the need of reducing as much as possible the
computational load.
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(a) Case A
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(b) Case B

Fig. 4. Components of the estimation error p ei
1 � t l ei

2 � t l ei
3 � t l ei

4 � t q T o xt � x̂i
t A t of

the different sensors. Solid line i o 1, dotted line i o 2 , dashed line i o 3,
dash-dotted line i o 4.

VII. CONCLUSIONS

We proposed a distributed moving horizon estimation al-
gorithm for constrained discrete-time linear systems. Under
suitable assumptions we proved convergence of the estimates
to a common value. Many generalizations of the DMHE
scheme can be considered. First, one can study how to further
explore the degrees of freedom in the choice of the graph
matrix K in order to improve the rate of convergence of the
state estimates provided by any sensor. Second, each sensor
i, beside knowing measurements of its neighbors in the time
window ' t > N 	 t ( , can also know some past measurements of
sensors in V k

i , k a 1. A suitable way of using this piece of
information would reduce or totally eliminate unobservability
problems. Third, in practical applications it might be possible
to perform multiple transmissions within a sampling time and
one can study how to use this feature in order to weaken the
observability requirements for the convergence of the method.
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0

50

100
Sensor 1

0

500

1000
Sensor 2

0

50

100
Sensor 3

0 2 4 6 8 10 12 14 16 18
0

100

200 Sensor 4

Fig. 5. Evolution of the four eigenvalues (for each sensor) of the matrices
Πi

t A t � N 9 1, i o 1 l�������l 4. Solid line i o 1, dotted line i o 2 , dashed line i o 3,
dash-dotted line i o 4.

These issues have partially been explored in [23].

APPENDIX

A. Proof of Proposition 1

Proof: For all vectors x �' xT
1 
�
�
 xT

M
( T �?� nM , from (28)

it holds that

xT ΠΠΠt / N @ t / 1x $ xT KΠ̃ΠΠt / N @ t / 1KT x (35)

Notice that the j-th block of KT x corresponds to ∑M
i % 1 ki jxi so

that, in view of (20), the right hand side of equation (35) can
be written as� KT x � 2Π̃ΠΠt 9 N A t 9 1

 M

∑
j % 1
� M

∑
i % 1

ki jxi � 2Π̃ j
t 9 N A t 9 1

Using the triangle inequality we obtain

∑M
j % 1 � ∑M

i % 1 ki jxi � 2Π̃ j
t 9 N A t 9 1

I 2∑M
j % 1 ∑M

i % 1 k2
i j � xi � 2Π̃ j

t 9 N A t 9 1 ∑M
i % 1 � xi � 22∑M

j = 1 k2
i jΠ̃

j
t 9 N A t 9 1

which proves that matrices Πi
t / N @ t / 1 verifying (30) also ver-

ify (28).

B. Proof of Theorem 1

The proof of Theorem 1 uses classical results for MHE, [24],
[16], [13], [15] and additional results we provide next.
Lemma 1: If (28) is satisfied then, for z ��� , (18) is fulfilled.

Proof of Lemma 1: Let z h� M � z. We define the
“unconstrained” transit cost as

ΞΞΞu
t / N � 1 @ t � z �  minx̂t 9 N : ; ŵk < t 9 1

k = t 9 N

 
J � t > N 	 t 	 x̂t / N 	 ŵ 	 ˆ̄v 	 ΓΓΓt / N �

subject to (15a), (15b) and x̂t / N � 1  z !
that, differently from ΞΞΞt / N � 1 @ t in (17), does not account for
input and state constraints. Notice that

ΞΞΞu
t / N � 1 @ t � z �  M

∑
i % 1

Ξi : u
t / N � 1 @ t � z � (36)

where the unconstrained transit cost associated to sensor i is

Ξi : u
t / N � 1 @ t � z �  min

x̂i
t 9 N : ; ŵi

k < t 9 1
k = t 9 N

 
Ji � t > N 	 t 	 x̂i

t / N 	 ŵi 	 ˆ̄vi 	 Γi
t / N �

subject to (7a), (7b) and x̂i
t / N � 1  z ! (37)

We first compute explicitly Ξi : u
t / N � 1 @ t � z � . Recalling (7) we can

write

V̄ � t / N � 1 : t �
i  Ȳ � t / N � 1 : t �

i > Ō
i
N x̂i

t / N � 1 > C
i
NW � t / N � 1 : t / 1 �

i

where matrices C i
N and Ō i

N � 1 are defined in (21)
and (5), respectively, V̄ � t / N � 1 : t �

i
�' � ˆ̄vi

t / N � 1 � T 	�
�
�
�	 � ˆ̄vi
t � T ( T ,

Ȳ � t / N � 1 : t �
i

�' � ȳi
t / N � 1 � T 	�
�
�
�	 � ȳi

t � T ( T , and W � t / N � 1 : t / 1 �
i

' � ŵi
t / N � 1 � T 	�
�
�
�	 � ŵi

t / 1 � T ( T . We can rewrite the i-th sensor’s
cost function as

2 ] Ji \ Θ X it T 1 ^ V�� Ȳ � t T N ~ 1 � t �
i \ Ō

i
N x̂i

t T N ~ 1 \ C
i
NW � t T N ~ 1 � t T 1 �

i � 2� R̄i
N � � 1 [[ � W � t T N ~ 1 � t T 1 �

i � 2� QN � 1 � � 1 [ � ŵi
t T N � 2Q � 1 [ (38)[ � x̂i

t T N \ M

∑
j � 1

ki j x̂
j
t T N U t T 1 � 2� Πi

t � N � t � 1 � � 1 [ � ȳi
t T N \ C̄i x̂i

t T N � 2� R̄ � � 1�  �¡ ¢]¤£ ^
where matrices R̄i

N and Qi
N / 1 are defined in (22) and (23),

respectively. Minimizing the partial cost �K¥ � in (38) with
respect to x̂i

t / N gives

x̂ X it T N U t T 1 V Π X it T N U t T 1¦ ] Πi
t T N U t T 1 ^ T 1

M

∑
j � 1

ki j x̂
j
t T N U t T 1

[ ] C̄i ^ T ] R̄i ^ T 1ȳi
t T N §

with Π ) it / N @ t / 1 as in (26). Therefore one has that the term �K¥ �
in (38) is equal to� x̂i

t / N > x̂ ) it / N @ t / 1 � 24 Π m it 9 N A t 9 1 5 9 1 (39)

up to a constant term.
We denote with Li �2B � the minimum of Ji �2B � with respect to
vector W � t / N � 1 : t / 1 �

i
, i.e.,

Li  min; ŵk < t 9 1
k = t 9 N � 1

Ji �2B � (40)

We compute ∂ Ji 4 ¨ 5
∂W © t 9 N � 1 � t 9 1 ª

i

 0. The vector W � t / N � 1 : t / 1 � : opt
i

which solves the minimization problem (40) is

W � t / N � 1 : t / 1 � : opt
i  7 � C i

N � T � R̄i
N � / 1

C
i
N � � Qi

N / 1 � / 1 8 / 1 ��«� C i
N � T � R̄i

N � / 1 D Ȳ � t / N � 1 : t �
i > Ō

i
N x̂i

t / N � 1 E (41)

Replacing (41) into (38) and using (39) one obtains

Li  � Ȳ � t / N � 1 : t �
i

> Ō i
N x̂i

t / N � 1 � 24 R̄i
N � C i

N QN 9 1
4
C i

N 5 T 5 9 1 �� � ŵi
t / N � 2Q 9 1 � � x̂i

t / N > x̂ ) it / N @ t / 1 � 24 Π m it 9 N A t 9 1 5 9 1

up to an additive constant term. The solution of the optimiza-
tion problem (37) can be computed through a Kalman filter
recursion with respect to the modified dynamical systemL

x̂i
t / N � 1  Ax̂i

t / N � wt / N
Ȳ � t / N � 1 : t �

i
 Ō i

N x̂i
t / N � 1 � V̄ � t / N � 1 : t �

i
(42)

where wt has covariance equal to Q, the covariance of
V̄ � t / N � 1 : t �

i
is R̄i

N � C i
NQN / 1 � C i

N � T , and Π ) it / N @ t / 1 in (26) is the



9

uncertainty of the initial condition guess. In this way we can
write the unconstrained transit cost as follows (see [20])

Ξi : u
t / N � 1 @ t � z �  1

2
� z > x̂i : u

t / N � 1 @ t � 24 Π̃i
t 9 N � 1 A t 5 9 1 � Θ ) : i : ut (43)

where x̂i : u
t / N � 1 @ t minimizes the unconstrained problem, and

Θ ) : i : ut is the optimal solution of the unconstrained minimization
problem, and Π̃i

t / N � 1 @ t is computed as in (27). Remark that
the regionally unobservable subspaces of system (42) and
system (1)-(2) coincide.
From (43) and (36) one has that

ΞΞΞu
t / N � 1 @ t � z �  1

2
� z > x̂u

t / N � 1 @ t � 24 Π̃ΠΠt 9 N � 1 A t 5 9 1 � ΘΘΘ ) : ut (44)

where ΘΘΘ ) : ut  ∑M
i % 1 Θ ) : i : ut and

Π̃ΠΠt / N � 1 @ t  diag � Π̃1
t / N � 1 @ t 	�
 
 
 	 Π̃M

t / N � 1 @ t � . We also define
ΘΘΘt / N � 1 @ t � x; x̂u

t / N � 1 @ t �  1
2 � x > x̂u

t / N � 1 @ t � 24 Π̃ΠΠt 9 N � 1 A t 5 9 1 in such a

way that ΞΞΞu
t / N � 1 @ t � z �  ΘΘΘt / N � 1 @ t � z; x̂u

t / N � 1 @ t � � ΘΘΘ ) : ut . Let us
finally consider the case of constrained estimation. Following
the rationale of the proof of Lemma 4 in [13] one has that,
since z lies in the feasibility region by assumption, one
obtains (19). Notice that the initial penalty term ΓΓΓt / N � 1 �2B � ,
computed as in (13) in z, is

ΓΓΓt / N � 1 � z; x̂t / N � 1 @ t �  1
2
� z > Kx̂t / N � 1 @ t � 2ΠΠΠ 9 1

t 9 N � 1 A t � ΘΘΘ )t  1
2
� z > x̂t / N � 1 @ t � 2KT ΠΠΠ 9 1

t 9 N � 1 A tK � ΘΘΘ )t (45)

where the second equality holds because Kz  z.
Using Schur complement, the LMI (28) is equivalent to3

ΠΠΠt / N @ t / 1 K

KT Π̃ΠΠ / 1
t / N @ t / 1 6 $ 0 (46)

and, being matrices ΠΠΠt / N @ t / 1 and Π̃ΠΠt / N @ t / 1 positive definite,
(46) is equivalent to

KT ΠΠΠ / 1
t / N @ t / 1K I Π̃ΠΠ / 1

t / N @ t / 1 (47)

From (19) and (45), (47) implies (18).
Lemma 2: If (28) is satisfied, then

Θ )t I ΓΓΓ0 � x0;x0 @ 0 � for all t $ 0 (48)

where x0 &' xT
0 
�
�
 xT

0
( T �J� nM and x0 @ 0 ¬� M � µ .

Proof of Lemma 2: First notice that, in view of Defini-
tion 2, the sequence xΣ � t 	 x0 � verifies the constraints (15d). In
view of Lemma 1, equation (18) holds for z  xΣ � t 	 x0 � , for
all t. By optimality, we have

Θ )t I ΞΞΞt / N � 1 @ t � xΣ � t > N � 1 	 x0 ��� 	 " t $ 0

Furthermore

ΞΞΞt / N � 1 @ t � xΣ � t > N � 1 	 x0 ��� I J � t > N 	 t 	 xΣ � t > N 	 x0 � 	 0 	 0 	 ΓΓΓt / N �
Note that, from (14), one has J � t > N 	 t 	 xΣ � t >
N 	 x0 � 	 0 	 0 	 ΓΓΓt / N �  ΓΓΓt / N � xΣ � t > N 	 x0 � ; x̂t / N @ t / 1 � and
in view of (18), Θ )t I ΞΞΞt / N @ t / 1 � xΣ � t > N 	 x0 ��� I
ΓΓΓt / N / 1 � xΣ � t > N > 1 	 x0 � ; x̂t / N / 1 @ t / 2 � . We can further
iterate this procedure in order to prove (48).

Lemma 3: Assume that � a � N $ n > 1, with N $ 1, � b �� Π̄
such that Πi

t / N @ t / 1 u Π̄, for all t, for all i � V , and � c �
max

k % t / N : ® ® ® : t ��� ˆ̄vk @ t � 	 � ŵk @ t � 	 ΓΓΓo
t / N � x̂t / N @ t ; x̂t / N @ t / 1 ��� t c ∞>ed 0 (49)

Then the dynamics of the state estimation error provided by
the DMHE scheme is given by (32).

Proof of Lemma 3: In the noiseless case, for any sensor
i � V at any t, the output signal is ȳi

k  C̄ixΣ � t 	 x0 � . Similarly
to Lemma 4.3 in [24],

t

∑
k � t T N

� ˆ̄vi
k U t �¯V t

∑
k � t T N

� ȳi
k \ C̄ix̂i

k U t �±° (50)° t

∑
k � t T N

]�� ȳi
k \ C̄iAk T � t T N � x̂i

t T N U t � \ � C̄iAk T � t T N � x̂i
t T N U t \ C̄ix̂i

k U t � ^
The first term at the right hand side of (50) is

t

∑
k � t T N

� ȳi
k \ C̄iAk T � t T N � x̂i

t T N U t �¯V�� Ō i
N ~ 1 ] xΣ ] t \ N Y x0 ^ \ x̂i

t T N U t ^ �
(51)

where Ō
i
N � 1 is the “extended” regional observability matrix of

N � 1 rows defined by replacing n with N � 1 in (5). From (7),
one has

x̂i
k @ t  Ak / 4 t / N 5 x̂i

t / N @ t � k / 4 t / N 5
∑
j % 1

A jŵi
k / j @ t

The second term at the right hand side of (50) can be bounded
as

∑t
k % t / N � C̄iAk / 4 t / N 5 x̂i

t / N @ t > C̄ix̂i
k @ t �²II ∑t

k % t / N � C̄i ∑k / 4 t / N 5
j % 1 A jŵi

k / j @ t �I�� C̄i � ∑t
k % t / N ∑k / 4 t / N 5

j % 1 � A � j � ŵi
k / j @ t � (52)

By replacing equations (51) and (52) into (50), one obtains� Ō i
N � 1 � x̂i

t / N @ t > xΣ � t > N 	 x0 ��� �²II t

∑
k % t / N

� ˆ̄vi
k @ t � � � C̄i � t

∑
k % t / N

k / 4 t / N 5
∑
j % 1

� A � j � ŵi
k / j @ t � (53)

Note that the matrix Ō
i
N � 1 at the left-hand side of (53) selects

the observable part of � x̂i
t / N @ t > xΣ � t > N 	 x0 ��� . Therefore,

from (49), equation (53) leads to� P0 � x̂t / N @ t > xΣ � t > N 	 x0 ��� � t c ∞>gd 0 	 (54)

ΓΓΓo
t / N � x̂t / N @ t ; x̂t / N @ t / 1 � t c ∞>ed 0 (55)

In view of assumption � b � , it follows that

ΓΓΓo
t T N ] x̂t T N U t ; x̂t T N U t T 1 ^ °³� x̂t T N U t \ xΣ ] t \ N Y x0 ^ � diag

�
Π̄ � 1 � ´ ´ ´ � Π̄ � 1 �

Hence, from (55)� x̂t / N @ t > xΣ � t > N 	 x0 � � t c ∞>ed 0 (56)

Note that, for k  t > N 	�
 
 
 	 t > 1

x̂k � 1 @ t  Ax̂k @ t � ŵk @ t (57)

and that, in view of (49), one has ŵk @ t d 0 as t d ∞. Therefore
one also has

x̂k � 1 @ t > Ax̂k @ t d 0 as t d ∞ (58)
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From now on, we introduce, for simplicity of notation,
terms α j

t to indicate asymptotically vanishing variables, i.e.,� α j
t � t c ∞>ed 0, for all j � V . Formulae (54), (56) and (57) are

equivalent to

POx̂t / N @ t  POxΣ � t > N 	 x0 � � α1
t (59a)

x̂t / N @ t  Kx̂t / N @ t / 1 � α2
t (59b)

x̂t / N � 1 @ t  Ax̂t / N @ t � α3
t (59c)

Recall that, by definition, PO � PNO  I. Therefore,

x̂t / N @ t  POx̂t / N @ t � PNOx̂t / N @ t (60)

In (60), we replace terms POx̂t / N @ t and PNOx̂t / N @ t according
to (59a) and (59b), premultiplied by PNO, respectively, we get

x̂t / N @ t  POxΣ � t > N 	 x0 � � PNOKx̂t / N @ t / 1 � α4
t (61)

Since PO � PNO  I, we write POxΣ � t > N 	 x0 �  xΣ � t > N 	 x0 � >
PNOxΣ � t > N 	 x0 � , and obtain

x̂t / N @ t > xΣ � t > N 	 x0 �  PNO � Kx̂t / N @ t / 1 > xΣ � t > N 	 x0 ��� � α4
t

(62)

First recall that, since K is stochastic and xΣ � t > N 	 x0 � �� M �
xΣ � t > N 	 x0 � , KxΣ � t > N 	 x0 �  xΣ � t > N 	 x0 � . Then notice that
xΣ � t > N 	 x0 �  AxΣ � t > N > 1 	 x0 � . From (59c) one obtains

εεεt / N @ t  PNOKAεεεt / N / 1 @ t / 1 � α5
t PNOKA � PNO � PO � εεε t / N @ t � α5

t (63)

Equation (59a) implies that the term POεεεt / N @ t is asymptoti-
cally vanishing and equation (32) follows from (63).

Proof of Theorem 1: By direct calculation, for all t $ 0
one has

Θ )t > Θ )t / 1  1
2 ∑t

k % t / N � ˆ̄vk @ t � 2R̄ 9 1 � 1
2 ∑t / 1

k % t / N � ŵk @ t � 2Q 9 1 �
ΓΓΓo

t / N � x̂t / N @ t ; x̂t / N @ t / 1 �
Furthermore, (48) follows from Lemma 2 and (28). There-
fore it follows that 1

2 ∑t
k % t / N � ˆ̄vk @ t � 2R̄ 9 1 � 1

2 ∑t / 1
k % t / N � ŵk @ t � 2Q 9 1 �

ΓΓΓo
t / N � x̂t / N @ t ; x̂t / N @ t / 1 � t c ∞>gd 0 and hence (49) holds. This, in

turn, implies (using Lemma 3) that the dynamics of state
estimation error provided by the DMHE scheme is given
by (32).

Furthermore, from (32), convergence of the error to zero is
guaranteed if Φ is Schur.

C. Proof of Theorem 2 and Corollary 1

Proof of Theorem 2: If the graph G is not strongly
connected it can be partitioned into k irreducible subgraphs
G )1 , G )2 , ..., G )k of cardinality m1, ..., mk, and ∑k

i % 1 mi  M.
Without loss of generality, (i.e. by permuting sensor indexes)
the matrix K can be brought in a block lower triangular form
(with k square diagonal blocks K11,...Kkk, of dimensions m1,
..., mk, respectively).
Notice that the block Kii is stochastic if and only if Ki j  0
for j u i. In this case, the nodes of the subgraph G )i have no
neighbors belonging to other subgraphs and G )i is isolated.
Moreover, if a subgraph G )i is isolated, the block Kii is

stochastic and it has a single Frobenius eigenvalue equal to
1. On the other hand, if a graph G )i is not isolated, Kii is
irreducible but not stochastic (specifically, the sum of the
entries of at least a row is smaller than 1) and its Frobenius
eigenvalue has absolute value smaller than 11. Notice that the
eigenvalues of K are the eigenvalues of K11,...Kkk. So, the
number of eigenvalues of K equal to 1 equals the number of
isolated graphs in the network.
Note that T / 1AT  AKO  diag � A1

KO 	�
�
�
�	 AM
KO � where Ai

KO
is the “regional” observability Kalman decomposition of A
associated to sensor i, that is

Ai
KO ¶µ Ai

O 0
Ai

21 Ai
NO · (64)

Since PNO  TSNOST
NOT / 1 one has

Φ  PNOKÃ

where Ã  TÃKOT / 1, ÃKO  diag � Ã1
KO 	�
�
�
�	 ÃM

KO � , and

Ãi
KO ¶µ 0 0

0 Ai
NO ·

Now we prove that x � span(e1 � vi
A 	�
 
 
 	 eM � vi

A) is not an
eigenvector of Φ associated to a non-zero eigenvalue λ i

A. In
general, given a vector α �J� M , with α t 0, one has that the
eigenvector x of A can be written as x  α � vi

A. We obtain

Ãx  diag � Ã1 	�
�
�
�	 ÃM � MOP α1vi
A

...
αMvi

A

Q RS  MOP α1Ã1vi
A

...
αMÃMvi

A

Q RS
By construction, Ã jvi

A  λ i
Avi

A if vi
A belongs to the regionally

unobservable subspace of sensor j. Otherwise Ã jvi
A  0. We

write, in general Ã jvi
A  fi jλ

i
Avi

A, where

fi j ¹¸º » 1 if vi
A belongs to the regionally unobservable

subspace of sensor j
0 otherwise.

Defining fi &' fi1 	�
�
�
�	 fiM
( T , we can write

Ãx  λ i
A � diag � fi � α � � vi

A

From K  K � In we obtain

Φx  λ i
APNO � K � In � , � diag � fi � α � � vi

A
0

Recall that � A � B � � C � D � &� AC � ��� BD � and hence

Φx  λ i
APNO � Kdiag � fi � α � � vi

A  λ i
A � diag � fi � Kdiag � fi � α � � vi

A

Finally, we obtain

Φ � α � vi
A �  λ i

A � diag � fi � Kdiag � fi � α � � vi
A

from which it is apparent that α � vi
A is an eigenvector of Φ,

with eigenvalue λ i
A t 0 if and only if diag � fi � Kdiag � fi � α  α .

1This follows from the third Gerschgorin theorem [25], dealing with
irreducible matrices. Specifically, an eigenvalue of an irreducible matrix (in
our case Kii), which is on the boundary of a Gershgorin circle, is located on
the boundary of all the Gershgorin circles. Since there is at least a row of Kii
such that the sum of its entries is smaller than 1, 1 cannot be an eigenvalue
of Kii, and hence all the eigenvalues of Kii are strictly inside the unit circle
(from the first Gerschgorin theorem).
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Moreover, there exists α satisfying the previous equation if and
only if diag � fi � Kdiag � fi � has at least one eigenvector equal
to 1. This occurs if and only if fi j  1 for all j belonging
to an isolated subgraph. This means that all the sensors
of an isolated subgraph have at least a common regionally
unobservable eigenvector. Hence, x � span(e1 � vi

A 	�
 
 
 	 eM � vi
A)

can not be an eigenvector of Φ if (33) holds. This completes
the proof.

Proof of Corollary 1: Recalling Definition 1, collective
observability holds if and only if the observability matrix O )
of the pair � A 	 C ) � is such that

ker � O ) �  0 (65)

Notice that, up to a permutation of the rows of O ) , we have, � Ō1
n � T 
�
�
 � ŌM

n � T 0 T . Therefore (65) is equivalent toi
i j V ker � Ō i

n �  0

which is equivalent to (33) when the graph is strongly con-
nected. This concludes the proof.

D. Proof of Theorem 3

To prove Theorem 3, a number of intermediate results are
needed. First, we address the problem of the stability of Riccati
equations with respect to perturbations. This problem has been
scarcely explored in the literature, with the exception of [26]
where stability is proved with respect to small perturbations. In
the following, we explore the issue under the lead of Theorem
4.1 in [27], and provide global stability results.
Given a pair � A 	 C � , and matrices Q $ 0, R a 0 of appropriate
size, consider the following Riccati equation, affected by an
exogenous perturbation term ∆k

Πo
k � 1 &� A > Go

kC � � Πo
k � ∆k � � A > Go

kC � T � Q � Go
kR � Go

k � T
(66)

where Πo
0 is the initial condition and matrix Go

k is the Kalman
gain

Go
k  A � Πo

k � ∆k � CT 7 C � Πo
k � ∆k � CT � R 8 / 1 (67)

Assuming that the pair � A 	 C � is detectable and that the pair� A 	 � Q � is stabilizable, there exists a unique solution Π̄ $ 0 of
the algebraic Riccati equation associated to (66) with ∆k  0.
In the sequel, we will denote with

>d
X τ the sequence of matrices

Xk, with k  0 	�
�
�
�	 τ . In [28] the following definition of L -
stability of system (66) is given.
Definition 3: System (66) is L -stable from input ∆k if, for a
given norm L , there exist γ a 0 and β a 0 such that� >dΠ τ > Π̄ �

L
I γ � >d∆ τ � L � β 	 " ∆ � L 	 " τ � ' 0 	 ∞ � 


From now on, we denote with � >dX τ � L∞
the ∞-norm of the

sequence � Xt � 2, with t  0 	�
�
�
�	 τ .
Lemma 4: Given a detectable pair � A 	 C � , system (66) is L∞-
stable from a positive semi-definite input ∆k $ 0.

Proof: We define a sequence Πk (with Π0  Πo
0) as

follows

Πk � 1 &� A > GC � � Πk � ∆k � � A > GC � T � Q � GRGT 	 (68)

where G is an arbitrary gain such that F  A > GC is Hur-
witz. Notice that G always exists, since � A 	 C � is detectable.
From (68), we obtain, for k $ 1,

Πk � 1 > Πk  F � Πk > Πk / 1 � FT � F � ∆k > ∆k / 1 � FT

and hence, for i $ 1,

Πi � 1 > Πi  F i � Π1 > Π0 � � FT � i � i

∑
j % 1

F j � ∆i � 1 / j > ∆i / j � � FT � j

Then, for k a 1,

Πk  Π0 � ∑k / 1
i % 0 � Πi � 1 > Πi � ∑k / 1

i % 0 F i � Π1 > Π0 � � FT � i � Π0 �� ∑k / 1
i % 1 ∑i

j % 1 F j � ∆i � 1 / j > ∆i / j � � FT � j
(69)

Notice that, assuming ∆0  0 in (69) one has

k / 1

∑
i % 1

i

∑
j % 1

F j � ∆i � 1 / j > ∆i / j � � FT � j  k / 1

∑
i % 1

F i∆k / i � FT � i
and (69) gives

Πk  k / 1

∑
i % 0

F i � Π1 > Π0 � � FT � i � Π0 � k / 1

∑
i % 1

F i∆k / i � FT � i (70)

Let us set � Π1 > Π0 � 2  α and � >d∆ ∞ � L∞
 δ̄ . Since F is

Hurwitz, there exists µ a 0 and 0 u ν u 1 such that � F i � 2 I
µν i. Remark that, since ∆k $ 0, from optimality of Πo

k [27]
one has 0 I Πo

k I Πk, " k $ 0, and hence � Πo
k � 2 I¼� Πk � 2.

Furthermore, from (70)� Πo
k � 2 I�� Πk � 2 I k / 1

∑
i % 0
� F i � 22 � Π1 > Π0 � 2 � � Π0 � 2 �� k / 1

∑
i % 1
� F i � 22 � ∆k / i � 2 (71)I αµ2

k / 1

∑
i % 0

ν2i � � Π0 � 2 � δ̄ µ2
k / 1

∑
i % 1

ν2iI αµ2 1 > ν2k

1 > ν2 � � Π0 � 2 � δ̄ µ2ν2 1 > ν2 4 k / 1 5
1 > ν2I αµ2 1

1 > ν2 � � Π0 � 2 � µ2ν2 1
1 > ν2 δ̄

The proof is concluded by applying Definition 3 with β 
αµ2 1

1 / ν2 � � Π0 � 2 � � Π̄ � 2 and γ  µ2ν2 1
1 / ν2 .

The proof of Theorem 3 can now be completed by applying
Lemma 4 and the small gain result for interconnected systems
reported in [29].

Proof of Theorem 3: First we show, by applying (27)
and (31), that it holds that:

Π̃i
t / N @ t / 1 I R

i � 2 M

∑
j % 1

k2
i jΠ̃ j

t / N / 1 @ t / 2;Q 	 R̄ ) iN � (72)

From (26), one has Π ) it / N / 1 @ t / 2 I Πi
t / N / 1 @ t / 2. Then, by ap-

plying (27) and by optimality [27],

Π̃i
t / N @ t / 1  R

i D Π ) it / N / 1 @ t / 2;Q 	 R̄ ) iN E I R
i D Πi

t / N / 1 @ t / 2;Q 	 R̄ ) iN E
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and from (31) we obtain (72). Now, with reference to the
i-th sensor characterized by the pair � A 	 Ō i

N � , we define the
following sequence of matrices Πi

k

Πi
k � 1  Ri D 2∑M

j % 1 k2
i jΠ j

k
;Q 	 R̄ ) iN E (73)

with initial condition Πi
0  Π̃i

0 @ N / 1. From optimality we obtain
that Π̃i

k / N @ k / 1 I Πi
k / N for all k $ N. Therefore, in order to

prove boundedness of Πi
k / N @ k / 1, it is sufficient to show that

the sequence Πi
k is bounded. This is the aim of the remainder

of the proof.

If we define ∆i
k  1

k2
ii

∑M
j % 1 j ½= i

Π j
k
, (73) can be written as

Πi
k � 1 ¾� A > Gi

kŌ
i
N � 2k2

ii 7 Πi
k � ∆i

k 8 � A > Gi
kŌ

i
N � T �� Q � Gi

kR̄ ) iN � Gi
k � T¾� � 2kiiA > Gi

k � 2kiiŌ
i
N � 7 Πi

k � ∆i
k 8 ��«� � 2kiiA > Gi

k � 2kiiŌ
i
N � T � Q � Gi

kR̄ ) iN � Gi
k � T

(74)
where Gi

k is the optimal Kalman gain computed as

Gi
k  A � Πi

k � ∆i
k � � Ō i

N � T 7 Ō i
N � Πi

k � ∆i
k � � Ō i

N � T � R̄ ) iN 8 / 1

First we show that system (74) is L∞-stable. To this aim,
we use Lemma 4. In order to satisfy the assumption of
Lemma 4, one must guarantee that the pairs � � 2kiiA 	 � 2kiiŌ

i
N �

are detectable, for all i � V , which turns out to be a condition
on the pairs � A 	 C̄i � , and on the weights kii. First notice that,
by definition of Ō

i
N , the pair � � 2kiiA 	 � 2kiiŌ

i
N � is detectable

if and only if the pair � � 2kiiA 	 � 2kiiC̄
i � is detectable. The

assumption of Theorem 3 is sufficient to guarantee that,
for any regionally unobservable nodes, there exists a path
stemming from a regionally observable node i.e., for which
the assumption of Lemma 4 is satisfied for any arbitrary value
of kii. In particular, in step 1 of Algorithm 1 kii  1 is chosen,
for all i � VO.
On the other hand, if � A 	 C̄i � is not observable, the assumption
of Lemma 4 can be verified if the pair � � 2kiiA 	 C̄i � is de-
tectable. This leads to the choice of kii in step 2 of Algorithm 1.
Then, by Lemma 4, (74) is a finite gain L∞-stable system
from input ∆i

k $ 0, and there exist γi a 0 	 βi a 0 such that� Πi
k > Π̄i � 2 I γi � >d∆ i

k � L∞ � βi 	 " ∆i
k � L∞ 	 " k � ' 0 	 ∞ � (75)

From the definition of ∆i
k we get� Πi

k > Π̄i � 2 I γi
k2

ii

M

∑
j % 1 j ½= i

k2
i j � >dΠ j

k � L∞ � βi (76)" Π j
k � L∞, " k � ' 0 	 ∞ � , " j � V

i. Given (76), we resort to
Theorem 8 2 in [29] for guaranteeing that Πi

k are bounded if
the matrix

Ψ  diag � γ1
k2

11
	�
 
 
 	 γM

k2
MM
� 7 K ¿ K > diag � k2

11 	�
 
 
 	 k2
MM � 8 (77)

2Note that, Theorem 8 in [29] can be directly applied when the constant βi
in (75) is replaced by a K∞ function of the initial conditions. Furthermore,
Theorem 8 deals with global stability rather than L∞-stability. However, a
careful examination of the proof reveals that Theorem 8 holds with reference
to L∞- stability when β is constant, provided that the gain map (represented
by matrix Ψ in our context) is linear. We also highlight that, although Theorem
8 is for continuous-time systems, Proposition 15 in [29] guarantees that it
holds for discrete-time systems as well.

is Schur. In (77) the symbol ¿ represents the element-wise
matrix product.
To conclude the proof, we show that, under the assumptions
of Theorem 3, it is possible to find a matrix K, compatible
with the graph topology, such that Ψ is Schur.
First, from the graph � V 	 E � , we derive a subgraph G )«� V 	 E ) � , by selecting edges � i 	 j � � E ) � E according to
Algorithm 1.
By construction, the graph G ) is a forest [30], i.e. a graph
composed by a number of mutually disjoint trees. Moreover,
the root of each tree is a regionally observable node while all
other nodes are regionally unobservable. It follows that each
row of the matrix K produced by Algorithm 1 has only one
off-diagonal element that is different from zero3.
Up to a permutation of the node indexes, K is lower triangular
(see, e.g. Fig. 2). It follows that the matrix Ψ defined in (77) is
triangular, with zero diagonal entries and hence, for any choice
of γi, I  1 	�
�
�
�	 M, Ψ is Schur. This concludes the proof.
Remark 1: The matrix K generated by Algorithm 1 is lower
triangular, up to a permutation of the node indexes. The
same arguments of the above proof can be used to show, by
continuity, that boundedness of Πi

t / N } t / 1 is guaranteed by any
stochastic matrix K compatible with � V 	 E � with: (i) the same
diagonal elements of the matrix K; (ii) arbitrary elements in
the lower triangular part; (iii) sufficiently small elements in the
upper triangular part so as to guarantee the matrix Ψ defined
in (77) is Schur.

E. Proof of Corollary 2

Proof: Recall that, from Algorithm 1, K is lower tri-
angular up to a permutation of the sensor indexes. Hence,
K  K � In is a block lower triangular matrix. Recalling that
PNO and A are block diagonal matrices, Φ  PNOKAPNO
is a block lower triangular matrix as well. Accordingly, the
eigenvalues of Φ correspond to the eigenvalues of the M
diagonal blocks of Φ, denoted as Φi, i � V , and defined as

Φi  kiiT̄
i � S̄i

NO � T S̄i
NO � T̄ i � / 1AT̄ i � S̄i

NO � T S̄i
NO � T̄ i � / 1

Let Ai
KO be defined as in (64). One has

Φi  kiiT̄
i � S̄i

NO � T S̄i
NO Ai

KO � S̄i
NO � T S̄i

NO � T̄ i � / 1 (78)

and according to the definition of S̄i
NO, one also obtains

Ãi
KO &� S̄i

NO � T S̄i
NO Ai

KO � S̄i
NO � T S̄i

NO ¶µ 0 0
0 Ai

NO ·
Therefore, from (78), Φi  T̄ i 1

kii
Ãi

KO � T̄ i � / 1. It is thus clear that
the non-zero eigenvalues of Φ are also eigenvalues of Ai

NO, for
some i � VNO. If i � VO, Φi  Ãi

KO  000n � n. On the other hand,
if i � VNO, recall that, from step 2 of Algorithm 1, we have
kii u 1v

2σ w i x 4 A 5 . Therefore, � λ j � Φi � �ÀI kiiσ
4 i 5 � A � u 1v

2 u 1, for
all j  1 	�
�
�
�	 n, for all i � VNO. The Schureness of Φ then
follows from the Schureness of Φi.
Finally, notice that the assumptions of Theorem 3 imply that,
in all the isolated strongly connected subgraphs of G , there is

3We also highlight that the matrix K produced by Algorithm 1 is compatible
with the graph k V l E n .
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at least one observable node, and hence (33) holds. Therefore,
by Theorem 2, Property 1 is verified. This concludes the proof.
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