
Autonomous Robots (2019) 43:1079–1100

https://doi.org/10.1007/s10514-018-9783-9

Distributed multi-robot formation control in dynamic environments

Javier Alonso-Mora1 · Eduardo Montijano2 · Tobias Nägeli3 ·Otmar Hilliges3 ·Mac Schwager4 · Daniela Rus5

Received: 15 February 2017 / Accepted: 10 July 2018 / Published online: 20 July 2018

© The Author(s) 2018

Abstract

This paper presents a distributed method for formation control of a homogeneous team of aerial or ground mobile robots

navigating in environments with static and dynamic obstacles. Each robot in the team has a finite communication and visibility

radius and shares information with its neighbors to coordinate. Our approach leverages both constrained optimization and

multi-robot consensus to compute the parameters of the multi-robot formation. This ensures that the robots make progress

and avoid collisions with static and moving obstacles. In particular, via distributed consensus, the robots compute (a) the

convex hull of the robot positions, (b) the desired direction of movement and (c) a large convex region embedded in the

four dimensional position-time free space. The robots then compute, via sequential convex programming, the locally optimal

parameters for the formation to remain within the convex neighborhood of the robots. The method allows for reconfiguration.

Each robot then navigates towards its assigned position in the target collision-free formation via an individual controller

that accounts for its dynamics. This approach is efficient and scalable with the number of robots. We present an extensive

evaluation of the communication requirements and verify the method in simulations with up to sixteen quadrotors. Lastly, we

present experiments with four real quadrotors flying in formation in an environment with one moving human.

Keywords Multi-robot systems · Distributed robotics · Formation control · Dynamic environments · Collision avoidance ·

Unmanned aerial vehicles · Drones · Micro air vehicles

This work was supported in part by pDOT ONR N00014-12-1-1000,

the Boeing Company, the MIT-Singapore Alliance on Research and

Technology under the Future of Urban Mobility, Spanish Project

DPI2015-69376-R (MINECO/FEDER), Microsoft Research and the

Netherlands Organisation for Scientific Research NWO-TTW Veni

15916. We are grateful for their support.

Electronic supplementary material The online version of this article

(https://doi.org/10.1007/s10514-018-9783-9) contains supplementary

material, which is available to authorized users.

B Javier Alonso-Mora

j.alonsomora@tudelft.nl

Eduardo Montijano

emonti@unizar.es

Tobias Nägeli

naegelit@ethz.ch

Mac Schwager

schwager@stanford.edu

Daniela Rus

rus@mit.edu

1 Department of Cognitive Robotics, Delft University of

Technology, Mekelweg 2, 2628 CD Delft, The Netherlands

1 Introduction

Multi-robot systems will be ubiquitous to perform many

tasks, such as surveillance (Schwager et al. 2011), inspec-

tion (Suzuki et al. 2000), factory automation (Alonso-Mora

et al. 2015a), logistics (Wurman et al. 2008) or cinematog-

raphy (Nägeli et al. 2017b). While some of these problems

require team navigation in a rigid pattern, other scenarios,

such as cooperative manipulation of deformable objects or

transportation of cable-suspended loads, allow for more flex-

ibility, yet requiring certain level of coordination. This is also

the case, for example, for a team of robots that fly through

narrow canyons while preserving inter-robot communication

2 Instituto de Investigación en Ingeniería de Aragón,

Universidad de Zaragoza, Zaragoza, Spain

3 Department of Computer Science, ETH Zurich, Zürich,

Switzerland

4 Department of Aeronautics and Astronautics, Stanford

University, Stanford, CA 94305, USA

5 Computer Science and Artificial Intelligence Lab,

Massachusetts Institute of Technology, 32 Vassar St,

Cambridge, MA 02139, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-018-9783-9&domain=pdf
http://orcid.org/0000-0003-0058-570X
https://doi.org/10.1007/s10514-018-9783-9

1080 Autonomous Robots (2019) 43:1079–1100

or visibility. In this paper we present a method for formation

control that is ideally suited for these kind of flexible multi-

robot formations, since our approach is capable of adjusting

several parameters of the formation dynamically to avoid

collisions with the environment.

Multi-robot navigation in formation has received exten-

sive attention in the past, with many works considering

obstacle-free scenarios. In this work we leverage efficient

constrained optimization, multi-robot consensus and geo-

metric reasoning to achieve distributed formation control in

environments with static and moving obstacles. In contrast

to our previous work (Alonso-Mora et al. 2017), we consider

the case where robots are no more centrally controlled, but

instead have a limited field of view and communicate with

their immediate neighbors to coordinate.

Given a set of target formation shapes, our method opti-

mizes the parameters (such as position, orientation and size)

of the multi-robot formation in a neighborhood of the robots.

The method guarantees that the team of robots remains

collision-free by rearranging its formation, see Fig. 1 for

an example with four quadrotors in a square formation. A

simplified global planner can use this method to navigate the

group of robots from an initial location to a final location.

This global planner may consist of a series of waypoints for

the formation center. A human may also provide the global

path for the formation, or a desired velocity, and the robots

will adapt their configuration automatically.

1.1 Related works

A large part of the literature in multi-robot navigation with

obstacles considers solutions designed for ground robots

operating on the plane. These techniques include using a set

of reactive behaviors (Balch and Arkin 1998), potential fields

(Balch and Hybinette 2000; Sabattini et al. 2011), abstrac-

tions (Michael et al. 2008; Ayanian and Kumar 2010a),

decentralized feedback laws with graph theory (Desai et al.

2001), proximity constraints (Ayanian and Kumar 2010b)

and stochastic planning (Urcola et al. 2017), to name a few.

In contrast, our method automatically optimizes for the for-

mation parameters natively in three-dimensional dynamic

environments.

The use of distributed consensus algorithms (Ren and

Beard 2008), where each robot only needs to interact with

nearby team mates, has also led to a wide variety of formation

control strategies, as shown in the survey by Oh et al. (2015).

Regarding the robot dynamics, Lin et al. (2005) considered

unicycle robots, Dong et al. (2015) considered aerial vehi-

cles and Hatanaka et al. (2012) considered motion in SO(3).

Although our method does not directly model the robot

dynamics in the computation of the formation parameters,

it relays on low-level controllers to drive each robot towards

its individual position in the formation while respecting its

Fig. 1 Four drones in a square formation avoid a walking human

dynamic constraints. We show experiments with a team of

quadrotors. In terms of the sensing model, Franchi et al.

(2012) considered relative bearing measurements, Oh and

Ahn (2011) considered inter-robot distances and Mostagh

et al. (2009) and Montijano et al. (2016) employed explicit

vision measurements to estimate the relative positions of

neighboring robots and reach the formation. A common

assumption in these approaches is the lack of obstacles in the

environment, focusing on the design of low-level controllers

for each robot to reach the desired formation pattern. Our

method is different, in the sense that we exploit the consen-

sus algorithm to agree upon high-level navigation concepts,

such as a large convex region reachable by the robots and

which does not intersect any of the observed obstacles.

Decentralized solutions with local sensing and communi-

cation in environments with obstacles were treated by Mosteo

et al. (2008) and Nestmeyer et al. (2017). Both approaches

dealt with the problem of task assignment for the team of

robots under the assumption of a known map, taking into

account connectivity constraints in the plan execution. Com-

pared to them, in our solution we do not make any assumption

about structure or knowledge of the map, although we con-

sider a global target goal for all the robots, to which the team

needs to move in formation.

Our approach relies on convex and non-convex opti-

mization methods to obtain the locally optimal state of the

formation. Several approaches have formulated the navi-

gation of teams of robots as an optimization problem. In

particular, convex optimization frameworks for navigating

in formation include semidefinite programming (Derenick

et al. 2010), which considers only 2D circular obstacles; dis-

tributed quadratic optimization (Alonso-Mora et al. 2015a),

without global coordination; distributed optimization with

discrete-time communications by Kia et al. (2016), which

considers a global function defined by the sum of individual

costs; and second order cone programming (Derenick and

Spletzer 2007), which triangulates the free 2D space to com-

pute the optimal motion in formation. Our method applies to

123

Autonomous Robots (2019) 43:1079–1100 1081

Fig. 2 Example of three approaches for distributed formation planning

with obstacles. a Each robot independently computes a target formation

(red/blue). Consensus on the formation’s parameters (green) could lead

to a formation in collision with the obstacle. b Each robot computes

an obstacle-free region, but their intersection could be empty. c Our

approach, see Sect. 2.4, with target formation after consensus (green).

The target formation is computed within the intersection of convex

regions, which contain all the robots (Color figure online)

polygonal obstacles and does not require a triangulation of

the environment.

Centralized non-convex optimizations include a mixed

integer approach by Kushleyev et al. (2013) and a discretized

linear temporal logic approach by Saha et al. (2014). Both

require high computational effort and can only be applied

offline to precompute trajectories. Our goal is to have real-

time capability for online computation. Online sequential

convex programming has been employed by Augugliaro et al.

(2012) and Chen et al. (2015) to compute collision-free

trajectories for multiple Micro Air Vehicles (MAVs), but

without considering formations. The assignment of robots

to the target positions in the formation is another optimiza-

tion problem that was solved with a centralized algorithm by

Turpin et al. (2014) or with a distributed algorithm, albeit in

environments without obstacles, by Montijano and Mosteo

(2014) and Morgan et al. (2016). Building upon the central-

ized, yet online, method by Alonso-Mora et al. (2017), we

propose an optimization and consensus based approach to

reconfigure the formation in dynamic environments, which

is distributed and online.

Several works have proposed distributed constrained opti-

mization approaches to maintain a formation, based on

Model Predictive Control (MPC). In particular, Keviczky

et al. (2008) computed a set of inputs for a team of

aerial vehicles navigating in, or towards, a given forma-

tion, and Kuriki and Namerikawa (2015) relied on a leader

to compute the formation configuration. Our approach is

leaderless and can adjust the size of the formation to avoid

obstacles.

1.2 Contribution

The main contribution of this paper is a distributed method

for formation control. The method enables a team of ground

or aerial robots to navigate in a dynamic environment while

reconfiguring their formation to avoid collisions with static

and moving obstacles. A descriptive idea of the method is

shown in Fig. 2.

We present a holistic method where we rely on con-

vex optimization techniques to compute a convex region

in free position-time space and on non-convex optimiza-

tion techniques to compute the configuration for the team

of robots. We introduce distributed consensus algorithms to

obtain:

– The convex hull of the robot’s positions.

– The preferred direction of motion.

– A convex region in free position-time space, given by the

intersection of individual regions.

We provide a formal analysis with convergence guaran-

tees of the distributed algorithms composing the holistic

approach, simulations with teams of robots and experiments

with four quadrotors avoiding a human. Our algorithms are

easy to implement, require small computational efforts and

scale well with the number of robots, as opposed to equiva-

lent flooding methods.

An earlier version of this paper was published by Alonso-

Mora et al. (2016). In this version we extend the method

with an additional consensus round to compute the preferred

direction of motion and a validation of the method in exper-

iments with four real drones navigating in an environment

with a human.

Our proposed method is intended for local motion plan-

ning and therefore, deadlocks may arise. To avoid dead-

locks, our method can be employed in combination with

a global planner, in a manner similar to the work on cen-

tralized formation control by Alonso-Mora et al. (2017).

In this work we have introduced an additional step in the

method, where robots compute the preferred direction of

motion. This additional step is intended to avoid disagree-

ments in the case that each robot computes an independent

global path, and to coordinate the intentions of all robots.

This is done in a max-min consensus step where the best

direction of movement is chosen with respect to all the

robots.

123

1082 Autonomous Robots (2019) 43:1079–1100

2 Preliminaries

In this section we provide the needed definitions, the prob-

lem formulation for distributed formation control in dynamic

environments and an overview of the proposed method.

2.1 Definitions

2.1.1 Robots

Consider a team of robots navigating in formation. For each

robot i ∈ I = {1, . . . , n} ⊂ N, its position at time t

is denoted by pi (t) ∈ R
3. In the following, we consider

all robots to have the same dynamic model and cylindrical

non-rotating shape of radius r and height 2h in the vertical

dimension. Denote the volume occupied by a robot at posi-

tion p by A(p) ⊂ R
3.

2.1.2 Communication

Let G = (I, E) be the communication graph associated to the

team of robots. Each edge in the graph, (i, j) ∈ E, denotes

the possibility of robots i and j to directly communicate

with each other. The set of neighbors of robot i is denoted

by Ni , i.e., Ni = { j ∈ I | (i, j) ∈ E}. We assume ideal

communications, i.e., noise-free and without packet losses,

and that G is connected, i.e., for every pair of robots i, j

there exists a path of one or more edges in E that links robot

i to robot j . We denote by d the diameter of G, which is

the longest among all the shortest paths between any pair of

robots.

2.1.3 Field of view

We consider that each robot i has a limited field of view, typi-

cally a sphere of given radius centered at the robot’s position.

We denote it by Bi ⊂ R
3.

2.1.4 Static obstacles

Consider a set of static obstacles O ⊂ R
3 defining the global

map, and Oi = Bi

⋂

O the set of obstacles seen by robot i .

Further denote by Ōi the set Oi dilated by half of the robot’s

volume, i.e., the positions for which the robot of cylindrical

shape would be in collision with any of the obstacles within

its visibility radius, formally

Ōi = {p ∈ R
3|A(p) ∩ Oi �= ∅}. (1)

2.1.5 Moving obstacles

Moving, or dynamic, obstacles within the field of view

of robot i can be accounted for. Consider j ∈ Ji =

{1, . . . , nDO,i } ⊂ N the list of observed moving obstacles

of shape D j ⊂ R
3 by robot i . We denote by D j |i (t) the vol-

ume occupied by the dynamic obstacle j at time t , as seen

by robot i and

D̄ j |i (t) = {p ∈ R
3|A(p) ∩ D j (t) �= ∅}, (2)

its dilation by half of the robot’s volume. In our implementa-

tion we assume that dynamic obstacles maintain a constant

velocity.

2.1.6 Position-time obstacles

We rely on the notion of position-time space, where the time

dimension is added to the workspace to account for moving

obstacles. This is similar to the concept of configuration-time

space introduced by Erdmann and Lozano-Perez (1987), but

differs in that it is embedded in R
4 instead of in the potentially

large high-dimensional space. We denote the current time by

t0 and consider a time horizon τ , typically a few seconds

in the future. For robot i and current time t0, we denote the

union of static and dynamic obstacles seen by robot i by

Ôi (t0) = Ōi × [0, τ] ∪
⋃

t∈[0,τ]
j∈Ji

D̄ j |i (t0 + t) × t ⊂ R
4,

where × denotes the Cartesian product of two spaces, in this

case the workspace and the time dimension.

2.1.7 Position-time free space

For robot i and current time t0, the free space in the position-

time space is then

F̄i (t0) = R
3 × [0, τ] \ Ôi (t0) ⊂ R

4. (3)

This set represents the positions at which the robot does not

collide with any static or moving obstacle at a given time

within the time horizon τ .

2.1.8 Motion planning

This work presents an approach for local navigation. We con-

sider that a desired goal position for the team of robots is

given, and known by all robots. This global position could

be given by a human operator or a standard sampling based

approach for global planning, and is outside the scope of this

work. Denote by g(t) ∈ R
3 the goal position for the centroid

of the formation at time t . Our distributed local planner then

computes the configuration state of the target formation and

the required motion of the robots for a given time horizon

τ > 0, which must be longer than the required time to stop.

We denote t1 = t0 + τ .

123

Autonomous Robots (2019) 43:1079–1100 1083

2.2 Definition of the formation

We consider a pre-defined set of m ∈ N template formations,

such as a square or a line. See Fig. 3 for an example. Each

template formation f ∈ I f = [1, m] is given by a set of

robot positions {r f
0,1, . . . , r f

0,n} and a set of outer vertices

{w f
1, . . . , w f

n f
} relative to the center of rotation (typically

the centroid) of the formation, where n f denotes the number

of outer vertices defining formation f . The set of vertices

represents the convex hull of the robot’s positions in the for-

mation, thus reducing the complexity for formations with a

large number of robots.

Further denote by d f the minimum distance between any

given pair of robots in the template formation f . Template

formations can be defined by a human designer or automat-

ically computed for optimal representation of a target shape

as showed by Schoch et al. (2014).

A formation is then defined by an isomorphic transforma-

tion, which includes the size s ∈ R+, a translation t ∈ R
3 and

a rotation R(q) described by a unit quaternion q ∈ SO(3),

its conjugate denoted by q̄. With this formation definition,

the configuration state for the team of robots is fully defined

by z = [t, s, q] ∈ R
3 × R+ × SO(3).

Given the configuration state z, and template formation

number f , the robot positions and outer vertices of the

resulting formation are computed by an isomorphic trans-

formation,

r
f
i = t + s R(q)r

f
0,i , ∀i ∈ [1, n],

v
f
j = t + s R(q)w

f
j , ∀ j ∈ [1, n f],

(4)

where the rotation in SO(3) is given by the quaternion

operation

[

0, R(q)w
f

j

]T

= q ×
[

0, w
f

j

]T

× q̄. (5)

For template formation f and configuration state z we

denote the set of outer vertices by

V(z, f) = [v
f
1 , . . . , v

f
n f

]. (6)

In this paper we rely on this definition for the formation.

The method is general and could be applied to alternative

definitions, such as for a team of mobile manipulators car-

rying a rigid object, as shown by Alonso-Mora et al. (2017)

for centralized formation control.

2.3 Problem formulation

Consider a team of n mobile robots, each robot i with a lim-

ited field of view Bi and a communication graph G. Consider

also a set of m template formations known by all the robots

Fig. 3 a Example of a template square formation with sixteen MAVs

with the four vertices defining the convex hull. b The formation can be

transformed with a translation t, a 3D rotation q and a size s isomorphic

transformation

in the team. For a template formation, the configuration state

z fully defines the positions of the robots in the formation.

Consider also a set of static and moving obstacles seen by

the robots and a prediction of their future positions for a time

horizon τ . From this information, each robot individually

computes the free position-time space F̄i (t0).

Our method solves the following two problems jointly.

Problem 1 (Optimal target configuration) At the current

time t0, obtain a goal configuration z∗ and formation index

f ∗ ∈ I f for time t1 = t0 +τ such that the deviation between

the robot team’s centroid and a desired position g is min-

imized, and the robot positions in the target formation are

collision free with respect to all observed obstacles, that is

V(z∗, f ∗) × t1 ⊂
⋃

i∈I F̄i (t0).

Problem 2 (Collision-free motion) Given the current posi-

tion at time t0 of all robots, ensure that the transition from

their current positions, p1(t0) . . . pn(t0), to their assigned

positions, r1(t1) . . . rn(t1), in the target formation is collision

free at all time instances until t1, i.e., for all robot i ∈ I and

time t ∈ [t0, t1] its position satisfies pi (t)×t ⊂
⋃

i∈I F̄i (t0).

In the following, and for clarity, we will drop the time

index whenever it is self-evident and denote pi (t0) by pi .

2.4 Method overview

In the following we give an intuitive idea of the method fol-

lowed by a detailed method overview.

2.4.1 Idea

Consider a team of robots, each of them with a limited field

of view, and a communication topology. A naive approach

to solve Problem 1 could be that each robot computes a tar-

get formation and then all robots perform consensus on the

formation parameters. Unfortunately, this can lead to a for-

mation in collision with an obstacle, as shown in Fig. 2a. If

123

1084 Autonomous Robots (2019) 43:1079–1100

all the robots first agree on a convex obstacle-free region,

and then compute a target formation therein, then this prob-

lem would not appear any more. An approach to compute

this common obstacle-free region could be that each robot

computes an obstacle-free region with respect to its limited

field of view and then the robots collaboratively compute the

intersection of all regions. Nonetheless, this could lead to an

empty intersection as shown in Fig. 2b. This second problem

can be solved by imposing (a) that the robots first agree on a

common direction of motion and (b) that the convex obstacle-

free region computed by each robot accounts for the robots’

positions. The latter is equivalent to imposing that the convex

obstacle-free region includes the convex hull of the robots’

positions. See Fig. 2c for an example.

Following this line of thought, the proposed method con-

sists of the following steps, which are detailed in Fig. 4.

2.4.2 Formation control

The team of robots computes a target formation and the

assigned position of each robot with the following distributed

procedure.

(a) Robots perform distributed consensus to compute the

convex hull of the robots’ positions.

(b) Robots perform a distributed min/max consensus to

agree on the preferred direction of movement for the

team.

(c) Each robot computes a large convex region in obstacle-

free space, grown from the convex hull of the robots’

positions and directed in the preferred direction of

motion.

(d) Robots perform distributed consensus to compute the

intersection of the individual convex regions.

(e) Each robot computes the optimal target formation within

the resulting convex volume. At this stage all the robots

execute the same optimization and with identical ini-

tial conditions, variables, cost function and constraints

(these are computed from the intersection of convex

regions, the convex hull of the robot positions and the

preferred direction of motion). Therefore, we assume

that they reach the same solution. If not, an additional

consensus round would be required.

(f) Robots are assigned, with a distributed optimization, to

target positions within the desired formation.

2.4.3 Low level control

Each robot navigates towards its assigned position within

the target formation with a high-frequency control loop.

They locally avoid collisions with their neighbors and remain

within the convex region in free position-time space to avoid

collisions with perceived static and moving obstacles. The

target positions are updated as soon as a new configuration

state of the team’s formation is obtained.

3 Method

In this section we explain all the steps of the distributed nav-

igation algorithm, discussing which information the robots

need to communicate to their neighbors and which steps are

executed locally. The proposed algorithm accounts for the

limited visibility and communication capabilities of all the

robots, exploiting the good properties of a distributed consen-

sus scheme. To avoid confusions in the notation, throughout

the section we denote discrete-time communication rounds

using the index k and remove the continuous time depen-

dency of the previous section.

We assume that the final time t1 is longer than the amount

of time required for the distributed algorithm to compute the

formation and that the robots update their local information

used in the consensus rounds only at the beginning of each

execution of the algorithm. In addition, during this time for

simplicity we consider that the communication network, G,

remains fixed. In a separate process, and at high frequency,

each robot does update its information continuously for local

collision avoidance and control towards the assigned position

in the most recent target configuration for the team. See Fig. 4.

3.1 Convex hull of the robots’positions

In the first step the robots need to compute the convex hull,

C, of their positions. The convex hull of a set of points can be

computed trivially via a function that we denote by convhull.

To computeC in a distributed manner we let each robot handle

Fig. 4 Schema of the method which includes several consensus rounds

to compute an obstacle-free convex region and the parameters of the

formation. The position control includes local collision avoidance and

is executed in a separate process with high update rate, controlling

towards the newest formation

123

Autonomous Robots (2019) 43:1079–1100 1085

a local estimation of the convex hull, Ci , which is initialized

containing exclusively the robot’s position, i.e., Ci (0) = {pi }.

The robots execute an iterative process where, at each

iteration, the local estimations are grown using the convex

hull estimations obtained from direct neighbors in the com-

munication graph. Then, the robots communicate to their

neighbors only the new points that are part of their con-

vex hull estimation, C̄i (k) = Ci (k) \ Ci (k − 1). The whole

process is repeated for a number of communication rounds

equal to the diameter of G, d. This method is synthesized in

Algorithm 1.

Algorithm 1 Distributed Convex Hull - Robot i

1: Ci (−1) = ∅, Ci (0) = {pi }

2: for k = 0 . . . d − 1 do

3: Send C̄i (k) = Ci (k) \ Ci (k − 1) to all j ∈ Ni

4: Receive C̄ j (k) from all j ∈ Ni

5: Ci (k + 1) =convhull(Ci (k), C̄ j (k))

6: end for

Proposition 1 The execution of Algorithm 1 makes the local

estimation of all the robots converge to the actual convex hull

of the whole team in no more than d communication rounds.

That is,

Ci (d) = C, ∀i ∈ I. (7)

Proof In order to show that (7) holds, we first show by induc-

tion that

Ci (k + 1) = convhull(Ci (k), C j (k)), (8)

for all i ∈ I, j ∈ Ni and k ≥ 0.

Equation (8) holds for k = 1 because C̄i (0) = Ci (0) =

{pi } and, therefore, for all i , Ci (1) =convhull(Ci (0), C j (0)).

Assume now that Eq. (8) is also true up to some other k > 0.

Thus,

Ci (k + 1) = convhull(Ci (k), C̄ j (k))

= convhull(convhull(Ci (k − 1), C j (k − 1)),

C j (k) \ C j (k − 1))

= convhull(Ci (k), C j (k)),

where in the last equality we have accounted that all the

points that are not sent by robot j are already contained in

the convex hull at the previous step of robot i .

Now let Ni (k), k ≥ 0, be the set of robots that are reach-

able from robot i after k propagation steps. That is, for k = 1,

Ni (1) = Ni , whereas for k = 2, Ni (k) contains the neigh-

bors of robot i and the neighbors of its neighbors. In a second

step we show that

Ci (k) = convhull(pi , p j), j ∈ Ni (k), (9)

for all k ≥ 0. Clearly Eq. (9) is true for k = 0 and k = 1.

Assume that it is also true for some other k. Using Eq. (8),

Ci (k + 1) = convhull(Ci (k), C j (k)),

= convhull(pi , p j), j ∈ Ni (k) ∪ N j (k)

= convhull(pi , p j), j ∈ Ni (k + 1).

By induction, since the communication graph is assumed to

be connected, Ni (d) = I and Eq. (7) holds. ⊓⊔

We analyze now the communication cost of Algorithm 1.

Note that, in the worst case, where the convex hull contains

the positions of all the robots, our algorithm presents a com-

munication cost equal to that of flooding all the positions

to all the robots. Nevertheless, even in such case, there are

practical advantages of using this procedure instead of pure

flooding. Besides the likely savings in communications from

positions that are not relayed because they do not belong

to the convex hull, with our procedure there is no need for

a specific identification of which position corresponds to a

particular robot, making it better suited for pure broadcast

implementations.

Remark 1 (Unknown d) If the diameter, d, is unknown, the

consensus runs until convergence for all robots. Since only

new points are transmitted at each iteration, the convergence

of the algorithm can be detected using a timeout when no

new messages are received.

Remark 2 (Algorithm complexity) In terms of computational

demands, our algorithm requires the computation of d con-

vex hulls for each robot, instead of a single computation.

On the other hand, each convex hull computation will poten-

tially contain fewer points, and the information from previous

rounds could also be exploited for efficiency. Nevertheless,

existing algorithms to compute the convex hull of a set of

points are already fast enough not to consider the additional

computations an issue of the algorithm.

3.2 Preferred direction of motion

The next step of the algorithm consists in computing the

direction in which the team of robots needs to move. Denote

by g ∈ R
3 the goal position for the robot formation and con-

sider it known by all robots. A priori the preferred direction

of motion, θ∗ ∈ R
3, for the team of robots is given by the

vector from c ∈ R
3, the centroid of C, to the goal position,

g ∈ R
3. Note that the centroid of the convex hull can be com-

puted by all the robots locally without the need of additional

information, as opposed to the centroid of the robots’ posi-

tions, which would require further information and possibly

123

1086 Autonomous Robots (2019) 43:1079–1100

asymptotic consensus methods. However, it may happen that

an obstacle is in the way of such direction, which might be

seen only by a subset of the robots. Thus, we introduce an

optional step in the algorithm in which the robots agree upon

the best direction to compute the goal formation.

Our algorithm considers a discrete set, Θ = {θ1, . . . , θκ },

containing κ different possible directions of motion. We

assume that a common orientation frame is available to all

the robots, with origin defined by the vector g − c. For each

θ ∈ Θ , each robot computes a utility value, ui : Θ → R
+,

that describes how good is that direction. The utility function

can be defined for example, as the distance to an obstacle in

that direction, based on the local perception of that robot.

Since different robots may have different utility values for

the same angle, the global utility of the angle is given by the

worst utility among all the robots, i.e.,

u(θ) = min
i∈I

ui (θ). (10)

Therefore, the objective for the team is to find the angle that

gives the best global utility,

θ∗ = arg max
θ∈Θ

u(θ) = arg max
θ∈Θ

min
i∈I

ui (θ). (11)

In order to compute θ∗ in a distributed fashion, each

robot handles a vector ui ∈ R
κ to compute the global

utility for all the angles in Θ . The vector is initialized as

ui (0) = [ui (θ1), . . . , ui (θκ)], i.e., initially each robot con-

siders that its own utility is the global utility. Then, all the

robots execute the following iterative rule,

ui (k + 1) = min
j∈Ni

(ui (k), u j (k)), (12)

where the minimum is taken component wise in the vectors.

This rule corresponds to κ distributed leader-election algo-

rithms run in parallel (Lynch 1997), which is a well known

algorithm that converges for all the robots to the minimum

of the initial conditions in d iterations. Therefore, once the

algorithm has converged, each robot knows the global utility

for all the angles and can locally select the maximum over

ui (d), which will correspond to θ∗. In case of a tie between

two directions, for simplicity we let the robots choose the one

with minimum index in Θ . The procedure is summarized in

Algorithm 2.

Remark 3 (Bandwidth reduction) Using the above rule, the

total bandwidth used in the network will be equal to κnd

units of information, obtained from d communication rounds,

each one of them requiring n robots to transmit a vector of

dimension κ . In order to reduce this quantity, at each commu-

nication round each robot only sends the components of the

vector that have changed after executing (12). The messages

Algorithm 2 Distributed Direction of Motion - Robot i

1: ui (0) = [ui (θ1), . . . , ui (θκ)]

2: for k = 0 . . . d − 1 do

3: Send ui (k) to all j ∈ Ni

4: Receive u j (k) from all j ∈ Ni

5: ui (k + 1) = min j∈Ni
(ui (k), u j (k)) component-wise

6: end for

7: θ∗ = arg max ui (d)

contain then segments of the vector, determined by the ini-

tial component, the length of the segment and the data. While

in the worst case the bandwidth usage of this methodology

raises to 3
2
κnd, we will show empirically that in practice this

approach brings substantial savings.

3.3 Obstacle-free convex region

Recall that, from Sect. 3.1, all robots have knowledge of

the convex hull C of the robots’ positions and from Sect. 3.2

they share a preferred direction of motion. With this common

information, but different obstacle maps due to the limited

field of view, each robot computes an obstacle-free convex

region embedded in position-time space, denoted Pi ⊂ R
3 ×

[0, τ]. If the step in Sect. 3.2 is omitted, the robots will use by

default the angle θ∗ defined by the vector g − c as preferred

direction.

To compute the convex regions Pi we follow our previous

work for centralized formation control (Alonso-Mora et al.

2017), which relies on the iterative optimization by Deits and

Tedrake (2014). Given a small initial ellipsoid in free space

we compute (1) the separating hyperplanes between the ellip-

soid and the obstacles and (2) the largest ellipsoid contained

in the resulting convex polytope. These two steps are formu-

lated as convex programs and are repeated iteratively until

convergence to a large convex region in free space and as

long as a set of points are contained in the convex region.

The initial ellipsoid can be generated by two points biasing

the growth of the convex polytope. We note though that the

distributed formation control method described in this paper

is agnostic to the underlaying algorithm to compute convex

polytopes in free space.

For each robot i we can consider two polytopes, see Fig. 5,

where each polytope is computed with the aforementioned

procedure. These are:

– PC
i , a convex polytope that contains the convex hull C of

the robot positions, is computed towards a point χ = c+

θ∗τ in the preferred direction of motion, and is embedded

in the free position-time space as seen by the robot. This

polytopePC
i = P

χ×τ

C×0
(F̄i (t0))verifies that C×0 ⊂ PC

i ⊂

F̄i (t0).

123

Autonomous Robots (2019) 43:1079–1100 1087

Fig. 5 Eight drones in formation and one static obstacle (black). The

preferred direction of motion θ is shown with an arrow from the centroid

c of the convex hull C of the robot positions. The convex region PC
i ,

which contains all the robots, is shown on the left (green sides), and

the convex region Pc
i , which contains the centroid c, is shown on the

bottom (blue sides) (Color figure online)

– Pc
i , a convex polytope that, in contrast to PC

i , only con-

tains the centroid c of the convex hull. This polytope

Pc
i = P

χ×τ

c×0 (F̄i (t0)) verifies that c × 0 ⊂ Pc
i ⊂ F̄i (t0).

We then define Pi as the intersection of both polytopes,

i.e., Pi = PC
i

⋂

Pc
i . The former polytope (thanks to its con-

vexity) guarantees that the robots can move towards the target

configuration following collision-free trajectories. The latter

polytope guides the team towards the goal.

However, due to the local visibility of the robots, some of

these regions may intersect some obstacles that a particular

robot has not seen. Additionally, these regions might not be

equal for all robots, which, if used without further agreement,

would lead to different target formations. Thus, the robots

need to agree upon a common region that is globally free

of obstacles. For that purpose, we next propose a distributed

algorithm that computes the intersection of all the regions,

P =
⋂

i∈I Pi .

As in Algorithm 1, each robot handles a local estimation

of the region of interest. We denote Pi (k) the region of robot

i at iteration k. This region is initialized with the value pro-

vided by the local optimizer, Pi (0) = Pi . At each iteration

the individual regions are shrunk by computing local inter-

sections with the regions received from the neighbors in the

communication graph. The algorithm finishes after d itera-

tions, as shown in Algorithm 3.

Algorithm 3 Distributed Obstacle-Free Region - Robot i

1: Pi (0) = Pi

2: for k = 0 . . . d − 1 do

3: Send Pi (k) to all j ∈ Ni

4: Receive P j (k) from all j ∈ Ni

5: Pi (k + 1) = Pi (k) ∩ P j (k)

6: end for

Proposition 2 When executing Algorithm 3 the regions of all

the robots converge to a common region, equal to the intersec-

tion of the initial regions, in no more than d communication

rounds. That is,

Pi (d) = P =
⋂

j∈I

P j (0), ∀i ∈ I. (13)

Proof Similarly to the proof of Proposition 1, we let Ni (k),

k ≥ 0, be the set of robots that are reachable from robot i

after k propagation steps. We show by induction that

Pi (k) =
⋂

j∈Ni (k)

P j , (14)

for all k ≥ 0. Clearly Eq. (14) is true for k = 0 and k = 1.

Assuming that it is also true for some k, using the associative

and distributive properties of the intersection with respect to

the intersection it is straightforward to show that it also holds

for k+1. Therefore, by the connectedness of G, Eq. (13) holds

for k = d. ⊓⊔

To compute the intersections, we rely on a representation

of the obstacle-free convex polytope P given by its equivalent

set of linear constraints

P = {x ∈ R
4|Ax ≤ b, for A ∈ R

nl×4, b ∈ R
nl }, (15)

where nl denotes the number of faces of P . This leads to

messages of size equal to nl × 4.

Let us note that any face that belongs to both Pi (k) and

Pi (k + 1) will yield the same linear constraints in both poly-

topes. This implies that, similarly to Algorithm 1, robots do

not need to send all the constraints at each communication

round, but only those that are new, and consequently more

restrictive than in the previous round. In particular, robots

send at each communication round the new linear constraints

that have appeared after computing the intersection in Line 5

of Algorithm 3, instead of all the linear constraints at each

round, as we originally considered in Alonso-Mora et al.

(2016). This modification leads to substantial communica-

tion savings in the Algorithm, specially when compared to

a pure flooding approach. In addition, it allows us to define

a solid stop criterion for the algorithm in case of unknown

value of d, as in the case of Remark 1.

Proposition 3 The resulting convex region P is a convex

polytope.

Proof The intersection of convex regions is also convex. ⊓⊔

Proposition 4 The resulting convex region P does not inter-

sect with any obstacle seen by the robots in the team for

the time period [t0, t1], i.e., it is fully contained in the free

position-time space.

123

1088 Autonomous Robots (2019) 43:1079–1100

Proof For each robot i , its individual convex region Pi (0) is

fully contained in its observed free position-time space by

construction, i.e., Pi (0) ⊂ F̄i (t0).

In each consensus round, the new polytope is given by

the intersection of the previous polytope with the received

ones, therefore Pi (k + 1) ⊂ Pi (k). This implies that, after

convergence, P = Pi (d) ⊂ Pi (0).

From these two set inclusions we then have that P ⊂

Pi (0) ⊂ F̄i (t0) for all robot i . Therefore, the following holds

true

P ⊂
⋂

i∈I

F̄i (t0) = R
3 × [0, τ] \

⋃

i∈I

Ôi (t0). (16)

Which guarantees that the convex region P does not inter-

sect any obstacle within the time horizon. ⊓⊔

If P = ∅, an alternative convex region Pi can be selected

by each robot as described by Alonso-Mora et al. (2017)—

Sect. III-C, and consensus on the intersection is repeated.

3.4 Optimal formation

Given the convex set P , and recalling Sect. 2.2, each robot i

then computes the configuration state z∗ of a locally optimal

formation for the team. For a template formation f ∈ I f

the optimal configuration state z∗
f is found by solving the

non-linear optimization

z∗
f = arg min

z
J f (z)

s.t . V(z, f) × t1 ⊂ P (collision-free)

s ≥ 2 max(r ,h)
d f

(minimum size)

(17)

where J f (z) is a cost function penalizing the weighted devi-

ation to the goal g, to a preferred size s̄ and to a preferred

orientation q̄. The first constraints impose that all vertices are

within the convex region P . The second constraint imposes

that no two robots within the formation are in collision.

Recalling that z = [t, s, q], we employ the cost function

J f (z) = wt ||t − g(t1)||
2 + ws ||s − s̄||2

+wq ||q − q̄||2 + c f , (18)

where wt , ws , wq are design weights, and c f is the predefined

cost for formation type f ∈ I f .

This constrained optimization was first introduced by

Alonso-Mora et al. (2017) and can be solved with state of

the art Sequential Convex Programming solvers. We employ

the non-linear solver SNOPT by Gill et al. (2002). If multi-

ple template formations exist, the best one f ∗ is obtained by

solving m constrained optimizations. Thanks to the previous

consensus rounds, all robots execute this optimization with

the same parameters (the template formations are known by

all robots and the convex region P was agreed in the consen-

sus round). Therefore, even when the optimization is solved

individually by each robot, we assume that they all obtain the

same values for the target formation.

3.5 Robot assignment to positions in the formation

The result of the computation of Sect. 3.4 is a target formation

f ∗ and configuration state z∗, from which its associated set of

target robot positions {r1
∗, . . . , rn

∗} can be computed from

Eq. (4).

Robots are assigned to the goal positions with the objective

of minimizing the sum of squared travelled distances, i.e.,

find the permutation matrix, X : I → I, minimizer of

min
X

∑

i∈I

∑

j∈I

xi j ||pi − r∗
j ||

2. (19)

There exist several distributed algorithms based on local

interactions that are able to find the optimal solution to the

above linear program, such as the distributed simplex pro-

posed by Burger et al. (2012). The algorithm has a bounded

communication cost per iteration and proven finite-time ter-

mination.

Proposition 5 The robots can transition to their assigned

positions in the target formation with collision-free paths.

Proof Under the assumption of holonomic motion model, the

proposition is guaranteed if, for every robot, the straight line

from the current position to the assigned position is collision

free within the position-time space.

Recall Sect. 3.3 and let us denote by PC the intersection

PC =
⋂

i∈I PC
i , which contains the convex hull of robot

positions, i.e., C ⊂ PC , and the consensus polytope P , i.e,

P ⊂ PC , by construction. It also does not intersect any of

the seen obstacles, i.e., PC ⊂
⋂

i∈I F̄i (t0).

From Sect. 3.3, we have that the current robot position pi is

inside the convex region PC , since pi ×0 ∈ C×0 ⊂ PC . Fur-

thermore, the optimization problem of Eq. (17) guarantees

that the target position r∗
σ(i) is within the same convex region,

since r∗
σ(i) × τ ∈ P ⊂ PC . Therefore, the path from the cur-

rent position to the target position is within a convex polytope

PC which does not intersect any of the seen obstacles. ⊓⊔

3.6 Real-time control

Consider r∗
i to be the target position assigned to robot i , which

is updated as soon as a new target formation is computed. In

a high frequency control loop each robot individually nav-

igates towards its target position avoiding collisions with

static obstacles, moving obstacles and other robots locally.

For this we compute a collision-free local motion via a state

of the art receding horizon controller which accounts for the

123

Autonomous Robots (2019) 43:1079–1100 1089

5 16 64 256 1024

Number of robots

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
%

 o
f
d

a
ta

 s
e

n
t

c
o

m
p

a
re

d
 t
o

 f
lo

o
d

in
g

Com Rad 1m

Com Rad 2m

Com Rad 5m

Com Rad 10m

5 16 64 256 1024

Number of robots

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 o

f
d

a
ta

 s
e

n
t

c
o

m
p

a
re

d
 t
o

 f
lo

o
d

in
g

Com Rad 1m

Com Rad 2m

Com Rad 5m

Com Rad 10m

5 16 64 256 1024

Number of robots

0

0.2

0.4

0.6

0.8

1

%
 o

f
d

a
ta

 s
e

n
t

c
o

m
p

a
re

d
 t
o

 f
lo

o
d

in
g

Com Rad 1m

Com Rad 2m

Com Rad 5m

Com Rad 10m

(a) (b) (c)

Fig. 6 Communication cost of Algorithm 1 (Distributed Convex Hull)

(a), Algorithm 2 (Distributed Direction of Motion) (b) and Algorithm 3

(Distributed Obstacle-Free Region) (c) relative to flooding. The plots

show the mean and standard deviation over 100 trials for different num-

bers of robots and communication radii. In the majority of cases the

three algorithms require less bandwidth than pure flooding in the same

number of communication rounds and present a good scalability with

the number of robots

dynamical model of the robot. Two suitable methods are the

distributed reciprocal velocity obstacles with motion con-

straints for aerial vehicles by Alonso-Mora et al. (2015b)

and the receding horizon controller by Nägeli et al. (2017a).

4 Simulation results

4.1 Performance of the consensus strategies

In this section we present simulation results using Monte

Carlo experiments to analyze the distributed Algorithms 1, 2

and 3. In particular, we are interested in comparing the

communication demands of our algorithms with a solution

consisting on flooding the information of all the robots to the

whole network, i.e., a centralized solution under the assump-

tion of limited communication. Since the final solution and

the number of communication rounds are equivalent to those

of the centralized solution, we do not analyze these parame-

ters in the simulation.

4.1.1 Convex hull

In Algorithm 1 we considered different group sizes, from n =

5 to n = 1024 robots. For each value of n we have considered

100 different initial conditions, where the robots have been

randomly placed in a 3 dimensional space, with minimum

inter-robot distance equal to 0.5 m, forcing the connectedness

of the communication graph for a communication radius of

one meter. Then, for each configuration we have considered

four different communication radii, C R = {1, 2, 5, 10} and

we have run the algorithm.

The amount of information exchanged over the network,

relative to the amount required when using flooding, is shown

in Fig. 6a. The plot shows the mean and standard deviation

over the 100 trials for each scenario. First of all, it should be

noted that the total bandwidth requirements over the network

will actually increment as we increase the number of robots,

because the number of communication rounds and possibly

the size of the convex hull will increase accordingly. Thus,

the objective of the plots is not to analyze the total bandwidth

but to compare how much better (or worse) is one solution

relative to the other, understanding that there might be other

limitations for the algorithms depending on the size of the

network and its configuration. With this in mind, the first

observation is that in all the cases our algorithm requires

less communication than pure flooding of all the positions

because the relative cost is always less than one. The algo-

rithm also shows the scalability with the number of robots.

As n increases, the amount of positions that do not belong to

the convex hull is also increased, resulting in fewer informa-

tion exchanges for any communication radius. In a similar

fashion, by increasing the communication radius, the relative

communication cost is also decreased. This happens because

at each communication round, the robots are able to discard

more points from their local convex hull estimations, since

they have information from more neighbors available. Over-

all, taking into account that the number of communication

rounds of our algorithm is the same as the one for flooding,

we conclude that our distributed solution is always a better

choice.

4.1.2 Direction of movement

We have also analyzed Algorithm 2 (Distributed Direction of

Motion) using the same simulation parameters, i.e., 100 tri-

als for each different number of robots and communication

123

1090 Autonomous Robots (2019) 43:1079–1100

radii. We have measured the relative cost to a pure flood-

ing algorithm for vectors with κ = 100 utilities, using the

implementation described in Remark 3. The results of this

experiment are depicted in Fig. 6b, where we can observe

that for this particular algorithm our solution is by large

more efficient than flooding. As in the convex hull, the algo-

rithm also performs better for densely connected networks

and large values of n. We have also analyzed the influence

of the size of κ , observing that the relative cost, compared

to flooding, was basically the same for the different sizes.

Therefore, since this parameter can be chosen arbitrarily, the

design choice should be made according to the capacity of

the network to find a good balance between the degree of

accuracy in the orientation of the direction and the absolute

bandwidth requirements.

4.1.3 Intersection of convex regions

Finally, in order to analyze Algorithm 3 we have considered

again the same number of robots and communication radii,

as well as 100 random initial configurations for each pair of

values. The initial regions Pi have been created using the

following procedure: first we have created a random poly-

tope composed by 20 three dimensional vertices. Then, for

each robot we have randomly changed 5% of the vertices

and included perturbations on another 15% of the vertices.

These parameters have been designed taking into account the

properties of the polytopes obtained in the full simulations

containing real obstacles described in Sect. 4.2. The results

of these experiments are depicted in Fig. 6c.

The plot shows a similar behavior to the one in Fig. 6a, with

decreasing bandwidth requirements, relative to a flooding

procedure, as n and the communication radius are increased.

Only for small teams of robots, some executions of the algo-

rithm will require the exchange of more information than

flooding. This happens because for the flooding we send

the 3-dimensional vertices of the associated obstacle-free

polytope instead of the 4-dimensional constraints to reduce

the bandwidth. When n is small, the savings from send-

ing the new constraints at each iteration are not enough to

compensate the increase in the dimension of the informa-

tion exchanged, given that d ≃ n. Nevertheless, in the rest

of cases our algorithm outperforms this algorithm to levels

where we only require to send a small fraction of the infor-

mation. Considering the extra routing control mechanisms

that flooding would require make our solution a much better

choice. Besides, the solution sending only the new constraints

improves over our original approach in Alonso-Mora et al.

(2016), where on average for small teams the cost of our

algorithm was much bigger.

In summary, our algorithms require in (almost) all cases

less bandwidth than equivalent flooding approaches using the

same number of communication rounds. However, it should

be noted that the number of communication rounds of these

algorithms will increase with the diameter of the network,

which will also grow with the number of robots. Neverthe-

less, even if the number of rounds increases with n, the size of

the messages will remain more or less constant for arbitrarily

large numbers of robots. The reason for this is that, while the

number of robots can grow, the number of points that define

the convex hull (or similarly the direction of motion and the

points in the obstacle free region) will remain approximately

constant.

4.2 Multi-drone formation control

We present simulations with teams of quadrotor MAVs,

where we employ the same nonlinear dynamical model and

LQR controller employed by Alonso-Mora et al. (2015b),

which was verified with real quadrotors. We use SNOPT by

Gill et al. (2002) to solve the non-linear program, a goal-

directed version of IRIS by Deits and Tedrake (2014) to

compute large convex regions and the Drake toolbox from

MIT1 to handle quaternions, constraints and interface with

SNOPT.

In our simulations a time horizon τ = 4 s is considered for

the experiments with 4 robots and of τ = 10 s for the exper-

iments with 16 robots, due to the large size of the formation

and the scenario. In all cases a new formation is computed

every 2 s. The individual collision avoidance planners run at

5 Hz and the quadrotors have a preferred speed of 1.5 m/s.

Both the visibility distance and the communication radius

are set to 3 m and sensing and actuation noise are neglected.

We test the distributed algorithm described in this paper

in two scenarios previously introduced in Alonso-Mora et al.

(2017) for the centralized case. This provides a direct com-

parison and evaluation.

4.2.1 Four robots

Figure 7 shows snapshots and trajectories of four quadro-

tors tracking a circular trajectory while locally avoiding three

static obstacles and a dynamic obstacle. Three default forma-

tions are considered: square (1st preference), diamond (2nd

preference) and line. The optimal parameters are computed

with the distributed consensus algorithm and non-linear opti-

mizaiton, allowing rotation in 3D (flat horizontal orientation

preferred) and reconfiguration.

The four quadrotors start from the horizontal square and

slightly tilt it (11 s) to avoid the incoming dynamic obstacle.

To fully clear it while avoiding the obstacle in the lower cor-

ner, they shortly switch to a vertical line, and then back to the

preferred square formation (20 s). To pass through the next

narrow opening they switch back to the line formation (30

1 http://drake.mit.edu.

123

http://drake.mit.edu

Autonomous Robots (2019) 43:1079–1100 1091

Fig. 7 Four quadrotors (green-blue) navigate in a 12 × 12 × 6 m3 sce-

nario with three static obstacles (grey) and a dynamic obstacle (yellow).

The four quadrotors track a circular motion around the central obsta-

cle and locally reconfigure the formation to avoid collisions and make

progress. a Side view. From left to right, snapshots at 11, 20, 30 and 45

s, and paths of the robots in-between. b Top view. From left to right,

snapshots at 11, 20, 30 and 45 s, and paths of the robots in-between. c

Projection (red) of the convex obstacle-free polytope P onto the 2D top

view at approximately the same time instances of the snapshots. The

projection can overlap with obstacles that are not in the field of view of

the robots. The projection of the optimized formation is shown in green

and the convex hull C of the robot positions at the time of computation

with blue stars (recall that the optimized formation is only recomputed

every 2 s). In two frames the projection of the optimized formation has

negligible size and is shown by a line (Color figure online)

s). Once the obstacles are cleared they return to the preferred

horizontal square formation (45 s).

4.2.2 Sixteen robots

Figure 8 shows the paths of 16 quadrotors moving along a

corridor of three different widths. Three default formations

are considered: 4×4×1 defined by four vertices (preferred),

4 × 2 × 2 defined by eight vertices and 8 × 2 × 1 defined

by four vertices. At each time step the method computes the

optimal parameters for each of the three and selects the one

with lowest cost upon them. Between times 75 and 110 s the

method successfully rotates the formation by 90◦ to avoid

collisions (the default formations were horizontal, which is

also preferred in the cost function).

5 Experimental results

In this section we describe experimental results with a team

of four quadrotors.

5.1 Implementation details

Our experiments are conducted with two standard lap-

tops (Quadcore Intel i7 CPU@2.8 GHz). The person and

drones are tracked with a external motion capture system

that provides precise position information at a high update

rate and move in an environment of approximately 4m (W)

× 5m (L) × 3m (H). In order to guarantee connectedness of

the communication graph, the communication radius of the

drones is simulated at 3 m. The visibility has also been set at

3m, looking for a compromise between safety and allowing

different perceptions of the environment. The physical diam-

123

1092 Autonomous Robots (2019) 43:1079–1100

Fig. 8 Sixteen quadrotors navigate along a 100 × 10 × 10 m3 corridor,

with obstacles shown in grey (top view). The quadrotors locally adapt

the formation to remain collision free. The robots start in the preferred

horizontal 4 × 4 × 1 formation and tilt it to vertical, to pass trough

the narrow corridors. In the wider middle region they transform to a

4 × 2 × 2 formation, which has lower cost than the vertical 4 × 4 × 1.

They finally transition towards 4 × 4 × 1. a Top view (X–Y) with robot

paths. Sixteen simulated quadrotors move from left to right. b Side view

(X–Z) with robot paths. Sixteen simulated quadrotors move from left

to right

Fig. 9 Histogram of computation time of the distributed formation con-

trol approach, for a sequential implementation in Matlab, with all the

data from the drone experiments

eter of each drone is, approximately, 0.3 m. When computing

the configuration of the formation, we impose a minimum

distance of 1 m between drones, to avoid collisions and aero-

dynamic disturbances.

In one laptop we receive the current state of the drones and

obstacles and execute the method of this paper. In particular,

we compute convex obstacle-free regions, perform the con-

sensus rounds, optimize the configuration of the formation

and compute the goal position for each robot in that for-

mation. These computations are performed in a continuous

manner, as soon as one execution is finished, we recompute.

The computations are performed in Matlab and the commu-

nication is handled with ROS. In practice, we observe some

variability in the computation time, with the median at 0.35 s.

See Fig. 9 for a histogram of the computation time over all

experiments. We observe that many instances took in the

order of 0.25 s, with a large number of them below 0.5 s,

and most of them below 1 s. Very few instances took longer

than 1 s. These are due to longer computational time in the

optimization and search for convex regions, for which we

did not set strict real-time bounds. Furthermore, our current

implementation is sequential, with several for-loops over all

robots, and thus a parallelized implementation may reduce

the computation time.

In the second laptop, we receive the current state of the

drones and obstacles at a high frequency and send input com-

mands to the drones. We also receive the target positions for

the drones, computed in the first laptop. This laptop con-

trols the position of the drones at a high, and approximately

constant, frequency of 20 Hz. We implement a slightly mod-

ified version of the Model Predictive Controller introduced

by Nägeli et al. (2017a) and extended to multiple drones by

Nägeli et al. (2017b), where we remove all the cost terms for

videography. This controller minimizes the deviation from

the assigned position of the drone in the formation, sub-

ject to collision avoidance, state and input constraints. We

run a controller for each drone and exchange the planned

trajectories sequentially. We employ a horizon of M = 20

steps, at 0.05 s each, and we solve the MPC problem with

FORCES Pro (Domahidi et al. 2012; Domahidi and Jerez

2016), which generates fast solver code, exploiting the spe-

cial structure in the NLP problem. MPC methods have also

been employed with onboard sensing of obstacles, for exam-

ple by Odelga et al. (2016).

5.2 Quadrotor hardware

We use unmodified Parrot Bebop2 quadrotors in all our

experiments. The communication between the drones and

the host PC is handled via ROS (Quigley et al. 2009) and we

directly send the control inputs from the first time step, with-

out an additional feedback controller for trajectory tracking

on the drone.

The state of the quadrotor is given by its position p ∈ R
3,

its velocity ṗ = [ṗx,y, ṗqz] ∈ R
3 and its orientation, i.e. roll

Φq , pitch Θq and yaw ψq .

123

Autonomous Robots (2019) 43:1079–1100 1093

Fig. 10 Histograms with robot–robot and robot–human distance from

cumulated data of all 20 experiments. Although the planned formations

maintained the desired separation of one meter between drones, in a

few instances the drones got closer due to their dynamics and uncer-

tainties, see Sect. 5.3 for a discussion. The robots always maintained a

separation of over one meter with the moving human. a Planned inter-

drone distance. b Measured inter-drone distance. c Distance to moving

obstacle

The control inputs to the system are: the velocity of the

quadrotor in the body-z axis vz = ṗqz , the desired roll angle

φq and the desired pitch angle θq for the quadrotor and its

angular speed around the body-z axis ωqz . The horizontal

velocities are not directly controlled.

The NMPC by Nägeli et al. (2017b) accounts for the inter-

nal constraints of the Parrot Bebop 2 (e.g., maximal vertical

and horizontal velocities, maximal roll and pitch angles). The

limits are described in the documentation of the Parrot SDK.2

5.3 Results

We have performed a total of twenty experiments, all of them

with one moving obstacle (walking and running) and three

to four drones. In each experiment the robots are tasked with

either maintaining the centroid of the formation as close as

possible to the center of the room or with tracking a circu-

lar, constant velocity motion. For the experiments with three

drones we consider both a line and a triangle formation. For

the experiments with four drones we consider both a line and

a square formation. In all cases, the preferred size of the for-

mation is set to 1.5 m between consecutive robots (side of

the triangle and square), and its minimum size is set to 1 m

between robots.

In Fig. 10 we show three histograms with cumulated data

over all twenty experiments, for a total of about half an hour

of flight time. In Fig. 10a we cumulate the distance between

the planned position of all drones in the formation, i.e. their

goal positions as computed by the method of this paper. We

observe two distinct peaks, one at 1.5 m, the preferred inter-

robot distance, and one at 2.1 m, the diagonal in the square

formation. The variability in distance is due to the method

adjusting the size of the formation to avoid collisions, while

maintaining a minimum distance of 1 m between robots.

2 http://developer.parrot.com/.

In Fig. 10b we cumulate the distance between all drones

during the experiments. Again, we observe the two distinct

peaks at the planned 1.5 and 2.1 m. Yet, we also observe a

much larger variability in the inter-robot distance. In most

instances, the drones maintain a separation greater than 1

m, as planned by the formation control module. In a few

instances, two drones were between the planned separation

of 1 m and the collision distance of 0.5 m. In extremely

few instances, the separation between two drones was below

0.5 m and a collision could occur, but did not happen in

our experiments. These instances occurred in cases where

the human is running, the drones are pushed towards the

walls of the room and have to fly over in a narrow space and

short period of time in order to avoid a collision. Recalling

our system architecture, see Sect. 5.1, we note that the set-

point tracking is the responsibility of the low-level collision

avoidance, which in our implementation was a sequential

non-linear model predictive controller (NMPC). The reduc-

tion of inter-drone distance, below the predefined setpoint,

was due to several factors: (a) the drone dynamics were not

perfectly identified in the model employed, (b) delays in the

control and communication framework were not modeled, (c)

higher weight was given to drone–human collision avoidance

than to drone–drone collision avoidance, and (d) slack vari-

ables were used in the NMPC optimization framework. We

recall that the contribution of this paper is the formation con-

trol method—which generated collision-free setpoints for the

drones—and not the low level single-drone controller.

Finally, in Fig. 10c we cumulate the distance between each

drone and the moving human. In all instances a minimum sep-

aration of 1 m was achieved and therefore collision with the

human were avoided. The approach successfully adapted the

configuration of the formation to avoid the moving human,

whose motion ranged from walking to running.

123

http://developer.parrot.com/

1094 Autonomous Robots (2019) 43:1079–1100

Fig. 11 Four drones navigate in a square planar formation (drones are

circled in red). The formation is allowed to change its position and rotate

around the vertical axis to avoid the moving person and the walls of the

room. The team of robots minimizes the deviation between its centroid

and the center of the room (blue hexagon). We show a slightly tilted top

view. a Preferred formation at goal position. b Avoidance to the side. c

Avoidance over the person (Color figure online)

We now present experimental results for four distinct sce-

narios. In each scenario we describe a distinct capability of

the method. A video illustrating the results accompanies this

paper and can be found at https://youtu.be/khzM54Qk1QQ.

5.3.1 Single planar formation and static setpoint

In this first scenario four drones navigate in a square planar

formation. The team of robots is allowed to change the posi-

tion of the centroid of the formation and the orientation of

the formation around the vertical axis, in order to avoid the

moving person and the walls of the room. The team of robots

minimizes the deviation between its centroid and the center

of the room. We show three representative frames in Fig. 11.

The left one shows the team of robots at their preferred posi-

tion and orientation (squared formation in the center of the

room). In the middle image the team of robots moves to the

side to let the person pass. In the right image the team of

robots flies up to let the person pass below. The approach

showed good performance.

5.3.2 Single planar formation andmoving setpoint

In this second scenario four drones navigate in the square

planar formation of the previous experiment. As before, the

formation is allowed to change its position and rotate around

the vertical axis to avoid the moving person and the walls

of the room. In this scenario, the centroid of the team of

robots tracks a circular trajectory of radius 2 m and speed 0.3

m/s while avoiding the moving person. In four representa-

tive frames, see Fig. 12, we show a full avoidance maneuver

where the team of robots lifts to avoid the person and then

continues tracking the specified trajectory.

5.3.3 Single formation (with free 3D rotation) and static

setpoint

In this third scenario four drones navigate again in the

square formation, which can now rotate freely in 3D to avoid

the moving person and the walls of the room. The team of

robots minimizes the deviation between its centroid and the

center of the room and tilts the formation to avoid the human.

In Fig. 13 we show the robots at their preferred position and

orientation and three examples of the team of robots tilting

the formation to avoid the moving person. In these set of

experiments we observed that while the method successfully

computes tilted configurations for the team of robots, which

are safe, their execution was not always robust due to the

turbulences created by the drones and their height sensors

(sonar), which produced interferences between the drones

when they were very near.

5.3.4 Multiple formations andmoving setpoint

In the fourth scenario three drones navigate in a triangle

formation and can reconfigure to a line formation if advanta-

geous. The team of robots optimizes (a) the formation type

(triangle -preferred- or line), (b) the centroid of the formation

and (c) the orientation around the vertical axis. This is done

to avoid the moving person and the walls of the room and to

let the centroid of the team of robots track a circular trajec-

tory of radius 2 m and speed 0.5 m/s. In Fig. 14 we show two

sequences of three images each. The three drones are first

shown in their preferred formation type (triangle) tracking

the circular motion (Fig. 14a). When the person traps them

against a side, they have to switch to a line formation (Fig.

14b), which then goes up to fly over the person (Fig. 14c),

before returning the preferred triangle formation once the

area is clear (Fig. 14d). If the person runs towards the drones,

123

https://youtu.be/khzM54Qk1QQ

Autonomous Robots (2019) 43:1079–1100 1095

Fig. 12 Four drones navigate in a square planar formation (drones are

circled in red). The formation is allowed to change its position and rotate

around the vertical axis to avoid the moving person and the walls of the

room. The centroid of the team of robots tracks a circular trajectory

(blue dashed line) of radius 2 m. We show a slightly tilted top view. a

The team moves right towards the person. b The team slightly rotates

in the plane to avoid the person. c The team backs-up and flies over the

person. d The team continues tracking the circular motion (Color figure

online)

Fig. 13 Four drones navigate in a square formation. The team of robots

is allowed to change its position and 3D orientation freely to avoid the

moving person and the walls of the room. The team of robots mini-

mizes the deviation between its centroid and the center of the room

(blue hexagon) and tilts the formation to avoid the human. We show a

side view. a Preferred formation at goal position. b The team tilts the

formation to avoid the person. c The team tilts the formation to avoid

the person. d The team tilts the formation to avoid the person (Color

figure online)

123

1096 Autonomous Robots (2019) 43:1079–1100

Fig. 14 Three drones navigate in a triangle formation and can reconfig-

ure to a line formation if advantageous (drones are circled in red). The

team of robots optimizes the a the formation type (triangle- preferred-

or line), b the centroid of the formation and c the orientation around the

vertical axis. This is done to avoid the moving person and the walls of

the room and to let the centroid of the team of robots track a circular

trajectory (blue dashed line) of radius 2 m and speed 0.5 m/s. We show

a slightly tilted top view. a Preferred triangle formation. b Switches to

line to avoid person. c Team flies over the person. d The team returns

to the triangle formation. e The team flies up to avoid the person. f The

team flies up to avoid the person (Color figure online)

123

Autonomous Robots (2019) 43:1079–1100 1097

and they have enough room, they may quickly go up to pass

over the person (Fig. 14e) and continue tracking the circular

trajectory (Fig. 14f).

5.3.5 Discussion on limitations

In multiple experiments we have observed the following.

The approach is safe under predictable movement of the

human. If the human walks in the environment or runs with

constant speed, the formation control method updates the

parameters of the formation to successfully avoid the mov-

ing person. If the human makes abrupt changes in speed while

running, then the formation control method can result in an

unfeasible optimization due to the constant velocity assump-

tion and the computation delay. If this happens, the individual

low level controllers, based on NMPC, avoid collisions with

the moving person and the formation is recovered as soon as

the optimization becomes feasible again, typically in below

a second.

Although the median computation time of the approach

was 0.35 s, several instances took over one second to com-

pute, see Fig. 9 and Sect. 5.1 for a discussion. This delay was

noticeable at high obstacle speeds. A faster and bounded

update rate is desirable for more fluid performance and

shorter reaction times.

Higher robustness is achieved when in the cost function

of the optimization, Eq. (18), we set a lower weight for ver-

tical deviations from the setpoint than for deviations in the

horizontal plane. In this way we give preference to avoiding

the human by lifting the formation, rather than a sideways

avoidance. This helps in avoiding situations where the robots

are trapped against a wall and they have to quickly fly up to

avoid the collision with the moving human.

The formation control method takes polytopes as obsta-

cles. The volume occupied by the human was enclosed by

a convex polytope. We chose an hexagonal prism with the

sides slightly tilted, i.e. the upper face was slightly smaller

than the lower face. This serves two purposes: (a) it provides

larger clearance around the body of the person and the legs

and (b) it helps in biasing the free-space convex polytope to

have more clearance as height increases.

Overall, the approach performed very well and was able to

safely adapt the configuration of the formation in real time.

6 Conclusion

In this paper we considered a team of networked robots in

which each robot only communicates with its neighbors. We

showed that navigation of distributed teams of robots in for-

mation among static and dynamic obstacles can be achieved

via a constrained non-linear optimization combined with

consensus. The robots first compute an obstacle-free convex

region and then optimize the formation parameters. In partic-

ular, non-convex environments can be handled. Thanks to the

consensus on convex obstacle-free regions, the robots do not

need to exchange the position of all the obstacles. Instead they

compute, and exchange, the joint free space. This approach

may present lower computational cost, specially in scenarios

with many obstacles, and requires substantially fewer com-

munication messages than flooding for consensus.

In simulations with up to sixteen drones, and in experi-

ments with up to four drones, we showed successful navi-

gation in formation. The robots were able to reconfigure the

formation when required, in order to avoid collisions with

static and moving obstacles, and to make progress. Last, but

not least, the approach is general and could be adapted to

other formation definitions and applications, such as collab-

orative transportation with mobile manipulations, as long as

the formation can be defined by a set of equations that deter-

mine the outer vertices and position of the robots.

Since the approach is local, deadlocks may still occur. Yet,

the consensus round on the best direction of motion could be

extended to account for global planning performed by the

individual robots. Another avenue of future work is splitting

and merging into smaller and larger subteams, which also

navigate in formation. Future works should also look at the

integration of planning and sensing in real environments and

at joint low-level and high-level planning.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

References

Alonso-Mora, J., Knepper, R. A., Siegwart, R., & Rus, D. (2015a).

Local motion planning for collaborative multi-robot manipula-

tion of deformable objects. In: IEEE international conference on

robotics and automation.

Alonso-Mora, J., Montijano, E., Schwager, M., & Rus, D. (2016). Dis-

tributed multi-robot navigation in formation among obstacles: A

geometric and optimization approach with consensus. In IEEE

international conference on robotics and automation.

Alonso-Mora, J., Baker, S., & Rus, D. (2017). Multi-robot forma-

tion control and object transport in dynamic environments via

constrained optimization. The International Journal of Robotics

Research, 36(9), 1000–1021.

Alonso-Mora, J., Nägeli, T., Siegwart, R., & Beardsley, P. (2015b).

Collision avoidance for aerial vehicles in multi-agent scenarios.

Autonomous Robots, 39(1), 101–121.

Augugliaro, F., Schoellig, A. P., & D’Andrea, R. (2012). Generation

of collision-free trajectories for a quadrocopter fleet: A sequential

convex programming approach. In: IEEE/RSJ international con-

ference on intelligent robots and systems.

Ayanian, N., & Kumar, V. (2010a). Abstractions and controllers for

groups of robots in environments with obstacles. In: IEEE inter-

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1098 Autonomous Robots (2019) 43:1079–1100

national conference on robotics and automation, Anchorage, AK

(pp. 3537–3542).

Ayanian, N., & Kumar, V. (2010b). Decentralized feedback controllers

for multi-agent teams in environments with obstacles. IEEE Trans-

actions on Robotics, 26(5), 878–887.

Balch, T., & Hybinette, M. (2000). Social potentials for scalable multi-

robot formations. In: IEEE international conference on robotics

and automation.

Balch, T., & Arkin, R. C. (1998). Behavior-based formation control for

multirobot teams. IEEE Transaction on Robotics and Automation,

14(6), 926–939.

Burger, M., Notarstefano, G., Allgower, F., & Bullo, F. (2012). A dis-

tributed simplex algorithm for degenerate linear programs and

multi-agent assignments. Automatica, 48(9), 2298–2304.

Chen, Y., Cutler, M., & How, J. P. (2015). Decoupled multiagent path

planning via incremental sequential convex programming. In IEEE

international conference on robotics and automation (ICRA).

Deits, R., & Tedrake, R. (2014). Computing large convex regions of

obstacle-free space through semidefinite programming. In Work-

shop on the algorithmic fundamentals of robotics.

Derenick, J., Spletzer, J., & Kumar, V.(2010). A semidefinite program-

ming framework for controlling multi-robot systems in dynamic

environments. In: IEEE conference on decision and control.

Derenick, J. C., & Spletzer, J. R. (2007). Convex optimization strategies

for coordinating large-scale robot formations. IEEE Transaction

on Robotics, 23, 1252–1259.

Desai, J. P., Ostrowski, J. P., & Kumar, V. (2001). Modeling and control

of formations of nonholonomic mobile robots. IEEE Transaction

on Robotics and Automation, 17(6), 905–908.

Domahidi, A., & Jerez, J. (2016). FORCES Pro: Code generation for

embedded optimization. https://www.embotech.com/FORCES-

Pro.

Domahidi, A., Zgraggen, A. U., Zeilinger, M. N., Morari, M., & Jones,

C. N. (2012). Efficient interior point methods for multistage prob-

lems arising in receding horizon control. In: 47th IEEE conference

on decision and control, 2008. CDC 2008 (pp. 668–674). IEEE.

Dong, X., Yu, B., Shi, Z., & Zhong, Y. (2015). Time-varying formation

control for unmanned aerial vehicles: Theories and applications.

IEEE Transactions on Control Systems Technology, 23(1), 340–

348.

Erdmann, M., & Lozano-Perez, T. (1987). On multiple moving objects.

Algorithmica, 2, 477–521.

Franchi, A., Masone, C., Grabe, V., Ryll, M., Bulfhoff, H. H., &

Giordano, P. R. (2012). Modeling and control of UAV bearing for-

mations with bilateral high-level steering. International Journal of

Robotics Research, 31, 1504–1525.

Gill, P. E., Murray, W., & Saunders, M. A. (2002). SNOPT: An SQP

algorithm for large-scale constrained optimization. SIAM Journal

on Optimization, 12(4), 979–1006.

Hatanaka, T., Igarashi, Y., Fujita, M., & Spong, M. W. (2012).

Passivity-based pose synchronization in three dimensions. IEEE

Transactions on Automatic Control, 57(2), 360–375.

Keviczky, T., Borrelli, F., Fregene, K., Godbole, D., & Balas, G. J.

(2008). Decentralized receding horizon control and coordination

of autonomous vehicle formations. IEEE Transactions on Control

Systems Technology, 16(1), 19–33.

Kia, S. S., Cortes, J., & Martinez, S. (2016). Distributed convex

optimization via continuous-time coordination algorithms with

discrete-time communication. Automatica, 55(5), 254–264.

Kuriki, Y., & Namerikawa, T. (2015). Formation control with collision

avoidance for a multi-UAV system using decentralized mpc and

consensus-based control. SICE Journal of Control, Measurement,

and System Integration, 8(4), 285–294.

Kushleyev, A., Mellinger, D., Powers, C., & Kumar, V. (2013). Towards

a swarm of agile micro quadrotors. Autonomous Robots, 35(4),

287–300.

Lin, Z., Francis, B., & Maggiore, M. (2005). Necessary and suffi-

cient graphical conditions for formation control of unicycles. IEEE

Transaction on Automatic Control, 50(1), 540–545.

Lynch, N. (1997). Distributed algorithms. Burlington: Morgan Kauf-

mann publishers.

Michael, N., Zavlanos, M. M., Kumar, V., & Pappas, G. J. (2008).

Distributed multi-robot task assignment and formation control. In:

IEEE international conference on robotics and automation.

Montijano, E., & Mosteo, A. R. (2014). Efficient multi-robot forma-

tions using distributed optimization. In: IEEE 53th conference on

decision and control.

Montijano, E., Cristofalo, E., Zhou, D., Schwager, M., & Sagues,

C. (2016). Vision-based distributed formation control without

an external positioning system. IEEE Transactions on Robotics,

32(2), 339351.

Morgan, D., Subramanian, G. P., Chung, S.-J., & Hadaegh, F. Y. (2016).

Swarm assignment and trajectory optimization using variable-

swarm, distributed auction assignment and sequential convex

programming. The International Journal of Robotics Research,

35(10), 1261–1285.

Mostagh, N., Michael, N., Jadbabaie, A., & Daniilidis, K. (2009).

Vision-based, distributed control laws for motion coordination

of nonholonomic robots. IEEE Transactions on Robotics, 25(4),

851860.

Mosteo, A. R., Montano, L., & Lagoudakis, M. G. (2008). Guaranteed-

performance multi-robot routing under limited communication

range. In: Distributed autonomous robotic systems (pp. 491–502).

Nägeli, T., Meier, L., Domahidi, A., Alonso-Mora, J., & Hilliges, O.

(2017b). Real-time planning for automated multi-view drone cin-

ematography. ACM Transactions on Graphics (TOG), 36(4), 132.

Nägeli, T., Alonso-Mora, J., Domahidi, A., Rus, D., & Hilliges, O.

(2017a). Real-time motion planning for aerial videography with

dynamic obstacle avoidance and viewpoint optimization. IEEE

Robotics and Automation Letters, 2(3), 1696–1703.

Nestmeyer, T., Robuffo Giordano, P., Blthoff, H. H., & Franchi, A.

(2017). Decentralized simultaneous multi-target exploration using

a connected network of multiple robots. Autonomous Robots,

41(4), 989–1011.

Odelga, M., Stegagno, P., & Bülthoff, HH. (2016). Obstacle detection,

tracking and avoidance for a teleoperated UAV. In: 2016 IEEE

international conference on robotics and automation (ICRA) (pp.

2984–2990). IEEE.

Oh, K.-K., & Ahn, H.-S. (2011). Formation control of mobile agents

based on inter-agent distance dynamics. Automatica, 47(10),

2306–2312.

Oh, K. K., Park, M. C., & Ahn, H. S. (2015). A survey of multi-agent

formation control. Automatica, 53(3), 424–440.

Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J.,

Wheeler, R., & Ng, A. Y. (2009). Ros: An open-source robot oper-

ating system. In: IEEE ICRA workshop on open source software.

Ren, W., & Beard, R. W. (2008). Distributed consensus in multi-vehicle

cooperative control. Communications and control engineering.

London: Springer.

Sabattini, L., Secchi, C., & Fantuzzi, C. (2011). Arbitrarily shaped for-

mations of mobile robots: Artificial potential fields and coordinate

transformation. Autonomous Robots, 30, 385–397.

Saha, I., Ramaithitima, R., Kumar, V., Pappas, G. J., & Seshia,

S. A. (2014). Automated composition of motion primitives for

multi-robot systems from safe LTL specifications. In: IEEE/RSJ

international conference on intelligent robots and systems.

Schoch, M., Alonso-Mora, J., Siegwart, R., & Beardsley, P. (2014).

Viewpoint and trajectory optimization for animation display with

aerial vehicles. In: 2010 IEEE international conference on robotics

and automation (ICRA) (pp. 4711–4716). IEEE.

123

https://www.embotech.com/FORCES-Pro
https://www.embotech.com/FORCES-Pro

Autonomous Robots (2019) 43:1079–1100 1099

Schwager, M., Julian, B. J., Angermann, M., & Rus, D. (2011). Eyes

in the sky: Decentralized control for the deployment of robotic

camera networks. Proceedings of the IEEE, 99(9), 1541–1561.

Suzuki, T., Sekine, T., Fujii, T., Asama, H., & Endo, I. (2000). Coop-

erative formation among multiple mobile robot teleoperation in

inspection task. In Proceedings of the 39th IEEE Conference on

Decision and Control, 2000 (Vol. 1, pp. 358–363). IEEE.

Turpin, M., Mohta, K., Michael, N., & Kumar, V. (2014). Goal assign-

ment and trajectory planning for large teams of interchangeable

robots. Autonomous Robots, 37(4), 401–415.

Urcola, P., Lazaro, M. T., Castellanos, J. A., & Montano, L. (2017).

Cooperative minimum expected length planning for robot forma-

tions in stochastic maps. Robotics and Autonomous Systems, 87,

3850.

Wurman, P. R., D’Andrea, R., & Mountz, M. (2008). Coordinating

hundreds of cooperative, autonomous vehicles in warehouses. AI

Magazine, 29(1), 9.

Publisher’s Note Springer Nature remains neutral with regard to juris-

dictional claims in published maps and institutional affiliations.

Javier Alonso-Mora is an Assis-

tant Professor at the Delft Univer-

sity of Technology. Until October

2016 he was a Postdoctoral Asso-

ciate at the Computer Science and

Artificial Intelligence Lab CSAIL

of MIT, working in the Distributed

Robotics Lab. He received his

Ph.D. degree in robotics from

ETH Zurich, working in the

Autonomous Systems Lab (2014).

He holds a M.Sc. from ETH

Zurich, a Diploma in Engineer-

ing and a Diploma in Mathemat-

ics from the Technical University

of Catalonia. He was also a member of Disney Research Zurich. His

main research interests are in navigation, decision-making, motion

planning and control of autonomous mobile robots, with a special

emphasis in multi-robot systems and robots that interact with other

robots and humans. He received a NWO Veni award in 2017.

Eduardo Montijano is an assis-

tant professor at Universidad de

Zaragoza, Spain. He received the

M.Sc. and Ph.D. degrees from the

Universidad de Zaragoza, Spain,

in 2008 and 2012 respectively,

obtaining the extraordinary award

of the Universidad de Zaragoza in

the 2012–2013 academic year. He

has been a visiting scholar at Uni-

versity of California San Diego,

University of California Berke-

ley and Boston University in the

United States and at Royal Insti-

tute of Technology, in Stockholm,

Sweden. He has also been a faculty member at Centro Universitario

de la Defensa, Zaragoza, Spain, between 2012 and 2016. His main

research interests include distributed algorithms, cooperative control

and computer vision.

Tobias Nägeli is currently a Ph.D.

student in the Advanced Interac-

tive Technologies group of the

Institute of Pervasive Computing

at the Swiss Federal Institute of

Technology Zürich (ETH). His

Ph.D. advisor is Prof. Dr. Otmar

Hilliges. In 2013, he received his

MSc from ETH Zurich in Electri-

cal Engineering with a main focus

on Control and Estimation.

Otmar Hilliges is originally from

Munich, Germany where he was

born and raised. Currently he is

an Assistant Professor of Com-

puter Science (tenure-track) at

ETH Zurich. He leads the AIT lab

affiliated with the Institute of Per-

vasive Computing and the Insti-

tute of Visual Computing. Prior to

joining ETH he was Researcher at

Microsoft Research Cambridge, in

the I3D group (2010–2013). He

was awarded a Diplom (equiv.

MSc) in Computer Science from

Technische Universität München,

Germany (Summa Cum Laude 2004) and a PhD in Computer Science

from LMU München, Germany (Summa Cum Laude 2009). Follow-

ing his studies, he spent two years as a postdoc at Microsoft Research

Cambridge (2010–2012).

Mac Schwager is an assistant pro-

fessor with the Aeronautics and

Astronautics Department at Stan-

ford University. He obtained his

BS degree in 2000 from Stan-

ford University, his MS degree

from MIT in 2005, and his PhD

degree from MIT in 2009. He was

a postdoctoral researcher work-

ing jointly in the GRASP lab at

the University of Pennsylvania and

CSAIL at MIT from 2010 to 2012,

and was an assistant professor at

Boston University from 2012 to

2015. His research interests are in

distributed algorithms for control, perception, and learning in groups

of robots and animals. He received the NSF CAREER award in 2014.

123

1100 Autonomous Robots (2019) 43:1079–1100

Daniela Rus is the Andrew (1956)

and Erna Viterbi Professor of

Electrical Engineering and Com-

puter Science and Director of the

Computer Science and Artificial

Intelligence Laboratory (CSAIL)

at MIT. Rus’s research interests

are in robotics, mobile comput-

ing, and big data. The key focus

of her research is to develop the

science of networked/distributed

/collaborative robotics, by asking:

how can many machines collabo-

rate to achieve a common goal?

Rus is a Class of 2002 MacArthur

Fellow, a fellow of ACM, AAAI and IEEE, and a member of the

National Academy of Engineering. She earned her PhD in Computer

Science from Cornell University. Prior to joining MIT, Rus was a pro-

fessor in the Computer Science Department at Dartmouth College.

123

	Distributed multi-robot formation control in dynamic environments
	Abstract
	1 Introduction
	1.1 Related works
	1.2 Contribution

	2 Preliminaries
	2.1 Definitions
	2.1.1 Robots
	2.1.2 Communication
	2.1.3 Field of view
	2.1.4 Static obstacles
	2.1.5 Moving obstacles
	2.1.6 Position-time obstacles
	2.1.7 Position-time free space
	2.1.8 Motion planning

	2.2 Definition of the formation
	2.3 Problem formulation
	2.4 Method overview
	2.4.1 Idea
	2.4.2 Formation control
	2.4.3 Low level control

	3 Method
	3.1 Convex hull of the robots' positions
	3.2 Preferred direction of motion
	3.3 Obstacle-free convex region
	3.4 Optimal formation
	3.5 Robot assignment to positions in the formation
	3.6 Real-time control

	4 Simulation results
	4.1 Performance of the consensus strategies
	4.1.1 Convex hull
	4.1.2 Direction of movement
	4.1.3 Intersection of convex regions

	4.2 Multi-drone formation control
	4.2.1 Four robots
	4.2.2 Sixteen robots

	5 Experimental results
	5.1 Implementation details
	5.2 Quadrotor hardware
	5.3 Results
	5.3.1 Single planar formation and static setpoint
	5.3.2 Single planar formation and moving setpoint
	5.3.3 Single formation (with free 3D rotation) and static setpoint
	5.3.4 Multiple formations and moving setpoint
	5.3.5 Discussion on limitations

	6 Conclusion
	References

