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Distributed Multi-target Tracking and Data
Association in Vision Networks

Ahmed T. Kamal, Jawadul H. Bappy, Jay A. Farrell, Fellow, IEEE, and Amit K. Roy-Chowdhury,

Senior Member, IEEE

Abstract—Distributed algorithms have recently gained immense popularity. With regards to computer vision applications,

distributed multi-target tracking in a camera network is a fundamental problem. The goal is for all cameras to have accurate

state estimates for all targets. Distributed estimation algorithms work by exchanging information between sensors that are

communication neighbors. Vision-based distributed multi-target state estimation has at least two characteristics that distinguishes

it from other applications. First, cameras are directional sensors and often neighboring sensors may not be sensing the same

targets, i.e., they are naı̈ve with respect to that target. Second, in the presence of clutter and multiple targets, each camera

must solve a data association problem. This paper presents an information-weighted, consensus-based, distributed multi-target

tracking algorithm referred to as the Multi-target Information Consensus (MTIC) algorithm that is designed to address both

the naı̈vety and the data association problems. It converges to the centralized minimum mean square error estimate. The

proposed MTIC algorithm and its extensions to non-linear camera models, termed as the Extended MTIC (EMTIC), are robust

to false measurements and limited resources like power, bandwidth and the real-time operational requirements. Simulation and

experimental analysis are provided to support the theoretical results.

Index Terms—consensus, distributed tracking, data association, camera networks.

✦

1 INTRODUCTION

D UE to the availability of modern low-cost sensors,

large-scale camera networks are being used in appli-

cations such as wide-area surveillance, disaster response,

environmental monitoring, etc. Multiple sensors can cover

more of an area and provide views from different angles

so that the fusion of all their measurements may lead to

robust scene understanding. Among different information

fusion approaches, distributed schemes are often chosen

over centralized or hierarchical approaches due to their

scalability to a large number of sensors, ease of installation

and high tolerance to node failure. In this paper, we focus

on the problem of distributed multi-target tracking in a

camera network. We use the term distributed to mean that

each camera processes its own data and arrives at a final

solution through negotiations with its neighbors; there is no

central processor. 1

While a number of distributed estimation strategies have
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1. The term distributed has also been used in computer vision for
a camera network that is distributed over a wide area, but where the
processing is centralized.

been developed (detailed review provided later), vision

networks pose some unique and interesting challenges.

These arise from the fact that most cameras are directional

sensors, and the data they collect is expensive to process

and transmit. Cameras that are viewing the same targets

or may potentially view the same target over time may

not be in direct communication range. In addition, each

camera views very few of the full set of targets, even

though the full set of cameras view them all. This can lead

to sets of nodes that are naı̈ve or uninformed about the

states of some of the targets. Without resource constraints

at each node (highly unrealistic in a distributed setting),

this issue could be resolved over multiple communication

steps. However, this may not be possible in situations with

limited power, bandwidth and the real-time operational re-

quirements. Thus the problem of estimating the state vector

(i.e., the concatenated state of all the targets), becomes very

challenging in a distributed environment due to the limited

local observability at each agent, especially when combined

with constrained resources. Most well-known distributed

estimation problems fare poorly in this situation; yet it is

a fundamental issue if decentralized operation with vision

networks is to be feasible.

Fig. 1 depicts an application scenario where the objective

is for the network of cameras to collaboratively track all

persons. Successful collaboration is built on each camera

maintaining an estimate of the state of all targets, even

when neither the camera or its neighbors directly detect

some targets. We call a node ‘naı̈ve’ about a target when

it has no measurements of that target available in its local

neighborhood (consisting of the node and its immediate

network neighbors) as defined by the communication graph.
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When an agent is naı̈ve about a target, the target state is

not (directly) observable by that agent. As long as some

agent in the network has a measurement of the target, the

centralized problem is still observable, which will enable a

decentralized solution.

1.1 Problem Description and Solution Overview

Most of the work in distributed tracking has been in the

multi-agent systems community. Methods that work very

well in applications where each agent has local observ-

ability of all targets, e.g., [1], do not work as well in

camera network applications (see Fig. 1) where each agent

directly observes only a small subset of the targets [2], [3].

This limits the observability at each agent to a subset of

all the target states, even though a centralized solution, if

implemented, would have full observability. In this paper,

our goal is to design a distributed multi-target tracking

scheme appropriate for applications where each sensor has

a limited field-of-view (FOV), local communications, and

data association challenges.

A distributed multi-target tracking problem can be di-

vided into three sub-problems: data association (measure-

ment to track association), information fusion, and dynamic

state estimation. Consensus algorithms [1], [4] solve the

distributed information fusion and state estimation prob-

lems at each sensor node using information only from that

sensor and its communication network neighbors. Itera-

tively, each node can individually compute a global function

of the prior state and measurement information of all the

nodes (e.g. average). The important fact is that consensus is

reached without all-to-all communication; thus consensus

based frameworks do not require any specific communi-

cation network topology and are generally applicable to

any arbitrary, connected network. The consensus estimates

asymptotically converge to the global result. Due to the

simplicity and robustness of consensus algorithms, they

have been used in many applications, including estimation

problems in sensor networks (e.g., [5], [6], [7]).

The Kalman Consensus Filter (KCF) [8] is a well-known

consensus-based distributed state estimator. The KCF was

originally designed for the scenario where each node has

an observation of each target. The quality of neighbor-

ing node’s prior information is not taken into account

in the KCF. Thus, naı̈ve nodes may adversely affect the

overall performance of the network. Moreover, the cross-

covariance terms between the state estimates at different

nodes were not incorporated in the KCF estimation process,

because they are usually hard to compute in a distributed

environment. Due to these reasons, the KCF performance

deteriorates when applied within a camera network. Re-

cently, the Information-weighted Consensus Filter (ICF) [2]

was proposed to obtain optimal distributed state estimation

performance in the presence of naı̈vety.

The KCF and ICF assume that there is a single target,

or for multiple targets that the measurement-to-track as-

sociation is provided. For a multi-target tracking problem,

the data association and the tracking steps are highly inter-

dependent. The performance of tracking will affect the

C1

C5

C3C2
C4

C6

Fig. 1: In this figure, there are six sensing nodes, C1, C2, . . . , C6

observing an area (black rectangle) consisting of four targets.
The solid blue lines show the communication channels between
different nodes. This figure also depicts the presence of “naı̈ve”
nodes. For example, C3, C5, C6 get direct measurements about the
black target which it shares with its immediate network neighbors.
However, C1 does not have direct access to measurements of that
target and thus is naı̈ve w.r.t. that target’s state.

performance of data association and vice-versa. Thus, an

integrated distributed tracking and data association solution

is required where the uncertainty from the tracker can be

incorporated in the data association process and vice-versa.

Among many single-sensor multi-target data association

frameworks, the Multiple Hypothesis Tracking (MHT) [9]

and the Joint Probabilistic Data Association Filter JPDAF

[10] are two dominant approaches. MHT usually achieves

higher accuracy at the cost of higher computational load.

Alternatively, JPDAF achieves reasonable results at lower

computation cost. As distributed solutions are usually ap-

plied within low-power wireless sensor networks where the

computational and communication power is limited, the

JPDAF scheme will be utilized in the proposed distributed

multi-target tracking framework herein. The proposed dis-

tributed tracking and data association framework is termed

as the Multi-Target Information Consensus (MTIC).

The methods mentioned above are derived under the

assumption that the observation model is linear. However,

camera observation models are non-linear. Thus, to apply

these distributed tracking algorithms in a realistic camera

network, the nonlinearity must be addressed. In this paper,

we show that the ICF and MTIC algorithm can be extended

to these scenarios.

The main contribution of this paper is the tight inte-

gration of data association and distributed target tracking

methods, taking special care of the issues of naı̈vety and

non-linearity in the observation model. Sec. 2 provides

the problem formulation, along with a review of differ-

ent consensus-based estimation methods. Sec. 3, reviews

the JPDAF approach and extends it to a multi-sensor

framework. Then the Multi-Target Information Consensus
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(MTIC) tracker is proposed. Sec. 4 proposes non-linear

extensions to the ICF and MTIC algorithms. These algo-

rithms are theoretically compared with each other and other

algorithms. Finally, Sec. 6 provides simulation and testbed

experimental evaluation.

1.2 Related Work

The purely decentralized nature of the fusion algorithm dif-

ferentiates it from the majority of multi-camera tracking ap-

proaches in the computer vision literature. For example, in

[11], a centralized approach for tracking in a multi-camera

setup was proposed where the cameras were distributed

spatially over a large area. In [12], an efficient target hand-

off scheme was proposed, but no multi-camera information

fusion was involved. In [13], a multi-objective optimization

based tracking framework was proposed which computes

the optimal association of the measurements of each tar-

get over time. However, in this paper, the proposed data

association strategy is probabilistic i.e., all measurements

contribute to all the tracks depending on its association

probability. This paper discusses the distributed multi-target

tracking problem, where there is no centralized server, the

processing is distributed over all the camera nodes and no

target hand-off strategy is required. Distributed multi-target

tracking in a network of cameras may be useful to various

applications including collaborative tracking and camera

control strategies as [14], [15].

Various distributed multi-target tracking methods [5],

[16], [17], [18], [19] have been proposed in the sensor-

networks literature, but they do not deal with special

situations associated with camera networks, e.g. naı̈vety

and data association. In [16], a solution to the distributed

data association problem was proposed by means of the

message passing algorithm based on graphical models in

which iterative, parallel exchange of information among

the nodes viewing the same target was required. In the

framework proposed herein, direct information exchange

between nodes observing the same target is not required.

In [17], the authors proposed a framework for querying a

distributed database of video surveillance data to retrieve

a set of likely paths of a person moving in the area under

surveillance using a dynamic Bayesian Model. Unlike our

proposed methods, this method does not deal with the

distributed fusion of the information in the network.

In [5], [18], [19], the distributed multi-target tracking

schemes did not account for naı̈vety or the presence of

cross-correlation between the estimates at different nodes.

The method proposed herein build on the ICF [2], [3],

which deals with both naı̈vety and cross-correlation.

The MTIC algorithm, which is one of the methods

we present in this paper had been introduced in [20]. In

this paper, we show how the MTIC can be extended to

handle non-linear models which is necessary for vision

applications (Sec. 4). We also present in-depth proof and

comparative analysis of all the state estimation methods in

Sec. 5. Furthermore, detailed experimental results analyzing

the performance of the proposed algorithms are presented.

1.3 Organization of the Paper

We start off in Sec. 2 with a description of the consensus-

based distributed estimation framework and how it has

been used for distributed state estimation in the Kalman

Consensus Filter (KCF). This is followed by a review of our

previous work on Information Weighted Consensus (ICF)

which addresses the issue of naı̈ve nodes in the existing

consensus approaches. Building upon these fundamentals,

Sec. 3 presents the solution to the consensus problem when

there are multiple targets and naı̈ve nodes. This calls for

data association in the ICF framework. Algorithm 1 sum-

marizes the Multi-Target Information Consensus (MTIC)

approach. The approach thus far considered linear models.

Sec. 4 considers the more realistic case of non-linear

models and shows how the ICF and MTIC can be extended

to these scenarios. Sec. 5 provides a comparison of the

different state estimation approaches developed (KCF, ICF,

MTIC and their non-linear versions). Experimental results

in simulation and real-life data are presented in Sec. 6.

2 DISTRIBUTED ESTIMATION AND NAÏVETY

2.1 Problem Formulation

Consider a network with NC sensors/nodes. Commu-

nication in the network can be represented using an

undirected connected graph G = (C, E). The set C =
{C1, C2, . . . , CNC

} contains the vertices of the graph,

which represent the sensor nodes. The set E contains the

edges of the graph, which represent the communication

channels between different nodes. The set of nodes each

having a direct communication channel with node Ci

(sharing an edge with Ci) is represented by Ni. There are

NT (t) targets {T 1, T 2, . . . TNT } in the area viewable by

the sensors at time t. It is assumed that NC and NT (t) are

known to each node.

The state of the jth target is represented by the vector

xj ∈ Rp. For example, for a tracking application, xj

might be a vector containing the ground plane position and

velocity components of T j . The state dynamics of target

T j are modeled as

xj(t+ 1) = Φxj(t) + γ
j(t). (1)

Here Φ ∈ Rp×p is the state transition matrix and the white

process noise γ
j(t) is modeled as N (0,Qj).

At time t, each node Ci, depending on its FOV and the

location of the targets, gets li(t) measurements denoted

as {zni }
li(t)
n=1. The nodes do not know a priori, which

measurement was generated from which target. Under the

hypothesis that the observation zni is generated from T j ,

it is assumed that zni was generated by the following

observation model

zni = H
j
ix

j + ν
j
i . (2)

Here, H
j
i ∈ Rm×p is the observation matrix for node Ci

for T j . The white noise ν
j
i ∈ Rm is modeled as N (0,Rj

i )
with covariance R

j
i ∈ Rm×m.
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Each node also maintains a prior/predicted state estimate

x̂
j−
i (t) (and its covariance P

j−
i (t)) for each target. The in-

verse of the state covariance matrix (information/precision

matrix) will be denoted as J
j
i = (Pj

i )
−1. We assume that

the initial prior state estimate and information matrix is

available at each node for each target upon its detection.

Our goal is to track each target at each node, i.e., find

the state estimate for each target at each node by using

the prior and measurement information available in the

entire network in a distributed fashion. A critical step in

this process is association of measurements with targets,

which is addressed in this paper. We assume that the

set of network measurements {zni }i=1,...,NC
is sufficient

that the state of all targets would be observable by a

centralized estimator, if it existed. Because only a subset of

the measurement information is available to each agent, the

full state of all targets may not be locally observable by all

agents using only their local information; nonetheless, the

consensus-type algorithms that we present converge toward

the optimal centralized solution.

2.2 Review of Distributed Estimation

2.2.1 Average consensus

Average consensus [1] allows a group of distributed nodes

to compute the arithmetic mean of some values {ai}
NC

i=1 us-

ing only local information communication between neigh-

bors. Each node i begins with a quantity ai and is inter-

ested in computing the average value of these quantities
1

NC

∑NC

i=1 ai in a distributed manner.

Each node initializes its consensus state as ai(0) = ai.
At the beginning of iteration k, a node Ci sends its

previous state ai(k−1) to its immediate network neighbors

Ci′ ∈ Ni and also receives the neighbors’ previous states

ai′(k− 1). Then it updates its own state information using

the following equation

ai(k)=ai(k − 1) + ǫ
∑

i′∈Ni

(ai′(k − 1)− ai(k − 1))

=A(ai(k − 1)). (3)

Here A(ai) is a shorthand mathematical operator for a

single step of average consensus (defined by Eqn. (3)).

Iteration of A(ai) causes all values of ai(k) to converge

toward the average of the initial values. The average

consensus algorithm can be used to compute the average

of vectors and matrices by applying it to their individual

elements separately. The rate parameter ǫ should be chosen

in (0, 1
∆max

), where ∆max is the maximum degree of the

network graph G. Choosing larger values of ǫ will result in

faster convergence, but choosing ǫ ≥ ∆max will render the

algorithm unstable. Average consensus assumes all agents

have an estimate for all elements of a and that all estimates

are of equal accuracy and uncorrelated. These assumptions

do not apply within camera networks.

Consensus algorithms have been extended to perform

various tasks in a network of agents such as linear algebraic

operations: SVD, least squares, PCA, GPCA [7]. They have

been applied in camera networks for distributed implemen-

tations of 3-D point triangulation, pose estimation [6], and

action recognition [5]. The average consensus algorithm

is applicable only for a static parameter estimation prob-

lem. For a dynamic state estimation problem, a predictor-

corrector solution approach is necessary.

2.2.2 Kalman Consensus Filter

The Kalman Consensus Filter (KCF) [8] uses the average

consensus algorithm to achieve distributed dynamic state

estimation. The KCF state estimation equations at the i-th
node are

x̂+
i = x̂−

i +
(

J−
i +Bi

)−1 (
bi −Bix̂

−
i

)

+
ǫ

1 + ||(J−
i )

−1||
(J−

i )
−1
∑

i′∈Ni

(

x̂−
i′ − x̂−

i

)

(4)

J+
i = J−

i +Bi (5)

where,

bi =
∑

i′∈Ni∪i

HT
i′Ri′

−1zi′ , Bi =
∑

i′∈Ni∪i

HT
i′Ri′

−1Hi′ (6)

x̂+
i is the posterior state estimate and J+

i is the state

information matrix. In Eqn. (4), the first term is the prior

state estimate, the second term is the innovation from the

measurements in the local neighborhood of the node and

the third term is an averaging term over the priors in

the local neighborhood. Note that each neighbor’s prior

x̂−
i′ is considered equally informative in the estimation

process. The KCF works well in situations where the state is

observable at each node. When naı̈ve nodes are present, this

equal weighting can lead to poor estimation performance,

due to the difference in information content.

2.2.3 Information Weighted Consensus

The Information-weighted Consensus Filter (ICF) algo-

rithm [2], [3] is a distributed state estimation framework

that accounts for the naı̈vety issue and can achieve opti-

mal performance equivalent to a centralized solution. The

prior information {x̂−
i ,J

−
i } and measurement information

{zi,Ri} are first fused into an information vector vi ∈ Rp

and an information matrix Vi ∈ Rp×p at each node:

vi =
1

NC

J−
i (t)x̂

−
i (t) + ui (7)

Vi =
1

NC

J−
i (t) +Ui (8)

where ui = HT
i Ri

−1zi and Ui = HT
i Ri

−1Hi. Next,

using the average consensus algorithm, the average of these

vectors and matrices are computed at each node over the

network as v̄ and V̄. Finally, the optimal state estimate and

its information matrix are computed as,

x̂+
i (t) = V̄−1v̄, J+

i (t) = NCV̄. (9)

One reason that the ICF performance is not affected by

naı̈vety is that the prior information state of each node

is appropriately weighted by the prior information matrix

J−
i at that node before sending it to the neighbors. Thus

a node which has less information about a target’s state

is given less weight in the overall estimation process. As



5

proved in [2], [3], the ICF converges to the maximum a

posteriori estimate of the centralized solution. However, the

ICF algorithm in [2], [3] assumes that the data association

problem is solved when there are multiple targets in the

scene.

3 DISTRIBUTED MULTI-TARGET TRACKING

The goal of this section is to extend the ICF approach to a

distributed multi-target tracking scheme. Distributed multi-

target tracking problems contain three sub-problems: data

association (measurement to track association), distributed

information fusion, and dynamic state estimation. Because

the tracking and data association problems are highly

interdependent, an integrated distributed solution is required

where the uncertainty from the tracker can be incorporated

in the data association process and vice-versa.

3.1 Review of JPDAF

Realistic multi-target state estimation problems requires

solving of the data association, which is itself a challenging

problem, even in the centralized case. JPDAF [10] is a

centralized processing algorithm, thus the agent index i is

unnecessary and will be dropped. A double superscript is

required for the hypothesis that measurement zn is associ-

ated with target T j . At time t, the measurement innovation

z̃jn and the innovation covariance Sj of measurement zn

for target T j is computed as,

z̃jn = zn −Hjx̂j− (10)

Sj = Hj(Pj−)(Hj)T +Rj . (11)

Because the JPDAF algorithm computes a probability

weighted mean measurement from all the available mea-

surements for each target, the index in Eqn. (11) is j
instead of n. The probability that T j is the correct target

to associate with zn is βjn and the probability that none of

the measurements belong to T j is βj0. See [10] for details

about computing these probabilities.

The Kalman gain Kj , mean measurement yj and mean

measurement innovation ỹj for target T j are

Kj = (Pj−)(Hj)T (Sj)−1, (12)

yj =

l
∑

n=1

βjnzn, (13)

ỹj =
l
∑

n=1

βjnz̃jn = yj − (1− βj0)Hj x̂j−. (14)

The JPDAF state estimate and its covariance are

x̂j+(t) = x̂j−(t) +Kj ỹj (15)

Pj+(t) = Pj−(t)− (1− βj0)KjSj
(

Kj
)T

+KjP̃j
(

Kj
)T

, (16)

where

P̃j =

(

l
∑

n=1

βjnz̃jn
(

z̃jn
)T

)

− ỹj
(

ỹj
)T

. (17)

3.2 Information Form JPDAF

The JPDAF algorithm in the information form will be

useful in the next section to derive the distributed multi-

target tracking algorithm. For multiple sensors, the JPDAF

algorithm described in Eqns. (15-16) can be written in

the information form as (see Sec. 1 in supplementary

materials):

x̂j+ =
(

Jj− +Uj
)−1

(

Jj−x̂j− + uj + βj0Uj x̂j−
)

(18)

Jj+ = Jj− +Gj (19)

where,

Gj = Jj−Kj
(

(

Cj
)−1

−KjTJj−Kj
)−1

KjTJj− (20)

Cj = (1− βj0)Sj − P̃j (21)

uj = HjTRj−1
yj and Uj = HjTRj−1

Hj . (22)

Note that in Eqn. (18), Jj−x̂j− is the weighted prior

information and uj + βj0Uj x̂j− is the weighted mea-

surement information (taking data association uncertainty

βj0 into account). The sum of these two terms represents

the total available information for the single agent case.

To incorporate independent measurement information from

an additional agent, the weighted measurement informa-

tion from that agent has to be added to this summation.

Similarly, the information matrices (U
j
i and G

j
i ) from

additional agents must also be added to the appropriate

terms. This gives us the multi-agent centralized estimate

in the information form

x̂j+ =

(

Jj− +

NC
∑

i=1

U
j
i

)−1

(

Jj−x̂j− +

NC
∑

i=1

(

u
j
i + βj0

i U
j
i x̂

j−
)

)

, (23)

Jj+ = Jj− +

NC
∑

i=1

G
j
i . (24)

Our goal is to compute the quantities in Eqn. (23) and (24)

in a distributed manner.

3.3 Multi-Target Information Consensus (MTIC)

This section builds on the ICF and JPDAF to derive

a distributed multi-target tracking algorithm that will be

referred to as the Multi Target Information Consensus

(MTIC) tracker. As we have multiple agents, we will bring

back the agent index in the subscripts.
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Eqns. (23) and (24) can be manipulated as follows:

x̂
j+
i =

(

NC
∑

i=1

(

J
j−
i

NC

+U
j
i

))−1

NC
∑

i=1

(

u
j
i +

(

J
j−
i

NC

+ βj0
i U

j
i

)

x̂
j−
i

)

=

(

NC
∑

i=1

V
j
i

)−1
NC
∑

i=1

v
j
i

=

(

∑NC

i=1 V
j
i

NC

)−1
∑NC

i=1 v
j
i

NC

(25)

J
j+
i =

NC
∑

i=1

(

Jj−

NC

+G
j
i

)

=

NC
∑

i=1

W
j
i

= NC

∑NC

i=1 W
j
i

NC

(26)

where,

V
j
i =

J
j−
i

NC

+U
j
i , W

j
i =

J
j−
i

NC

+G
j
i

and v
j
i = u

j
i +

(

J
j−
i

NC

+ βj0
i U

j
i

)

x̂
j−
i (27)

In a distributed system, each node Ci will have its own prior

information {x̂j−
i ,Jj−

i } for T j ; therefore, the averages v̄j ,

V̄j , W̄j of each of the three quantities defined in Eqn.

(27) can be computed, in a distributed manner, using the

average consensus algorithm [1]. This allows each agent

to compute: x̂
j+
i =

(

V̄j
)−1

v̄j and J
j+
i = NCW̄

j in a

distributed manner.

This distributed implementation of the centralized

JPDAF algorithm is the MTIC algorithm which is sum-

marized in Algorithm 1. Note that if a node does not get

any measurement for T j , i.e., βj0
i = 1, u

j
i , U

j
i and G

j
i are

set to zero vectors and matrices respectively.

Note that at each time step, the nodes iteratively converge

toward the averages v̄j , V̄j , W̄j and only compute the

posterior estimate and information matrix at the conclusion

of the consensus iterations for that time step. If convergence

was complete, the converged quantities would be equal

to the centralized estimate and information matrix. Two

special situations are of interest.

1) First, when a new target is detected, many or most

agents will have zero information while those (few) agents

that detect the new target have only their new measurement

information. The cross-correlation between the estimates of

the different agents is zero (correlation coefficient of 0). The

information weighting in MTIC correctly accounts for this

quite common occurrence.

2) Second, after consensus is achieved, the total infor-

mation in the network about T j is Jj+, which MTIC

accounts for as Wj+ information stored by each of NC

agents. Because the agents all have the same estimate and

Algorithm 1 MTIC for target T j at node Ci at time step t

Input: x̂
j−
i (t), Jj−

i (t), Hj
i , R

j
i .

1) Get measurements: {zni }
li(t)
n=1

2) Compute S
j
i , y

j
i , β

j0
i , K

j
i and C

j
i (Eqn. (21))

3) Compute information vector and matrices:

u
j
i ← H

jT
i R

j
i

−1
y
j
i

U
j
i ← H

jT
i R

j
i

−1
H

j
i

G
j
i ← J

j−
i K

j
i

(

C
j
i

−1
−K

j
i

T
J
j−
i K

j
i

)−1
K

j
i

T
J
j−
i

4) Initialize consensus data

v
j
i [0] ← u

j
i +

(

J
j−
i

NC

+ β
j0
i U

j
i

)

x̂
j−
i

V
j
i [0] ←

J
j−
i

NC

+U
j
i

W
j
i [0] ←

J
j−
i

NC

+G
j
i

5) Perform average consensus (Sec. 2.2.1) on v
j
i [0], V

j
i [0] and W

j
i [0]

independently for K iterations.
6) Estimate:

x̂
j+
i ←

(

V
j
i [K]

)−1
v
j
i [K] (28)

J
j+
i ← NCW

j
i [K]

7) Predict:

x̂
j−
i (t+ 1) ← Φx̂

j+
i (t)

J
j−
i (t+ 1) ←

(

Φ
(

J
j+
i (t)

)−1
ΦT +Q

)−1

Output: x̂
j+
i (t), Jj+

i (t), x̂j−
i (t+ 1), Jj−

i (t+ 1).

information, the correlation is perfect (correlation coeffi-

cient of 1). Completely accounting for the cross correlation

matrices for all target estimates across all agents would

be a very large computational and communication burden,

which is unnecessary because the consensus algorithm

rapidly drives the correlation coefficient from zero to one.

Simulations in [3] evaluate ICF performance relative to that

of a centralized estimator versus the number of consensus

iterations (per time step), which demonstrate these issues.

4 ICF WITH NON-LINEAR MODELS

The ICF and MTIC assumed a linear model. In many

applications, the observation is a non-linear function of the

target state. This is true for cameras because the position

of a point in the camera pixel coordinate system is a non-

linear function of the position of the point in the world

coordinate system [21]. For the algorithms derived in the

previous sections to be applicable in such scenarios, we

need to extend them to non-linear observation models. We

call these algorithms, the Extended ICF (EICF) and the

Extended MTIC (EMTIC).

4.1 Extended ICF

Considering the data association is known, the measurement

at each node can be expressed using the non-linear relation

as,

zi = hi(x) + νi. (29)
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Using first-order Taylor series approximation, the linearized

observation matrix can be written as,

H
j
i = ∇

x
jhi(x

j)|
x
j=x̂

j−
i
. (30)

The collection of all measurements from all nodes can

be expressed as,

Z = hc(x) + ν, (31)

where Z = [zT1 , z
T
2 , . . . z

T
NC

]T ∈ Rm is the concatenation

of all measurements in the network, m =
∑Nc

i=1 mi is the

individual measurement vector length, and mi is the di-

mension of zi. The central non-linear observation function

hc() is a stack of all the functions from individual sen-

sors such that hc(x) = {h1(x)
T ,h2(x)

T , . . .hNC
(x)T }T

(a vector of vector valued functions). We will represent

the stack of linearized observation matrices as H =
[HT

1 ,H
T
2 , . . .H

T
N ]T ∈ RmNC×p. For the measurement

noise vector, ν = [νT
1 ,ν

T
2 , . . .ν

T
N ]T ∈ RmNC , we

denote its covariance as R ∈ RmNC×mNC . We as-

sume the measurement noise to be uncorrelated across

nodes. Thus, the measurement covariance matrix is R =
diag(R1,R2, . . .RN ). Let us denote Uc = H

T
R

−1
H

and uc = H
T
R

−1
Z . The subscript c stands for “central-

ized”. Let us also denote the centralized predicted measure-

ment, hc(x̂
−
c ) = {h1(x̂

−
c )

T ,h2(x̂
−
c )

T , . . .hNC
(x̂−

c )
T }T .

The state estimation equations from the centralized Ex-

tended Kalman Filter (EKF)[22] algorithm can be written

as (see Sec. 2 in supplementary materials),

x̂+
c =

(

J−
c +Uc

)−1

(

J−
c x̂

−
c + uc +H

T
R

−1(Hx̂−
c − hc(x̂

−
c ))
)

(32)

J+
c =

(

J−
c +Uc

)

(33)

Given that all the nodes have reached consensus on the

previous time step, we have, x̂−
i = x̂−

c and J−
i = J−

c for

all i. This implies,

J−
c =

NC
∑

i=1

J−
i

NC

and J−
c x̂

−
c =

NC
∑

i=1

J−
i

NC

x̂−
i

Also, as Rc is block diagonal, we have,

Uc =

NC
∑

i=1

Ui, and uc =

NC
∑

i=1

ui,

and

H
T
R

−1(Hx̂−
c − hc(x̂

−
c )) =

NC
∑

i=1

HT
i R

−1
i (Hix̂

−
i − hi(x̂

−
i )).

Thus, from Eqns. (32) and (33) we get,

x̂+
c =

(

NC
∑

i=1

(

J−
i

NC

+Ui

)

)−1

NC
∑

i=1

(

J−
i x̂

−
i + ui +HT

i R
−1
i

(

Hix̂i
− − hi(x̂

−
i )
))

(34)

J+
c =

NC
∑

i=1

(

J−
i

NC

+Ui

)

(35)

The above equations can be computed in a distributed

manner by initializing vi[0] and Vi[0] as the following

at each node and running average consensus algorithm on

them:

vi[0] =
J−
i

NC

x̂−
i + ui

+HT
i R

−1
i (Hix̂

−
i − hi(x̂

−
i )) (36)

Vi[0] =
J−
i

NC

+Ui

This leads to the EICF algorithm and is summarized in

Algorithm 2.

Note that for a linear observation model, the EICF re-

duces to the original ICF in Eqns. (7-8). Also, the EICF has

the additional HT
i R

−1
i (Hix̂

−
i −hi(x̂

−
i )) term at each node

compared to the ICF in the information form just as the

EKF has the additional term H
T
R

−1 (Hx̂−
c − hc (x̂

−
c ))

compared to the KF.

Algorithm 2 EICF at node Ci at time step t

Input: prior state estimate x̂−
i (t), prior information matrix J−

i (t),
consensus speed factor ǫ and total number of consensus iterations K.

1) Linearize hi at x̂−
i (t) to compute Hi

2) Get measurement zi with covariance Ri

3) Compute consensus proposals,

Vi[0] ←
1

NC

J−
i (t) +Ui

vi[0] ←
1

NC

J−
i (t)x̂−

i (t) + ui +

HT
i R−1

i (Hix̂
−
i − hi(x̂

−
i ))

4) Perform average consensus (Sec. 2.2.1) on vi[0], Vi[0] indepen-
dently for K iterations.
5) Compute a posteriori state estimate and information matrix for time
t

x̂+
i (t) ← (Vi[K])−1vi[K] (37)

J+
i (t) ← NCVi[K]

6) Predict for next time step (t+ 1)

J−
i (t+ 1) ←

(

Φ(J+
i (t))−1ΦT +Q

)−1

x̂−
i (t+ 1) ← Φx̂+

i (t)

Output: EICF estimate x̂+
i (t), J+

i (t), x̂−
i (t+ 1), J−

i (t+ 1).

4.2 Extended Multi-target Information Consensus

This section extends the MTIC algorithm to handle non-

linear sensing models. Equivalently, it extends the EICF to

scenarios where the data association is not known a priori.
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For a non-linear sensing model h(), the measurement

innovation term in Eqn. (14) becomes,

ỹj = yj − (1− βj0)h(x̂j−) (38)

Using this, the state estimation equations for a centralized

approach can be written as follows (see Sec. 3 in supple-

mentary materials):

x̂j+
c =

(

Jj−
c +

NC
∑

i=1

U
j
i

)−1
(

J
j−
i x̂

j−
i +

NC
∑

i=1

[

u
j
i

+H
j
i

T
R

j
i

−1
(Hj

i x̂
j−
i − (1− βj0

i )hi(x̂
j−
i ))

]

)

Jj+
c = J

j−
i +

NC
∑

i=1

G
j
i . (39)

Given that all the nodes have reached consensus on the

previous time step (discussed in details in Sec. 3.3), we

have, x̂
j−
i = x̂j−

c and J
j−
i = Jj−

c for all i. This implies,

Jj−
c =

NC
∑

i=1

J
j−
i

NC

and Jj−
c x̂j−

c =

NC
∑

i=1

J
j−
i

NC

x̂
j−
i . Thus we can

write,

x̂j+
c =

(

NC
∑

i=1

(

J
j−
i

NC

+U
j
i

))−1
NC
∑

i=1

(

J
j−
i

NC

x̂
j−
i + u

j
i

+H
j
i

T
R

j
i

−1[
H

j
i x̂

j−
i − (1− βj0

i )hi(x̂
j−
i )
]

)

Jj+
c =

NC
∑

i=1

(

J
j−
i

NC

+G
j
i

)

. (40)

Thus, for EMTIC, the initial consensus variables are

v
j
i [0] =

J
j−
i

NC

x̂
j−
i + u

j
i

+H
j
i

T
R

j
i

−1
(

H
j
i x̂

j−
i − (1− βj0

i )hi(x̂
j−
i )
)

V
j
i [0] =

J
j−
i

NC

+U
j
i ,

W
j
i [0] =

J
j−
i

NC

+G
j
i . (41)

Note that for a linear observation model the non-linear

MTIC equations reduce to the original MTIC. The EMTIC

algorithm is summarized as Algorithm 3.

5 COMPARISON OF KCF, ICF, MTIC,
EKCF, EICF AND EMTIC

In Table 1, we compare the state estimation equations of

the KCF, ICF, MTIC, EKCF, EICF and EMTIC for one

particular target and a single consensus iteration step. The

derivation of these particular forms is shown in Sec. 4 in

supplementary materials.

Note that the differences in the prior states between

the neighboring nodes, x̂−
i′ − x̂−

i are weighted by the

corresponding neighbor’s prior information matrix J−
i′ in

ICF, MTIC, EICF and EMTIC. This handles the issue with

naı̈vety as the innovation from a naı̈ve neighbor’s prior state

Algorithm 3 EMTIC for target T j at node Ci at time step t

Input: x̂
j−
i (t), Jj−

i (t), hi, R
j
i .

1) Linearize hi at x̂
j−
i (t) to compute H

j
i

2) Get measurements: {zni }
li(t)
n=1

3) Compute S
j
i , y

j
i , β

j0
i , K

j
i and C

j
i

4) Compute information vector and matrices:

u
j
i ← H

jT
i R

j
i

−1
y
j
i

U
j
i ← H

jT
i R

j
i

−1
H

j
i

G
j
i ← J

j−
i K

j
i

(

C
j
i

−1
−K

j
i

T
J
j−
i K

j
i

)−1
K

j
i

T
J
j−
i

5) Initialize consensus data

v
j
i [0] ←

J
j−
i

NC

x̂
j−
i + u

j
i

+H
j
i

T
R

j
i

−1
(

H
j
i x̂

j−
i − (1− β

j0
i )hi(x̂

j−
i )
)

V
j
i [0] ←

J
j−
i

NC

+U
j
i

W
j
i [0] ←

J
j−
i

NC

+G
j
i

6) Perform average consensus (Sec. 2.2.1) on v
j
i [0], V

j
i [0] and W

j
i [0]

independently for K iterations.
7) Estimate:

x̂
j+
i ←

(

V
j
i [K]

)−1
v
j
i [K] (42)

J
j+
i ← NCW

j
i [K]

8) Predict:

x̂
j−
i (t+ 1) ← Φx̂

j+
i (t)

J
j−
i (t+ 1) ←

(

Φ
(

J
j+
i (t)

)−1
ΦT +Qj

)−1

Output: x̂
j+
i (t), Jj+

i (t), x̂j−
i (t+ 1), Jj−

i (t+ 1).

will be given less weight. In KCF and EKCF, the innovation

from each neighbor’s prior is given equal weight which may

yield poor performance in the presence of naı̈ve nodes.

The term ui, in Eqns. (45) and (47) are not exactly the

same. As ICF assumes perfect data association and com-

putes ui from the appropriate measurement z
j
i , whereas,

in MTIC, ui is computed from the mean measurement y
j
i .

The same argument holds for Eqn. (51) and Eqn. (53) of

the EICF and EMTIC, respectively.

In MTIC Eqn. (47), the A(Uix̂
−
i − (1 − βi0)Uix̂

−
i )

term arises due to the data association error. In

EICF Eqn. (51) the A(Uix̂
−
i − HT

i R
−1
i hi(x̂

−
i )) term

comes from nonlinearity in the observation model.

In a similar fashion, in EMTIC Eqn. (53), the

A
(

Uix̂
−
i − (1− β0

i )H
T
i R

−1
i hi(x̂

−
i )
)

term is a result of

both data association error and nonlinearity in the observa-

tion model. It can be seen that, with perfect data association

and a linear observation model, this term is equal to zero,

yielding ICF Eqn. (45).

The information matrix update equations, i.e., Eqns. (46)

and (48), are different for ICF and MTIC as the data

association uncertainty is incorporated in Gi for MTIC.

This shows the tight integration of the data association and

tracking steps in MTIC, as the uncertainty of one step is
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Method Update Equation Covariance Equation

Kalman Consen-
sus Filter (KCF)

x̂+
i = x̂−

i +
(

J−
i +Bi

)−1 (

bi −Bix̂
−
i

)

+
ǫ

1 + ||(J−
i )−1||

(J−
i )−1

∑

i′∈Ni

(

x̂−

i′
− x̂−

i

)

(43)
J+
i = J−

i +Bi (44)

Information
Weighted
Consensus
(ICF)

x̂+
i = x̂−

i +

(

A

(

J−
i

NC

)

+A(Ui)

)−1

(

A(ui)−A(Ui)x̂
−
i + ǫ

∑

i′∈Ni

J−

i′

NC

(

x̂−

i′
− x̂−

i

))

(45)

J+
i = NC

(

A

(

J−
i

NC

)

+A(Ui)

)

(46)

Multi-Target
Information
Consensus
(MTIC)

x̂+
i = x̂−

i +

(

A(
J−
i

NC

) +A(Ui)

)−1

(

A(ui)−A(Ui)x̂
−
i +A(Uix̂

−
i − (1− βi0)Uix̂

−
i )

+ǫ
∑

i′∈Ni

J−

i′

NC

(

x̂−

i′
− x̂−

i

))

(47)

J+
i = NC

(

A

(

J−
i

NC

)

+A(Gi)

)

(48)

Extended
Kalman
Consensus
Filter (EKCF)

x̂+
i = x̂−

i +
(

J−
i +Bi

)−1

(

bi −HT
i R−1

i hi(x̂
−
i ) + γ

∑

i′∈Ni

(

x̂−

i′
− x̂−

i

)

)

(49)
J+
i = J−

i +Bi (50)

Extended
Information
Weighted
Consensus
(EICF)

x̂+
i = x̂−

i +

(

A

(

J−
i

NC

)

+A(Ui)

)−1

(

A(ui)−A(Ui)x̂
−
i +A(Uix̂

−
i −HT

i R−1
i hi(x̂

−
i ))

+ǫ
∑

i′∈Ni

J−

i′

NC

(

x̂−

i′
− x̂−

i

)

)

(51)

J+
i = NC

(

A

(

J−
i

NC

)

+A(Ui)

)

(52)

Extended
Multi-Target
Information
Consensus
(EMTIC)

x̂+
i = x̂−

i +

(

A

(

J−
i

NC

)

+A(Ui)

)−1 (

A(ui)−

A(Ui)x̂
−
i +A

(

Uix̂
−
i − (1− β0

i )H
T
i R−1

i hi(x̂
−
i )
)

+ǫ
∑

i′∈Ni

J−

i′

NC

(

x̂−

i′
− x̂−

i

)

)

(53)

J+
i = NC

(

A

(

J−
i

NC

)

+A(Gi)

)

(54)

TABLE 1: Comparison of the state estimation equations of the KCF, ICF, MTIC, EKCF, EICF and EMTIC for one

particular target and a single consensus iteration step.

considered in the other. The same argument holds for EICF

Eqn. (52) and EMTIC Eqn. (54).

6 EXPERIMENTS

In this section, we compare the performance of the pro-

posed MTIC algorithm with other methods in a simulation

framework. We also evaluate the performance of the EICF

and EMTIC in simulation and with real-life data.

6.1 Simulation Experiments

The simulation experiments are organized so as to be able

to compare performance with linear and non-linear models.

Linear Model. In Section 6.2, we evaluate in a simulated

environment, the relative performance of the following

approaches: MTIC JPDA-KCF, ICF with ground truth data

association (ICFGT) and a centralized Kalman Filter with

ground truth data association (CKFGT). Note that ICFGT

and CKFGT require the knowledge of the ground truth data

association, whereas MTIC and JPDA-KCF do not. ICFGT

converges to CKFGT in several iterations, thus ICFGT

will provide a performance bound for the other iterative

approaches that have to solve the data association problem.

Non-linear Model. Section 6.2 also presents the results

of the algorithms for non-linear models: EICF, Extended

Kalman Consensus Filter (EKCF) (distributed) [23] and

the Extended Kalman Filter (EKF) (centralized). In addi-

tion, it presents a simulation analysis of the performance

of the proposed EMTIC algorithm in comparison with

the Extended Joint Probabilistic Data Association Filter

(EJPDAF) (centralized), the EICF (with ground truth data

association), and the EKF (with ground truth data associ-

ation). It can be seen that the EMTIC algorithm compares

well with other algorithms (EJPDAF, EICF, EKF) that are

either centralized or require the knowledge of the data

association, whereas the EMTIC solves both the tracking

and data association in a completely distributed manner.
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6.1.1 Simulation Experimental Setup

Linear Model. We simulate a camera network with NC =
15 cameras (there are additional cameras in the varying

camera number simulation below) monitoring an area con-

taining NT = 3 targets roaming randomly in a 500 × 500
area. Each camera has a rectangular FOV of 200 × 200
that are randomly placed in such a way that together

they cover the entire area. A circulant network topology

with a degree of 2 (at each node) was chosen for the

network connectivity. Each target was randomly initialized

at a different location with random velocity. The target’s

state vector was a 4D vector, with the 2D position and

2D velocity components. The targets evolved for 40 time

steps using the target dynamical model of Eqn. (1). The

state transition matrix (used both in track generation and

estimation) Φ and process covariance Q were chosen as

Φ =









1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1









, Q =









10 0 0 0
0 10 0 0
0 0 1 0
0 0 0 1









.

The initial prior covariance P
j−
i (1) =

diag(100, 100, 10, 10) was used at each node for each

target. The initial prior state x̂
j−
i (1) was generated by

adding zero-mean Gaussian noise of covariance P−
i (1)

to initial the ground truth state. The observation was

generated using Eqn. (2) and H
j
i was set as

H
j
i =

[

1 0 0 0
0 1 0 0

]

.

If the ground truth state is within the FOV of a sensor,

a measurement is generated from the ground truth track

using the measurement model Eqn. (2) with Ri = 100I2.

The consensus rate parameter ǫ was set to 0.65/∆max

where ∆max = 2. Total number of consensus iterations

per measurement step, K, was set to 20. The parameters

for computing the association probabilities, βjn
i ’s, were set

as follows (see [10] for details on the definitions of the

parameters). False measurements (clutter) were generated

at each node at each measurement step using a Poisson

process with λ = 1
32 . Here, λ is the average number of

false measurements per sensor. Gate probability PG was

set to 0.99. The probability of detecting a target in each

camera, PD was computed by integrating the probabil-

ity density function of the predicted measurement, (i.e.,

N (Hj
i x̂

j−
i ,Sj

i )) over the area visible to the camera.

To measure the performance of different approaches, one

of the parameters was varied while keeping the others to

their aforementioned values. As a measure of performance,

we computed the estimation error, e, defined as the Eu-

clidean distance between the ground truth position and the

estimated posterior position. The simulation results were

averaged over multiple simulation runs with 100 randomly

generated sets of tracks.

Non-linear Model. The simulation setup is similar to the

above with a few differences due to the nonlinearity in

the observation model. We simulate a camera network

with NC = 8 cameras (there are additional cameras in

the varying camera number simulation below) monitoring

an area with targets randomly roaming in its 500 × 500
area. Each of the cameras can view approximately 20%
of the entire area with some overlap with other cameras.

Together the FOV’s of all cameras cover the entire area.

A circulant network topology with degree 2 (at each node)

was chosen for the network connectivity. The observations

were generated using Eqn. (29) for the standard pin hole

projection model. The linearized observation matrix H
j
i

was computed for each target at each camera at each time

step using the prior state estimate x̂
j
i (t) in Eqn. (30). The

probability of detecting a target in each camera, PD was

computed by integrating the probability density function of

the predicted measurement, (i.e., N (hi(x̂
j−
i ),Sj

i )) over the

area visible to the camera.

6.2 Simulation Results

In this section, the mean (µe) of the error norm for different

methods is shown for different experiments with both linear

and non-linear models.

6.2.1 Varying Clutter

Linear Model. The amount of clutter, λ, was varied from
1

256 to 8. From the results shown in Fig. 2a it can be seen

that both MTIC and JPDA-KCF are very robust even to

a very high amount of clutter. The amount of clutter was

kept at λ = 1
32 for the other experiments.

Non-linear Model. In Fig. 2b, the amount of clutter was

varied from 1/32 to 2. The total number of consensus

iterations, K was set to 5. It can be seen from the figure

that the EMTIC algorithm performed very close to its

centralized counterpart, the EJPDAF. Also note that the

EICFGT and the EKFGT algorithms were not affected by

clutter as expected, as the ground truth data association is

provided for those two algorithms.

6.2.2 Varying Numbers of Sensors and Targets

Linear Model. The total number of sensors NC and total

number of targets NT were varied and the results are shown

in Figs. 2c and 2e. With more sensors, the total number

of available measurements increases which should increase

estimation performance. However, with an increase in the

number of sensors, the total number of false measurements

also increases which can adversely affect the performance.

Also, more sensors with the same degree of connectivity,

would require more consensus iterations to converge. Due

to these contradictory issues, the performance remained

almost constant with different number of sensors. With

the increase in the number of targets, the problem of data

association became more challenging which had an adverse

effect in the performance of the different algorithms as can

be seen in Fig. 2e.

Non-linear Model. Fig. 2d shows the result with varying

number of cameras for non-linear model. Total number of

consensus iterations was set to 20. In addition to the issues

discussed in the linear case, the error due to the linear

approximation of the non-linear model is also present in

this case and as a whole it can be seen that the error

increases with the number of sensors. From the graph, it
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Fig. 2: We show the performance comparison for both MTIC and EMTIC algorithm in a simulation setup. The parameters

evaluated are: (a,b) varying amount of clutter, (c,d) varying number of cameras, (e,f) varying number of targets, (g,h)

convergence over consensus iterations, (i,j) varying proximity of tracks, and (k,l) varying degree of the network graph.

The top and bottom figures are generated from the linear and non-linear model respectively.

can also be seen that with more number of sensors, the

error in the distributed algorithms increases with respect to

the centralized counterparts as the distributed ones would

require more consensus iterations to converge. In Fig. 2f,

the number of targets were varied from 1 to 6. The results

of the EMTIC and EJPDAF algorithms are very similar.

With more targets, the chance of association failure rises,

thus the decrease in performance. This clearly does not have

any affect in the EICFGT and EKFGT algorithms as the

ground truth association is provided.

6.2.3 Convergence

Linear Model. To show the convergence of the different

methods, the total number of iterations per measurement

step, K was varied. Fig. 2g shows the effect on performance

as the number of iterations increases - ICFGT perfprmance

approaches that of the CKFGT. It can also be seen that

MTIC outperforms JPDA-KCF for any K.

Non-linear Model. The performance of the EMTIC algo-

rithm is shown in Fig. 2h. In the experiments, the results

were averaged over 500 randomly generated sets of tracks.

At each time step, a set of 3 tracks was generated. In

Fig. 2h, the total number of iterations K, was varied

from 1 to 10. As shown theoretically in this paper, as

K increased, the performance of the EMTIC algorithm

matched its centralized counter-part (i.e., the EJPDAF)

algorithm’s performance. In the same figure, we also show

the performance of the EICF and EKF algorithms where
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the ground truth data association was provided.

6.2.4 Varying Target Proximity

Linear Model. Data association becomes increasingly chal-

lenging as target trajectories approach each other. As a

measure of proximity, we used a metric called crossing

distance which is defined as the minimum over all time

steps of the distance between all possible pairs of targets for

a particular run of the simulation. There were two targets in

the scene. In Fig. 2i, when the crossing distance decreases,

the performance of different approaches deteriorates. How-

ever, MTIC performs better than JPDA-KCF.

Non-linear Model. In Fig. 2j, the crossing distance of the

targets were varied for the non-linear model. There were

two targets in the scene. It can be clearly seen that when

the targets come close the performance of the EJPDAF and

EMTIC algorithm drops. The performance of these two

algorithms was very similar, the underlying reason being

that the closer the targets, the higher the chance of wrong

data association. This is clearly not an issue for the EICFGT

and EKFGT where the ground truth association is given.

6.2.5 Varying Network Topology

Linear Model. Fig. 2k demonstrates the performance with

varying degree of the network. The degree was varied from

2 to 14. A degree of d would mean that each node is

connected to d other nodes. For each of the randomly

generated sequences, a new connected network with a

particular degree was randomly generated. Total number

of consensus iterations, K, was set to 1. We can observe

from the Fig. 2k that with more connection among the

nodes, MTIC and ICFGT algorithms converged to JPDAF

and KFGT algorithms respectively.

Non-linear Model. In Fig. 2l, the degree of the network

graph was varied from 2 to 7. Total number of consensus

iterations, K, was set to 1. It can be seen from the figure

that with denser connection, the distributed algorithms

i.e., EMTIC and EICFGT converged to their centralized

counterpart i.e., EJPDAF and EKFGT respectively.

6.2.6 Difference in convergence speed

In Fig. 3a, we can see from the timeline diagram that

with each iteration, the estimates at different cameras are

converging toward a single value. The three plots in Fig. 3a

show the nature of convergence at three different time steps

for one particular state variable and for one particular target

in different sensors. It can be seen that sometimes the initial

states at different nodes are very different and it takes more

time to converge (i.e., Fig. 3a). On the contrary, sometimes

(e.g., center and bottom subplots in Fig. 3a) the initial states

are very close and it takes less time to converge. Similar

behavior is observed for the non-linear case (Fig. 3b).

6.3 Real-life Experiments

This section shows the performance of the EMTIC algo-

rithm on two real-life datasets - a multi-camera multi-target

dataset captured at EPFL [24] and another that we captured.

The algorithms were run on a post-processing basis on the

collected datasets, to allow direct comparison of algorithms

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4: Example scenarios from EPFL dataset ((a) - (d)) and our
dataset ((e) - (h)) on which the proposed EMTIC algorithm were
evaluated by varying the number and proximity of targets.

using exactly the same data inputs. OpenCV library’s [25]

implementation of histogram of oriented gradients (HOG)

based person detector [26] was used to detect the persons

in each frame. We show results with only the non-linear

models as these were needed for modeling the real-life data.

EPFL Dataset. This dataset [24] provides several se-

quences with synchronised video streams viewing the same

area under different angles. In this experiment, we use

laboratory sequences that were shot by 4 cameras. In

this sequence, four to six people sequentially enter the

room and walk around for approximately 2.5 minutes. The

videos from the EPFL dataset are available at 25 fps. They

were used in the algorithms without any subsampling. To

calculate the tracking error we use the annotated ground-

truth and calibration file provided with the dataset.

Figs. 4a, 4b, 4c and 4d show the snapshots of the lab-

oratory sequence from EPFL dataset generated at different

times. Figs. 5a, 5c and 5e demonstrate the performance

comparison between EMTIC and EJPDAF.

Our Dataset: Six cameras with partially overlapping

FOV were chosen for the experiment. The camera network

communication topology and FOVs, shown in Fig. 1, was

used. The cameras were calibrated with respect to the

ground plane. There were 2-4 persons roaming in the area

with varying degrees of proximity and occlusion.

Figs. 4e, 4f, 4g and 4h show snapshots of the real-

life experiment for 4 different scenarios generated from

4 different sequences. In Figs. 4e, 4f and 4g, two, three

and four targets were present respectively. In Fig. 4h, four

targets were present but in closer proximity than in the

other three cases. Out of the six cameras, images from only

one camera is shown (the one having the best coverage).

The data was collected at 30 fps and used without any

subsampling in the algorithms. Figs. 5b, 5d and 5f show

the performance comparison between EMTIC and EJPDAF

algorithms on our own dataset on the above four scenarios

(Figs. 4e-4h ).

The error metric was defined as the Euclidean distance

(in pixels) between the labeled ground truth location on the

image plane and the projection of the state estimate onto

the camera’s image plane. The error was averaged over all

the targets and over all time steps for each scenario. Next,

we analyze the results in Fig. 5.

Performance with varying number of targets. Figs. 5a
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Fig. 3: Difference in convergence speed at different timesteps for (a) linear model and (b) non-linear model.
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Fig. 5: Performance comparison between EMTIC and EJPDAF on EPFL (top row) and our dataset (bottom row). The

subfigures demonstrate the convergence over consensus iterations(K) with (a,b) varying number of targets at fixed number

of cameras and (c,d) varying number of cameras at fixed number targets.(Plots are best viewable in color)

and 5b show the convergence over consensus iterations with

varying number of targets keeping the number of cameras

fixed for EPFL and our dataset respectively. For Fig. 5a, we

choose 2, 4 and 5 targets with 4 cameras to demonstrate

the convergence. From the Fig. 5a, we can see that the

error increases with the number of targets. Similarly, for

our dataset we choose three scenarios from Fig. 4f, 4g, and

4h respectively with 6 cameras. We can conclude from the

Fig. 5b that error increases with the number of targets and

the tracking becomes poorer due to data association failure

when the targets come close.

Performance with varying number of cameras. In Fig.

5c, the number of cameras varies from 2 to 4 for both

EMTIC and EJPDAF with 6 targets on EPFL dataset. In

Fig. 5d, we choose 1, 3 and 5 cameras with 4 targets

(Fig. 4g). As the number of cameras increases, the total

number of measurements also increases, which boosts up

the estimation performance. From both figures we can see

that the results are very similar for both algorithms and

error decreases with the increase of the number of cameras.

6.4 Conclusion

In this paper, we proposed the Multi Target Informa-

tion Consensus (MTIC) algorithm, which is a general

consensus-based, distributed, multi-target tracking scheme

applicable to a wide-variety of sensor networks. MTIC

addresses the issues of naı̈vety and data association in a

single efficient algorithm. Addressing naı̈vety (i.e., agents

not having measurements for all targets) makes MTIC

applicable to sensor networks where the sensors have

limited FOV’s (which is the case for a camera network).

Addressing data association extends the ICF to applications

with multiple targets where the data association is not

known. Experimental results indicate that MTIC is robust

to false measurements/clutter. The article has also extended

the ICF and the MTIC algorithms to handle nonlinear-

ity in the observation model, as is the case for most

cameras, yielding the EICF and EMTIC algorithms. The
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properties and structures of the algorithms were compared

theoretically and experimentally. Experiments include both

simulation and real-life testbed applications.
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