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Abstract— Many properties of interest in graph structures
are based on the nodes’ average degree (i.e., the average number
of edges incident to/from each node). In this work, we present
asynchronous distributed algorithms, based on ratio consensus,
that can be used to accurately estimate the number of nodes
in a multi-component system whose communication topology
is described by a directed graph. In addition, we describe an
asynchronous distributed algorithm that allows each node to
introduce or terminate links in order to reach a target average
degree in the network. Such an approach can be useful in
many realistic scenarios; for example, for the introduction and
removal of renewable energy resources in a power network,
while maintaining an average degree that fulfils some structural
and dynamical properties and/or optimises some performance
indicators of the network. The effectiveness of the proposed
algorithms is demonstrated via illustrative examples.

I. INTRODUCTION

Driven by the growing ubiquity of mobile devices with

a plethora of communication capabilities, distributed sys-

tems and novel applications are now within reach. As a

result, various strands of research in distributed systems

have attracted a lot of attention. Particularly, carrying out

distributed computations has been at the forefront of research

(see, for example, [1]–[4] and references there-in). Such

systems are often modeled by graphs, where each component

is represented by a graph vertex, and the sensing and

communication links between each pair of components are

represented by edges. A particular line of research that has

attracted attention concerns problems that aim to achieve

an objective by modifying the properties of these graphs;

examples include, methodologies to add links in order to

optimize the synchronization properties of the network, or

to remove links to decrease the rate of propagation of a

pathogen in the network, and others. To achieve many of

these objectives global information about the properties of

the network and its underlying graph is required (e.g., global

information about the Laplacian of the graph [5]). In this

paper, we focus initially on obtaining such global information

relying purely on local measurements. Particularly, we are
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interested in accurately estimating the number of the nodes,

and subsequently the average degree of the graph.

The problem of estimating the number of nodes in a graph

has been already considered under the umbrella term of net-

work size estimation (see, for example, [6]–[8] and references

there-in). However, nearly all the available methods in the

literature rely on statistical methods and require nodes to

exchange excessive information. For example, one strand of

research has concentrated on random walk strategies [9],

[10] where statistical properties of the graph are used to

infer the network size. Another strand of research makes

use of capture-recapture strategies [11], [12], which are

strongly connected to the estimation of total populations

using sampling of finite populations. In this work, the ex-

change of information is limited to vectors of length equal

to the valency of each node. The proposed algorithm achieves

estimates that asymptotically converge to the correct value

for the number of nodes under synchronous or asynchronous

communication.

In addition, we are able to estimate a global property of

a network that plays an important role in determining the

performance of the network in different situations, namely

the so-called average node degree of the graph, which is

the ratio of the number edges over the number of nodes in

the network (note that the average number of edges incident

into each node is the same as the average number of edges

out of each node, and the average node degree is twice this

number). The average node degree can be found easily using

the algorithm for network size estimation but with different

initial conditions. It is known that the average node degree

plays a universal role in cooperation in different networks

[13]. For example, it can be shown that graphs with certain

node degrees are more robust to infection propagation [14].

Moreover, the role of the average degree of the graph of a

population on how the distribution of antidotes affects the

behaviour of the population has been studied [15]. Addi-

tionally, some graphs with average node degree smaller than

a threshold are known to be immune to detrimental effects

(for example, in the so-called firefighter problem [16], [17]).

Sensor networks literature has also studied the relationship

between the average degree and the k-connectivity of the

graph [18]. For more information on how average degree

affects different properties of a network the reader may refer

to [19] and references there-in.

Finally, we address the problem of controlling the average

node degree in a network. The problem of estimation of the

average node degree, centralized and otherwise, has been

studied in several contexts [20], [21]. However, to the best



of our knowledge the problem of controlling the average

node degree of a network in a distributed manner has not

been considered.

The outline of this paper is as follows. In Section II the

notation used throughout the paper is provided. In Section III

the model is presented along with background on graph

properties and theoretical preliminaries that are necessary for

our subsequent development. In Section IV we describe our

proposed algorithm for distributed estimation of the number

of nodes in a directed graph. We consider both synchronous

and asynchronous versions of the algorithm, as well as the

estimation of the number of nodes in a time-varying network

with a changing number of nodes. Then, in Section V, a

distributed algorithm is suggested which allows each node to

control its degree. The validity of our theoretical results is

demonstrated by examples in Section VI. Finally, Section VII

summarizes the results of the paper.

II. NOTATION

The sets of real, integer and natural numbers are denoted

by R, Z and N, respectively; their positive orthant is denoted

by the subscript + (e.g. R+). Vectors are denoted by small

letters whereas matrices are denoted by capital letters. AT

denotes the transpose of matrix A. By 1 we denote the

all-ones vector and by I we denote the identity matrix

(of appropriate dimensions). A matrix whose elements are

nonnegative, called nonnegative matrix, is denoted by A ≥ 0
and a matrix whose elements are positive, called positive

matrix, is denoted by A > 0.

Let the exchange of information between nodes be mod-

eled by a weighted directed graph G(V, E , P ) of order n
(n ≥ 2), where V = {1, 2, . . . , n} is the set of nodes,

E ⊆ V × V − {(j, j) | j ∈ V} is the set of edges, and

P = [pji] ∈ R
n×n
+ is a weighted n× n adjacency matrix

where pji are nonnegative elements. A directed edge from

node i to node j is denoted by εji = (j, i) ∈ E , and

represents a directed information exchange link from node i
to node j, i.e., it denotes that node j can receive information

from node i. A directed edge εji ∈ E if and only if pji > 0.

The graph is undirected if and only if εji ∈ E implies

εij ∈ E .

All nodes that can transmit information to node j directly

are said to be in-neighbors of node j and belong to the set

N−
j = {i ∈ V : εji ∈ E}. The cardinality of N−

j , is called

the in-degree of j and it is denoted by d−j = |N−
j |. The nodes

that receive information from node j are called out-neighbors

of node j and belong to the set N+
j = {ℓ ∈ V : εℓj ∈ E}.

The cardinality of N+
j , is called the out-degree of j and it

is denoted by d+j = |N+
j |.

A directed graph is called strongly connected if there exist

a path from each vertex in the graph to every other vertex.

This means paths in each direction: a path from i to j and

vice versa, for all i, j ∈ V . In other words, for any j, i ∈ V ,

j 6= i, one can find a sequence of nodes i = l1, l2, l3, . . .,
lt = j such that link (lk+1, lk) ∈ E for all k = 1, 2, . . . , t−1.

III. THEORETICAL PRELIMINARIES

In this section, we establish some basic notions that are

needed for the development of our algorithms.

Each node j updates and sends its information regarding

a variable of interest to its out-neighbors (and also receives

similar information from its in-neighbors) at discrete times

t0, t1, t2, . . .. We index nodes’ information states and any

other information at time tk by k. We use xj [k] ∈ R to

denote the information state (or estimate) of node j at time

tk. When there exist no delays in the communication links,

each node updates its information state xj [k] by combining

the available information received by its in-neighbors, i.e.,

the values {xi[k] | i ∈ N−
j } using a weighted linear

combination. More specifically, the positive weights pji[k]
capture the weight of the information inflow from agent i
to agent j at time k (note that unspecified weights in P
correspond to pairs of nodes (j, i) that are not connected and

are set to zero, i.e., pji[k] = 0, ∀εji /∈ E). In this work, we

assume that each node j can choose its self-weight and the

weights on its d+j out-going links only (i.e., node j chooses

the weights {pℓj | ℓ ∈ N+
j ∪ {j}}) . Hence, in its general

form, each node updates its information state according to

the following relation:

xj [k + 1] = pjj [k]xj [k] +
∑

i∈N−

j

pji[k]xi[k], (1)

for k ≥ 0, where xj [0] ∈ R is the initial state of node j.

If we let x[k] = (x1[k] x2[k] . . . xn[k])
T and P [k] =

[pji[k]] ∈ R
n×n
+ , then (1) can be written in matrix form as

x[k + 1] = P [k]x[k], (2)

where x[0] = (x1[0] x2[0] . . . xn[0])
T ≡ x0. We

first consider a static network and hence the graph remains

invariant. In this case, the weights can be chosen to be

constant for all times k (i.e., pji[k] = pji ∀k), and equation

(2) can be expressed as x[k + 1] = Px[k], where P [k] =
P ∈ R

n×n
+ . In this work, we will be employing algorithms

in which nodes reach asymptotic average consensus, i.e., are

able to calculate (for large k) the average of their initial

values. In other words, we would like

lim
k→∞

xj [k] =

∑n

l=1 xl[0]

n
, ∀j ∈ V . (3)

The necessary and sufficient conditions for (2) (with

P [k] = P ) to reach average consensus are the following: (a)

P has a simple eigenvalue λi(P ) = 1 with left eigenvector

1
T and right eigenvector 1, and (b) all other eigenvalues of

P (λj(P ), j 6= i) have magnitude less than 1 (|λj(P )| < 1).

If P ≥ 0 (as in our case), the necessary and sufficient

condition is that P is a primitive doubly stochastic matrix.

In an undirected graph, assuming each node knows n (or an

upper bound n′, n′ ≥ n) and the graph is connected, each

node can distributively choose the weights on its outgoing

links so that the resulting P is primitive doubly stochastic

(e.g., [22]). For directed graphs, it is not straightforward to

choose weights to make P doubly stochastic.



In [23], an algorithm is suggested that solves the average

consensus problem on a directed graph using a column

stochastic (but not necessarily row stochastic) matrix. More

specifically, asymptotic average consensus is reached by

running two consensus algorithms with appropriately chosen

initial conditions. We make the following assumption:

(A1) The graph is strongly connected, and the (nonnegative)

weights pji are nonzero for j = i and (j, i) ∈ E , and

satisfy
∑n

ℓ=1 pℓj = 1 for all j ∈ V (so that they form

a column stochastic matrix P ).

The algorithm is as follows.

Lemma 1: [23] Let x̂j [k] and x̌j [k], ∀j be the result of

the iterations

x̂j [k + 1] = pjj x̂j [k] +
∑

i∈N−

j

pjix̂i[k] , ∀j ∈ V, (4)

x̌j [k + 1] = pjj x̌j [k] +
∑

i∈N−

j

pjix̌i[k] , ∀j ∈ V, (5)

for k = 0, 1, 2, . . ., initial conditions x̂[0] = x0 and x̌[0] = 1,

and a matrix P = [pji] that is primitive column stochastic.

Then, the solution to the average consensus problem can be

asymptotically achieved as

lim
k→∞

µj [k] =

∑n

ℓ=1 x̂ℓ[0]

n
, ∀j ∈ V ,

where µj [k] =
x̂j [k]
x̌j [k]

.

Integer τji[k] ≥ 0 is used to represent the delay of a

message sent from node i to node j at time instant k. Under

Assumption (A2), we require that 0 ≤ τji[k] ≤ τ̄ji ≤ τ̄ for

all k ≥ 0 for some finite τ̄ = max{τ̄ji}, τ̄ ∈ Z+. Also, we

make the reasonable assumption that τjj [k] = 0, ∀j ∈ V , at

all time instances k (i.e., the own value of a node is always

available without delay). In summary, we make the following

assumption:

(A2) There exists a finite τ̄ that uniformly bounds the delay

terms; i.e. τji[k] ≤ τ̄ < ∞ for all links (j, i) ∈ E at

time instant k. In addition τjj [k] = 0 for all j ∈ V and

all k.

An adaptation of the above approach to a protocol where

each node updates its information state xj [k + 1] by com-

bining the available information (possibly delayed) received

by its neighbors xi[s] (s ∈ Z, s ≤ k, i ∈ N−
j ) using constant

positive weights pji was developed in [24]. Specifically, each

node updates its information state according to the following

relation:

xj [k + 1] = pjjxj [k] +
∑

i∈N−

j

τ̄
∑

r=0

pjixi[k − r]Ik−r,ji[r],

(6)

for k ≥ 0, where xj [0] ∈ R is the initial state of node j, pji
satisfy Assumption (A1), and

Ik,ji(τ) =

{

1, if τji[k] = τ ,

0, otherwise.

In the absence of delay, we have τji[k] = 0 and the

update relation (6) reduces to (1) with constant weights. It is

established in [24] that the distributed coordination algorithm

leads to asymptotic average consensus, regardless of the

nature and order of the delays, as long as they are bounded

(and the weight matrix P is primitive column stochastic).

Lemma 2: [24, Lemma 2] Let x̂j [k], ∀j ∈ V , be the

result of iteration (6) with initial conditions x̂[0] = x0,

and let x̌j [k], ∀j ∈ V , be the result of iteration (6) with

initial condition x̌[0] = 1. Then, the solution to the average

consensus problem can be obtained as

lim
k→∞

µj [k] =

∑n

ℓ=1 x̂ℓ[0]

n
, ∀j ∈ V ,

where µj [k] =
x̂j [k]
x̌j [k]

.

Note that the two iterations are coupled via Ik,ji(·) which are

identical for both iterations (i.e., it is assumed that the values

on each link for each iteration undergo the same delays).

Summarizing, by simultaneously running two iterations x̂[k]
and x̌[k] as in (6), with initial conditions x̂[0] = x0 and

x̌[0] = 1, respectively, then average consensus is asymptot-

ically reached with the ratio x̂j [k]/x̌j [k], ∀j ∈ V , provided

the graph characterizing the network is strongly connected,

even in the presence of delays in the communication between

nodes (as long as these delays are bounded).

IV. DISTRIBUTED ESTIMATION OF THE NUMBER OF

NODES IN A DIRECTED GRAPH

We now introduce an algorithm in which the nodes dis-

tributively adjust the weights of their outgoing links such that

the algorithm converges to 1/|V|, thus revealing the number

of nodes in the graph. First, we will describe a synchronous

algorithm for estimating the number of nodes in a directed

graph and subsequently we will extend this approach to an

asynchronous algorithm. Finally, we consider the problem of

estimating the number of nodes in a time-varying network

as nodes join and leave the network.

A. Synchronous estimation of the number of nodes

We assume that each node sets the weights on the edges

to its out-neighbors (so that they satisfy Assumption (A1)),

and observes but cannot set the edge weights of its in-

neighbors. Given a strongly connected digraph G = (V, E),
the distributed algorithm has each node j decide for two

initial values, say x̌j [0] = yj [0] and x̂j [0] = zj [0].
Before presenting the general case, a simplified algorithm

will be described in which the initial values are set a priori.

In this simplified algorithm, all nodes have yj [0] = 1
and zj [0] = 0, except one node, say i, that has initial

conditions yi[0] = zi[0] = 1. By running the iteration (4)

simultaneously with these initial conditions, for a matrix

P = [pji] that is primitive column stochastic, the number

of nodes can be asymptotically obtained as

lim
k→∞

µj [k] =

∑|V|
ℓ=1 zℓ[0]

∑|V|
ℓ=1 yℓ[0]

=
1

|V|
, ∀j ∈ V. (7)

Thus, each node is able to calculate the size of the network.



However, it might be challenging to orchestrate the initial

states of all nodes in the network to be zero apart from one

node only. Towards this end, it is necessary that we find

a way to distributively overcome this problem. Therefore,

each node j, before entering the iterative stage, randomly

chooses a value between 0 and wmax (wmax can be set to 1
without any loss of generality); this value is used in a max-

consensus algorithm in order to effectively decide a leader

in the graph. Once the leader is determined, the nodes enter

a stage where each node j ∈ V performs the steps outlined

earlier. The problem with the above approach is that, since

the number of nodes is not known apriori, the nodes are not

in a position to know when the max-consensus algorithm

completes; note, however, that in the algorithm below, the

leader election — max-consensus — and the iteration in (4)

are effectively performed simultaneously. Each node j ∈ V ,

does the following:

(i) Initialize wj [0] ∼ U(0, wmax), yj [0] := 1, zj [0] :=
1, φj := 1.

(ii) Calculate the states yj [k + 1] and zj [k + 1] according

to iteration (4).

(iii) Update wj [k + 1] with the maximum wj among the

in-neighbors and itself (max-consensus algorithm).

(iv) The first time wj [k+1] 6= wj [k], subtract 1 from zj [k+
1].

(v) Calculate the ratio µj [k] = zj [k]/yj [k].

Algorithm 1 is described in detail below.

Algorithm 1 Synchronous distributed estimation of the num-

ber of nodes |V| in a directed graph G(V, E).

Require: wj [0] ∼ U(0, wmax), yj [0] := 1, zj [0] := 1, φj :=
1, 1 ≤ j ≤ n

Ensure: µj [k], 1 ≤ j ≤ n
for k = 0, 1, 2, . . . , each node j will do

RECEIVE: {yi[k], zi[k], wi[k] | i ∈ N−
j }

yj [k + 1] := pjjyj [k] +
∑

i∈N−

j
pjiyi[k];

zj [k + 1] := pjjzj [k] +
∑

i∈N−

j
pjizi[k];

wj [k + 1] := max
i∈N−

j
∪{j}

(. . . , wi[k], . . . );

if wj [k + 1] 6= wj [k] & φj = 1 then

zj [k + 1] := zj [k + 1]− 1;
φj := 0;

end if

TRANSMIT: {yj [k + 1], zj [k + 1], wj [k + 1]}

µj [k] :=
zj [k]
yj [k]

end for

The idea behind the above algorithm is the following. Each

node picks a random value (wj [0]) and the max-consensus

algorithm ensures that the nodes eventually discover who

has selected the maximum value. Initially, each node sets

zj [0] = 1 (so that
∑

ℓ zℓ[0] = n); however, as soon as a

node discovers that it does not have the maximum value, its

removes 1 from its z-value, ensuring that after n steps (at

which point, all nodes have determined wmax), we will have
∑

j zj [k] = 1 for k ≥ n. Therefore, ratio consensus will

converge to

lim
k→∞

µj [k] =

∑|V|
ℓ=1 zℓ[n]

∑|V|
ℓ=1 yℓ[n]

=
1

∑|V|
ℓ=1 yℓ[0]

=
1

|V|

for all j ∈ V .

Remark 1: In [25, Theorem 9] the impossibility result is

stated as follows: there exists no algorithm that is able to

compute the number of nodes in an anonymous network, that

terminates with the correct result for every finite execution

with probability one, and that has a bounded average bit

complexity (i.e., the average number of bits used by the

algorithm is bounded). The coherency with the impossibility

result is given by the facts that the algorithm is asymptotic

and all the strategies that we propose use max-consensus,

which implies that two nodes could choose the same maxi-

mum value with some nonzero probability if the number of

bits used is bounded.

B. Asynchronous estimation of the number of nodes

The algorithm can be generalised for the case we have

asynchronous updates, or equivalently, when we have delays

in the system. We assume that the information {yi, zi, wi}
that arrives to node j from in-neighbor i ∈ N−

j is all

transmitted in the same packet, so that delays affect yi, zi and

wi in the same manner. The difference from Algorithm 1 is

that the iteration is updated by (6). Algorithm 2 is described

in detail below.

Algorithm 2 Asynchronous distributed estimation of the

number of nodes |V| in a directed graph G(V, E).

Require: wj [0] ∼ U(0, wmax), yj [0] := 1, zj [0] := 1, φj :=
1, 1 ≤ j ≤ n

Ensure: µj [k], 1 ≤ j ≤ n
for k = 1, 2, . . . each node j will do

RECEIVE: for i ∈ N−
j and r = 0, 1, ..., τ , re-

ceive {yi[k − r]Ik−r,ji[r], zi[k − r]Ik−r,ji[r], wi[k −
r]Ik−r,ji[r]}
yj [k + 1] := pjjyj [k] +

∑

i∈N−

j

∑τ̄

r=0 pjiyi[k −

r]Ik−r,ji[r];
zj [k + 1] := pjjzj [k] +

∑

i∈N−

j

∑τ̄

r=0 pjizi[k −

r]Ik−r,ji[r];
wj [k + 1] := max

i∈N−

j
∪{j},r=0,1,...,τ

(. . . , wi[k −

r]Ik−r,ji[r], . . . );
if wj [k + 1] 6= wj [k] & φj = 1 then

zj [k + 1] := zj [k + 1]− 1;
φj := 0;

end if

TRANSMIT: {yj [k + 1], zj [k + 1], wj [k + 1]}

µj [k] :=
zj [k]
yj [k]

end for

Lemma 3: Consider a network isomorphic to the graph

G(V, E). Then, under Assumptions (A1) and (A2), Algo-

rithm 2 will lead to limk→∞ µj [k] = 1/n, ∀j ∈ V .

To prove Lemma 3 we first state the following result that

is a direct consequence of Lemma 2.



Corollary 1: Consider a network isomorphic to the graph

G(V, E). Under Assumptions (A1)–(A2), for each j ∈ V , let

yj [k + 1] = pjjyj [k] +
∑

i∈N−

j

τ̄
∑

r=0

pjiyi[k − r]Ik−r,ji[r]

zj [k + 1] = pjjzj [k] +
∑

i∈N−

j

τ̄
∑

r=0

pjizi[k − r]Ik−r,ji[r]

where all nodes have yj [0] = 1 and zj [0] = 0, except one

node, say i, that has initial conditions yi[0] = zi[0] = 1.

Then,

lim
k→∞

µj [k] =
1

n
, ∀j ∈ V ,

where µj [k] =
yj [k]
zj [k]

.

C. Estimation of the number of nodes in a network with

varying number of nodes

The number of nodes in a network might change for

various reasons (e.g., draining of a battery, removal of a

sensor, etc.). Thus, it is of vital importance to be able to

estimate the number of nodes in a network when nodes enter

or leave the network. In this subsection, we show how our

approach can be used to estimate the number of nodes in

a network, as nodes join and leave the network, given that

the nodes remain aware of the number of their out-neighbors

and the graph remains strongly connected.

Consider the case where at time k = ks a node s joins

the network, for the size estimation to work ws[ks] = 0,

ys[ks] = 1, and zs[ks] = 0. For the case where a node f
fails at time k = kf , we assume that it first transmits wf [kf ],
yf [kf ], zf [kf ], d

+
f , and a boolean value δf [kf ]. The boolean

variable δf [kf ] is equal to one if wf [kf ] = wf [kf−Tf ] (zero

otherwise), where Tf is the time elapsed since the last time

an in-neighbor i of node f , i ∈ N−
f , with δi[kf − Tf ] = 1

left the network in the past (if no such in-neighbor left the

network before, then Tf = kf ). For j ∈ N+
f we have

yj [kf ] := yj [kf ] +
yf [kf ]− 1

d+f

zj [kf ] := zj [kf ] +
zf [kf ]− δf [kf ]

d+f

wj [kf ] :=

{

wj [kf ], δf [kf ] = 0
∼ U(wf [kf ], wmax), δf [kf ] = 1

zj [kf ] :=

{

zj [kf ], δf [kf ] = 0
zj [kf ] + 1, δf [kf ] = 1 and δj [kf ] = 0

(8)

The directed edges are in principle removed by the nodes

initiated, i.e., from the transmitting nodes. This can be done

by simply sending an acknowledgement to the receiving node

that the edge will be removed, so that both nodes remove the

edge (and the node corresponding to this edge). Note that,

there is no problem when this is done asynchronously, since

the transmitting node does not pass any other information to

the receiving node through that edge.

V. AVERAGE DEGREE ESTIMATION AND CONTROL

Using the estimates of the number of edges and nodes in

the network, each node j can estimate other parameters of

the network locally. One such parameter is the average node

degree. Using this information, each node can control this

global parameter of the network through local actions, and

consequently the nodes can control the average node degree

of the whole graph in a distributed manner.

Consider a time varying network with average node out-

degree d̄[k] at time k. It is desired to achieve the average

node degree 1 < d⋆ ≤ n − 1 through local edge addition

and deletion at each node. Note that d∗ is taken to be an

integer multiple of 1
n

, as other values of d∗ would lead to

unnecessary oscillations. [However, if this is not the case, we

can set below γ[k] = 0 when |d∗ − d[k]| < 1/n and avoid

oscillations.] Let N+
j [k] be the set of out-neighbours of node

j at time k, and let N j [k] = V \ N+
j [k]. Let d+j [k] be the

out-degree of node j at time k. At each time step k, node

j either adds a new link to node l̄, uniformly picked from

the nodes in N j [k], or removes its link to node l uniformly

picked from the nodes in N+
j [k], or does not do anything.

For now, assume that d̄[k] is available through an oracle to

each node at time k.

Then, the following equation governs the degree update

of node j at each time step k:

d+j [k + 1] = d+j [k] + bj [k]γ[k], (9)

where bj [k] = L[k] + Rj [k] is comprised of an integer

L[k] := ⌊c|d⋆ − d̄[k]|⌋ and a Bernoulli variable Rj [k] with

probability P[k]:

P[k] = c|d⋆ − d̄[k]| − ⌊c|d⋆ − d̄[k]|⌋, (10)

where ⌊·⌋ is the maximum integer that is smaller than its

argument, c ∈ (0, 1] and parameter γ[k] is

γ[k] =







1, d⋆ − d̄[k] ≥ 1/n,
0, |d⋆ − d̄[k]| < 1/n,

−1, d⋆ − d̄[k] ≤ −1/n.
(11)

Lemma 4: Under (9)-(11), the expected value of d̄[k] goes

to the desired value d⋆ as k → ∞.

Proof: First, noting that d̄[k] =

n
∑

ℓ=1

d+ℓ [k]

n
, (9) becomes

d̄[k + 1] = d̄[k] +

n
∑

ℓ=1

bℓ[k]γ[k]

n
(12)

Taking the expected value of d̄[k + 1] in (12), we obtain

E(d̄[k + 1]) = E(d̄[k]) +

n
∑

ℓ=1

E(bℓ[k])γ[k]

n
= E(d̄[k]) + (L[k] + P[k])γ[k]

= E(d̄[k]) + c|d⋆ − d̄[k]|γ[k],

where E(·) is the expected value of its argument. Since,

E(E(·)) = E(·), when |d⋆ − d̄[k]| > 1/n, we obtain

E(d̄[k + 1]) = (1− c)E(d̄[k]) + cd⋆.



Hence, E(d̄[k]) converges asymptotically to d⋆.

Next, we consider the case where nodes do not have access

to the global measurements on the average degree of the

network. Thus, for node j to be able to achieve the objective,

it needs to be able to estimate (in a distributed manner) the

value of d̄[k], which we denote by d̂j [k], using their local

measurements. This can be achieved in two ways:

(1) each node estimates the number of nodes and edges in

the network and then calculates the average degree.

(2) Each agent j just sets the initial conditions yj [0] = d+j
(or yj [0] = d−j ) and zj [0] = 1, and then uses ratio consensus

to (at least asymptotially) obtain the average node degree.

In the rest of this paper, we focus on the second method

as it requires less computations and only relies on one

ratio consensus algorithm to converge. Additionally, It does

not require any coordination among the nodes to determine

which zj [0] should be equal to zero and which one should

be equal to one. We propose Algorithm 3 to control and

estimate the average node degree distributedly.

Algorithm 3 Simultaneous Average Degree Estimation and

Control.

Require: yj [0] := d+j , zj [0] := 1, 1 ≤ j ≤ n

Ensure: d̂j [k] = d̄[k] = d⋆, 1 ≤ j ≤ n, k → ∞
for k = 1, 2, . . . each node j will do

yj [k + 1] := pjjyj [k] +
∑

i∈N−

j

∑τ̄

r=0 pjiyi[k −

r]Ik−r,ji[r];
zj [k + 1] := pjjzj [k] +

∑

i∈N−

j

∑τ̄

r=0 pjizi[k −

r]Ik−r,ji[r];

d̂j [k] :=
yj [k]
zj [k]

Pj [k] =
(

c|d⋆ − d̂j [k]| − ⌊c|d⋆ − d̂j [k]|⌋
)

Lj [k] := ⌊c|d⋆ − d̂j [k]|⌋
bj [k] := Lj [k] + Pj [k]

γj [k] =







1, d⋆ − d̂j [k] ≥ 1/n

0, |d⋆ − d̂j [k]| < 1/n

−1, d⋆ − d̂j [k] ≤ −1/n
d+j [k + 1] = d+j [k] + bj [k]γj [k]
yj [k + 1] := yj [k + 1] + bj [k]γj [k]

end for

Remark 2: Average node degree can also be accurately

estimated using classical consensus algorithms (e.g., [22],

[26]), but as in the average consensus algorithms a dou-

bly stochastic matrix (or a sequence of doubly stochastic

matrices in the case of time-varying graphs) is required.

On the contrary, ratio consensus relies on two iterations

using a column stochastic matrix (or a sequence of column

stochastic matrices in the case of time-varying graphs),

leading to the exact average node degree both synchronously

and asynchronously.

Lemma 5: Under Algorithm 3, the expected value of d̄[k]
goes to the desired value d⋆ as k → ∞.

Proof: For simplicity we will show that the algorithm

converges when it operates synchronously. It can be similarly

proved for the asynchronous operation. From Algorithm 3

yj [k + 1] can be expressed as

yj [k + 1] = pjjyj [k] +
∑

i∈N−

j

pjiyi[k] + bj [k]γj [k].

By taking the expected value of E(yj [k + 1]), this is

equivalent to

E(yj [k + 1]) =pjjE(yj [k])

+
∑

i∈N−

j

pjiE(yi[k]) + c
(

d⋆ − E(d̂j [k])
)

.

Substituting d̂j [k] =
yj [k]
zj [k]

, we get

zj [k + 1]E(d̂j [k + 1]) = pjjzj [k]E(d̂j [k])

+
∑

i∈N−

j

pjizi[k]E(d̂i[k]) + c
(

d⋆ − E(d̂j [k])
)

.

Note that the iteration of zj [k] is deterministic and it is not

affected by the estimate for the average degree estimate.Thus,

in a strongly connected graph z will converge asymptotically

to z⋆, whatever happens with the addition or removal of

links. Hence, without loss of generality we can assume that

the iteration of zj [k] has already converged. Then,

E(d̂j [k + 1]) = pjjE(d̂j [k])

+
∑

i∈N−

j

pji
z⋆i
z⋆j

E(d̂i[k]) +
c

z⋆j

(

d⋆ − E(d̂j [k])
)

.

In matrix form for all nodes j in the network,

E(d̂[k + 1]) = (Z−1PZ − cZ−1)E(d̂[k]) + cd⋆z̄, (13)

where E(d̂[k]) :=
(

E(d̂1[k]) . . . E(d̂n[k])
)T

, P is a

nonnegative stochastic matrix, I is the identity matrix

with appropriate dimensions, Z := diagj(z
⋆
j ), and z̄ :=

(

z−1
1 . . . z−1

n

)T
. Given that the spectral radius of P, ρ(P ),

is 1, then ρ(Z−1PZ) = 1 and E(d̄[k]) converges to

E(d̂⋆) = (I + cZ−1 − Z−1PZ)−1cd⋆z̄,

where E(d̂⋆) :=
(

E(d̂⋆1) . . . E(d̂⋆n)
)T

. If we pre-multiply

Equation (13) with Z when it has converged, we get

ZE(d̂⋆) = (PZ − cI)E(d̂⋆) + cd⋆1. (14)

Now, pre-multiplying (14) by 1
T we obtain

zTE(d̂⋆) = (zT − c1T )E(d̂⋆) + cd⋆n.

After manipulation, this gives
1
T
E(d̂⋆)

n
= d⋆.

VI. NUMERICAL EXAMPLES

The outcomes of the application of Algorithms 1 and 2 to

a network with time varying interconnections are depicted

in Figs. 1 and 2, respectively. In the case of asynchronous

communications, the maximum delay is assumed to be 5.

In the next scenario we consider the case where nodes have

access to global information regarding the average degree of

the network, and apply (9) to control this value and achieve



Fig. 1. Estimation of the number of nodes using Algorithm 1 in a network
with 100 nodes. All node ratios converge to 0.01 within 10 iterations, and
hence, each node can determine that the number of nodes is 1/0.01 = 100.

Fig. 2. Estimation of the number of nodes using Algorithm 2 in a network
with 100 nodes in the presence of bounded delays (maximum delay is 5).

a desired average degree. The network is assumed to be

a random network with 50 nodes and the desired average

degree is 43.24. The average degree of the network and the

degree of each of the nodes are depicted in Figs. 3 and 4,

respectively.

In the last scenario, we assume that the agents do not

have access to any global information regarding the average

degree of the network and want to achieve the desired

average node degree via Algorithm 3. It is assumed that

the network is randomly generated initially and the nodes

are fixed. Fig. 5 depicts the network average node degree,

Fig. 6 represents the degree of each node when Algorithm 3

is applied, and Fig. 7 shows the estimate of the network

average degree calculated at each node.

VII. CONCLUSIONS

In this paper, we propose synchronous and asynchronous

distributed algorithms to accurately estimate the number of

nodes and the average node degree of a given distributed

system. Furthermore, a distributed algorithm is proposed

with which each node can introduce/terminate links, to
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Fig. 3. Network average degree under (9)-(11) with global average degree
information in a network with 50 nodes in the presence of bounded delays
(maximum delay is assumed to be 5).
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Fig. 4. Nodes degrees under (9)-(11) with global average degree infor-
mation in a network with 50 nodes in the presence of bounded delays
(maximum delay is assumed to be 5).

eventually reach a target average degree for the network.

Controlling the node degree can be beneficial in many differ-

ent practical scenarios; for example, in controlling renewable

energy resources in a power network, in decreasing the rate

of propagation of a pathogen in the network, and others. As

demonstrated in the numerical examples, the algorithms are

accurate and extremely efficient.
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