
Mach Learn (2018) 107:727–747
https://doi.org/10.1007/s10994-017-5676-y

Distributed multi-task classification: a decentralized
online learning approach

Chi Zhang1 · Peilin Zhao2 · Shuji Hao3 · Yeng Chai Soh1 ·
Bu Sung Lee1 · Chunyan Miao1 · Steven C. H. Hoi4

Received: 28 April 2017 / Accepted: 16 September 2017 / Published online: 2 November 2017
© The Author(s) 2017

Abstract Although dispersing one single task to distributed learning nodes has been inten-
sively studied by the previous research, multi-task learning on distributed networks is still an
area that has not been fully exploited, especially under decentralized settings. The challenge
lies in the fact that different tasks may have different optimal learning weights while commu-
nication through the distributed network forces all tasks to converge to an unique classifier. In
this paper, we present a novel algorithm to overcome this challenge and enable learning mul-
tiple tasks simultaneously on a decentralized distributed network. Specifically, the learning
framework can be separated into two phases: (i) multi-task information is shared within each
node on the first phase; (ii) communication between nodes then leads the whole network to
converge to a common minimizer. Theoretical analysis indicates that our algorithm achieves

Editors: Wee Sun Lee and Robert Durrant.

B Peilin Zhao
peilin.zpl@antfin.com

B Steven C. H. Hoi
chhoi@smu.edu.sg

Chi Zhang
czhang024@e.ntu.edu.sg

Shuji Hao
haosj@ihpc.a-star.edu.sg

Yeng Chai Soh
eycsoh@ntu.edu.sg

Bu Sung Lee
ebslee@ntu.edu.sg

1 Nanyang Technological University, Singapore, Singapore

2 School of Software Engineering, South China University of Technology, Guangzhou, China

3 Institute of High Performance Computing, A*STAR, Singapore, Singapore

4 Singapore Management University, Singapore, Singapore

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-017-5676-y&domain=pdf
http://orcid.org/0000-0002-5735-4454

728 Mach Learn (2018) 107:727–747

a O(
√
T) regret bound when compared with the best classifier in hindsight, which is further

validated by experiments on both synthetic and real-world datasets.

Keywords Decentralized distributed learning · Multi-task learning · Online learning

1 Introduction

Multi-task learning (MTL) aims at improving the generalization performance by learning
multiple tasks in parallel and exploiting their intrinsic relationship.While single-task learning
(STL) provides a simple solution to learn each task independently, in many cases, data from
multiple sources may share similar patterns and can jointly contribute to improving each
other’s performance. A typical example can be the feedback from different users in themarket
that can be closely related and shares similar traits, and an efficient learning algorithm should
be able to depict the relatedness of collected data. Representative MTL methods to boost
the generalization performance on batch data include: common parameter sharing (Caruana
1997), low-rank subspace projection (Ando and Zhang 2005; Negahban and Wainwright
2008) and trace norm regularization (Pong et al. 2010). Recent years also witness extensive
studies (Cavallanti et al. 2010; Dekel et al. 2006; Saha et al. 2011; Li et al. 2014; Zhang et al.
2016) on streaming data, also known as online multi-task learning (OMTL) algorithms, for
the merits of low computation cost and strong adaptation to the changing environment.

The big-data era has brought new challenges for MTL since it naturally bears a mission of
computing multiple tasks simultaneously, and it’s more desirable to distribute computation
that is locally light. Inmany scenarios, datamaybe collected fromdifferent places and sending
all data back toone learning center obviously leads to extra transportation cost,whichmayalso
be limited to geometric distance. It’s apparently more favorable to distribute smaller subsets
of data to different learning units and then collaboratewith direct neighbors to find the optimal
solution (Sayed 2014). Along with these advantages of distributed learning algorithms also
come the merits as link or node failure insensitivity and user’s privacy protection.

Despite these aforementioned benefits and its strong demand, distributed MTL is still an
area that has not been fully exploited. Dinuzzo et al. (2011) first explored distributed MTL
by performing information fusion with a server–client strategy, while later research (Wang
et al. 2016a, b) proposed distributed MTL algorithms by further restricting task relatedness
through shared sparsity. They are all under centralized setting and use the common ‘master
and worker’ framework, where the ‘master’ collects real-time information from all tasks to
construct a global model and then feeds back to each ‘worker’ to further exploit local content.

MTL under decentralized settings is more challenging. First of all, each node only com-
municates with its direct neighbors and there is no global model (‘master’) on decentralized
distributed networks. Direct information flow is strictly restricted within a limited range, and
any attempt to construct global sparsity is impractical. On the other hand, previous research
(Sayed 2014) has proved that all nodes will finally converge to the common optimal value
after sufficient training, but in contrast to this property is the fact that the optimal solutions for
different tasks in MTL may just be similar rather than identical. This discrepancy is known
as ‘Pareto optimality’ between each task, which is actually the compromise of reaching a
uniform global optimality at the cost of sacrificing each task’s own loss. Figure 1 gives a
simple illustration for ‘Pareto optimality’ between two tasks, where the final wT terminates
at some point betweenw∗

1 andw
∗
2. Apparently, there is no guarantee such a compromise will

be better than learning each task individually without communication.

123

Mach Learn (2018) 107:727–747 729

Fig. 1 Two tasks with different optimal value w∗
1 and w∗

2. The network will finally converge to some point
w between w∗

1 and w∗
2. Obviously, any attempt to decrease one task’s loss lies at the cost of increasing the

other’s (e.g. moving w down along the red line increases J2(w).) (Color figure online)

In order to overcome these challenges, Chen et al. (2014) presented a possible solution
by clustering similar tasks into groups and only required tasks within each group to share
the same minimizer, while another possible solution (Bertrand and Moonen 2010, 2011) is
assuming that the node-specific parameters lie in a common subspace. However, these meth-
ods all assume that we have some prior knowledge beforehand, such as how the parameter
space is divided or which cluster each task belongs to, and may not hold in real-world sce-
narios. Besides, these methods strictly rely on the similarity of tasks and are very sensitive
to outlier tasks.

Motivated by the merits and challenges of distributed MTL, we present a new learning
framework and jump out of the stereotype of limiting each learning node to a ‘worker’ for a
specific task. A more general setting is therefore proposed where each learning unit is able to
learn all tasks, and knowledge is transferred in two phases: task information is shared within
each node in the first phase, and then all nodes collaborate together to achieve a common
minimizer. The proposed algorithms successfully avoid suffering the challenge of ‘Pareto
optimality’ since the potential optimum for all nodes is identical rather than similar.

Our key contribution lies in two aspects. The first is to propose a simple but novel frame-
work for decentralized distributed OMTL problem, which is not only applicable to our own
algorithms but also able to transformmany existing distributed STLmethods [e.g. distributed
dual averaging algorithm (Duchi et al. 2012)] into decentralized distributedMTL algorithms.
To the best of our knowledge, this is the first model to enable OMTL on decentralized dis-
tributed networks without any prior knowledge. The second contribution is that our algorithm
enjoys a lower O(

√
T) theoretical regret if given a fixed relationship matrix, while previous

studies either only provides empirical results (Saha et al. 2011) or be upper bounded with a
larger regret under distributed setting [See RT = O(

√
T log T) of theorem 2 in Duchi et al.

(2012)].
The remainder of this paper is organized as follows: Sect. 2 introduces our distributed

OMTL algorithm. Section 3 establishes our theoretical proof on the regret bound for our
proposed algorithmwith a fixed relationshipmatrix, and experiments are conducted in Sect. 4.
Section 5 reviews some related work and concludes this paper.

Notations: Lower-case letters (α, β, · · ·) are used as scalars, and lower-case bold letters
(w, v, · · ·) are used as vectors. Upper letters (U, P, Q) denotematrices. For distributedmulti-

123

730 Mach Learn (2018) 107:727–747

task learning, superscript denotes the task index and subscript denote the node and round
index (e.g. wm

i,t denotes the weight vector for m-th task on node i for the t-th round). The
aggregated weight ai, j denotes the combination weight from node j to node i .

2 Decentralized distributed online multi-task classification (DOM)

We will present our new learning framework in the section, together with two corresponding
algorithms. The novel part is that we separate information flow into two phases: transferring
multi-task information within each node first and then collaborate with direct neighbors to
achieve a common minimizer on the network.

2.1 Problem formulation

Considering a set of m tasks for classification in parallel and each task receives one instance
xit ∈ R

d on each round, OMTL algorithm is required to make predictions for each task
based on its stored learning weight Wt : ŷit = sign(q̂ it) = sign

(
(wi

t)
�xit

)
for i ∈ [1, . . . ,m],

where wi
t refers to the i-th column of Wt . Its predictions are evaluated by a canonical loss

function f , and in this paper we adopt the hinge loss f = [1 − yit (w
i
t)

�xit]+ for simplicity.
Upon receiving the penalty, the algorithm updates wt+1 to minimize its current hinge loss
and prepares for predictions on the next round. Our ultimate goal is minimizing the overall
learning loss compared with the best wi∗ for task i in hindsight (Shalev-Shwartz 2012), also
known as regret,

RT =
T−1∑

t=0

m∑

i=1

[
f (wi

t) − f (wi∗)
]
.

Instead of assigning each node to tackle one specific task (Bertrand and Moonen 2010,
2011; Chen et al. 2014) and encountering the compromise of reaching ‘Pareto optimality’,
we propose a more general setting where each node is able to deal with all tasks and instances
from different tasks can be randomly allocated to any learning node.

Specifically, each node concatenates instances from all m tasks as a compound instance
vector

φ�
i,t =

[
(x1i,t)

�, (x2i,t)
�, . . . , (xmi,t)

�]
,∀i ∈ [1, . . . ,m] (1)

and the corresponding weight vector for the i-th node is compounded as

v�
i,t =

[
(w1

i,t)
�, (w2

i,t)
�, . . . , (wm

i,t)
�]

,∀i ∈ [1, . . . ,m]. (2)

To understandwhywe need to concatenateweights on each node,we provide the following
insights. Let’s denotew j∗ as the optimal learningweight for the j-th task andvi,∗ as the optimal
learning weight for the i-th node. If following the stereotype of assigning the i-th node to be a
‘worker’ for a specific task (j-th task), we immediately have the conclusion that the optimal
weight of this learning node equals to that of its assigned task, namely vi,∗ = w j∗ . Since w j∗
differs from each other, the optimal weights on different nodes will also be disparate and can’t
be efficiently learned from the networks. On the other hand, the optimal concatenated value,
v�
i,∗ = [

(w1∗)�, (w2∗)�, . . . , (wm∗)�
]
, is identical for all nodes under our proposed learning

framework, and it also endows each node with the ability to learn all tasks.

123

Mach Learn (2018) 107:727–747 731

2.2 Node update

Although one node can receive multiple instances on each round, we follow the common
assumption for OMTL that the algorithm receives m instances and randomly allocates them
tom learning nodes.1 Suppose the i-th node only receives an instance xiti,t from the it -th task,
and the compound instance vector in Eq. (1) becomes

φ�
i,t =

[
0, . . . , (xiti,t)

�, . . . , 0
]
. (3)

The prediction is

ŷi,t = sign(q̂i,t) = sign
(
v�
i,tφi,t

)
= sign

(
(wit

i,t)
�xiti,t

)
. (4)

Learning on the network is apparently inefficient if we simply update it -th task’s learning
weight as

wit
i,t+1 = wit

i,t − η∇ f (q̂i,t), (5)

and we need to design a proper scheme to share the instance information for all tasks within
each node.

2.2.1 Node updating rule

Following the research in Evgeniou et al. (2005), we define the multi-task kernel feature
mapping Ψ so that xiti,t ∈ R

d is projected into md-dimension Reproducing Kernel Hilbert

Space (RKHS) H such that Ψ (xiti,t) = B−1⊗ φt , and then the corresponding inner product is
defined as

〈
Ψ (xisi,s), Ψ (xiti,t)

〉

B⊗
=

(
B−1⊗ φs

)�
B⊗

(
B−1⊗ φt

)
= φ�

s B−1⊗ φt ,

where B refers to a m × m symmetric matrix which captures the relationship among tasks,
and B⊗ refers to the Kronecker product B⊗ = B

⊗
Id .

The hinge loss function in the multi-task kernel space is then defined as

f (v) = max
{
0, 1 − yiti,t 〈v, Ψ (xiti,t)〉B⊗

}
,

and if f (v) is not zero, the derivative will be

∇ f (v) = −yiti,tΨ (xiti,t) = −yiti,t B
−1⊗ φt . (6)

For node i , our goal is selecting the optimal vi to minimize its current loss, or

min
vi

f (vi)

With Taylor’s expansion in the kernel space, we replace such a minimization problem
with

min
vi

〈∇ f, vi 〉B⊗ + 1

2η
‖vi − vi,t‖2B⊗ .

Setting the derivative to zero, we have the updating rule as

vi = vi,t − η∇ f (vi,t). (7)

1 In the remaining part, we simply assume there are m nodes on the network, but it’s applicable to the case
where there are more nodes than instances by updating ∇ f = 0 on nodes that do not receive instances.

123

732 Mach Learn (2018) 107:727–747

Algorithm1DecentralizedDistributedOnlineMulti-taskClassificationwith FixedB (DOM-
I)

1: Initialize: ai, j = 1/N in matrix A, and B−1 as Eq. (10).
2: Initialize: ui,0 = 0 for ∀i ∈ [1, · · · ,m] ;
3: for t = 0, · · · , T − 1 do
4: for i = 1, · · · ,m do
5: Combine: vi,t = ∑m

j=1 ai, ju j,t
6: end for
7: for i = 1, · · · ,m do
8: Receive instance pair (xiti,t , y

it
i,t)

9: Calculate q̂i,t = vi,t · xiti,t
10: Predict ŷi,t = sign(q̂i,t)
11: Compute the loss function f (vi,t) = [1 − yi,t q̂i,t]+
12: if f (vi,t) > 0 then

13: Update ui,t+1 = vi,t + ηyiti,t B
−1⊗ φi,t

14: else
15: ui,t+1 = vi,t
16: end if
17: end for
18: end for
19: Output: ui for i = 1, · · · ,m

Substituting ∇ f (vi,t) with Eq. (6), the updating rule for each node as

vi = vi,t + ηyiti,t B
−1⊗ φi,t . (8)

Recalling the equation B−1⊗ = B−1 ⊗
Id and the expressions for vi and φi,t in Eqs. (2)

and (3), we have the closed-form updating rule for j-th task as

w j
i,t+1 = w j

i,t + ηB−1
j,it

xiti,t y
it
i,t for ∀ j ∈ [1, . . . ,m], (9)

where B−1
j,it

denotes the (j, it)-th component of matrix B−1. Compared with Eq. (5) where
only the it -th task is updated, Eq. (9) updates learning weights for all tasks by transferring
information in the multi-task kernel space.

2.2.2 Selection of relationship matrix B

For the selection of matrix B, we first present an algorithm based on a fixed relationship
matrix (Cavallanti et al. 2010),

B−1
j,it

= b + mδ j,it

(b + 1)m
for ∀ j, it ∈ [1, . . . ,m], (10)

where δ j,it = 1 if j = it and δ j,it = 0 otherwise. The corresponding updating rule for each
task becomes

w j
i,t+1 = w j

i,t + η
b + mδ j,it

(b + 1)m
yiti,tx

it
i,t for ∀ j ∈ [1, . . . ,m]. (11)

The intuition behind Eq. (11) is that the tasks’ relationship is reflected by parameter b, and
the theoretical optimal b∗ will be given in Sect. 3 or simply be tuned on real-world datasets.
Specifically, if b = 0, there is no connection behind tasks and only it -th task will be updated,
while if b = ∞, all tasks share the same information of instance (xiti,t , y

it
i,t)with the weight

1
m .

123

Mach Learn (2018) 107:727–747 733

Algorithm 2 Decentralized Distributed Online Multi-task Classification with Dynamic B
(DOM-II)
1: Initialize: ai, j = 1/N in matrix A.
2: Initialize: ui,0 = 0, Pi,0 = 0 for ∀i ∈ [1, · · · ,m]
3: Initialize: B̂i,0 = αB−1

0 for ∀i ∈ [1, · · · ,m]
4: for t = 0, · · · , T − 1 do
5: for i = 1, · · · ,m do
6: Combine: vi,t = ∑m

j=1 ai, ju j,t

7: Combine: Bi,t+1 = ∑m
j=1 ai, j B̂ j,t

8: end for
9: for i = 1, · · · ,m do
10: Receive instance pair (xiti,t , y

it
i,t)

11: Calculate q̂i,t = vi,t · xiti,t
12: Predict ŷi,t = sign(q̂i,t)
13: Compute the loss function f (vi,t) = [1 − yi,t q̂i,t]+
14: if f (vi,t) > 0 then

15: Update ui,t+1 = vi,t + ηyiti,t [B−1
i,t+1]⊗φi,t

16: else
17: ui,t+1 = vi,t
18: end if
19: Update Pi,t+1 as Eq. (13)

20: Update B̂i,t+1 = αB−1
0 + (1 − α)Pi,t+1

21: end for
22: end for
23: Output: ui for i = 1, · · · ,m

Since the relationship between tasks may not be static in the long run, we also propose a
dynamic relationship matrix B with a smooth updating rule (Murugesan et al. 2016),2

B−1
i,t = αB−1

0 + (1 − α)Pi,t , (12)

where B−1
0 refers to an initial matrix that can be set to be I or any fixed stochastic matrix

and Pt is the relationship matrix learned from data on each round. Specially, the (it , j)-th
component of Pi,t will be updated as

pit , j = exp(− f (wit
j,t , x

it
i,t , y

it
i,t))

∑m
j ′=1 exp(− f (wit

j ′,t , x
it
i,t , y

it
i,t))

for ∀ j, it ∈ [1, . . . ,m]. (13)

The intuition behind Eq. (13) is that if the wit
j,t also works well for (xiti,t , y

it
i,t), it will

be assigned with a large transferring weight coefficient from j to it , and the normalization
ensures Pi,t is still a row stochastic matrix after updating.

2.3 Nodes communication

After designing the information-sharing scheme within each node, we now turn to the inves-
tigation of communication among the nodes. We assume that the network topology is static
and information among nodes are exchanged through a fixed combinationmatrix A. Since the
previous research (Tu and Sayed 2012) shows that diffusion learning outperforms incremen-

2 Although dynamic relationship seems more meaningful in many scenarios, we can’t confirm B is p.s.d and
hence this methods leads to the challenge of theoretical analysis (Saha et al. 2011).

123

734 Mach Learn (2018) 107:727–747

tal learning and consensus learning, we adopt diffusion method with the strategy ‘Combine
and Then Adapt’ (CTA) in this paper.

Denote weight vector for the i-th node at the end of round t as ui,t , then our updating rule
is:

Step I : vi,t =
m∑

j=1

ai, ju j,t , (14)

Step II : ui,t+1 = vi,t − η∇ f (vi,t), (15)

where ai, j denotes the (i, j)-th component of combination matrix A. Node i first combines
learning weights from its direct neighbors and then repeats Eq. (7) to perform an update by
learning from the newly-come instance in the multi-task kernel space.

The combination weight matrix A, together with its components ai, j , determine how
information flows within the network. In order to guarantee efficient updating, we make a
few assumptions below.

Assumption 1 Denote i-th node’s direct neighbors as N (i) and the number of N (i) as N .
If j ∈ N (i), there exists a scalar ε such that ai, j ≥ ε holds. If j /∈ N (i), ai, j = 0 holds.

Assumption 2
∑m

j=1 ai, j = 1 and
∑m

i=1 ai, j = 1 holds for any i and j .

Assumption 3 There exists at least one node such that i ∈ N (i), and there does not exist
any j such that N (j) = { j}.

Assumption 1 ensures each node gives sufficient learning weight to any of its direct
neighbors and does not combine learning weights from indirect neighbors. Assumption 2
guarantees the network is doubly stochastic, and Assumption 3 confirms that there is no
separated node.

Finally, Algorithms 1 and 2 summarize our decentralized distributed online multi-task
classification algorithms with a fixed B and a dynamic B separately.

3 Theoretical analysis

We analyze the regret bound for DOM with a fixed relationship matrix in this part.

3.1 Proof setup

We start from defining several auxiliary notations to help us track the information flowwithin
the network.

There is no ‘external’ information flowing into the network in step I since all nodes simply
combine their neighbors’ weight. Step II introduces a new instance for each node, together
with its gradient information. In order to capture the information, we define

pi,t+1 = ui,t+1 − vi,t
(15)= −η∇ f (vi,t).

Assume that all the instances are within the space Ψ : {x | ‖x‖ ≤ D}, we have the upper
bound of p as

‖pi,t+1‖B⊗
(6)= ‖ηyiti,t B−1⊗ φi,t‖B⊗

(3)(10)= η‖xiti,t‖
√

(B−1)it ,it .

123

Mach Learn (2018) 107:727–747 735

Denoting L = max{‖xiti,t‖
√

(B−1)it ,it }, information flow is therefore bounded as

‖pi,t+1‖B⊗ ≤ ηL (16)

Since any two norms on finite-dimensional vector space are equivalent (Strang et al. 1993)
and noticing B is stochastic, we have

c‖∇ f (vi,t)|B⊗ ≤ ‖∇ f (vi,t)‖B−1⊗ ≤ C‖∇ f (vi,t)‖B⊗ , (17)

for some constant c,C .
On the other hand, a matrix chain is defined as 	(k, s) = Ak−s (k ≥ s ≥ 0) so the

evolution of u j,t+1 is derived as

u j,t+1 = p j,t+1 +
t∑

l=1

m∑

i=1

[(t + 1, l)] j,ipi,l . (18)

We define an auxiliary ‘central’ weight as zt = 1
m

∑m
i=1 ui,t , and its evolution can be

derived as

zt = 1

m

m∑

i=1

ui,0 + 1

m

t∑

l=1

m∑

i=1

pi,l

Without loss of generality, we assume all the learning weights start from 0, or ui,0 = 0.
Then the above equation can be written as

zt = 1

m

t∑

l=1

m∑

i=1

pi,l . (19)

3.2 Weight difference and regret bound

Our first goal is deriving the difference between these two learning weights, or ‖zt −u j,t‖B⊗ .

Lemma 1 Suppose the network is static and strongly connected, and assumptions 1,2,3 hold.
We have the following inequality:

∣∣∣∣	(k, s)i, j − 1

m

∣∣∣∣ ≤ θβk−s

for all k ≥ s ≥ 0, where θ = (1− ε
4m2)

−2 and β = (1− ε
4m2)

1
Q only depend on the size and

the topology of the network.

The above lemma numerically calculates how fast the information flows into separate
nodes before the uniform distribution, and enables our further analysis on bounding the
weight difference in the following lemma.

Lemma 2 Consider all the instances are within the range Ψ and Lemma 1 holds, then we
have

‖zt+1 − u j,t+1‖B⊗ ≤ ηL�

where � = mθ
β

1−β
+ 2.

123

736 Mach Learn (2018) 107:727–747

Equipped with these two lemmas, we can march towards the second goal of minimizing
the regret between sequence{ui,t} and the potential best classifier u∗, or

min
T−1∑

t=0

m∑

i=1

[
f (ui,t) − f (u∗)

]
. (20)

Given an arbitrary u, we have

T−1∑

t=0

m∑

i=1

[
f (ui,t) − f (u)

]

=
T−1∑

t=0

m∑

i=1

[f (zt) − f (u)] +
T−1∑

t=0

m∑

i=1

[
f (ui,t) − f (zt)

]

≤
T−1∑

t=0

m∑

i=1

[f (zt) − f (u)] +
T−1∑

t=0

m∑

i=1

‖∇ f (ui,t)‖B−1⊗ ‖ui,t − zt‖B⊗

(17)≤
T−1∑

t=0

m∑

i=1

[f (zt) − f (u)] +
T−1∑

t=0

m∑

i=1

CL‖ui,t − zt‖B⊗ (21)

Equation (21) includes two terms, and we derive the upper bound for the first term in the
following lemma.

Lemma 3 The difference between zt and any fixed u is bounded as

T−1∑

t=0

m∑

i=1

[f (zt) − f (u)] ≤
m‖u‖2B⊗

2η
+ CL

T−1∑

t=0

m∑

i=1

‖zt − ui,t‖B⊗ + ηmT L2/2.

Combining Lemmas 2 and 3 into Eq. (21), we come to the following theorem.

Theorem 4 Let u∗ denotes the optimal classifier in hindsight, then the regret of the proposed
DOM algorithm is upper bounded as

T−1∑

t=0

m∑

i=1

f (ui,t) − f (u∗) ≤
m‖u∗‖2B⊗

2η
+ ηmT L2

(
1

2
+ 2C�

)
.

Remark: (1) By selecting η = ‖u∗‖B⊗

L
√
T (1+4C�)

, the optimum regret bound can be written as

mL
√

(T + 4C�)‖u∗‖2B⊗ ,

which is actually a O(
√
T) regret.

(2) The regret bound depends on the relationship between the optimum weight ui∗ of each
task. If B is static, then

‖u∗‖2B⊗ =
m∑

i=1

‖ui∗‖2 + b
m∑

i=1

‖ui∗ − ū‖2,

where ū = 1
m

∑m
i=1 u

i∗ is the average of all potential optimal weight vectors. By the definition
of L and ‖u∗‖2B⊗ and if ‖ui∗‖2 < m

m−1‖ui∗ − ū‖2, the optimal b∗ can be derived as

b∗ =
√

(m − 1)

∑m
i=1 ‖ui∗‖2 − ∑m

i=1 ‖ui∗ − ū‖2
∑m

i=1 ‖ui∗ − ū‖2 ,

123

Mach Learn (2018) 107:727–747 737

or b = 0 otherwise.
(3) Decentralized network with good connection property leads to a small � (since θ and

β are relatively small), and therefore its learning regret is also lower compared with poorly
connected network.

4 Experiment

In this section, we compare our algorithms with several competitors on both synthetic and
real-world datasets to explore the influence ofmulti-task learning and distributed learning.We
start by introducing our experiment data and comparison algorithms, followed by discussion
on the results.

4.1 Benchmarks

Our work highlights the challenges of distributing OMTL to multiple nodes, and here we
classify all competing algorithms into two groups:

1. Centralized Learning

– PM Original Perceptron algorithm (Rosenblatt 1958) by adding a learning step to
adjust its adaptation to data.

– PA Online Passive-Aggressive algorithm (Crammer et al. 2006).
– COML Collaborative Online Multi-task Learning (Li et al. 2014) represent central-

ized OMTL method.

2. Decentralized Distributed Learning

– NS Previous research (Chen et al. 2014) of assigning each node to tackle one specific
task, also known as Node Specific methods.

– DST Distributed Single-Task method disperses each task to all learning nodes, and
there is no information sharing between tasks.

– DA Dual Averaging algorithm for distributed optimization (Duchi et al. 2012) is
originally designed for single-task learning, but it can also be extended to OMTL
setting under our presented framework.

– DOM-I The proposed algorithm with a fixed relationship matrix. Each node can
tackle all tasks, and the information is shared for all tasks and nodes.

– DOM-II Learning with a smooth dynamic relationship matrix.

Three different types of networks, namely full-connected, grid-connected and ring-
connected network, are used to examine the effect of network topology. Each learning node
equally assigns 1/N weights to its direct neighbors, where N represents the number of its
direct neighbors. The performance of these algorithms is evaluated by their error prediction
rates, and each experiment consists of 50 runs, where the instances are shuffled beforehand
and randomly assigned to the learning nodes. The learning rate η is tuned within a grid search
{10−5, . . . , 10+2}.

We first construct a synthetic dataset via random walks in parameter space with Gaussian
increments. The initial value is w0 ∈ R

100, and its first 60 components are set to be 1 while
the rest are set to be −1.5. We then construct the potential optimal weight vector for 9
similar tasks as wi+1 = wi + ε, where ε ∼ N (0, 0.1I) and i = 0, . . . , 8. A training sample
x = [x1, . . . , x100] is generated by randomly selecting xi ∈ [−3, 3], and for each task we
obtain 2000 samples.

123

738 Mach Learn (2018) 107:727–747

Table 1 Error Prediction Rate (%) and Standard Deviations (%) on Real-world Datasets

Method Synthetic MHC-I Sentiment

Centralized

PM 12.95 ± 0.19 28.22 ± 0.21 22.06 ± 0.44

PA 12.66 ± 0.19 28.09 ± 0.15 21.85 ± 0.37

COML 6.00 ± 0.14 27.58 ± 0.16 21.13 ± 0.32

Decentralized

NS (Full) 6.06 ± 0.14 31.13 ± 0.15 24.30 ± 0.56

NS (Grid) 6.19 ± 0.16 31.10 ± 0.18 25.21 ± 0.59

NS (Ring) 6.23 ± 0.15 30.85 ± 0.17 –

DST (Full) 13.07 ± 0.18 28.29 ± 0.17 22.19 ± 0.47

DST (Grid) 13.24 ± 0.18 28.36 ± 0.17 22.61 ± 0.29

DST (Ring) 13.24 ± 0.21 28.38 ± 0.17 –

DA (Full) 6.41 ± 0.17 27.48 ± 0.15 21.77 ± 0.35

DA (Grid) 6.44 ± 0.17 27.49 ± 0.19 21.82 ± 0.14

DA (Ring) 6.46 ± 0.18 27.57 ± 0.16 –

DOM-I (Full) 5.91 ± 0.12 27.27 ± 0.16 20.71 ± 0.37

DOM-I (Grid) 6.01 ± 0.13 27.34 ± 0.19 20.91 ± 0.46

DOM-I (Ring) 6.03 ± 0.13 27.37 ± 0.17 –

DOM-II (Full) 6.01 ± 0.12 27.68 ± 0.11 20.63 ± 0.34

DOM-II (Grid) 6.05 ± 0.08 27.71 ± 0.11 20.73 ± 0.32

DOM-II (Ring) 6.09 ± 0.12 27.72 ± 0.13 –

Algorithm efficiency is tested also on two commonly used real-world datasets: MHC-I3

(Peters et al. 2006) contains a subset of humanMHC-I alleles (A0201,A0202,A0203,A0206,
A0301, A3101, A3301, A6801, A6802) and features are extracted with bigram amino acid
encoding (Li et al. 2014) to project each protein sequence into 400-dimension feature space.
Sentiment4 (Blitzer et al. 2007) contains user reviews of 4 types of products (books, DVD,
electronics and kitchen) and each review lies in the 230610-dimension feature space based
on the corresponding word sequence.

4.2 Performance analysis

The synthetic dataset consists of 9 similar tasks, and from Table 1 we can observe that
OMTL strategies significantly improve the overall performance, reducing the error rate from
12% to 6%. Previous studies have validated that OMTL algorithms boost the generalization
performance compared with STL, and this property also holds under distributed settings if
considering the good effect of the previous method (NS) by assigning one node to tackle
one specific task. In the meantime, our new strategy of enabling each node to tackle all tasks
successfully transforms STL algorithm (DA) into MTL methods. Among all the distributed
methods, our proposed algorithm enjoys a lower error rate and it even outperforms traditional
centralized learning on full-connected network, and is also competitive on grid-connected
and ring-connected network.

3 http://tools.iedb.org/main/datasets/
4 Sentiment dataset contains 4 tasks and ring-connected network is the same as grid-connected network.

123

http://tools.iedb.org/main/datasets/

Mach Learn (2018) 107:727–747 739

(a) (b)

(c) (d)

Fig. 2 a Sentiment-Full. b Sentiment-Grid. c Synthetic-Full. d MHC-I Full. Above is the learning process
on Sentiment dataset; below is the parameter effect on Synthetic and MHC-I dataset

Unlike our synthetic dataset, the relationship between real-world tasks is more compli-
cated, where the optimal weight vector for each taskmay not be similar and outlier tasks often
exist. The performance in Table 1 indicates: (1) Centralized OMTL algorithm (COML) still
achieves better performance than learning each task individually. (2)The previous strategy of
assigning each node to tackle one specific task (NS) actually increases the error prediction
rate, and this can be easily explained by our previous analysis on ‘Pareto optimality’ where
the optimal weight vectors may be quite different for tasks. (3) Our strategy of information
sharing still works well for both DA and DOM. By comparing with DST, which is actually a
naive version of dispersing each task to all learning nodes, we can see the information sharing
between tasks has a sound effect on distributed learning. Specifically, DOM algorithms show
a favorable performance when compared with typical centralized OMTL algorithm, espe-
cially on networks with good connectivity properties. While the theoretical result suggests
our algorithm achieves a O(

√
T) regret bound while the counterpart in previous research

(DA) is O(
√
T log T), we observe the practical performance of DOM algorithms does out-

perform DA with lower error rates on all datasets in Table 1 and enjoys a faster learning
progress in Fig. 2.

Figure 2 also depicts the parameter effect for DOMwith a constant and dynamic relation-
ship matrix on full-connected networks.5 For algorithm with a constant B, we have given the
theoretical optimal b∗ in Theorem 4, and experiments validate our theoretical result as bexp is

5 Parameter effects are similar on grid and ring-connected network.

123

740 Mach Learn (2018) 107:727–747

rather close to b∗. We set B0 = I for DOM-II, and it’s equal to learn each task independently
if α = 1. We can see a combination of an initial fixed relationship matrix and a dynamic term
actually performs better than learning each task individually or setting the relationship to be
totally dynamic.

Finally, it is important to note that the goal of this work is not to claim a new OMTL
algorithm beating the existing centralized algorithms, but mainly focus on making OMTL
algorithms feasible and effective under the challenging decentralized distributed settings.
Experimental results show that the proposed decentralized algorithm matches the perfor-
mance of the centralized OMTL learning (COML) on both synthetic and real-world datasets,
clearly validating its efficacy.

5 Related work and conclusion

Our paradigm stems from recent advances in distributed algorithms and (online) multi-task
learning. Therefore, we will briefly review previous research in these two areas separately.

Since the pioneering research (Tsitsiklis 1984; Bertsekas 1983; Bertsekas and Tsitsiklis
1989) in 1980s, distributed optimization problems have attracted extensive studies in different
areas. Based on the adopted strategy, most of previous work can be roughly divided into three
groups: incremental, consensus and diffusion learning [Chapter 7 in Sayed (2014)]. Incre-
mental methods (Bertsekas 1997; Blatt et al. 2007; Neto and Pierro 2009) require the network
to form a special ring and transmit the updated information through a cyclic trajectory one
after the other, while consensus methods (DeGroot 1974; Johansson et al. 2008; Nedic and
Ozdaglar 2009) require each node to perform two updating steps: it first aggregates the iterates
from its direct neighbors and then updates this aggregate value by the (sub)gradient vector
evaluated at its previous weights. Diffusion methods (Chen and Sayed 2012; Sayed 2013)
maintain the combination step of consensus learning but evaluate the (sub)gradient informa-
tion by using the combined learningweights. Recent studies (Tu andSayed 2012; Sayed 2014)
have proved that diffusion strategy allows information to diffusemore thoroughly through the
network and therefore outperforms previous two strategies in constant step-size scenarios.

Stemming from the seminal work of Caruana (1997), numerous works have shown that
relevant information sharing boosts the generalization performance of MTL, and some rep-
resentative methods are: common parameter sharing (Caruana 1997), low-rank subspace
projection (Ando and Zhang 2005; Negahban andWainwright 2008) and trace norm regular-
ization (Pong et al. 2010). On the other hand, with the merits of reducing the computation and
storage cost, online multi-task learning (OMTL) recently attracts more and more research
interest. It also enjoys the benefits of dealing with sequential data and is able to adapt to the
changing environment. Studies of OMTL can be traced back to Dekel et al. (2006) where
separate tasks are updated through a common loss. Cavallanti et al. (2010) design perceptron-
based algorithms, with a fixed matrix to capture the relationship between tasks. Later, Saha
et al. (2011) extend theirwork by trying to learn task relationship from the data itself and allow
it to be dynamic. Other OMTL literature can be found in Li et al. (2014) where a collaborative
model is proposed and Lugosi et al. (2009) where OMTL with hard constraints is studied.

However, distributing OMTL on decentralized distributed network leads to the aforemen-
tioned challenge of ‘Pareto optimality’, which actually reflects the contradiction of different
properties of OMTL problems (different minimizers) and distributed networks (same min-
imizer). In this paper, we jump out of the stereotype of limiting a node as a ‘worker’ for
a specific task and propose a novel learning framework so that these nodes are able to all

123

Mach Learn (2018) 107:727–747 741

tasks at the same time. The information-sharing scheme in our algorithms is separated into
two sessions: multi-task’s information is first shared within each node and then the whole
network is pushed towards a common minimizer by communication among different nodes.
Such a learning framework not only works for our proposed algorithms, but also be applica-
ble to transfer other STL algorithms (e.g. Dual Averaging) into distributed MTL algorithms.
What’s more, we show that the proposed algorithm has O(

√
T) regret upper bound if given

a fixed relationship matrix, and later validate algorithms’ performance on both synthetic and
real-world datasets.

Acknowledgements This research is supported by theNational Research Foundation, PrimeMinistersOffice,
Singapore under its IDM Futures Funding Initiative. We also get support from “Joint NTU-UBC Research
Centre of Excellence in Active Living for the Elderly (LILY)” and “Interdisciplinary Graduate School (IGS)”.

Appendix A: Proof for Eq. (19)

By the definition of zt+1, we have

zt+1 = 1

m

m∑

i=1

ui,t+1

= 1

m

m∑

i=1

(vi,t + pi,t+1)

= 1

m

m∑

i=1

m∑

j=1

ai, ju j,t + 1

m

m∑

i=1

pi,t+1

= 1

m

m∑

j=1

m∑

i=1

ai, ju j,t + 1

m

m∑

i=1

pi,t+1

= 1

m

m∑

j=1

u j,t + 1

m

m∑

i=1

pi,t+1

= zt + 1

m

m∑

i=1

pi,t+1

Therefore, we have the following equation by recursion:

zt+1 = 1

m

m∑

i=1

ui,0 + 1

m

t+1∑

l=1

m∑

i=1

pi,l

By assuming ui,0 = 0, the above equation becomes

zt+1 = 1

m

t+1∑

l=1

m∑

i=1

pi,l .

123

742 Mach Learn (2018) 107:727–747

Appendix B: Proof for Lemma 1

Lemma 1 Suppose the network is static and strongly connected, and assumptions 1,2,3 hold.
We have the following inequality:∣

∣
∣
∣	(k, s)i, j − 1

m

∣
∣
∣
∣ ≤ θβk−s

for all k ≥ s ≥ 0, where θ = (1− ε
4m2)

−2 and β = (1− ε
4m2)

1
Q only depend on the size and

the topology of the network.

Proof Proof for this lemma can be found in Lemma 3.2 (Sundhar Ram et al. 2010). ��

Appendix C: Proof for Lemma 2

Lemma 2 Consider all the instances are within the range Ψ and Lemma 1 holds, then we
have

‖zt+1 − u j,t+1‖B⊗ ≤ ηL�

where � = mθ
β

1−β
+ 2.

Proof By the definition in (18), (19), we have

‖zt+1 − u j,t+1‖B⊗

=
∥∥∥∥∥
1

m

t+1∑

l=1

m∑

i=1

pi,l − p j,t+1 −
t∑

l=1

m∑

i=1

[(t + 1, l)] j,i pi,l
∥∥∥∥∥
B⊗

=
∥∥∥∥∥

t∑

l=1

m∑

i=1

(
1

m
− [(t + 1, l)] j,i

)
pi,l +

(
1

m

m∑

i=1

pi,t+1 − p j,t+1

)∥∥∥∥∥
B⊗

≤
t∑

l=1

m∑

i=1

∣∣∣∣
1

m
− [(t + 1, l)] j,i

∣∣∣∣ ‖pi,l‖B⊗ + 1

m

m∑

i=1

∥∥pi,t+1 − p j,t+1
∥∥
B⊗

The first term in above inequality can be written as:

t∑

l=1

m∑

i=1

∣∣∣∣
1

m
− [(t + 1, l)] j,i

∣∣∣∣ ‖pi,l‖B⊗

Lemma 1≤
t∑

l=1

θβ t+1−l
m∑

i=1

‖pi,l‖B⊗

(16)≤
t∑

l=1

θβ t+1−lmηL

≤ mθηL
β

1 − β
(1 − β t)

The second term can be bounded as,

1

m

m∑

i=1

∥∥pi,t+1 − p j,t+1
∥∥
B⊗ ≤ 1

m
· m · 2ηL = 2ηL .

123

Mach Learn (2018) 107:727–747 743

Hence we have,

‖zt+1 − u j,t+1‖B⊗ ≤ mθηL
β

1 − β
(1 − β t) + 2ηL

≤ ηL

(
mθ

β

1 − β
+ 2

)

= ηL�,

where � = mθ
β

1−β
+ 2. ��

Appendix D: Proof for Lemma 3

Lemma 3 The difference between zt and any fixed u is bounded as

T−1∑

t=0

m∑

i=1

[f (zt) − f (u)] ≤
m‖u‖2B⊗

2η
+ CL

T−1∑

t=0

m∑

i=1

‖zt − ui,t‖B⊗ + ηmT L2/2.

Proof For any u, we have

‖ui,t+1 − u‖2B⊗ = ‖vi,t − η∇ f (vi,t) − u‖2B⊗

≤ ‖vi,t − u‖2B⊗ − 2η〈∇ f (vi,t), vi,t − u〉 + ‖η∇ f (vi,t)‖2B⊗ .

By the convexity of f, we have

〈∇ f (vi,t), vi,t − u〉 ≥ (f (vi,t) − f (u)),

and

‖η∇ f (vi,t)‖2 ≤ (ηL)2.

Therefore,

‖ui,t+1 − u‖2B⊗ ≤ ‖vi,t − u‖2B⊗ − 2η[f (vi,t) − f (u)] + (ηL)2.

By the convexity of the squared norm, we have

m∑

i=1

‖vi,t+1 − u‖2B⊗ =
m∑

i=1

∥∥∥∥∥∥

m∑

j=1

ai, ju j,t+1 − u

∥∥∥∥∥∥

2

B⊗

≤
m∑

i=1

m∑

j=1

ai, j‖u j,t+1 − u‖2B⊗

=
m∑

j=1

‖u j,t+1 − u‖2B⊗ .

So we have
m∑

i=1

‖vi,t+1 − u‖2B⊗ ≤
m∑

i=1

‖vi,t − u‖2B⊗ − 2η
m∑

i=1

[f (vi,t) − f (u)] + m(ηL)2.

123

744 Mach Learn (2018) 107:727–747

On the other hand, we have

m∑

i=1

[f (vi,t) − f (u)] =
m∑

i=1

[f (vi,t) − f (zt)] +
m∑

i=1

[f (zt) − f (u)]

≥ −
m∑

i=1

‖∇ f ‖B−1⊗ ‖zt − vi,t‖B⊗ +
m∑

i=1

[f (zt) − f (u)]

= −
m∑

i=1

‖∇ f ‖B−1⊗

∥
∥
∥
∥
∥
∥
zt −

m∑

j=1

ai, j u j,t

∥
∥
∥
∥
∥
∥
B⊗

+
m∑

i=1

[f (zt) − f (u)]

≥ −CL
m∑

i=1

∥
∥
∥
∥
∥
∥
zt −

m∑

j=1

ai, j u j,t

∥
∥
∥
∥
∥
∥
B⊗

+
m∑

i=1

[f (zt) − f (u)]

≥ −CL
m∑

i=1

m∑

j=1

ai, j‖zt − u j,t‖B⊗ +
m∑

i=1

[f (zt) − f (u)]

≥ −CL
m∑

j=1

‖zt − u j,t‖B⊗ +
m∑

i=1

[f (zt) − f (u)].

So we obtain

m∑

i=1

‖vi,t+1 − u‖2B⊗ ≤
m∑

i=1

‖vi,t − u‖2B⊗ − 2η
m∑

i=1

[f (zt) − f (u)]

+ 2ηCL
m∑

i=1

‖zt − u j,t‖B⊗ + m(ηL)2.

Summing it from 0 to T − 1,

2η
T−1∑

t=0

m∑

i=1

[f (zt) − f (u)]

≤
T−1∑

t=0

m∑

i=1

‖vi,t − u‖2B⊗ −
T−1∑

t=0

m∑

i=1

‖vi,t+1 − u‖2B⊗ + 2ηCL
T−1∑

t=0

m∑

i=1

‖zt

− ui,t‖B⊗ +
T−1∑

t=0

m(ηL)2

=
m∑

i=1

‖vi,0 − u‖2B⊗ −
m∑

i=1

‖vi,T − u‖2B⊗ + 2ηCL
T−1∑

t=0

m∑

i=1

‖zt − ui,t‖B⊗ +
T−1∑

t=0

m(ηL)2

≤
m∑

i=1

‖vi,0 − u‖2B⊗ + 2ηCL
T−1∑

t=0

m∑

i=1

‖zt − ui,t‖B⊗ +
T−1∑

t=0

m(ηL)2

≤ m‖u‖2B⊗ + 2ηCL
T−1∑

t=0

m∑

i=1

‖zt − ui,t‖B⊗ + mTη2L2.

123

Mach Learn (2018) 107:727–747 745

Diving both sides by 2η, we comes to

T−1∑

t=0

m∑

i=1

[f (zt) − f (u)] ≤
m‖u‖2B⊗

2η
+ CL

T−1∑

t=0

m∑

i=1

‖zt − ui,t‖B⊗ + ηmT L2/2.

��

Appendix E: Proof for Theorem 4

Theorem 4 Let u∗ denotes the optimal classifier in hindsight, then the regret of the proposed
DOM algorithm is upper bounded as

T−1∑

t=0

m∑

i=1

f (ui,t) − f (u∗) ≤
m‖u∗‖2B⊗

2η
+ ηmT L2

(
1

2
+ 2C�

)
.

Proof Based on Lemmas 2, 3 and Eq. (21), we have

T−1∑

t=0

m∑

i=1

f (ui,t) − f (u∗)

(21)≤
T−1∑

t=0

m∑

i=1

[f (zt) − f (u)] +
T−1∑

t=0

m∑

i=1

CL‖ui,t − zt‖B⊗

Lemma 3≤
m‖u∗‖2B⊗

2η
+ 2CL

T−1∑

t=0

m∑

i=1

‖zt − ui,t‖B⊗ + ηmT L2/2

Lemma 2≤
m‖u∗‖2B⊗

2η
+ 2ηmTCL2� + ηmT L2/2

=
m‖u∗‖2B⊗

2η
+ ηmT L2

(
1

2
+ 2C�

)

With η = ‖u∗‖B⊗

L
√
T (1+4C�)

, we obtain R(T) = mL
√

(T + 4C�)‖u∗‖2B⊗ = O(
√
T) . ��

Appendix F: Extending single-task DA to multi-task DA

Dual averagingmethod for distributed optimization is initially designed for single-task learn-
ing by transmitting (sub)gradient information on networks. It updating rule is summarized
as

zi (t + 1) =
∑

j∈N (i)

ai, jz j (t) + gi(t) (22)

wi (t + 1) = argmin
w

{
〈zi (t + 1),w〉 + 1

α(t)
ψ(w)

}
(23)

123

746 Mach Learn (2018) 107:727–747

Under our framework, the dual vector z̃ and primal vector w̃ will no longer be aligned with
a certain task, but consist of a concatenated value,

w̃�
i,t =

[(
w1
i,t

)�
,
(
w2
i,t

)�
, · · · ,

(
wm
i,t

)�]
∈ R

md ,

z̃�
i,t =

[(
z1i,t

)�
,
(
z2i,t

)�
, · · · ,

(
zmi,t

)�]
∈ R

md . (24)

Similarly, the gradient g̃ is no longer −yiti,tx
it
i,t if hinge loss is adopted. According to Eq. (6),

we can derive

g̃ = −yiti,t B
−1⊗ φt . (25)

Replacing w, z, g with the counterparts in Eqs. (24) and (25), we can extend single-task DA
to multi-task DA.

References

Ando, R. K., & Zhang, T. (2005). A framework for learning predictive structures from multiple tasks and
unlabeled data. The Journal of Machine Learning Research, 6, 1817–1853.

Bertrand, A., & Moonen, M. (2010). Distributed adaptive node-specific signal estimation in fully connected
sensor networkspart i: Sequential node updating. IEEE Transactions on Signal Processing, 58(10), 5277–
5291.

Bertrand, A., &Moonen,M. (2011). Distributed adaptive estimation of node-specific signals in wireless sensor
networks with a tree topology. IEEE Transactions on Signal Processing, 59(5), 2196–2210.

Bertsekas, D. P. (1983). Distributed asynchronous computation of fixed points. Mathematical Programming,
27(1), 107–120.

Bertsekas, D. P. (1997). A new class of incremental gradient methods for least squares problems. SIAM Journal
on Optimization, 7(4), 913–926.

Bertsekas, D. P., & Tsitsiklis, J. N. (1989). Parallel and distributed computation: Numerical methods (Vol.
23). Englewood Cliffs, NJ: Prentice Hall.

Blatt, D., Hero, A. O., & Gauchman, H. (2007). A convergent incremental gradient method with a constant
step size. SIAM Journal on Optimization, 18(1), 29–51.

Blitzer, J., Dredze, M., Pereira, F., et al. (2007). Biographies, bollywood, boom-boxes and blenders: Domain
adaptation for sentiment classification. ACL, 7, 440–447.

Caruana, R. (1997). Multitask learning. Machine Learning, 28(1), 41–75.
Cavallanti, G., Cesa-Bianchi, N., & Gentile, C. (2010). Linear algorithms for online multitask classification.

The Journal of Machine Learning Research, 11, 2901–2934.
Chen, J., Richard, C., & Sayed, A. H. (2014).Multitask diffusion adaptation over networks. IEEE Transactions

on Signal Processing, 62(16), 4129–4144.
Chen, J., & Sayed, A. H. (2012). Diffusion adaptation strategies for distributed optimization and learning over

networks. IEEE Transactions on Signal Processing, 60(8), 4289–4305.
Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., & Singer, Y. (2006). Online passive–aggressive

algorithms. The Journal of Machine Learning Research, 7, 551–585.
DeGroot, M. H. (1974). Reaching a consensus. Journal of the American Statistical Association, 69(345),

118–121.
Dekel, O., Long, P. M., & Singer, Y. (2006). Online multitask learning. In G. Lugosi & H. U. Simon (Eds.),

Learning theory (pp. 453–467). Berlin: Springer.
Dinuzzo, F., Pillonetto,G.,&DeNicolao,G. (2011). Client–servermultitask learning fromdistributed datasets.

IEEE Transactions on Neural Networks, 22(2), 290–303.
Duchi, J. C., Agarwal, A., & Wainwright, M. J. (2012). Dual averaging for distributed optimization: Conver-

gence analysis and network scaling. IEEE Transactions on Automatic Control, 57(3), 592–606.
Evgeniou, T., Micchelli, C. A., & Pontil, M. (2005). Learning multiple tasks with kernel methods. In Journal

of Machine Learning Research, 6, 615–637.
Johansson, B., Keviczky, T., Johansson, M., & Johansson, K. H. (2008). Subgradient methods and consensus

algorithms for solving convex optimization problems. In 47th IEEE conference on decision and control,
2008. CDC 2008 (pp. 4185–4190). IEEE.

123

Mach Learn (2018) 107:727–747 747

Li, G., Hoi, S. C., Chang, K., Liu, W., & Jain, R. (2014). Collaborative online multitask learning. IEEE
Transactions on Knowledge and Data Engineering, 26(8), 1866–1876.

Lugosi, G., Papaspiliopoulos, O., & Stoltz, G. (2009). Online multi-task learning with hard constraints. arXiv
preprint arXiv:0902.3526.

Murugesan, K., Liu, H., Carbonell, J., & Yang, Y. (2016). Adaptive smoothed online multi-task learning. In
Advances in Neural Information Processing Systems (pp. 4296–4304).

Nedic, A., & Ozdaglar, A. (2009). Distributed subgradient methods for multi-agent optimization. IEEE Trans-
actions on Automatic Control, 54(1), 48–61.

Negahban, S., & Wainwright, M. J. (2008). Joint support recovery under high-dimensional scaling: Benefits
and perils of l1,-regularization. Advances in Neural Information Processing Systems, 21, 1161–1168.

Neto, E. S. H., & De Pierro, Á. R. (2009). Incremental subgradients for constrained convex optimization: A
unified framework and new methods. SIAM Journal on Optimization, 20(3), 1547–1572.

Peters, B., Bui, H. H., Frankild, S., Nielsen, M., Lundegaard, C., Kostem, E., et al. (2006). A community
resource benchmarking predictions of peptide binding tomhc-i molecules.PLoS Computational Biology,
2(6), e65.

Pong, T. K., Tseng, P., Ji, S., & Ye, J. (2010). Trace norm regularization: Reformulations, algorithms, and
multi-task learning. SIAM Journal on Optimization, 20(6), 3465–3489.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the
brain. Psychological Review, 65(6), 386.

Saha, A., Rai, P., Venkatasubramanian, S., & Daume, H. (2011). Online learning of multiple tasks and their
relationships. In International Conference on Artificial Intelligence and Statistics (pp. 643–651).

Sayed, A. H., et al. (2014). Adaptation, learning, and optimization over networks. Foundations and Trends®
Machine Learning, 7(4–5), 311–801.

Sayed, A. H. (2013). Diffusion adaptation over networks. Academic Press Library in Signal Processing, 3,
323–454.

Shalev-Shwartz, S., et al. (2012). Online learning and online convex optimization. Foundations and Trends®
Machine Learning, 4(2), 107–194.

Strang, G., Strang, G., Strang, G., & Strang, G. (1993). Introduction to linear algebra (Vol. 3). Wellesley, MA:
Wellesley-Cambridge Press.

SundharRam,S.,Nedić,A.,&Veeravalli,V.V. (2010).Distributed stochastic subgradient projection algorithms
for convex optimization. Journal of Optimization Theory and Applications, 147(3), 516–545.

Tsitsiklis, J. N. (1984). Problems in decentralized decision making and computation. DTIC Document: Tech-
nical report.

Tu, S.Y.,&Sayed,A.H. (2012). Diffusion strategies outperform consensus strategies for distributed estimation
over adaptive networks. IEEE Transactions on Signal Processing, 60(12), 6217–6234.

Wang, J., Kolar, M., & Srebro, N. (2016). Distributed multi-task learning with shared representation. arXiv
preprint arXiv:1603.02185.

Wang, J., Kolar, M., Srebro, N., et al. (2016). Distributed multi-task learning. In Proceedings of the 19th
international conference on artificial intelligence and statistics (AISTATS) (pp. 751–760).

Zhang, C., Zhao, P., Hao, S., Soh, Y. C., & Lee, B. S. (2016). Rom: A robust online multi-task learning
approach. In Data mining (ICDM), 2016 IEEE 16th international conference on (pp. 1341–1346). IEEE.

123

http://arxiv.org/abs/0902.3526
http://arxiv.org/abs/1603.02185

	Distributed multi-task classification: a decentralized online learning approach
	Abstract
	1 Introduction
	2 Decentralized distributed online multi-task classification (DOM)
	2.1 Problem formulation
	2.2 Node update
	2.2.1 Node updating rule
	2.2.2 Selection of relationship matrix B

	2.3 Nodes communication

	3 Theoretical analysis
	3.1 Proof setup
	3.2 Weight difference and regret bound

	4 Experiment
	4.1 Benchmarks
	4.2 Performance analysis

	5 Related work and conclusion
	Acknowledgements
	Appendix A: Proof for Eq. (19)
	Appendix B: Proof for Lemma 1
	Appendix C: Proof for Lemma 2
	Appendix D: Proof for Lemma 3
	Appendix E: Proof for Theorem 4
	Appendix F: Extending single-task DA to multi-task DA
	References

