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Abstract: In this paper it is argued that, for any three-layer perceptron, it is always possible to design an equivalent 
distributed ANN, wherein the neurons are implemented on the nodes of a communication network, and the synapses 
between them are established in the communication process. In this approach, neurons are seen as processing and 
communication entities. Since both local and distributed implementations of a specific ANN are perfectly equivalent, they 
can use the same set of synapse weights, i.e. a distributed ANN can be trained on a local, equivalent software 
implementation. Two use cases are presented to demonstrate the validity of the idea. 
Keywords: distributed ANN, microcontrollers, robot navigation, smart environment. 

1. Introduction 

Although artificial neural networks (ANNs) 
have been successfully used in almost any 
research field ([1], [2]), there are relatively few 
reports about microcontroller based 
implementations thereof ([3]).  

While it is obvious that the severe limitations in 
what concerns hardware resources and 
computing power of the usual low cost 
microcontrollers make it difficult to use them 
for the implementation of ANNs, it is also clear 
that, in principle, it is possible to design 
systems wherein the computational task is 
divided in sub-tasks, executed by a plurality of 
microcontrollers, connected in a 
communication network ([4]).  

Typical communication networks comprising 
nodes with limited data processing capabilities 
are the Wireless Sensor Networks (WSN – [5]). 
Several researchers noticed the similarities 
between WSN and ANNs, and proposed 
solutions for implementing neural network 
structures over WSN ([6], [7], [8]). 

Another interesting research direction 
deriving from the concept of distributed 
neural network is the attempt to identify 
neural models of the interactions between 
agents in swarms ([9], [10). 

In this paper, we go beyond the exploration of 
similarities and analogies between WSN and 
ANNs, and argue that, for any three-layer 
perceptron, it is always possible to design an 
equivalent distributed ANN. The neurons are 
implemented on the nodes of the communication 
network, and the synapses between them are 
defined in the process of communication.  

Two use cases are presented to demonstrate the 
validity of the idea. In the first example, a 
mobile robot communicates with a plurality of 
“neural beacons”, or “neural landmarks”, and 
the resulting distributed ANN directly controls 
the navigation of the robot. In another example, 
a number of “smart” PIR (Passive Infrared) 
motion detectors, learn to control the HVAC 
system according to the activity patterns of the 
inhabitants, in order to reduce the overall 
energy requirements for heating the building. 

Beyond this introduction, this paper is 
structured as follows: 

Section II presents the principles of the 
implementation of distributed ANNs starting 
from the model of the three-layer perceptron. 

Section III describes an example of using a 
distributed ANN, consisting in a number of 
“neural beacons” deployed in the environment, 
to control a mobile robot for path tracking. 

Section IV presents a similar network, wherein 
the neurons are implemented by smart PIR 
sensors, used to adjust the reference 
temperature of a HVAC System in accordance 
with the occupancy patterns of the inhabitants. 

Section V is reserved for conclusions. 

2.  Neurons as  
Communication Entities 

A. Implementing detachable neurons 

Consider a tree-layer perceptron as shown in 
Figure 1, containing generic neurons, like the 
one presented in Figure 2. 
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Figure 1. Typical three-layer perceptron 
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Figure 2. Structure of a generic artificial neuron 

With the notations in Figure 2, Ai is the 
weighted sum of the inputs xij: 
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and the output yi=f(Ai) is, typically, a 
sigmoid function: 
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In terms of information processing, a neuron is 
a functional block capable to maintain a data 
structure like this: 

 

where x is the vector containing the input 

values, w is a vector containing the weights of 
the incoming synapses (stored locally), A is 
computed locally according to (1), and y is the 
output value, computed locally with (2). 

In a feedforward topology, the vector 

x contains the output values of the neurons of 

the previous layer. Obviously, these values can 
be transmitted either by direct connections 
between neurons, as depicted in Figure 1, or by 
means of messages, broadcasted over a 
communication network. 

Assuming that: 

 each neuron has an unique ID on          
the network, 

 each neuron holds a list containing the 
IDs of the neurons with whom it      
makes synapses, 

 each neuron stores the weights w of the 
incoming synapses, 

 each neuron is capable to compute the 
values A and y, according to (1) and (2), 

 each neuron broadcasts messages 
containing the current computed value of 
its output y, 

then the ANN in Figure 1 can be implemented 
over a communication network, as shown in 
Figure 3. 
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Figure 3. Sensor network compatible with 
distributed ANNs 

In this parametrization, the neurons are entirely 
detachable, so that some or all of the neurons of 
the local implementation of the ANN can be 
implemented on a remote communication node. 

Assuming that the communication network 
used is a sensor network that provides the input 
data for the whole ANN, and that the neurons 
on the input layer have linear transfer functions, 
the tasks associated with the network in figure 
1 are distributed in the nodes of the 
communication network as shown in Figure 4. 

struct neuron 
{ 

 double x  [LAYER_SIZE]; 

 double w [LAYER_SIZE]; 
 double A; 
 double y; 
} 
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Figure 4. Distribution of tasks of the ANN over the 
nodes of the communication network 

It is also important to note that the processing 
and communication tasks associated with one 
single neuron require relatively low computing 
power, and are compatible with almost any low 
cost microcontroller. 

B. Training a distributed ANN  

Since the distributed ANN (DANN) built this 
way is entirely equivalent with the perceptron 
model, it means that both distributed and non-
distributed implementations of this model can 
share the same set of synapse weights, obtained 
in a process of training. So, the DANN can 
simply borrow the knowledge acquired by an 
equivalent non-distributed implementation 
using a recorded dataset. This can be done by 
broadcasting the weights of the synapses over 
the communication network, and instructing the 
detached neurons to identify and store the 
weights of their own incoming synapses. 

It is also relatively easy to implement the 
backpropagation learning algorithm ([11]) on    
a DANN. 

According to this algorithm, the approximation 
error of the network, defined by (3) 
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j
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propagates backwards from neuron j to neuron i, 
so that the error of the neuron i ( iE ) is a 

fraction of the general error, proportional with 
the weight of the synapse between neurons i 
and j (4). 
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The network “learns” by iteratively adjusting 
the weights of the synapses so that the gradient 
of the error descents: 

ij
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To implement the backpropagation algorithm on 
a DANN, we need to extend the data structure 
associated with the neurons as follows: 

 

The variable delta is iE ,computed with (4) 

and broadcasted along with y, and the vector 

new_ w , computed locally with (5), by each 
neuron, contains the adjusted weights  
during training. 

C. Related work 

Perhaps the most typical example of 
communication protocol, wherein all messages 
are broadcast messages is CAN - Controller 
Area Network (12). CAN seems to be 
intrinsically suitable for DANN applications, 
but it has a major disadvantage: there are few 
known implementations of wireless CAN (13). 

But even in wired networks, CAN is still a 
powerful tool, and the most significant works 
describing neural structures over 
communication networks ([14],[15]) are based 
on CAN. 

3.  Neural Beacons for              
Robot Navigation 

A. Description of the experiment 

Consider the experimental setup shown in 
figure 5. In the first stage of the experiment, a 
differential drive mobile robot R (Pioneer3-DX 
from MobileRobots [16]) is manually guided 
along a path in an environment containing a 
number of “beacons” (1-8), each having 
processing and wireless communication means. 
Beacons are located at known positions in the 
environment (see also Figure 7). 

The robot carries its own localization system 
(odometry) and periodically sends data packets 
containing information about the current 
position, and the values of the speeds of the 
driving wheels (vL, vR). This data is recorded by 

struct neuron 
{ 

 double x  [LAYER_SIZE]; 

 double w [LAYER_SIZE]; 
 double A; 
 double y; 
double delta; 

double new_ w [LAYER_SIZE]; 

} 
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a computer connected to the robot through a 
wireless link. 
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Figure 5. Mobile robot and beacons 

In the second stage of the experiment, a 
dedicated software application implements the 
ANN in Figure 6, which is trained using 
backpropagation to approximate the functions 
(6) using data recorded in the first stage. 
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where d1,..,d8 are the distances between the 
robot and the beacons 1,...,8, at the moment t. 

Finally, the microcontroller units (MCU) 
located on the beacons, and another MCU 
carried by the robot are programmed to 

implement a distributed ANN, according to the 
principles described in Section II. The weights 
of the synapses obtained by training in the 
second stage were transferred in a nonvolatile 
EEPROM memory of the MCUs. The 
communication network is shown in Figure 7. 

The microcontroller unit on the robot 
implements the two neurons of the output layer, 
and sends the values of vL,, vR to the robot via a 
second RS232 communication line. 

The trajectory of the robot, under the control of 
the distributed ANN, recorded with the 
simulator MobileSim ([16]) is shown in    
Figure 8. 

 

Figure 8. The trajectory of the robot  
recorded with MobileSim 
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Figure 6. The ANN used to approximate vL, vR 
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Figure 7. Robot and beacons in communication 
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A MATLAB simulation based on the same data 
set produced the trajectory depicted in Figure 9. 

 

Figure 9. MATLAB simulation of the robot motion 
under the control of the ANN 

B. Notes on the communication protocol 

For simplicity reasons, we have used a 
specially designed MASTER-SLAVE protocol. 
The general structure of the messages is shown 
in figure 10. 
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Figure 10. Structure of the messages over the 
communication network 

Every 100ms, the MASTER broadcasts a Type 
0 message, having the current coordinates of 
the robot in the DATA field. All the SLAVE 
nodes store the coordinates of the robot and 
each of the beacon nodes computes the relative 
distance between the robot and the 
corresponding beacon. 

Next, the MASTER starts sending short queries 
having the SLAVE ID in the Type field, and 0 
bytes in the DATA field. The SLAVE that 
recognizes its ID in the query, responds by 
broadcasting a message containing the 
computed value of the output y of its associated 
neuron. At the end of the cycle of queries-
answers, the MASTER has all the required 
information to compute vL and vR ,and sends 
these values to the robot. 

C. Related work 

The experiment described in this section is, to 
some extent, related with those presented in 
[17], and [18]. In [17], Miglino et. al. use sonar 
readings as inputs for a microcontroller 
implementation of a local ANN that generates 

references for the speeds of the drive wheels of 
the robot. 

In [18], Hellström and Ringdahl present the 
“follow the past algorithm” for path tracking – 
a method that also uses the past “experience” of 
the robot, but the similarities stop here. 

4. Neural Control of the HVAC 
System in Smart Buildings 

A. The idea 

According to official estimates ([19]) buildings 
are responsible for 40% of the energy 
consumption in Europe. Under these 
circumstances, finding solutions to reduce 
energy waste in buildings may have significant 
impact on the overall energy consumption. For 
example, most modern HVAC systems 
(Heating Ventilation and Air Conditioning) can 
be programmed to automatically adjust the 
target temperatures depending on the time of 
the day, assuming that during certain time 
intervals, the building is likely to be 
unoccupied, and can be maintained at a lower 
level of thermal comfort. However, a priori 
predictions about building occupancy are 
seldom accurate; therefore this control scheme 
has limited efficiency. 

The solution described here is based on the idea 
that the occupancy and activity levels can be 
estimated using passive infrared (PIR) sensor, 
usually present in most buildings as part of the 
security system. By adding “detachable 
neurons” implemented according to the 
principles presented in Section II to each 
sensor, and providing a means for the resulting 
network to directly interface the HVAC system, 
we get a structure like the one presented in 
Figure 11. 
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Figure 11. Controlling a HVAC with 
a distributed ANN 
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In this structure, it is assumed that the HVAC 
system accepts temperature references in the 
form of analogue signals, which can be 
generated by the output node of the distributed 
ANN using a DAC, and also can be read by an 
ADC during the training phase. 

The input of the distributed ANN is a vector x  
of “occupancy quotients”, computed by each 
input node by counting the digital pulses 
generated by the PIR sensors within a specified 
time frame, and the output of the network is the 
temperature reference for the HVAC. 

In normal operation mode, the input nodes 
broadcast two types of messages: 

 Type 1 messages, containing the 

components of the input vector x . These 
messages are addressed to the other       
input nodes. 

 Type 2 messages contain information about 
the computed components of the output 

vector y of the respective neuron. These 
messages are addressed to the output node. 

Communication can be wired or wireless.  

The activity of an input node is synthetically 
presented in Figure 12. 
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Figure 12. Normal operation diagram for 
an input node 

In normal operation mode, the output node 
does not need to send messages over the 
communication medium. Its operation is 
described in Figure 13. 

START

NO

NO

YES

YES

TYPE 2

MESSAGE IN

RX BUFFER?

VECTOR X

COMPLETE?

COMPUTE Y

GENERATE

REFERENCE

FOR HVAC

 

Figure 13. Normal operation diagram for  
the output node 

During the training phase, the output node 
reads the “right” values of the reference 
temperature (manually adjusted), computes the 
approximation error and broadcasts “delta” 
messages over the communication network to 
implement the backpropagation algorithm, as 
described in section 2. 

B. Related work 

The idea of using smart sensors and neural 
networks to control HVAC systems is not new. 
For example, [20] describes a complex multi-
purpose smart sensor incorporating a smoke 
detector, a PIR motion detector, and a light 
sensor, designed to control the lighting systems 
in buildings. 

The patent application [21] describes a solution 
based on interfacing the security system with 
the HVAC in order to extract occupancy 
information by analyzing the states of the  
alarm system. 
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5. Conclusions 

A method for implementing distributed ANNs 
according to the model of three layer 
perceptron was presented. 

In this approach, neurons are seen as 
detachable processing and communication 
entities, requiring relatively low computing 
power, which makes them compatible with any 
low- cost microcontroller. 

Two use cases presenting applications of the 
resulting networks were discussed.  

The principles of the implementation of 
distributed ANNs presented here can serve as 
starting point for further research for creating 
neural structures  on systems that are 
intrinsically distributed, like sensor networks, 
swarms, the Internet, etc. The possible 
applications are almost unlimited. 
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