
The Journal of Engineering

The 3rd Asian Conference on Artificial Intelligence Technology (ACAIT
2019)

Distributed multi-agent deep reinforcement
learning for cooperative multi-robot pursuit

eISSN 2051-3305
Received on 14th October 2019
Accepted on 19th November 2019
E-First on 30th July 2020
doi: 10.1049/joe.2019.1200
www.ietdl.org

Chao Yu1 , Yinzhao Dong2, Yangning Li2, Yatong Chen2

1School of Data and Computer Science, Sun Yat-Sen University, 510006, Guangzhou, People's Republic of China
2School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, People's Republic of China

 E-mail: cy496@dlut.edu.cn

Abstract: As a popular research topic in the area of distributed artificial intelligence, the multi-robot pursuit problem is widely
used as a testbed for evaluating coordinated and cooperative strategies in multi-robot systems. This study the problem of multi-
robot pursuit game using reinforcement learning (RL) techniques is studied. Unlike most existing studies that apply fully
centralised deep RL methods based on the centralised-learning and decentralised-execution scheme, the authors propose a
fully decentralised multi-agent deep RL approach by modelling each agent as an individual deep RL agent that has its own
individual learning system (i.e. individual action-value function, individual leaning update process, and individual action output).
To realise coordination among agents, the limited information of other environmental agents is used as input of the learning
process. Experimental results show that both distributed and centralised approaches can ultimately solve the pursuit-evasion
problem in different dimensions, but the learning efficiency and coordination performance of the proposed distributed approach
are much better than the traditional centralised approach.

1௑Introduction
As a branch of machine learning and artificial intelligence (AI),
reinforcement learning (RL) is especially suitable for problems
when agents learn satisfactory policies through trial-and-error
interactions with the environment [1]. RL has achieved successful
applications in areas such as finance (Portfolio Management) [2],
game (Alpha Go) [3], military (UAV flight strategy) [4] and so on.
In some real-life problems that cannot be solved by a single agent,
multiple agents must work together to achieve a common goal.
When multiple agents conduct their learning in a common
environment, which is also termed the multi-agent RL (MARL)
problem [5], decision making for each agent becomes even more
difficult due to the co-adaptation and concurrent learning of other
agents.

In the past few years, many studies extended single-agent deep
RL [3, 6, 7] to multi-agent settings. A straightforward way of such
an extension is to simply disregard the existence of other agents in
the environment and allow the agents to perform learning
independently. This kind of independent learning results in a
considerable reduction in the state-action representation. However,
at the same time, a poor learning outcome might occur due to a
lack of coordination, causing the so-called ‘moving target’ effect
complicating general MARL problems [5]. Other studies reported
to the centralised learning and decentralised execution (CLDE)
mechanism to address the instability issue caused by independent
learning [8–11]. However, the CLDE mechanism, in its essence, is
still a centralised learning method that is based on all the
information of agents for training. As a result, it faces the problem
of (i) curse of dimensionality: the search space grows rapidly with
the complexity of agent behaviours, the number of agents involved
and the size of domains; (ii) limited observability and restricted
communication capability: agents might not have access to the
needed information for the learning update because they are not
able to observe the states, actions and rewards of all other agents;
and (iii) slow convergence: it may take many steps to explore all
joint actions for every state, resulting in a slow convergence to the
optimal policy.

In this paper, we study the MARL problem in the well-known
multi-robot pursuit-evasion game, which is a classical problem for
testing the performance of MARL algorithms. The multi-robot
pursuit-evasion game has a variety of practical applications such as

anti-terrorism, military, security, and drone operation, etc. We
propose a decentralised deep RL method, the distributed duelling-
DQN (deep Q network), that conquers the limitations of the
existing CLDE mechanism. Unlike the centralised learning
procedure in which all the agents share the same learning
information, we enable each agent to learn independently using its
own learning information (in terms of learning framework, learning
parameters and rewards). To enable cooperation, the information of
other environmental agents with limited observation range is used
as input of the learning process. The feasibility of the distributed
duelling-DQN algorithm is verified in different settings of pursuit-
evasion games. The main contributions of this article are mainly
twofold:

• We propose a distributed duelling-DQN algorithm that enables
agents to learn independently, while realising cooperation
through agents’ local observations and joint reward functions.

• We carry out extensive experiments in different settings of
multi-robot pursuit games in order to test the feasibility and
efficiency of the proposed learning algorithm.

This paper is organised as follows. Section 2 discusses some
related work. Section 3 introduces the basic theoretical knowledge
of RL and deep RL. Section 4 presents the proposed distributed
multi-agent duelling DQN algorithm, and how it solves the multi-
robot pursuit problem. Section 5 verifies the feasibility of the
algorithm in different experimental settings. Finally, Section 6
summarises the work and points out areas that still need
improvement in the future.

2௑Related work
The main research problem in this paper is about how multiple
hunter agents can hunt down one or more prey agents. As a
classical problem for testing the performance of MARL algorithms,
the multi-robot pursuit-evasion problem has a wide range of
applications, such as missile tracking, air military strategy, and
drone control, and was first proposed by Isaacs in his masterpiece
‘Differential Games’ [12]. In 1976, Parsons [13] first described the
problem graphically. Vidal et al. [14] applied the pursuit problem
to the unmanned vehicles in the task of pursuing the escaped
vehicle in an unknown environment through coordinated control of

J. Eng., 2020, Vol. 2020 Iss. 13, pp. 499-504
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

499

multiple unmanned vehicles. Camci and Kayacan [15] applied the
pursuit problem to the collaborative strategy of controlling multiple
drones, and realised the cooperation of multiple drones to complete
the queue task. At the same time, many researchers proposed
different solutions to the pursuit problem. Kehagias et al.
successfully solved this problem using two different methods:
graph search and resource allocation [16, 17]. Grizou et al. [18]
used the Ad-Hoc teamwork approach to successfully engage robots
with unfamiliar teammates to achieve capture. Their results show
that although the Ad-Hoc robot was added to an unfamiliar pursuit
team, it did not affect the team's capture effect compared to the
previous one. Su et al. [19] proposed a concentrating strategy for
multiple hunter agents to capture multiple prey agents through Q
learning and experimented on the capture in different dimensions.

MARL has gained a great deal of interest in RL research [5, 20–
23]. Particularly, plenty of studies have focused on extending deep
RL to multi-agent settings. Peng et al. [9] proposed a way to
establish a communication mechanism between agents such that
the agents can communicate with each other to complete
cooperative tasks. Sunehag et al. [10] designed a learning approach
that is able to information among agents. Tan [24] used a two-way
RNN to model a set of agents and trains the model using the off-
policy-critic algorithm. Lowe et al. [8] established a value
decomposition network structure, which enables each agent to
decompose a team value into the value of each body. The
experimental results show that with the complexity of the problem,
the efficiency of this method is significantly higher than that of the
joint reward structure. However, due to the centralised learning
procedure, these approaches are still facing significant scalability
issues. Leibo et al. [11] allowed each agent to learn independently
using traditional DQN, and used other agents as environmental
information as input to the neural network. The feasibility of the
algorithm is verified by two experiments of gathering and wolf
packs. How conflicts manifest themselves from the competition of
shared resources reveals how the problem of social dilemmas can
be solved by cooperation among the agents. However, these
evaluations are also limited to only two cooperative agents.

3௑Background
3.1 Markov decision process (MDP) and RL

The MDP is a mathematical model used to describe the decision
process in RL, which can be defined as a four-tuple: S, A, P, R ,
where S is a collection of discrete environmental states
si ∈ S i = 1, …, n , A refers to all discrete sets of executable

actions of the agent ai ∈ A i = 1, …, n , P is the probability that
the action a is transferred from the state s to the state s′

pss′
a = P[st + 1 = s′ st = s, At = a] , and R is the reward value

obtained by the action in the state s Rs
a = E[R St = s, At = a] . The

reward function is defined as the expectation of the future reward
set r t + 1 , r t + 2 , r t + 3 , …of the agent from time t to time T
in the MDP

Rt = E ∑
t′

T

γt′ − trt′ (1)

where γ = 0, 1 is a discount factor used to indicate the impact of
future bonus values on the expected return status at the moment.

The value function is used to evaluate the value of state s when
choosing action a according to strategy π:

Q
π

s, a = Eπ{Rt st = s, at = a}

= Eπ ∑
k = 0

T

γkrt + k + 1 St = s, at = a
(2)

The goal is to learn the best strategy π* that corresponds to the
maximum action-value function Q* s, a :

Q* s, a = max
π

Q
π

s, a = E r s, a + γV* s′

= ∑
s′ ∈ S

p(s′ s, a) r s, a, s′ + γ max
a′ ∈ A

Q* s′, a′

= r s, a + γ ∑
s′ ∈ S

p(s′ s, a) max
a′ ∈ A

Q* s′, a′

(3)

3.2 Main algorithms for RL

3.2.1 Q-learning: The most well-known algorithm for RL is the Q
learning algorithm [25], with the update rule given as follows:

Q st, at ← Q st, at + α r + γ max
a

Q st + 1, at + 1 − Q st, at (4)

where α is the learning rate, indicating the degree of difference
between the Q value in the previous step and the newly calculated
Q value, to control the rate at which the Q value is updated, γ is the
discount factor for future rewards, and the content in square
brackets is the time difference error. To enable exploration, the
agent will choose the action of max Q value with the probability of
1 − ε and try to explore new actions with the probability of ε.

3.2.2 Deep RL: Deep RL combines the ability of deep learning
and RL to extract environmental information with the decision-
making ability of RL. The DQN [8] applies neural networks as an
approximator of Q values. When the Q value is updated, the target
Q value calculated by the bonus value and the Q value is
r + γ maxa Q s′, a′, θ

− , and the target Q value is used as a label to
make an estimation of Q. θ− are parameters of the target network,
which are updated periodically, and held fixed in between. The
value is constantly approaching the target Q value. The loss
function of the Q network training is defined as the squared
difference for optimisation:

L θ = Es, a, r, s′[r + γ max
a′

Q s′, a′, θ
− − Q s, a, θ)2 (5)

Double-DQN [26] is to solve the problem of overestimation in
traditional DQN. Since the previous Q target neural network is
updated in the following way: Yt

DQN = r + γ maxa Q St + 1, a; θt
− ,

there is inherently an error in the Qmax based on the target neural
network. Then, the neural network parameters are updated toward
the Q target with the maximum error, resulting in an overestimation
of the maximum Q value. The two networks in DQN can be used
to change the action of selecting the maximum Q value to solve the
problem of overestimation: use the estimation network (θ) to
estimate the Q value of the target network θ

− , and select the
action corresponding to the maximum Q maxa Q , and then the
target network θ

− is used to estimate the Q value of the optimal
action selected by the estimated network (θ). The target Q value
can be rewritten as follows:

Yt
D − DQN = r + γQ St + 1, arg max

a
Q St + 1, a; θt

− (6)

Later, Hausknecht and Stone [27] proposed the deep recurrent Q
network (DRQN), which uses the long-term and short-term
memories (LSTMs) unit structure to model partial state
information.

4௑Model of cooperative multi-robot pursuit
4.1 Distributed multi-agent duelling-DQN algorithm

In duelling-DQN [28], the last convolutional layer is divided into a
state value function V s , which presents the value of the static
state itself, and an advantage function A s, a , which represents the
additional value from an action in a certain state. The value
function only outputs one value for each state while the advantage
layer outputs N actions for each action in a certain state. These two

500 J. Eng., 2020, Vol. 2020 Iss. 13, pp. 499-504
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

values are aggregated together to obtain the Q value of performing
an action in a certain state

Q s, a; θ, α, β = V s; θ, β + A s, a; θ, α (7)

where θ is the parameters of convolutional layers, while β and α
are the parameters of the two fully connected layers for V and A,
respectively.

In order to increase the stability and efficiency of this
algorithm, we can have

Q s, a; θ, α, β = V s; θ, β

+ A s, a; θ, α − max
a′ ∈ A

A s, a′; θ, α
(8)

Let the advantage function value of the optimal action be 0 such
that Q s, a; θ, α, β = V s; θ, β . Specific action can be calculated as
follows:

a* = arg max
a′ ∈ A

Q s, a′; θ, α, β = Q s, a; θ, β (9)

By setting the advantage function as the difference between the
advantage function of individual action and the mean advantage
function of all actions, the unique value function can be obtained
by the following equation:

Q s, a; θ, α, β = V s; θ, β

+ A s, a; θ, α −
1
A

∑
a′

A s, a′; θ, α
(10)

In order to model real-world situations where agents only have
limited observation capabilities, agents in the multi-robot pursuit
game can only receive the state information in a certain
observation range with radius r. To enable distributed learning,
each agent learns to interact with the environment (other preys and
predators) to maximise its own reward. Each agent has an
independent Q function Qi:Si × Ai → R by using duelling-DQN,
and has its own independent experience pool to store the learned
information {(s, a, ri, s′)t: t = 1, …, T}. As a result, each agent can
update its own Q-value neural network independently using the
following equation:

Qi s, a ← Qi s, a + α ri + γ max
a′ ∈ Ai

Qi s′, a′ − Qi s, a (11)

Each agent is learning independently, by considering other agents
as an input of the varying environment. Although each agent has a
separate observation and is responsible for its independent
behaviours, cooperation can be achieved through the joint reward
generated after all the agents perform actions together (Fig. 1).

4.2 Solving the pursuit-evasion game

In the pursuit-evasion game, a group of predator agents are trained
to capture the prey agents cooperatively. The pursuit-evasion
environment is changing dynamically in each step. Therefore,
predators must adapt to the states continuously for better actions.
According to a different research focus on cooperation, scheduling
or communication problems between predators, the pursuit-evasion
problems can be handled in various ways. In this paper, the pursuit-
evasion problem is designed to a two-dimensional bounded
rectangular environment S, and its size is N × N. In this
environment, there are a set of P = P1, P2, …, P np

 predator
agents (np is the number of predator agents), and a set of
E = E1, E2, …, E nE

 prey agents (ne is the number of prey agents).
Both the two types of agents can only run within the boundary of S,
and there are m randomly placed obstacles in this area. In the initial
state, the agents are randomly distributed, and the predator agents
are controlled independently to achieve cooperation. The goal of
the predator agents is to avoid obstacles and capture the prey
agents together as quickly as possible. Each game lasts 400-time
steps. When it reaches 400-time steps, the game ends up and gets
the total rewards of all predator agents during the time period.
Fig. 2 is a schematic diagram of the environment, and Fig. 3 is an
illustration of the successful capture situation. Algorithm 1 gives
the main procedure of the proposed distributed duelling-DQN
algorithm.

In order to motivate cooperation among the predators, the speed
of prey agents is set higher than that of the predator agents.
Therefore, these predator agents cannot achieve capture by simply
pursuing. There are nine movement directions for the two types of
agents: moving up, down, right, left, up-left, up-right, down-left,
down-right, and staying still. The predator agent has an attack
ability that can attack the prey agent, and the attack range is only
one surrounding grid. Each agent has an observation range, which
means that they cannot get all the state information in the whole
environment. Their inputs are only the information in the range that
they can observe in a circle with its own centre radius R. For the
predator agents, the distributed duelling-DQN algorithm is used.

Fig. 1௒ Algorithm 1: Distributed duelling-DQN

Fig. 2௒ Schematic diagram of a pursuit-evasion environment

Fig. 3௒ Illustration of successful capture

J. Eng., 2020, Vol. 2020 Iss. 13, pp. 499-504
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

501

For the prey agents, in order to simulate the intelligence of the prey
agents, we also use the same distributed duelling-DQN algorithm
to train the prey agents for a period of time. Therefore, they have a
certain ability to escape the attack of predator agents
autonomously.

5௑Experiment
This section first gives the parameter settings for the experiments
and then discusses the results and analysis in different experimental
settings. The codes and illustration videos are released on the web
page: https://github.com/SadAngelF/Distributed-Dueling-DQN.

5.1 Parameter settings

In this research, we adopted the simulation environment Magent
[29] developed by the University of London and Shanghai Jiao
Tong University. The basic parameters for the environment are
given in Table 1. Some parameters of the algorithm are given in
Table 2, where the batch size is the data set size for gradient
descent update based on neural network, target update is the update
frequency of the neural network, and memory size is a
measurement of the experience pool.

5.2 Experimental results and analysis

5.2.1 Design of reward function: Among all the basic
components, the reward function may be at the core of an RL
process. Since it encodes the goal information of a learning task, a
proper formulation of reward functions plays the most crucial role
in the success of RL. We first test a direct reward function as
follows: (i) When four predator agents attack a prey agent at the
same time, each agent will get a reward of + 4, and (ii) each
movement of hunter agents causes a reward of − 0.2, in order to
make the agents learn to hunt the prey in the shortest path.
However, under this reward function, the predator agents could not
learn to capture the prey agents successfully, as given in Fig. 4. The
result shows that the agents can learn to maximise the reward
value, but the reward gradually converges to zero. It indicates that
this direct reward function is too sparse for the agents to learn
satisfactory strategies in proper time. In order to introduce more
intermediate reward, we design the reward function as follows: (i)
If a predator agent attacks a prey agent individually, it will get a
reward of + 1; (ii) If two predator agents attack a prey agent
together, each agent will get a reward of + 2; (iii) If three predator
agents attack a prey agent together, each agent will get a reward of
+ 3, and (iv) If four predator agents attack a prey agent together,
each agent will get a reward of + 4. All the remaining section of
experiments is based on this reward function.

5.2.2 Centralised duelling-DQN versus distributed duelling-
DQN: Fig. 5 gives the learning curves of the centralised duelling-
DQN and the distributed duelling-DQN algorithms in a 20 × 20

environment with eight predator agents and two prey agents.
Although the total reward value at the end of convergence is
similar, it is clear that the distributed duelling DQN is far more
efficient than the centralised DQN, especially in the early stage.
This result fully demonstrates the benefits of distributed learning
among agents, compared to the centralised learning methods when
agents either communicate freely with a central controller and
select their actions according to those indicated by the central
controller, or have full observability of the environment to receive
the joint-state-action information of all agents to control the
learning process synchronously.

5.2.3 Cooperative capability of agents: In the pursuit-evasion
problem, four predator agents need to work together to capture the
prey agents. Evaluating cooperative capability is also one of the
criteria to test the effectiveness of the learning algorithm. In this
experiment, there are four predator agents and one prey agent in
the 15 × 15 environment. We propose a way to judge the
cooperative capability by using the percentage of the reward value
contributed by each of the four predator agents to the total reward
value by the whole system. If the performance of the four agents is
almost the same, it indicates a better cooperative capability. The
cooperative capability of the agents, P, can be calculated as
follows:

P =
1
N

∑
i = 1

N

(Ri − μ) (12)

where Ri = 1/ T2 − T1 ∑t = T1

t = T2 ri is the reward of agent i during the
whole time, and μ = 1/N ∑i = 1

N
Ri. A smaller P means the stronger

cooperative capability between the agents.
It can be seen from Fig. 6 that the performance of the four

agents is almost the same over the entire period, causing a
cooperative capability P = 2.7386.

In order to reveal the cooperativeness during different learning
stages, we divide the whole learning process of 2100 episodes into
three different stages. The period of 1–700 episodes are the early
stage, the period of 701–1400 episodes are in the middle stage, and
the period of 1401–2100 are the later stage. Figs. 7 and 8 show the
corresponding cooperative capabilities of the agents in the three
stages. At the beginning of learning, the agents may not be able to
cooperate over their behaviours, so the performance difference
between the agents is still huge. In learning proceeds, they can
learn to cooperate to complete the capture task, so the difference in

Table 1 Parameter of the Agents
Parameter type Hunter agent Prey agents
size 1 × 1 or 2 × 2 1 × 1
speed 1 cell every step 1.5 every step
attack range a circle with a radius of 1 none
observation range a circle with a radius of 3 none

Table 2 Parameter of the algorithm
Parameter type Parameter values
total time-steps 400
batch size 512
learning rate 0.0001
reward decay 0.99
target update 1000
memory size 220

Fig. 4௒ Learning curve using the direct sparse reward function

Fig. 5௒ Centralised duelling DQN versus distributed duelling DQN

502 J. Eng., 2020, Vol. 2020 Iss. 13, pp. 499-504
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

the performance between the agents in the later period will be
much smaller, which indicates that their cooperative ability has
been greatly improved.

5.2.4 Influence of random obstacles: Fig. 9 shows the learning
efficiency in a 20 × 20 environment involving 40 randomly
distributed obstacles. The agents show excellent learning efficiency
with obstacles since the agents have more accurate information to
help them judge the state and thus perform an action. Another
reason can be speculated that obstacles can hinder the move of prey
agents, which can facilitate the learning of predators accordingly.

5.2.5 Influence of ε descent methods: We also evaluated
different ways of descending the exploration parameter ε in the
learning process. Fig. 10 gives the result in the same 20 × 20
environment involving eight predator agents and two prey agents.
The result shows that the learning efficiency of the agent with
piecewise descent is higher than the exponential descent method.
Therefore, a careful selection of exploration strategies is crucial in
affecting the final performance of RL algorithms.

5.2.6 Comparison of different learning algorithms: Fig. 11
compares the learning performance using different deep RL
algorithms in a 30 × 30 environment with eight predator agents and
two prey agents. The result shows that the learning efficiency of
distributed duelling DQN is comparable with many existing
algorithms. Although the final reward of distributed duelling DQN
is a bit lower than the double-DQN and naive DQN algorithms, the
learning efficiency in the early stage is better. The A2C [30] and
the DRQN algorithms all perform far worse than the distributed
duelling DQN algorithm, which fully demonstrates the benefits of
distributed learning of agents using only limited partial
observations.

6௑Conclusion
In this paper, we propose a distributed duelling-DQN algorithm
and apply it to the multi-robot pursuit problem. Unlike most
existing studies that apply fully centralised deep RL methods based
on the CLDE scheme, the decentralised duelling-DQN algorithm
models each agent as an individual deep RL agent that has its
individual learning system (i.e. individual action-value function,
individual leaning update process, and individual action output). To
realise coordination among agents, the information of other
environmental agents with limited observation range is used as
input of the learning process. Various experimental settings such as
different scales of environments, different deep RL algorithms
including DQN, double-DQN, A2C, duelling-DQN, DRQN are
used to verify the feasibility of the proposed algorithm.
Experimental results show that both distributed and centralised
approaches can ultimately solve the pursuit-evasion problem in
different dimensions, but the learning efficiency and coordination
performance of the proposed distributed approach are much better
than the traditional centralised approach. In the future, we plan to
evaluate the proposed algorithm in more complex game domains
where the environment is changing rapidly; for example, the
obstacles are changing continuously.

7௑Acknowledgments
This work was supported by the Joint Key Program of National
Natural Science Foundation of China and Liaoning Province under
grant U1808206, Ministry of Military Equipment Development of
China under grant no. 61403120203, the Dalian High-Level Talent
Innovation Support Program under grant no. 2017RQ008, and the
Dalian Science and Technology Innovation Fund under grant no.
2018J12GX046.

Fig. 6௒ Percentage of the contribution of four predator agents

Fig. 7௒ Percentage of the contribution of four predator agents during three
different stages

Fig. 8௒ Cooperative ability of four predator agents during three different
stages

Fig. 9௒ Influence of random obstacles

Fig. 10௒ Influence of ε descent methods

Fig. 11௒ Different algorithms to solve the pursuit-evasion problems

J. Eng., 2020, Vol. 2020 Iss. 13, pp. 499-504
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

503

8௑References
[1] Sutton, R.S., Barto, A.G.: ‘Reinforcement learning: an Introduction’ (MIT

Press, Cambridge, MA, USA, 2018)
[2] Jiang, Z., Xu, D., Liang, J.: ‘A deep reinforcement learning framework for the

financial portfolio management problem’, arXiv preprint arXiv:1706.10059,
2017

[3] Silver, D., Huang, A., Maddison, C.J., et al.: ‘Mastering the game of Go with
deep neural networks and tree search’, Nature, 2015, 529, (7587), pp. 484–
489

[4] Olfati-Saber, R., Fax, J.A, Murray, R.M.: ‘Consensus and cooperation in
networked multi-agent systems’, Proc. IEEE, 2007, 95, (1), pp. 215–233

[5] Busoniu, L., Babuska, R., De Schutter, B.: ‘A comprehensive survey of
multiagent reinforcement learning’, IEEE Trans. Syst. Man Cybern.-C, Appl.
Rev., 2008, 38, (2), pp. 156–172

[6] Mnih, V., Kavukcuoglu, K., Silver, D., et al.: ‘Human-level control through
deep reinforcement learning’, Nature, 2015, 518, (7540), p. 529

[7] Schulman, J., Levine, S., Abbeel, P., et al.: ‘Trust region policy optimization’.
ICML, Lille, France, 2015, pp. 1889–1897

[8] Lowe, R., Wu, Y., Tamar, A., et al.: ‘Multi-agent actor-critic for mixed
cooperative-competitive environments’. Advances in Neural Information
Processing Systems, Long Beach, CA, USA, 2017, pp. 6379–6390

[9] Peng, P., Wen, Y., Yang, Y., et al.: ‘Multiagent bidirectionally-coordinated
nets: emergence of human-level coordination in learning to play StarCraft
combat games’, arXiv preprint arXiv:1703.10069, 2017

[10] Sunehag, P., Lever, G., Gruslys, A., et al.: ‘Value-decomposition networks for
cooperative multi-agent learning’. AAMAS, Sao Paulo, Brazil, 2017, pp.
2085–2087

[11] Leibo, J.Z., Zambaldi, V., Lanctot, M., et al.: ‘Multi-agent reinforcement
learning in sequential social dilemmas’. AAMAS, Sao Paulo, Brazil, 2017,
pp. 464–473

[12] Isaacs, R., Philip, R.: ‘Differential games: a mathematical theory with
applications to warfare and pursuit’, Control Opt., 1966, 17, (2), pp. 60–60

[13] Parsons, D.T.: ‘Pursuit-evasion in a graph’, Theory and Applications of
Graphs. Lecture Notes in Mathematics (Springer, New York City, NY, USA,
1976), pp. 426–441

[14] Vidal, R., Shakernia, O., Kim, H.J., et al. ‘Probabilistic pursuit-evasion
games: theory, implementation, and experimental evaluation’, IEEE Trans.
Robotics Autom., 2002, 18, (5), pp. 662–669

[15] Camci, E., Kayacan, E.: ‘Game of drones: UAV pursuit-evasion game with
type-2 fuzzy logic controllers tuned by reinforcement learning’. IEEE Int.
Conf. on Fuzzy Systems, Vancouver, Canada, 2016, pp. 618–625

[16] Kehagias, A., Hollinger, G., Singh, S.: ‘A graph search algorithm for indoor
pursuit/evasion’, Math. Comput. Model., 2009, 50, (9), pp. 1305–1317

[17] Hollinger, G., Singh, S., Kehagias, A.: ‘Improving the efficiency of clearing
with multi-agent teams’, Int. J. Robotics Res., 2010, 29, (8), pp. 1088–1105

[18] Grizou, J., Barrett, S., Stone, P., et al.: ‘Collaboration in Ad hoc teamwork:
ambiguous tasks, roles, and communication’. AAMAS Adaptive Learning
Agents (ALA) Workshop, Singapore, 2016

[19] Su, Z.B., Lu, J.L., Tong, L.: ‘Strategy of cooperative hunting by multiple
Mobile robots’, J. Beijing Inst. Technol., 2004, 5, (8), pp. 403–406

[20] Yu, C., Wang, X., Xu, X., et al.: ‘Distributed multiagent coordinated learning
for autonomous driving in highways based on dynamic coordination graphs’,
IEEE Trans. Intell. Transp. Syst., 2020, 21, (2), pp. 735–748, doi: 10.1109/
TITS.2019.2893683

[21] Yu, C., Zhang, M., Ren, F., et al.: ‘Emotional multiagent reinforcement
learning in spatial social dilemmas’, IEEE Trans. Neural Netw. Learn. Syst.,
2015, 26, (12), pp. 3083–3096

[22] Yu, C., Zhang, M., Ren, F., et al.: ‘Multiagent learning of coordination in
loosely coupled multiagent systems’, IEEE Trans. Cybern., 2015, 45, (12), pp.
2853–2867

[23] Yu, C., Zhang, M., Ren, F.: ‘Collective learning for the emergence of social
norms in networked multiagent systems’, IEEE Trans. Cybern., 2014, 44,
(12), pp. 2342–2355

[24] Tan, M.: ‘Multi-agent reinforcement learning: independent vs. Cooperative
agents’. Machine Learning Proc., Amherst, MA, USA, 1993, pp. 330–337

[25] Watkins Christopher, J.C.H., Dayan, P.: ‘Q-learning’, Mach. Learn., 1992, 8,
(3–4), pp. 279–292

[26] Van Hasselt, H., Guez, A., Silver, D.: ‘Deep reinforcement learning with
double Q-learning’. AAAI, Austin, TX, USA, 2015

[27] Hausknecht, M., Stone, P.: ‘Deep recurrent Q-learning for partially observable
MDPs’. 2015 AAAI Fall Symp. Series, Arlington, VA, USA, 2015

[28] Wang, Z., Schaul, T., Hessel, M., et al.: ‘Dueling network architectures for
deep reinforcement learning’. Conf. on Int. Conf. on Machine Learning, New
York City, NY, USA, 2016, pp. 1995–2003

[29] Zheng, L., Yang, J., Cai, H., et al.: ‘MAgent: a many-agent reinforcement
learning platform for artificial collective intelligence’. AAAI, New Orleans,
LA, USA, 2018

[30] Grondman, I., Busoniu, L., Lopes, G.A., et al.: ‘A survey of actor-critic
reinforcement learning: standard and natural policy gradients’, IEEE Trans.
Syst. Man Cybern., C, 2012, 42, (6), pp. 1291–1307

504 J. Eng., 2020, Vol. 2020 Iss. 13, pp. 499-504
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

