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Abstract— Distributed linear estimation theory has received
increased attention in recent years due to several promising
industrial applications. Distributed nonlinear estimation, how-
ever is still a relatively unexplored field despite the need in
numerous practical situations for techniques that can handle
nonlinearities. This paper presents a unified way of describing
distributed implementations of three commonly used nonlinear
estimators: the Extended Kalman Filter, the Unscented Kalman
Filter and the Particle Filter. Leveraging on the presented
framework, we propose new distributed versions of these
methods, in which the nonlinearities are locally managed by
the various sensors whereas the different estimates are merged
based on a weighted average consensus process. The proposed
versions are shown to outperform the few published ones in
two robot localization test cases.

I. INTRODUCTION

Driven by the numerous potential applications in sensor

networks, distributed estimation techniques have been stud-

ied with growing interest in the past few years. So far, the

research has been mainly focused on state estimation of

linear dynamical systems. References [1], [2], [3] and [4]

give a comprehensive overview of the field.

There are many situations in which such a framework

cannot be applied, due to the nonlinearities in the dynamical

system or in the sensing equation or both. An important

example of these scenarios is the localization of a moving

object via range-only measurements. This particular problem

arises in applications such as indoor robot localization [5],

[6], [7], underwater sensor networks [8], [9], [10] and space

exploration [11] among others.

Although there are a few cases in the literature in which

distributed nonlinear estimation has been addressed, a clear

performance evaluation is still missing. For instance, in [3]

a distributed Extended Kalman Filter is suggested, but not

implemented, and in [12] a distributed Particle Filter is

proposed without extensive analysis.

The aim of this paper is to propose effective distributed

algorithms for nonlinear estimation. To achieve this, we

introduce a unified framework, in which we design versions

of both distributed Extended Kalman Filters and distributed

Particle Filters that show better performance in simulation

with respect to the aforementioned literature. Moreover, we

propose an algorithm for the distributed Unscented Kalman

filter. The core of the framework is a merging mechanism

based on a weighted consensus procedure similar to the ones

developed in [13].
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The paper is organized as follows: Section II defines the

problem, in Sections III and IV the merging mechanism and

the estimation algorithms are proposed, Section V presents

two test cases and in Section VI the conclusions are drawn.

II. PROBLEM FORMULATION

A. Notation

The state variable is denoted by x ∈ R
n, u ∈ R

nu is

the control, z ∈ R
nz the measurement, w ∈ R

nw and v ∈
R

nv two independent zero mean Gaussian noise terms. x̂
represents the estimate of x. x(k) is the state at time instant

k, and u(k) is the control at the same time instant; zi(k)
is the measurement vector of sensor i, at time k. For all

the other variables the same notation holds. If ai(k) is a

generic vector variable associated with sensor i, at time k,

and i = 1, . . . , N , then a(k) = (aT1 (k), . . . , a
T
N (k))T is a

stacked vector of all the sensor variables.

B. Distributed estimation

Let the Nonlinear Time-Invariant dynamical model of the

system with state x be:

x(k + 1) = f(x(k), u(k), w(k)) (1)

where f is a nonlinear function. Let the process be observed

by N sensors each with some processing and communication

capability. The sensors are labeled i = 1, . . . , N and form

the set V . The communication topology is modeled as an

undirected graph G = (V , E), where an edge (i, j) is in E if

and only if node i and node j can exchange messages. Let

the graph be connected, let the sensor clocks be synchronized

and assume perfect communication (no delays or packet

losses). The nodes with which node i communicates are

called neighbors and are contained in the set Ni. Note that

node i is not included in the set Ni. We define Ji = Ni∪{i}
and Ni = |Ji|. Let the measurement equation for each sensor

zi(k) be:

zi(k) = g(x(k)) + vi(k), i = 1, . . . , N (2)

where vi(k) is a Gaussian noise term and g a nonlinear

function. In the distributed setting each sensor estimates

the state, and x̂i(k) denotes the estimate of sensor i at

time k. Therefore, the distributed estimation problem can be

formulated as follows. Allowing communication only within

the neighborhood, estimate N different copies of the state

x̂i(k) so that the following requirements are satisfied:

R1) each x̂i(k) is an unbiased estimate of x(k) at each time

step k;

R2) for k → ∞, all the x̂i(k)’s have the same value.
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In this paper, we will restrict ourselves to algorithms that

do not exchange raw measurements among the neighbors;

since nonlinear filters require more computational effort than

linear ones. This restriction is a positive feature because

it decreases the communication time and gives more time

for computation. This also implies that the structure of our

algorithms will consist of N local filters and a distributed

merging mechanism which aggregates the different estimates.

Remark 1: The graph G is assumed to be fixed in time.

However, under weak technical conditions, we could extend

the algorithms to situations in which the graph G is time-

varying, see for instance [13].

C. Distributed localization

Distributed localization via range-only measurements is

one example of a distributed nonlinear estimation problem

where the process is locally unobservable by the individual

sensors. Let xp be the position of a generic object, a robot

for instance. Let bi, i = 1, . . . , N be the position of the fixed

range sensors. The measurement equation can be written as:

zi(k) = ||xp(k)− bi||+ vi(k), i = 1, . . . , N (3)

Since the state is locally unobservable, the sensors have

to communicate with each other. In the following section we

will present some possibilities for combining their estimates.

III. CONSENSUS ALGORITHMS

If requirement R1) is satisfied by the choice of a suitable

local nonlinear filter, requirement R2) has to be imposed

using a consensus algorithm which merges the different

estimates.

Consensus algorithms make use of linear maps between

some local variables, for example the estimates x̂j(k) with

j ∈ Ji, and their weighted nodal average x̄i(k) as:

x̄i(k) =
∑

j∈Ji

Wij x̂j(k)

or, in matrix-vector notation

x̄(k) = (W ⊗ In)x̂(k) (4)

where ⊗ represents the Kronecker product. Equation (4) con-

stitutes a consensus iteration. In usual consensus algorithms

this iteration is repeated τ times, from t = 1 to τ as:
{

x̄(k) = (W ⊗ In)x̂t−1(k)
x̂t(k) = x̄(k)

with x̂0(k) = x̂(k). It is straightforward to note that the τ -th

iteration is computed as (W τ ⊗ In)x̂(k). The matrix W is

required to satisfy:

lim
τ→∞

W τ =
1

N
11

T (5)

so that the consensus iterations not only converge but they

also give the mean of the initial values (which gives the

name average-consensus as a particular instance of the more

general χ-consensus [14]). This property has been used in

the last few years [15] as a means of averaging the different

estimates x̂i(k) without the need to know N , see also [3]

and [12]. A typical form for W is W = IN − ǫL, where L
is the weighted Laplacian associated with the graph G, ǫ is a

positive constant which has to be less than one to ensure

convergence. In its typical implementation, a consensus

algorithm merges the different x̂i(k) as

x̄i = x̂i + ǫ/(Ni − 1)
∑

j∈Ni

(x̂j − x̂i) (6)

delivering for τ → ∞, ∀i:

x̄ = x̄i =
1

N

∑

j∈V

x̂j

Quite often, the number of consensus iterations is finite

(τ ≪ ∞), or even 1, such as for instance in [3]. This

reduces drastically the communication among the sensors,

losing however the convergence property. Detailed analysis

of such interleaved schemes is still an open problem; see

[16] for a stability/convergence proof applied to a particular

case.

We propose to use a weighted version of the typical

algorithm (6), similar to [13]. First we cite the following

lemma:

Lemma 1 [13]: Given a set of independent and unbiased

estimates, x̂i, with associated covariance matrices, Pi, where

i ∈ V , the following weighted averaging:

x̂ =





∑

j∈V

P−1
j





−1
∑

j∈V

P−1
j x̂j

P−1 =
∑

j∈V

P−1
j

gives the linear minimum-variance unbiased estimate of x.

Second, the previous weighted averaging can be seen as

x̂ = Y −1Z

P−1 = NY

where Z = (1/N)
∑

j∈V Zj , Y = (1/N)
∑

j∈V Yj , Zi =

P−1
i x̂i, Yi = P−1

i . Therefore Z and Y can be calculated as

standard averaging. Hence we can implement a consensus

iteration in the form:

Z̄i = (1/Ni)
∑

j∈Ji

Zj

Ȳi = (1/Ni)
∑

j∈Ji

Yj (7)

which has iteration matrix W , where Wij = 1/Ni if and

only if j ∈ Ji, and Wij = 0 otherwise. W can be proven to

satisfy (5).

Note that in general the different x̄i(k)’s will not be

independent but they will be correlated since the sensors are

observing the same model. This implies that the merging

mechanism, even though it can be proven to deliver unbi-

ased estimates, will not provide optimal solutions. However,

computing the correlation among the estimates would lead

to adopting a solution that is closer to the centralized one.
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(Local Filter)1
x̂1 P1z1, u

x̄1 P̄1

(Local Filter)i
x̂i Pizi, u

x̄i P̄i

(Local Filter)N
x̂N PNzN , u

x̄N P̄N

Fig. 1. A unified setting for distributed nonlinear estimation

The test cases will show how this merging is more accurate

than typical consensus algorithms, even if not optimal. Fur-

thermore, since we will adopt τ = 1, note that a detailed

analysis of requirement R2), i.e., convergence for k → ∞,

is still an open issue, as well as the consistency of the filters.

However, from a practical point of view one could validate

consistency using standard tests on recorded data, see [17]

and [18]. Algorithm 1 shows the method for each sensor i.

Algorithm 1 MERGE algorithm

1: Input: x̂j(k), Pj(k), j ∈ Ji

2: Merge:

x̄i(k) =





∑

j∈Ji

P−1

j (k)





−1

∑

j∈Ji

P−1

j (k) x̂j(k)

P̄−1

i (k) =
∑

j∈Ji

P−1

j (k)

3: Output: x̄i(k), P̄i(k)

IV. DISTRIBUTED NONLINEAR ESTIMATION

Given the premises of the previous sections, our general

distributed nonlinear estimation framework will consist of

N different local filters, connected to the merge/consensus

algorithm as depicted in Figure 1. This setting unifies and

simplifies the distributed implementation of three of the

most used nonlinear filters, namely Extended Kalman Filter

(EKF), Unscented Kalman Filter (UKF) and Particle Filter

(PF), which will be presented in the next sections. First, the

distributed EKF formulation of [3] will be reviewed, pointing

out the differences from the new proposed solution, then

a distributed UKF algorithm will be derived and, finally, a

novel distributed Particle Filter scheme will be shown and

compared with [12].

A. Distributed Extended Kalman Filters

Let Fi, Gi and Hi be respectively:

Fi =
∂f(x(k), u(k), w(k))

∂x(k)

∣

∣

∣

∣

(x̄i(k),u(k),0)

Gi =
∂f(x(k), u(k), w(k))

∂w(k)

∣

∣

∣

∣

(x̄i(k),u(k),0)

Hi =
∂g(x(k))

∂x(k)

∣

∣

∣

∣

(x̄i(k))

Let Q = E[w(k)wT (k)], Ri = E[vi(k)v
T
i (k)]. Define the

weighted predicted observation vector Oi, the weighted true

observation vector yi and their nodal aggregates:

Oi , HT
i R

−1
i g(Fix̄i(k)), Oi ,

∑

j∈Ji

Oj

yi , HT
i R

−1
i zi(k + 1), yi ,

∑

j∈Ji

yj

whose differences (Oi−yi) and (Oi−yi) represent the mis-

match between the prediction and the measurements. Define

the inverse-covariance matrix Si and its nodal aggregate:

Si , HT
i R

−1
i Hi, Si ,

∑

j∈Ji

Sj

The distributed Extended Kalman Filter algorithm of [3]

implements a typical consensus iteration. For each sensor

it contains the following two steps:

Step 1. (Prediction):

x̌i(k + 1) = Fix̄i(k)

P̌i(k + 1) = FiP̄i(k)F
T
i +GiQG

T
i (8)

Step 2. (Update):

(

P̄i(k + 1)
)−1

=
(

P̌i(k + 1)
)−1

+ Si

x̄i(k + 1) = x̌i(k + 1) +

P̄i(k + 1)
(

yi −Oi

)

+ ǫP̄i(k + 1)×
∑

j∈Ni

(x̌j(k + 1)− x̌i(k + 1)) (9)

The proposed version has a different update step and makes

use of Algorithm 1:

Step 1. (Prediction): same as in (8)

Step 2. (Modified Update):

(Pi(k + 1))
−1

=
(

P̌i(k + 1)
)−1

+ Si

x̂i(k + 1) = x̌i(k + 1) +

Pi(k + 1) (yi −Oi) (10)

Step 3. (Merge):

(x̄i(k + 1), P̄i(k + 1)) = MERGE(x̂j(k + 1), Pj(k + 1)),

j ∈ Ji

Note that the consensus algorithm in (9) has a similar form

to (6). In addition, yi, Oi and Si are used in the modified

update step rather than yi, Oi and Si. The reasons for this

is the aim to reduce the amount of data that the sensors send

to each other. Hence, the final new algorithm consists of a

modified local prediction-update step, followed by a merge

step.
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B. Distributed Unscented Kalman Filters

Let

(x̂i(k + 1), Pi(k + 1)) = UKFi(x̄i(k), P̄i(k), zi(k + 1))

be the local Unscented Kalman Filter, whose formulation can

be found for example in [19]. Then, the Distributed UKF

algorithm is shown in Algorithm 2.

Algorithm 2 DUKF algorithm

1: x̄i(0), P̄i(0)
2: while new data exists do

3: Local UKF:

(x̂i(k + 1), Pi(k + 1)) = UKFi(x̄i(k), P̄i(k), zi(k + 1))

4: Merge:

(x̄i(k + 1), P̄i(k + 1)) = MERGE(x̂j(k + 1), Pj(k + 1)),

j ∈ Ji

5: end while

As it can be seen, the structure fits in the same framework

as before, using a local UKF filter and a merge step which

processes the different estimates and their covariances.

C. Distributed Particle Filters

Distributed Particle Filters are a rather unexplored research

field. The main idea behind them is that local particle filters

agree upon a common proposal distribution, from which to

draw the particles. A comprehensive overview of standard

Particle Filters can be found in [20], while a survey of recent

developments in distributed Particle Filters is given in [21],

including references to applications in target tracking, [22]

and [23]. For our purposes the formulation of [12] can be

considered as the state-of-the-art in this field.

The key concept is to use a Gaussian proposal distribution

such as:

q(x(k + 1)|x(k), z(k + 1)) = N (µ(k),Σ(k))

where N represents a normal distribution with mean µ(k)
and covariance Σ(k). The pair (µ(k),Σ(k)) is calculated by

propagating (x̂(k), P (k)) via an Unscented Transformation,

UT, as in [12]:

(µ(k),Σ(k)) = UT(x̂(k), P (k))

whereas the couple (x̂(k), P (k)) can be approximated via

consensus using the local couples (x̂i(k), Pi(k)). These can

be computed by each local Particle Filter (at the preceding

time instant) in the following way:

x̂i(k) =
m
∑

j=1

ωi,k
jxi(k)

j
(11)

Pi(k) =
m
∑

j=1

ωi,k
j(xi(k)

j − x̂i(k))(xi(k)
j − x̂i(k))

T

(12)

where j represents the particle index, m the number of

particles, xi(k)
j

and ωi,k
j respectively the state and the

weight of the j-th particle for the i-th sensor at time k. In

the formulation of [12], the global couple (x̂(k), P (k)) is

approximated via a consensus algorithm in the form of (4):

x̄i(k) = x̂i(k) + ǫ/(Ni − 1)
∑

j∈Ni

(x̂j(k)− x̂i(k))

P̄i(k) = Pi(k) + ǫ/(Ni − 1)
∑

j∈Ni

(Pj(k)− Pi(k))

Therefore, after the consensus iteration each local PF has the

new proposal distribution:

q(x(k + 1)|x(k), z(k + 1)) = N (µi(k),Σi(k))

with

(µi(k),Σi(k)) = UT(x̄i(k), P̄i(k))

In our formulation, we will use the MERGE algorithm

instead of the standard consensus algorithm, thus:

(x̄i(k), P̄i(k)) = MERGE(x̂j(k), Pj(k)), j ∈ Ji

Algorithm 3 presents the proposed modified method. Note

that PF indicates the local Particle filter.

Algorithm 3 DPF algorithm

1: x̄i(0), P̄i(0)
2: while new data exists do

3: LOCAL FILTER{

a. Propagation of (x̄i(k), P̄i(k)):

(µi(k),Σi(k)) = UT(x̄i(k), P̄i(k))

b. Local PF with proposal distribution N (µi(k),Σi(k)):

(xi(k + 1)j , ωi,k+1
j) = PFi(µi(k),Σi(k), zi(k + 1))

c. Compute (x̂i(k + 1), Pi(k + 1)) via (11) - (12)
d. Merge:

(x̄i(k + 1), P̄i(k + 1)) = MERGE(x̂j(k + 1), Pj(k + 1)),

j ∈ Ji

}
4: end while

Remark 2: Note that in [12] the choice of τ for the

consensus algorithm is left to the user as a parameter. We

will assume τ = 1 to compare it with our scheme.

V. TEST CASES

In this section we present two different test cases to

analyze the proposed algorithms. First, we consider the

localization problem of a unicycle robot in a 2D environment.

This is representative of an experimental setup currently

under development by the authors. Second, we estimate

the state of an autonomous underwater vehicle, which can

represent a scaled model of many existing underwater robotic

platforms, see for example [9]. In both cases we define the

error of sensor i at time k, ei(k), as the distance between

the true position at that time and the one estimated by the

sensor i. Let the mean error em be defined as:

em =
1

NT

N
∑

i=1

T
∑

k=0

ei(k)
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where T is the final time of simulation. Let the average

error be the mean error averaged on a number of different

simulations.

A. Unicycle robot

The state of the unicycle robot is chosen as x =
(xTp , θ)

T = (ξ, η, θ)T , where xp ∈ R
2 is the position and

θ is the orientation. The model equations are:

ξ(k + 1) = ξ(k) +
ŝ

r̂
(sin(θ(k) + r̂∆t)− sin θ(k))

η(k + 1) = η(k)−
ŝ

r̂
(cos(θ(k) + r̂∆t)− cos θ(k))

θ(k + 1) = θ(k) + r̂∆t+ γ∆t

ŝ = s+ ns

r̂ = r + nr

where s and r are the velocity and the angular velocity

control inputs, respectively, and ns, nr and γ are noise

terms. More details about the model can be found in [24].

We assume to have N = 15 sensors sparsely distributed in

the environment. The simulation parameters are ∆t = 1 s,

T = 130 s, mean(s) = 30 cm/s, std(ns) = 5 cm/s,

std(nω) = 0.01 rad/s and std(γ) = 0.01 rad, where mean(·)
is the mean operator and std(·) is the standard deviation.

We assume that the measurement error in equation (2) is

std(vi) = 0.01 m, for all the sensors.

We consider 500 particles for the DPF. We run 200 differ-

ent simulations, varying randomly the position of the sensors.

For the chosen communication range, in mean, each sensor

has 4 neighbors. In Figure 2 an example of the simulation

results is shown. In Table I the comparison between the

0
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0510152025303540
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]

[m]

 

 

True

DEKF

DUKF

DPF

Fig. 2. Example of the simulation results for the proposed DEKF, DUKF
and DPF algorithms in comparison with the true trajectory for the sensor
located at the � position. The robot starts at the circle at the top.

proposed algorithms and the ones in the literature is reported.

The average error is based on the 200 different simulations.

The results show that the proposed algorithms outperform

those in the literature. Furthermore, in this situation, the

proposed DUKF is more accurate than the DPF of [12]. This

can be exploited in cases where we need both high sampling

frequency and high accuracy.

TABLE I

COMPARISON BETWEEN THE PROPOSED ALGORITHMS AND THOSE IN

THE LITERATURE, [3] AND [12]. THERE IS CURRENTLY NO PUBLISHED

DUKF METHOD TO THE BEST OF OUR KNOWLEDGE.

Average Error [m]

Literature Results Proposed Formulation

DEKF 3.371± 1.535 1.109± 0.916
DUKF − 0.104± 0.035
DPF 0.388± 0.130 0.071± 0.040

B. Autonomous underwater vehicle

As a second test case we simulate the localization problem

of an autonomous underwater vehicle (AUV). The state of

the AUV is chosen as x = (xTp , s
T
p )

T , where xp ∈ R
3 is

the position and sp ∈ R
3 is the velocity. The dynamical

equations are:

xp(k + 1) = xp(k) + sp(k)∆t

sp(k + 1) = sp(k) +
∆t

m
(û− α ‖sp(k)‖ sp(k))

û = u+ nu

where m is the mass of the vehicle, α is a drag coefficient,

and nu is a noise term. We assume to have N = 25 sensors

sparsely distributed at varying heights from a plane surface.

The different heights simulate an uneven seafloor. We take

∆t = 1 s, T = 130 s, m = 1 kg, α = 1 kg/s, ||mean(u)|| ∼
0.5 N and std(nu) = (0.05, 0.05, 0.025)T N. We assume that

the measurement error in equation (2) is std(vi) = 0.1 m, for

all the sensors. We consider 500 particles for the DPF. We

run 2500 different simulations, varying randomly the position

and the communication range of the sensors. Figure 3 depicts

the average error of the proposed algorithms versus the

second smallest eigenvalue of the communication graph

Laplacian (also called the algebraic connectivity). The aver-

age error is based on 2500 simulations. The second smallest

eigenvalue, denoted as λ2, or its normalized counterpart,

λ2/λ2,max, dictate the convergence rate of the consensus

algorithm, [25]. Values of λ2/λ2,max close to 0 represent

graphs which are not highly connected, leading to more

distributed estimation problems. Values of λ2/λ2,max near

1 reveal highly connected graphs, thus estimation problems

close to the centralized case. Here λ2,max is the maximum

over the graphs from the 2500 simulations. In Figure 3 a

dot at the coordinate (φ, ψ), represents that the graphs with

λ2/λ2,max ∈ (φ − 0.05, φ + 0.05) have an average error

of ψ. The shaded areas show the standard deviation of these

errors. Note that the DEKF estimations are not depicted here

because they do not converge. The DUKF is shown without

the standard deviation to make the graph more readable, its

value is on the order of 0.3 m.

The results show that the proposed DPF outperforms the

DPF found in the literature. The reason of this result, as

well as the one of Section V.A, is the MERGE algorithm. In

fact, this algorithm delivers estimates closer to the minimum-

variance one than the literature, e.g. [12], where simple

averaging algorithms are implemented. This also means that,

since the trace of our covariance is smaller than the one of

[12], then given a set of particles, they will characterize better
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λ2/λ2,max

Fig. 3. Comparison between the proposed algorithms and the one in
the literature with respect to the normalized λ2 value. The Average Error
is computed as the mean error of the sensor averaging 2500 different
simulations. The shaded areas are the standard deviations of the bold lines.
The DUKF’s standard deviation is not depicted.

the a posteriori distribution. A limit of our procedure is that

this ‘small covariance’ could cause an impoverishment of the

particle diversity, which may lead to a loss in accuracy. This

has not been detected in our simulation but it is a topic of

further investigations.

Our results show also that in this simulation study, the

DUKF has similar average error as the DPF reported in

the literature. This is important because DUKF is less

computationally expensive than DPF which is crucial in the

context of designing fast yet accurate algorithms.

VI. CONCLUSIONS

We proposed an effective scheme to distribute the nonlin-

ear estimation problem among different sensing units. We

applied the method to localization with range-only mea-

surements, designing distributed Extended Kalman Filters,

distributed Unscented Kalman Filters and distributed Particle

Filters. The proposed algorithms outperform the ones found

in the literature using a simulated benchmark.

As future work we plan to implement the scheme in a

real robotic testbed which is currently under development.

Moreover, we will extend the formulation to multi-robot

settings, in which some of the sensors are moving with

the robots themselves. Another promising extension that

can be investigated is the case in which the local filters

are different: some of them can be UKFs and others PFs.

This is especially practical when the sensors have different

computational capabilities.
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