
Studies in Informatics and Control, Vol. 21, No. 2, June 2012 http://www.sic.ici.ro 165

Distributed Neural Networks
Microcontroller Implementation and Applications

Ioan Susnea

University “Dunarea de Jos” of Galati,
111, Domneasca Street,
Galati, 800201, Romania,
ioan.susnea@ugal.ro

Abstract: In this paper it is argued that, for any three-layer perceptron, it is always possible to design an equivalent
distributed ANN, wherein the neurons are implemented on the nodes of a communication network, and the synapses
between them are established in the communication process. In this approach, neurons are seen as processing and
communication entities. Since both local and distributed implementations of a specific ANN are perfectly equivalent, they
can use the same set of synapse weights, i.e. a distributed ANN can be trained on a local, equivalent software
implementation. Two use cases are presented to demonstrate the validity of the idea.
Keywords: distributed ANN, microcontrollers, robot navigation, smart environment.

1. Introduction

Although artificial neural networks (ANNs)
have been successfully used in almost any
research field ([1], [2]), there are relatively few
reports about microcontroller based
implementations thereof ([3]).

While it is obvious that the severe limitations in
what concerns hardware resources and
computing power of the usual low cost
microcontrollers make it difficult to use them
for the implementation of ANNs, it is also clear
that, in principle, it is possible to design
systems wherein the computational task is
divided in sub-tasks, executed by a plurality of
microcontrollers, connected in a
communication network ([4]).

Typical communication networks comprising
nodes with limited data processing capabilities
are the Wireless Sensor Networks (WSN – [5]).
Several researchers noticed the similarities
between WSN and ANNs, and proposed
solutions for implementing neural network
structures over WSN ([6], [7], [8]).

Another interesting research direction
deriving from the concept of distributed
neural network is the attempt to identify
neural models of the interactions between
agents in swarms ([9], [10).

In this paper, we go beyond the exploration of
similarities and analogies between WSN and
ANNs, and argue that, for any three-layer
perceptron, it is always possible to design an
equivalent distributed ANN. The neurons are
implemented on the nodes of the communication
network, and the synapses between them are
defined in the process of communication.

Two use cases are presented to demonstrate the
validity of the idea. In the first example, a
mobile robot communicates with a plurality of
“neural beacons”, or “neural landmarks”, and
the resulting distributed ANN directly controls
the navigation of the robot. In another example,
a number of “smart” PIR (Passive Infrared)
motion detectors, learn to control the HVAC
system according to the activity patterns of the
inhabitants, in order to reduce the overall
energy requirements for heating the building.

Beyond this introduction, this paper is
structured as follows:

Section II presents the principles of the
implementation of distributed ANNs starting
from the model of the three-layer perceptron.

Section III describes an example of using a
distributed ANN, consisting in a number of
“neural beacons” deployed in the environment,
to control a mobile robot for path tracking.

Section IV presents a similar network, wherein
the neurons are implemented by smart PIR
sensors, used to adjust the reference
temperature of a HVAC System in accordance
with the occupancy patterns of the inhabitants.

Section V is reserved for conclusions.

2. Neurons as
Communication Entities

A. Implementing detachable neurons

Consider a tree-layer perceptron as shown in
Figure 1, containing generic neurons, like the
one presented in Figure 2.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 2, June 2012 166

I H

O

y

w
ho11

who21

w
ho

31

yh1

yh2

yh3

wih11

wih22

wih33

w
ih23

w
ih
21

w
ih

3
1

w
ih12

w
ih

1
3

x1

x2

x3

yi1

yi2

yi3

Figure 1. Typical three-layer perceptron

x1

x2

x3

wi1

wi2

wi3

�
Ai f(Ai) yi

Figure 2. Structure of a generic artificial neuron

With the notations in Figure 2, Ai is the
weighted sum of the inputs xij:





N

j
jiji xwA

1

 (1)

and the output yi=f(Ai) is, typically, a
sigmoid function:









N

j
jij

j

xw

e

y

11

1
 (2)

In terms of information processing, a neuron is
a functional block capable to maintain a data
structure like this:

where x is the vector containing the input

values, w is a vector containing the weights of
the incoming synapses (stored locally), A is
computed locally according to (1), and y is the
output value, computed locally with (2).

In a feedforward topology, the vector

x contains the output values of the neurons of

the previous layer. Obviously, these values can
be transmitted either by direct connections
between neurons, as depicted in Figure 1, or by
means of messages, broadcasted over a
communication network.

Assuming that:

 each neuron has an unique ID on
the network,

 each neuron holds a list containing the
IDs of the neurons with whom it
makes synapses,

 each neuron stores the weights w of the
incoming synapses,

 each neuron is capable to compute the
values A and y, according to (1) and (2),

 each neuron broadcasts messages
containing the current computed value of
its output y,

then the ANN in Figure 1 can be implemented
over a communication network, as shown in
Figure 3.

Node 1

Node 2

Node N

Output
node

y

x1

x2

xN

C
o
m

m
u
n
ic

a
ti
o
n

b
u
s

Input nodes

Figure 3. Sensor network compatible with
distributed ANNs

In this parametrization, the neurons are entirely
detachable, so that some or all of the neurons of
the local implementation of the ANN can be
implemented on a remote communication node.

Assuming that the communication network
used is a sensor network that provides the input
data for the whole ANN, and that the neurons
on the input layer have linear transfer functions,
the tasks associated with the network in figure
1 are distributed in the nodes of the
communication network as shown in Figure 4.

struct neuron
{

 double x [LAYER_SIZE];

 double w [LAYER_SIZE];
 double A;
 double y;
}

Studies in Informatics and Control, Vol. 21, No. 2, June 2012 http://www.sic.ici.ro 167

Input node

Input node

Input node

Output
node

Figure 4. Distribution of tasks of the ANN over the
nodes of the communication network

It is also important to note that the processing
and communication tasks associated with one
single neuron require relatively low computing
power, and are compatible with almost any low
cost microcontroller.

B. Training a distributed ANN

Since the distributed ANN (DANN) built this
way is entirely equivalent with the perceptron
model, it means that both distributed and non-
distributed implementations of this model can
share the same set of synapse weights, obtained
in a process of training. So, the DANN can
simply borrow the knowledge acquired by an
equivalent non-distributed implementation
using a recorded dataset. This can be done by
broadcasting the weights of the synapses over
the communication network, and instructing the
detached neurons to identify and store the
weights of their own incoming synapses.

It is also relatively easy to implement the
backpropagation learning algorithm ([11]) on
a DANN.

According to this algorithm, the approximation
error of the network, defined by (3)

2)),((),,(jj
j

dwxydwxE   (3)

propagates backwards from neuron j to neuron i,
so that the error of the neuron i (iE) is a

fraction of the general error, proportional with
the weight of the synapse between neurons i
and j (4).

jiji EwE   (4)

The network “learns” by iteratively adjusting
the weights of the synapses so that the gradient
of the error descents:

ij
ijijijij w

E
wwww




 ' (5)

To implement the backpropagation algorithm on
a DANN, we need to extend the data structure
associated with the neurons as follows:

The variable delta is iE ,computed with (4)

and broadcasted along with y, and the vector

new_ w , computed locally with (5), by each
neuron, contains the adjusted weights
during training.

C. Related work

Perhaps the most typical example of
communication protocol, wherein all messages
are broadcast messages is CAN - Controller
Area Network (12). CAN seems to be
intrinsically suitable for DANN applications,
but it has a major disadvantage: there are few
known implementations of wireless CAN (13).

But even in wired networks, CAN is still a
powerful tool, and the most significant works
describing neural structures over
communication networks ([14],[15]) are based
on CAN.

3. Neural Beacons for
Robot Navigation

A. Description of the experiment

Consider the experimental setup shown in
figure 5. In the first stage of the experiment, a
differential drive mobile robot R (Pioneer3-DX
from MobileRobots [16]) is manually guided
along a path in an environment containing a
number of “beacons” (1-8), each having
processing and wireless communication means.
Beacons are located at known positions in the
environment (see also Figure 7).

The robot carries its own localization system
(odometry) and periodically sends data packets
containing information about the current
position, and the values of the speeds of the
driving wheels (vL, vR). This data is recorded by

struct neuron
{

 double x [LAYER_SIZE];

 double w [LAYER_SIZE];
 double A;
 double y;
double delta;

double new_ w [LAYER_SIZE];

}

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 2, June 2012 168

a computer connected to the robot through a
wireless link.

1

2 3

4

5

6

7

8

v
L

v
R

R

Figure 5. Mobile robot and beacons

In the second stage of the experiment, a
dedicated software application implements the
ANN in Figure 6, which is trained using
backpropagation to approximate the functions
(6) using data recorded in the first stage.

),..,,,(

),..,,,(

8321

8321

ddddtfv

ddddtfv

R

L




 (6)

where d1,..,d8 are the distances between the
robot and the beacons 1,...,8, at the moment t.

Finally, the microcontroller units (MCU)
located on the beacons, and another MCU
carried by the robot are programmed to

implement a distributed ANN, according to the
principles described in Section II. The weights
of the synapses obtained by training in the
second stage were transferred in a nonvolatile
EEPROM memory of the MCUs. The
communication network is shown in Figure 7.

The microcontroller unit on the robot
implements the two neurons of the output layer,
and sends the values of vL,, vR to the robot via a
second RS232 communication line.

The trajectory of the robot, under the control of
the distributed ANN, recorded with the
simulator MobileSim ([16]) is shown in
Figure 8.

Figure 8. The trajectory of the robot
recorded with MobileSim

D
IS

T
A

N
C

E
S

B
E

T
W

E
E

N
R

O
B

O
T

A
N

D
B

E
A

C
O

N
S

D
IS

T
A

N
C

E
S

B
E

T
W

E
E

N
R

O
B

O
T

A
N

D
B

E
A

C
O

N
S

I H

O

V
L

V
L

V
R

V
R

Figure 6. The ANN used to approximate vL, vR

Radio-Modem

Radio-Modem

Radio-Modem

BEACON

NODE

BEACON

NODE

MCU

MCU

RS232

RS232

RS232 RS232
MCU

ROBOT

NODE

Figure 7. Robot and beacons in communication

Studies in Informatics and Control, Vol. 21, No. 2, June 2012 http://www.sic.ici.ro 169

A MATLAB simulation based on the same data
set produced the trajectory depicted in Figure 9.

Figure 9. MATLAB simulation of the robot motion
under the control of the ANN

B. Notes on the communication protocol

For simplicity reasons, we have used a
specially designed MASTER-SLAVE protocol.
The general structure of the messages is shown
in figure 10.

START

OF MSG
DATA CRC

END

OF MSG

MESSAGE STRUCTURE

NODE ID TYPE

Figure 10. Structure of the messages over the
communication network

Every 100ms, the MASTER broadcasts a Type
0 message, having the current coordinates of
the robot in the DATA field. All the SLAVE
nodes store the coordinates of the robot and
each of the beacon nodes computes the relative
distance between the robot and the
corresponding beacon.

Next, the MASTER starts sending short queries
having the SLAVE ID in the Type field, and 0
bytes in the DATA field. The SLAVE that
recognizes its ID in the query, responds by
broadcasting a message containing the
computed value of the output y of its associated
neuron. At the end of the cycle of queries-
answers, the MASTER has all the required
information to compute vL and vR ,and sends
these values to the robot.

C. Related work

The experiment described in this section is, to
some extent, related with those presented in
[17], and [18]. In [17], Miglino et. al. use sonar
readings as inputs for a microcontroller
implementation of a local ANN that generates

references for the speeds of the drive wheels of
the robot.

In [18], Hellström and Ringdahl present the
“follow the past algorithm” for path tracking –
a method that also uses the past “experience” of
the robot, but the similarities stop here.

4. Neural Control of the HVAC
System in Smart Buildings

A. The idea

According to official estimates ([19]) buildings
are responsible for 40% of the energy
consumption in Europe. Under these
circumstances, finding solutions to reduce
energy waste in buildings may have significant
impact on the overall energy consumption. For
example, most modern HVAC systems
(Heating Ventilation and Air Conditioning) can
be programmed to automatically adjust the
target temperatures depending on the time of
the day, assuming that during certain time
intervals, the building is likely to be
unoccupied, and can be maintained at a lower
level of thermal comfort. However, a priori
predictions about building occupancy are
seldom accurate; therefore this control scheme
has limited efficiency.

The solution described here is based on the idea
that the occupancy and activity levels can be
estimated using passive infrared (PIR) sensor,
usually present in most buildings as part of the
security system. By adding “detachable
neurons” implemented according to the
principles presented in Section II to each
sensor, and providing a means for the resulting
network to directly interface the HVAC system,
we get a structure like the one presented in
Figure 11.

HVACInput
node

Input
node

Input
node

Input
node

Output
node

Thermostat Actuators

Sensors

PIR

PIR

PIR

PIR

DAC

ADC

Figure 11. Controlling a HVAC with
a distributed ANN

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 2, June 2012 170

In this structure, it is assumed that the HVAC
system accepts temperature references in the
form of analogue signals, which can be
generated by the output node of the distributed
ANN using a DAC, and also can be read by an
ADC during the training phase.

The input of the distributed ANN is a vector x
of “occupancy quotients”, computed by each
input node by counting the digital pulses
generated by the PIR sensors within a specified
time frame, and the output of the network is the
temperature reference for the HVAC.

In normal operation mode, the input nodes
broadcast two types of messages:

 Type 1 messages, containing the

components of the input vector x . These
messages are addressed to the other
input nodes.

 Type 2 messages contain information about
the computed components of the output

vector y of the respective neuron. These
messages are addressed to the output node.

Communication can be wired or wireless.

The activity of an input node is synthetically
presented in Figure 12.

START

READ SENSOR

DATA

MEDIUM

FREE?

MEDIUM

FREE?

No

NO

NO

NO

Yes

YES

YES

SEND TYPE 1

MESSAGE

FULL PACKET

IN RX BUFFER?

VECTOR X

COMPLETE?

COMPUTE Y

SEND TYPE2

MESSAGE

YES

Figure 12. Normal operation diagram for
an input node

In normal operation mode, the output node
does not need to send messages over the
communication medium. Its operation is
described in Figure 13.

START

NO

NO

YES

YES

TYPE 2

MESSAGE IN

RX BUFFER?

VECTOR X

COMPLETE?

COMPUTE Y

GENERATE

REFERENCE

FOR HVAC

Figure 13. Normal operation diagram for
the output node

During the training phase, the output node
reads the “right” values of the reference
temperature (manually adjusted), computes the
approximation error and broadcasts “delta”
messages over the communication network to
implement the backpropagation algorithm, as
described in section 2.

B. Related work

The idea of using smart sensors and neural
networks to control HVAC systems is not new.
For example, [20] describes a complex multi-
purpose smart sensor incorporating a smoke
detector, a PIR motion detector, and a light
sensor, designed to control the lighting systems
in buildings.

The patent application [21] describes a solution
based on interfacing the security system with
the HVAC in order to extract occupancy
information by analyzing the states of the
alarm system.

Studies in Informatics and Control, Vol. 21, No. 2, June 2012 http://www.sic.ici.ro 171

5. Conclusions

A method for implementing distributed ANNs
according to the model of three layer
perceptron was presented.

In this approach, neurons are seen as
detachable processing and communication
entities, requiring relatively low computing
power, which makes them compatible with any
low- cost microcontroller.

Two use cases presenting applications of the
resulting networks were discussed.

The principles of the implementation of
distributed ANNs presented here can serve as
starting point for further research for creating
neural structures on systems that are
intrinsically distributed, like sensor networks,
swarms, the Internet, etc. The possible
applications are almost unlimited.

REFERENCES

1. WIDROW, B., D. E. RUMELHART
MICHAEL, A. LEHR, Neural Networks:
Applications in Industry, Business and
Science, Communications of the ACM,
Volume 37 Issue 3, March 1994.

2. HAGAN, M., H. DEMUTH, Neural
Networks for Control, Invited Tutorial,
1999 American Control Conference, San
Diego, June, 1999, pp. 1642-1656.

3. BINFET, J., B. M. WILAMOWSKI,
Microprocessor Implementation of
Fuzzy Systems and Neural Networks, in
Neural Networks, 2001. Proceedings.
IJCNN '01. International Joint Conference
on, July 2001, pp. 234-239.

4. SOARES, S. G. et. al., Building
Distributed Soft Sensors, International
Journal of Computer Information Systems
and Industrial Management Applications
ISSN 2150-7988 vol. 3, 2011, pp. 202-209.

5. VIEIRA, M. A. M., C. N. COELHO, Jr., D.
C. da SILVA, Jr., J. M. da MATA, Survey
on Wireless Sensor Network Devices,
Emerging Technologies and Factory
Automation, 2003. Proceedings. ETFA '03.
IEEE Conference Sept. 2003 pp. 537-544.

6. OLDEWURTEL, F., P. MAHONEN,
Neural Wireless Sensor Networks,
Systems and Networks Communications,
2006. ICSNC '06. International Conference
on, pp.28-36.

7. ENAMI, N., R. A. MOGHADAM, K.
DADASHTABAR, Neural Network
Based Energy Efficiency in Wireless
Sensor Networks: A Survey, International
Journal of Computer Science &
Engineering Survey (IJCSES) Vol.1, No.1,
August 2010.

8. SHAH, K., M. KUMAR, S. INC, T.
ADDISON, Resource Management in
Wireless Sensor Networks using
Collective Intelligence, International
Conference on Intelligent Sensors, Sensor
Networks and Information Processing,
2008. ISSNIP 2008, pp. 423–428.

9. PARUNAK, H. v. D., S. BRUECKNER,
The Cognitive Aptitude of Swarming
Agents, Vector Research Center, Ann
Arbor, MI, 2009. www.
newvectors.net/staff/parunakv/CASA.pdf

10. SUSNEA, I., G. VASILIU, A. FILIPESCU
A. RADASCHIN, Virtual Pheromones
for Real-Time Control of Autonomous
Mobile Robots, in Studies of Informatics
and Control, Vol 18, issue 3, 2009,
pp. 233-240

11. RUMELHART D. E., G. E. HINTON, R. J.
WILLIAMS, Learning Representations
by Back-propagating Errors, Nature 323,
October 1986, pp. 533-536.

12. BOSCH, R., CAN Specification Version
2.0, Robert Bosch GmbH, Stuttgart, 1991.

13. K.-R. SOHN, H.-J. LEE, Y. KIM, Wireless
CAN Communications based on White
LED, Third International Conference on
Ubiquitous and Future Networks (ICUFN),
15-17 June 2011, pp. 127–130.

14. BONASTRE, A., R. ORS, J.V.
CAPELLA, J. HERRERO, Distribution
of Neural-based Discrete Control
Algorithms Applied to Home
Automation with CAN, Proceedings of
the 8th International CAN Conference,
Las Vegas, USA, February 2002.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 2, June 2012 172

15. CAPELLA, J. V., A. BONASTRE, R. ORS,
An Advanced and Distributed Control
Architecture Based on Intelligent Agents
and Neural Networks, IEEE International
Workshop on Intelligent Data Acquisition
and Advanced Computing Systems:
Technology and Applications 8-10
September 2003, Lvov, Ukraine.

16. www.mobilerobots.com.

17. MIGLINO, O., H. LUND, S. NOLFI,
Evolving Mobile Robot in Simulated and
Real Environment, Artificial Life, vol. 2,
no. 4, 1995, pp. 417-434.

18. HELLSTRÖM, T., O. RINGDAHL,
Follow the Past: A Path-tracking
Algorithm for Autonomous Vehicles,
International Journal of Vehicle
Autonomous Systems, Vol. 4, Nos. 2-4,
2006, pp.216-224.

19. Directive 2010/31/Eu of the European
Parliament and of the Council of 19 May
2010 on the Energy Performance Of
Buildings, Official Journal of The European
Union L153, Vol. 53, 18 June, 2010

20. US patent US2008291036A1

21. US patent US2009/266904A1

