
Distributed Norm Management in Regulated
Multi-Agent Systems

∗

Dorian Gaertner
Dept. of Computing,

Imperial College London,
London SW7 2AZ,
United Kingdom

dg00@doc.ic.ac.uk

Andres Garcia-Camino,
Pablo Noriega,

J.-A. Rodriguez-Aguilar
IIIA-CSIC,

08193 Bellaterra, Spain
{andres,pablo,jar}@iiia.csic.es

Wamberto Vasconcelos
Dept. of Computing Science,

University of Aberdeen,
Aberdeen AB24 3UE,

United Kingdom

wvasconcelos@acm.org

ABSTRACT

Norms are widely recognised as a means of coordinating
multi-agent systems. The distributed management of norms
is a challenging issue and we observe a lack of truly dis-
tributed computational realisations of normative models. In
order to regulate the behaviour of autonomous agents that
take part in multiple, related activities, we propose a norma-
tive model, the Normative Structure (NS), an artifact that
is based on the propagation of normative positions (obliga-
tions, prohibitions, permissions), as consequences of agents’
actions. Within a NS, conflicts may arise due to the dynamic
nature of the MAS and the concurrency of agents’ actions.
However, ensuring conflict-freedom of a NS at design time
is computationally intractable. We show this by formalis-
ing the notion of conflict, providing a mapping of NSs into
Coloured Petri Nets and borrowing well-known theoretical
results from that field. Since online conflict resolution is
required, we present a tractable algorithm to be employed
distributedly. We then demonstrate that this algorithm is
paramount for the distributed enactment of a NS.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: Languages
and structures

General Terms

Algorithms, Design, Theory

Keywords

Regulated multi-agent systems, normative conflicts, elec-
tronic institutions, organisations, coordination

∗This work was partially funded by the Spanish Education
and Science Ministry and Spanish Council for Scientific Re-
search (CSIC) as part of the projects TIN2006-15662-C02-01
and 2006-5-0I-099. Garćıa-Camino enjoys an I3P grant from
CSIC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’07 May 14–18 2007, Honolulu, Hawai’i, USA.
Copyright 2007 IFAAMAS .

1. INTRODUCTION
A fundamental feature of open, regulated multi-agent sys-

tems in which autonomous agents interact, is that partici-
pating agents are meant to comply with the conventions
of the system. Norms can be used to model such conven-
tions and hence as a means to regulate the observable be-
haviour of agents [6, 29]. There are many contributions on
the subject of norms from sociologists, philosophers and logi-
cians (e.g., [15, 28]). However, there are very few proposals
for computational realisations of normative models — the
way norms can be integrated in the design and execution
of MASs. The few that exist (e.g. [10, 13, 24]), operate in
a centralised manner which creates bottlenecks and single
points-of-failure. To our knowledge, no proposal truly sup-
ports the distributed enactment of normative environments.

In our paper we approach that problem and propose means
to handle conflicting commitments in open, regulated, multi-
agent systems in a distributed manner. The type of regu-
lated MAS we envisage consists of multiple, concurrent, re-
lated activities where agents interact. Each agent may con-
currently participate in several activities, and change from
one activity to another. An agent’s actions within an ac-
tivity may have consequences in the form of normative po-
sitions (i.e. obligations, permissions, and prohibitions) [26]
that may constrain its future behaviour. For instance, a
buyer agent who runs out of credit may be forbidden to
make further offers, or a seller agent is obliged to deliver
after closing a deal. We assume that agents may choose not
to fulfill all their obligations and hence may be sanctioned
by the MAS. Notice that, when activities are distributed,
normative positions must flow from the activities in which
they are generated to those in which they take effect. For
instance, the seller’s obligation above must flow (or be prop-
agated) from a negotiation activity to a delivery activity.

Since in an open, regulated MAS one cannot embed nor-
mative aspects into the agents’ design, we adopt the view
that the MAS should be supplemented with a separate set of
norms that further regulates the behaviour of participating
agents. In order to model the separation of concerns between
the coordination level (agents’ interactions) and the norma-
tive level (propagation of normative positions), we propose
an artifact called the Normative Structure (NS).

Within a NS conflicts may arise due to the dynamic na-
ture of the MAS and the concurrency of agents’ actions. For
instance, an agent may be obliged and prohibited to do the

very same action in an activity. Since the regulation of a
MAS entails that participating agents need to be aware of
the validity of those actions that take place within it, such
conflicts ought to be identified and possibly resolved if a
claim of validity is needed for an agent to engage in an ac-
tion or be sanctioned. However, ensuring conflict-freedom of
a NS at design time is computationally intractable. We show
this by formalising the notion of conflict, providing a map-
ping of NSs into Coloured Petri Nets (CPNs) and borrowing
well-known theoretical results from the field of CPNs.

We believe that online conflict detection and resolution
is required. Hence, we present a tractable algorithm for
conflict resolution. This algorithm is paramount for the dis-
tributed enactment of a NS.

The paper is organised as follows. In Section 2 we detail a
scenario to serve as an example throughout the paper. Next,
in Section 3 we formally define the normative structure ar-
tifact. Further on, in Section 4 we formalise the notion of
conflict to subsequently analyse the complexity of conflict
detection in terms of CPNs in Section 5. Section 6 describes
the computational management of NSs by describing their
enactment and presenting an algorithm for conflict resolu-
tion. Finally, we comment on related work, draw conclusions
and report on future work in Section 7.

2. SCENARIO
We use a supply-chain scenario in which companies and

individuals come together at an online marketplace to con-
duct business. The overall transaction procedure may be
organised as six distributed activities, represented as nodes
in the diagram in Figure 1. They involve different partic-
ipants whose behaviour is coordinated through protocols.

In this scenario agents can play one of four roles: mar-

Exit
Registration

Payment

Delivery

Negotiation

Coordination Model

Contract

Figure 1: Activity Structure of the Scenario

ketplace accountant (acc), client, supplier (supp) and ware-
house managers (wm). The arrows connecting the activities
represent how agents can move from one activity to another.

After registering at the marketplace, clients and suppliers
get together in an activity where they negotiate the terms of
their transaction, i.e. prices, amounts of goods to be deliv-
ered, deadlines and other details. In the contract activity,
the order becomes established and an invoice is prepared.
The client will then participate in a payment activity, verify-
ing his credit-worthiness and instructing his bank to transfer
the correct amount of money. The supplier in the meantime
will arrange for the goods to be delivered (e.g. via a ware-
house manager) in the delivery activity. Finally, agents can
leave the marketplace conforming to a predetermined exit
protocol. The marketplace accountant participates in most
of the activities as a trusted provider of auditing tools.

In the rest of the paper we shall build on this scenario
to exemplify the notion of normative structure and to illus-
trate our approach to conflict detection and resolution in a
distributed setting.

3. NORMATIVE STRUCTURE
In MASs agents interact according to protocols which nat-

urally are distributed. We advocate that actions in one such
protocol may have an effect on the enactment of other pro-
tocols. Certain actions can become prohibited or obligatory,
for example. We take normative positions to be obligations,
prohibitions and permissions akin to work described in [26].
The intention of adding or removing a normative position
we call normative command. Occurrences of normative po-
sitions in one protocol may also have consequences for other
protocols1.

In order to define our norm language and specify how nor-
mative positions are propagated, we have been inspired by
multi-context systems [14]. These systems allow the struc-
turing of knowledge into distinct formal theories and the def-
inition of relationships between them. The relationships are
expressed as bridge rules – deducibility of formulae in some
contexts leads to the deduction of other formulae in other
contexts. Recently, these systems have been successfully
used to define agent architectures [11, 23]. The metaphor
translates to our current work as follows: the utterance of
illocutions and/or the existence of normative positions in
some normative scenes leads to the deduction of norma-
tive positions in other normative scenes. We are concerned
with the propagation and distribution of normative positions
within a network of distributed, normative scenes as a con-
sequence of agents’ actions. We take normative scenes to be
sets of normative positions and utterances that are associ-
ated with an underlying interaction protocol corresponding
to an activity.

In this section, we first present a simple language cap-
turing these aspects and formally introduce the notions of
normative scene, normative transition rule and normative
structure. We give the intended semantics of these rules
and show how to control a MAS via norms in an example.

3.1 Basic Concepts
The building blocks of our language are terms and atomic

formulae:

Def. 1. A term, denoted as t, is (i) any constant ex-
pressed using lowercase (with or without subscripts), e.g.
a, b0, c or (ii) any variable expressed using uppercase (with
or without subscripts), e.g. X, Y, Zb or (iii) any function
f(t1, . . . , tn), where f is an n-ary function symbol and t1, .., tn

are terms.

Some examples of terms and functions are Credit , price or
offer(bible, 30) being respectively a variable, a constant and
a function. We will be making use of identifiers through-
out the paper, which are constant terms and also need the
following definition:

Def. 2. An atomic formula is any construct p(t1, . . . , tn),
where p is an n-ary predicate symbol and t1, . . . , tn are terms.
The set of all atomic formulae is denoted as ∆.

We focus on an expressive class of MASs in which inter-
action is carried out by means of illocutionary speech acts
exchanged among participating agents:

Def. 3. Illocutions I are ground atomic formulae which
have the form p(ag , r , ag ′, r ′, δ, t) where p is an element of

1
Here, we abstract from protocols and refer to them generically as

activities.

a set of illocutionary particles (e.g. inform, request, offer);
ag , ag ′ are agent identifiers; r , r ′ are role identifiers; δ, an
arbitrary ground term, is the content of the message, built
from a shared content language; t ∈ N is a time stamp.

The intuitive meaning of p(ag , r, ag ′, r′, m, t) is that agent
ag playing role r sent message m to agent ag ′ playing role
r′ at time t. An example of an illocution is inform(ag4,
supp, ag3, client , offer(wire, 12), 10). Sometimes it is useful
to refer to illocutions that are not fully grounded, that is,
those that may contain uninstantiated (free) variables. In
the description of a protocol, for instance, the precise values
of the message exchanged can be left unspecified. During
the enactment of the protocol agents will produce the actual
values which will give rise to a ground illocution. We can
thus define illocution schemata:

Def. 4. An illocution schema Ī is any atomic formula
p(ag , r, ag ′, r′, δ, t) in which some of the terms may either be
variables or may contain variables.

3.2 Formal Definition of the Notion of NS
We first define normative scenes as follows:

Def. 5. A normative scene is a tuple s = 〈ids, ∆s〉 where
ids is a scene identifier and ∆s is the set of atomic formulae
δ (i.e. utterances and normative positions) that hold in s.
We will also refer to ∆s as the state of normative scene s.

For instance, a snapshot of the state of the delivery norma-
tive scene of our scenario could be represented as:

∆s =

8

<

:

utt(request(sean, client, kev, wm, receive(wire, 200), 20)),
utt(accept(kev, wm, sean, client, receive(wire, 200), 30)),
obl(inform(kev, wm, sean, client, delivered(wire, 200), 30))

9

=

;

That is, agent Sean taking up the client role has requested
agent Kev (taking up the warehouse manager role wm) to
receive 200kg of wire, and agent Kev is obliged to deliver
200kg of wire to Sean since he accepted the request. Note
that the state of a normative scene ∆s evolves over time.
These normative scenes are connected to one another via
normative transitions that specify how utterances and nor-
mative positions in one scene affect other normative scenes.

As mentioned above, activities are not independent since
illocutions uttered in some of them may have an effect on
other ones. Normative transition rules define the conditions
under which a normative command is generated. These con-
ditions are either utterances or normative positions associ-
ated with a given protocol (denoted e.g. activity : utterance)
which yield a normative command, i.e. the addition or re-
moval of another normative position, possibly related to a
different activity. Our transition rules are thus defined:

Def. 6. A normative transition rule R is of the form:

R ::= V ⇛ C

V ::= ids : D | V, V
D ::= N | utt(̄I)
N ::= per(̄I) | prh(̄I) | obl(̄I)
C ::= add(ids : N) | remove(ids : N)

where Ī is an illocution schema, N is a normative position
(i.e. permission, prohibition or obligation), ids is an iden-
tifier for activity s and C is a normative command.

We endow our language with the usual semantics of rule-
based languages [19]. Rules map an existing normative

structure to a new normative structure where only the state
of the normative scenes change. In the definitions below we
rely on the standard concept of substitution [9].

Def. 7. A normative transition is a tuple b = 〈idb, rb〉
where idb is an identifier and rb is a normative transition
rule.

We are proposing to extend the notion of MAS, regulated
by protocols, with an extra layer consisting of normative
scenes and normative transitions. This layer is represented
as a bi-partite graph that we term normative structure. A
normative structure relates normative scenes and normative
transitions specifying which normative positions are to be
generated or removed in which normative scenes.

Def. 8. A normative structure is a labelled bi-partite graph
NS = 〈Nodes, Edges,Lin,Lout〉. Nodes is a set S∪B where
S is a set of normative scenes and B is a set of normative
transitions. Edges is a set Ain ∪ Aout where Ain ⊆ S × B
is a set of input arcs labelled with an atomic formula using
the labelling function Lin : Ain 7→ D; and Aout ⊆ B × S is
a set of output arcs labelled with a normative position using
the labelling function Lout : Aout 7→ N. The following must
hold:

1. Each atomic formula appearing in the LHS of a rule
rb must be of the form (ids : D) where s ∈ S and
D ∈ ∆ and ∃ain ∈ Ain such that ain = (s, b) and
Lin(ain) = D.

2. The atomic formula appearing in the RHS of a rule rb

must be of the form add(ids : N) or remove(ids : N)
where s ∈ S and ∃aout ∈ Aout such that aout = (b, s)
and Lout(aout) = N.

3. ∀a ∈ Ain such that a = (s, b) and b = 〈idb, rb〉 and
Lin(a) = D then (ids:D) must occur in the LHS of rb.

4. ∀a ∈ Aout such that a = (b, s) and b = 〈idb, rb〉 and
Lout(a) = N then add(ids : N) or remove(ids : N) must
occur in the RHS of rb.

The first two points ensure that every atomic formulae on
the LHS of a normative transition rule labels an arc enter-
ing the appropriate normative transition in the normative
structure, and that the atomic formula on the RHS labels
the corresponding outgoing arc. Points three and four en-
sure that labels from all incoming arcs are used in the LHS
of the normative transition rule that these arcs enter into,
and that the labels from all outgoing arcs are used in the
RHS of the normative transition rule that these arcs leave.

3.3 Intended Semantics
The formal semantics will be defined via a mapping to

Coloured Petri Nets in Section 5.1. Here we start defin-
ing the intended semantics of normative transition rules by
describing how a rule changes a normative scene of an exist-
ing normative structure yielding a new normative structure.
Each rule is triggered once for each substitution that uni-
fies the left-hand side V of the rule with the state of the
corresponding normative scenes. An atomic formula (i.e.
an utterance or a normative position) holds iff it is unifi-
able with an utterance or normative position that belongs
to the state of the corresponding normative scene. Every
time a rule is triggered, the normative command specified
on the right-hand side of that rule is carried out, intend-
ing to add or remove a normative position from the state
of the corresponding normative scene. However, addition is
not unconditional as conflicts may arise. This topic will be
treated in Sections 4 and 6.1.

3.4 Example
In our running example we have the following exemplary

normative transition rule:
„

payment : obl(inform(X, client, Y, acc, pay(Z, P, Q), T)),
payment : utt(inform(X, client, Y, acc, pay(Z, P, Q), T ′))

«

⇛ delivery : add(obl(inform(Y, wm, X, client, delivered(Z, Q), T
′′

)))

That is, during the payment activity, an obligation on client
X to inform accountant Y about the payment P of item Z
at time T and the corresponding utterance which fulfills this
obligation allows the flow of a norm to the delivery activity.
The norm is an obligation on agent Y (this time taking up
the role of the warehouse manager wm) to send a message
to client X that item Z has been delivered. We show in
Figure 2 a diagrammatic representation of how activities
and a normative structure relate:

Payment

Delivery

Contract

Normative Level

Exit
Registration

Payment

Delivery

Negotiation

Coordination Level

Contract

A

Bnt

Figure 2: Activities and Normative Structure

As illocutions are uttered during activities, normative po-
sitions arise. Utterances and normative positions are com-
bined in transition rules, causing the flow of normative po-
sitions between normative scenes. The connection between
the two levels is described in Section 6.2.

4. CONFLICT DEFINITION
The terms deontic conflict and deontic inconsistency have

been used interchangeably in the literature. However, in
this paper we adopt the view of [7] in which the authors
suggest that a deontic inconsistency arises when an action
is simultaneously permitted and prohibited – since a per-
mission may not be acted upon, no real conflict occurs. The
situations when an action is simultaneously obliged and pro-
hibited are, however, deontic conflicts, as both obligations
and prohibitions influence behaviours in a conflicting fash-
ion. The content of normative positions in this paper are
illocutions. Therefore, a normative conflict arises when an
illocution is simultaneously obliged and prohibited.

We propose to use the standard notion of unification [9] to
detect when a prohibition and a permission overlap. For in-
stance, an obligation obl(inform(A1, R1, A2, R2, p(c, X), T))
and a prohibition prh(inform(a1, r1, a2, r2, p(Y, d), T ′)) are
in conflict as they unify under σ = {A1/a1, R1/r1, A2/a2,
R2/r2, Y/c, X/d, T/T ′}). We formally capture this notion:

Def. 9. A (deontic) conflict arises between two norma-
tive positions N and N

′ under a substitution σ, denoted as
conflict(N, N′, σ), if and only if N = prh (̄I), N′ = obl (̄I′)
and unify (̄I, Ī′, σ).

That is, a prohibition and an obligation are in conflict if,
and only if, their illocutions unify under σ. The substitu-
tion σ, called here the conflict set, unifies the agents, roles
and atomic formulae. We assume that unify is a suitable
implementation of a unification algorithm which i) always
terminates (possibly failing, if a unifier cannot be found); ii)
is correct; and iii) has linear computational complexity.

Inconsistencies caused by the same illocution being simul-
taneously permitted and prohibited can be formalised simi-
larly. In this paper we focus on prohibition/obligation con-
flicts, but the computational machinery introduced in Sec-
tion 6.1 can equally be used to detect prohibition/permission
inconsistencies, if we substitute modality “obl” for “per”.

5. FORMALISING CONFLICT-FREEDOM
In this section we introduce some background knowledge

on CPNs assuming a basic understanding of ordinary Petri
Nets. For technical details we refer the reader to [16]. We
then map NSs to CPNs and analyse their properties.

CPNs combine the strength of Petri nets with the strength
of functional programming languages. On the one hand,
Petri nets provide the primitives for the description of the
synchronisation of concurrent processes. As noticed in [16],
CPNs have a semantics which builds upon true concurrency,
instead of interleaving. In our opinion, a true-concurrency
semantics is easier to work with because it is the way we
envisage the connection between the coordination level and
the normative level of a multi-agent system to be. On the
other hand, the functional programming languages used by
CPNs provide the primitives for the definition of data types
and the manipulation of their data values. Thus, we can
readily translate expressions of a normative structure. Last
but not least, CPNs have a well-defined semantics which
unambiguously defines the behaviour of each CPN. Further-
more, CPNs have a large number of formal analysis methods
and tools by which properties of CPNs can be proved. Sum-
ming up, CPNs provide us with all the necessary features
to formally reason about normative structures given that an
adequate mapping is provided.

In accordance with Petri nets, the states of a CPN are
represented by means of places. But unlike Petri Nets, each
place has an associated data type determining the kind of
data which the place may contain. A state of a CPN is called
a marking. It consists of a number of tokens positioned on
the individual places. Each token carries a data value which
has the type of the corresponding place. In general, a place
may contain two or more tokens with the same data value.
Thus, a marking of a CPN is a function which maps each
place into a multi-set2 of tokens of the correct type. One
often refers to the token values as token colours and one
also refers to the data types as colour sets. The types of a
CPN can be arbitrarily complex.

Actions in a CPN are represented by means of transitions.
An incoming arc into a transition from a place indicates that
the transition may remove tokens from the corresponding
place while an outgoing arc indicates that the transition
may add tokens. The exact number of tokens and their
data values are determined by the arc expressions, which
are encoded using the programming language chosen for the
CPN. A transition is enabled in a CPN if and only if all the

2
A multi-set (or bag) is an extension to the notion of set, allowing

the possibility of multiple appearances of the same element.

variables in the expressions of its incoming arcs are bound
to some value(s) (each one of these bindings is referred to
as a binding element). If so, the transition may occur by
removing tokens from its input places and adding tokens
to its output places. In addition to the arc expressions,
it is possible to attach a boolean guard expression (with
variables) to each transition. Putting all the elements above
together we obtain a formal definition of CPN that shall be
employed further ahead for mapping purposes.

Def. 10. A CPN is a tuple 〈Σ, P, T, A, N, C, G, E, I〉
where: (i) Σ is a finite set of non-empty types, also called
colour sets; (ii) P is a finite set of places; (iii) T is a finite
set of transitions; (iv) A is a finite set of arcs; (v) N is a
node function defined from A into P × T ∪ T × P ; (vi) C
is a colour function from P into Σ; (vii) G is a guard func-
tion from T into expressions; (viii) E is an arc expression
function from A into expressions; (ix) I is an initialisation
function from P into closed expressions;

Notice that the informal explanation of the enabling and
occurrence rules given above provides the foundations to
understand the behaviour of a CPN. In accordance with
ordinary Petri nets, the concurrent behaviour of a CPN is
based on the notion of step. Formally, a step is a non-empty
and finite multi-set over the set of all binding elements. Let
step S be enabled in a marking M. Then, S may occur,
changing the marking M to M′. Moreover, we say that
marking M′ is directly reachable from marking M by the
occurrence of step S, and we denote it by M[S > M′.

A finite occurrence sequence is a finite sequence of steps
and markings: M1[S1 > M2 . . .Mn[Sn > Mn+1 such that
n ∈ N and Mi[Si > Mi+1 ∀i ∈ {1, . . . , n}. The set of all
possible markings reachable for a net Net from a marking M
is called its reachability set, and is denoted as R(Net,M).

5.1 Mapping to Coloured Petri Nets
Our normative structure is a labelled bi-partite graph.

The same is true for a Coloured Petri Net. We are present-
ing a mapping f from one to the other, in order to provide
semantics for the normative structure and prove properties
about it by using well-known theoretical results from work
on CPNs. The mapping f makes use of correspondences
between normative scenes and CPN places, normative tran-
sitions and CPN transitions and finally, between arc labels
and CPN arc expressions.

S 7→ P
B 7→ T

Lin ∪ Lout 7→ E

The set of types is the singleton set containing the colour
NP (i.e. Σ = {NP}). This complex type is structured as
follows (we use CPN-ML [4] syntax):

color NPT = with Obl | Per | Prh | NoMod

color IP = with inform | declare | offer

color UTT = record

illp : IP

ag1, role1, ag2, role2 : string

content: string

time : int

color NP = record

mode : NPT

illoc : UTT

Modelling illocutions as norms without modality (NoMod)
is a formal trick we use to ensure that sub-nets can be com-
bined as explained below. Arcs are mapped almost directly.
A is a finite set of arcs and N is a node function, such that
∀a ∈ A ∃a′ ∈ Ain∪Aout. N(a) = a′. The initialisation func-
tion I is defined as I(p) = ∆s (∀s ∈ S where p is obtained
from s using the mapping; remember that s = 〈ids, ∆s〉).
Finally, the colour function C assigns the colour NP to ev-
ery place: C(p) = NP (∀p ∈ P). We are not making use of
the guard function G. In future work, this function can be
used to model constraints when we extend the expressive-
ness of our norm language.

5.2 Properties of Normative Structures
Having defined the mapping from normative structures

to Coloured Petri Nets, we now look at properties of CPNs
that help us understand the complexity of conflict detection.
One question we would like to answer is, whether at a given
point in time, a given normative structure is conflict-free.
Such a snapshot of a normative structure corresponds to a
marking in the mapped CPN.

Def. 11. Given a marking Mi, this marking is conflict-
free if ¬∃p ∈ P. ∃np1, np2 ∈ Mi(p) such that np1.mode =
Obl and np2.mode = Prh and np1.illoc and np2.illoc unify
under a valid substitution.

Another interesting question would be, whether a conflict
will occur from such a snapshot of the system by prop-
agating the normative positions. In order to answer this
question, we first translate the snapshot of the normative
structure to the corresponding CPN and then execute the
finite occurence sequence of markings and steps, verifying
the conflict-freedom of each marking as we go along.

Def. 12. Given a marking Mi, a finite occurrence se-
quence Si,Si+1, ...,Sn is called conflict-free, if and only if
Mi[Si > Mi+1 . . .Mn[Sn > Mn+1 and Mk is conflict-free
for all k such that i ≤ k ≤ n + 1.

However, the main question we would like to investigate,
is whether or not a given normative structure is conflict-
resistant, that is, whether or not the agents enacting the
MAS are able to bring about conflicts through their actions.
As soon as one includes the possibility of actions (or utter-
ances) from autonomous agents, one looses determinism.

Having mapped the normative structure to a CPN, we
now add CPN models of the agents’ interactions. Each form
of agent interaction (i.e. each activity) can be modelled
using CPNs along the lines of Cost et al. [5]. These non-
deterministic CPNs “feed” tokens into the CPN that models
the normative structure. This leads to the introduction of
non-determinism into the combined CPN.

The lower half of figure 3 shows part of a CPN model of
an agent protocol where the arc denoted with ‘1’ represents
some utterance of an illocution by an agent. The target
transition of this arc, not only moves a token on to the next
state of this CPN, but also places a token in the place cor-
responding to the appropriate normative scene in the CPN
model of the normative structure (via arc ‘2’). Transition ‘3’
finally could propagate that token in form of an obligation,
for example. Thus, from a given marking, many different
occurrence sequences are possible depending on the agents’
actions. We make use of the reachability set R to define a
situation in which agents cannot cause conflicts.

CPN of
Activity

CPN of
Normative
Structure

1

2

3

Figure 3: Constructing the combined CPN

Def. 13. Given a net N , a marking M is conflict-resistant
if and only if all markings in R(N,M) are conflict-free.

Checking conflict-freedom of a marking can be done in
polynomial time by checking all places of the CPN for con-
flicting tokens. Conflict-freedom of an occurrence sequence
in the CPN that represents the normative structure can also
be done in polynomial time since this sequence is determin-
istic given a snapshot.

Whether or not a normative structure is designed safely
corresponds to checking the conflict-resistance of the ini-
tial marking M0. Now, verifying conflict-resistance of a
marking becomes a very difficult task. It corresponds to the
reachability problem in a CPN: “can a state be reached or
a marking achieved, that contains a conflict?”. This reach-
ability problem is known to be NP-complete for ordinary
Petri Nets [22] and since CPNs are functionally identical,
we cannot hope to verify conflict-resistance of a normative
structure off-line in a reasonable amount of time. Therefore,
distributed, run-time mechanisms are needed to ensure that
a normative structure maintains consistency. We present
one such mechanism in the following section.

6. MANAGING NORMATIVE STRUCTURES
Once a conflict (as defined in Section 4) has been detected,

we propose to employ the unifier to resolve the conflict.
In our example, if the variables in prh(inform(a1, r1, a2, r2,
p(Y, d), T ′)) do not get the values specified in substitution
σ then there will not be a conflict. However, rather than
computing the complement set of a substitution (which can
be an infinite set) we propose to annotate the prohibition
with the unifier itself and use it to determine what the vari-
ables of that prohibition cannot be in future unifications in
order to avoid a conflict. We therefore denote annotated
prohibitions as prh (̄I) ⊙ Σ, where Σ = {σ1, . . . , σn}, is a
set of unifiers. Annotated norms3 are interpreted as deontic
constructs with curtailed influences, that is, their effect (on
agents, roles and illocutions) has been limited by the set Σ
of unifiers. A prohibition may be in conflict with various
obligations in a given normative scene s = 〈id , ∆〉 and we
need to record (and possibly avoid) all these conflicts. We
define below an algorithm which ensures that a normative
position will be added to a normative scene in such a way
that it will not cause any conflicts.

3
Although we propose to curtail prohibitions, the same machinery

can be used to define the curtailment of obligations instead. These
different policies are dependent on the intended deontic semantics and
requirements of the systems addressed. For instance, some MASs may
require that their agents should not act in the presence of conflicts,
that is, the obligation should be curtailed.

6.1 Conflict Resolution
We propose a fine-grained way of resolving normative con-

flicts via unification. We detect the overlapping of the in-
fluences of norms , i.e. how they affect the behaviour of the
concerned agents, and we curtail the influence of the norma-
tive position, by appropriately using the annotations when
checking if the norm applies to illocutions. The algorithm
shown in Figure 4 depicts how we maintain a conflict-free
set of norms. It adds a given norm N to an existing, conflict-
free normative state ∆, obtaining a resulting new normative
state ∆′ which is conflict-free, that is, its prohibitions are
annotated with a set of conflict sets indicating which bind-
ings for variables have to be avoided for conflicts not to take
place.

algorithm addNorm(N, ∆)
begin

1 timestamp(N)
2 case N of

3 per (̄I): ∆′ := ∆ ∪ {N}
4 prh(I): if N

′ ∈ ∆ s.t. conflict(N, N
′, σ) then ∆′ := ∆

5 else ∆′ := ∆ ∪ {N}
6 prh (̄I):
7 begin

8 Σ := ∅
9 for each N

′ ∈ ∆ do

10 if conflict(N, N
′, σ) then Σ := Σ ∪ {σ}

11 ∆′ := ∆ ∪ {N ⊙ Σ}
12 end

13 obl (̄I):
14 begin

15 ∆′

1
:= ∅; ∆′

2
:= ∅

16 for each (N′ ⊙ Σ) ∈ ∆ do

17 if N
′ = prh(I) then

18 if conflict(N′, N, σ) then ∆′

1
:= ∆′

1
∪ {N

′ ⊙ Σ}
19 else nil

20 else

21 if conflict(N′, N, σ) then

22 begin

23 ∆′

1
:= ∆′

1
∪ {N

′ ⊙ Σ}
24 ∆′

2
:= ∆′

2
∪ {N

′ ⊙ (Σ ∪ {σ})}
25 end

26 ∆′ := (∆ − ∆′

1
) ∪ ∆′

2
∪ {N}

27 end

28 end case

29 return ∆′

end

Figure 4: Algorithm to Preserve Conflict-Freedom

The algorithm uses a case of structure to differentiate the
different possibilities for a given norm N. Line 3 addresses
the case when the given norm is a permission: N is simply
added to ∆. Lines 4-5 address the case when we attempt
to add a ground prohibition to a normative state: if it con-
flicts with any obligation, then it is discarded; otherwise it
is added to the normative state. Lines 6-12 describe the
situation when the normative position to be added is a non-
ground prohibition. In this case, the algorithm initialises Σ
to an empty set and loops (line 9-10) through the norms N

′

in the old normative state ∆. Upon finding one that con-
flicts with N, the algorithm updates Σ by adding the newly
found conflict set σ to it (line 10). By looping through ∆,
we are able to check any conflicts between the new prohi-
bition and the existing obligations, adequately building the
annotation Σ to be used when adding N to ∆ in line 11.

Lines 13-27 describe how a new obligation is accommo-
dated to an existing normative state. We make use of two
initially empty, temporary sets, ∆′

1, ∆
′

2. The algorithm loops
through ∆ (lines 16-25) picking up those annotated prohibi-
tions N

′ ⊙ Σ which conflict with the new obligation. There
are, however, two cases to deal with: the one when a ground

prohibition is found (line 17), and its exception, covering
non-ground prohibitions (line 20). In both cases, the old
prohibition is stored in ∆′

1 (lines 18 and 23) to be later
removed from ∆ (line 26). However, in the case of a non-
ground prohibition, the algorithm updates its annotation of
conflict sets (line 24). The loop guarantees that an exhaus-
tive (linear) search through a normative state takes place,
checking if the new obligation is in conflict with any exist-
ing prohibitions, possibly updating the annotations of these
conflicting prohibitions. In line 26 the algorithm builds the
new updated ∆′ by removing the old prohibitions stored in
∆′

1 and adding the updated prohibitions stored in ∆′

2 (if
any), as well as the new obligation N.

Our proposed algorithm is correct in that, for a given
normative position N and a normative state ∆, it provides a
new normative state ∆′ in which all prohibitions have anno-
tations recording how they unify with existing obligations.
The annotations can be empty, though: this is the case when
we have a ground prohibition or a prohibition which does
not unify/conflict with any obligation. Permissions do not
affect our algorithm and they are appropriately dealt with
(line 3). Any attempt to insert a ground prohibition which
conflicts, yields the same normative state (line 4). When a
new obligation is being added then the algorithm guarantees
that all prohibitions are considered (lines 14-27), leading to
the removal of conflicting ground prohibitions or the update
of annotations of non-ground prohibitions. The algorithm
always terminates: the loops are over a finite set ∆ and the
conflict checks and set operations always terminate. The
complexity of the algorithm is linear: the set ∆ is only ex-
amined once for each possible case of norm to be added.

When managing normative states we may also need to
remove normative positions. This is straightforward: per-
missions can be removed without any problems; annotated
prohibitions can also be removed without further consid-
erations; obligations, however, require some housekeeping.
When an obligation is to be removed, we must check it
against all annotated prohibitions in order to update their
annotations. We apply the conflict check and obtain a uni-
fier, then remove this unifier from the prohibition’s annota-
tion. We invoke the removal algorithm as removeNorm(N, ∆):
it returns a new normative state ∆′ in which N has been
removed, with possible alterations to other normative posi-
tions as explained.

6.2 Enactment of a Normative Structure
The enactment of a normative structure amounts to the

parallel, distributed execution of normative scenes and nor-
mative transitions. For illustrative purposes, hereafter we
shall describe the interplay between the payment and deliv-
ery normative scenes and the normative transition nt link-
ing them in the upper half of figure 2. With this aim, con-
sider for instance that obl(inform(jules, client, rod, acc,
pay(copper, 400, 350), T) ∈ ∆payment and that ∆delivery

holds prh(inform(rod,wm, jules, client , delivered(Z, Q), T)).
Such states indicate that client Jules is obliged to pay £400
for 350kg of copper to accountant Rod according to the pay-
ment normative scene, whereas Rod, taking up the role of
warehouse manager this time, is prohibited to deliver any-
thing to client Jules according to the delivery normative
scene.

For each normative scene, the enactment process goes as
follows. Firstly, it processes its incoming message queue

that contains three types of messages: utterances from the
activity it is linked to; and normative commands either
to add or remove normative positions. For instance, in
our example, the payment normative scene collects the illo-
cution I = utt((inform(jules, client, rod, acc, pay(copper,
400, 350), 35)) standing for client Jules’ pending payment
for copper (via arrow A in figure 2). Utterances are time-
stamped and subsequently added to the normative state.
We would have ∆payment = ∆payment ∪ {I}, in our exam-
ple. Upon receiving normative commands to either add or
remove a normative position, the normative scene invokes
the corresponding addition or removal algorithm described
in Section 6.1. Secondly, the normative scene acknowledges
its state change by sending a trigger message to every outgo-
ing normative transition it is connected to. In our example,
the payment normative scene would be signalling its state
change to normative transition nt.

For normative transitions, the process works differently.
Because each normative transition controls the operation of
a single rule, upon receiving a trigger message, it polls every
incoming normative scene for substitutions for the relevant
illocution schemata on the LHS of its rule. In our example,
nt (being responsible for the rule described in Section 3.4),
would poll the payment normative scene (via arrow B) for
substitutions. Upon receiving replies from them (in the form
of sets of substitutions together with time-stamps), it has to
unify substitutions from each of these normative scenes. For
each unification it finds, the rule is fired, and hence the cor-
responding normative command is sent along to the output
normative scene. The normative transition then keeps track
of the firing message it sent on and of the time-stamps of the
normative positions that triggered the firing. This is done
to ensure that the very same normative positions in the LHS
of a rule only trigger its firing once.

In our example, nt would be receiving σ = {X/jules,
Y/rod, Z/copper, Q/350} from the payment normative scene.
Since the substitions in σ unify with nt’s rule, the rule is
fired, and the normative command add(delivery : obl(rod,
wm, jules, client, delivered(copper, 350), T)) is sent along to
the delivery normative scene to oblige Rod to deliver to
client Jules 350kg of copper. After that, the delivery nor-
mative scene would invoke the addNorm algorithm from
figure 4 with ∆delivery and N = obl(rod, wm, jules, client,
delivered(copper, 350)) as arguments.

7. RELATED WORK AND CONCLUSIONS
Our contributions in this paper are three-fold. Firstly, we

introduce an approach for the management of and reasoning
about norms in a distributed manner.

To our knowledge, there is little work published in this
direction. In [8, 21], two languages are presented for the
distributed enforcement of norms in MAS. However, in both
works, each agent has a local message interface that forwards
legal messages according to a set of norms. Since these in-
terfaces are local to each agent, norms can only be expressed
in terms of actions of that agent. This is a serious disadvan-
tage, e.g. when one needs to activate an obligation to one
agent due to a certain message of another one.

The second contribution is the proposal of a normative
structure. The notion is fruitful because it allows the sepa-
ration of normative and procedural concerns. The normative
structure we propose makes evident the similarity between
the propagation of normative positions and the propagation

of tokens in Coloured Petri Nets. That similarity readily
suggests a mapping between the two, and gives grounds to
a convenient analytical treatment of the normative struc-
ture, in general, and the complexity of conflict detection,
in particular. The idea of modelling interactions (in the
form of conversations) via Petri Nets has been investigated
in [18], where the interaction medium and individual agents
are modelled as CPN sub-nets that are subsequently com-
bined for analysis. In [5], conversations are first designed
and analysed at the level of CPNs and thereafter translated
into protocols. Lin et al. [20] map conversation schemata to
CPNs. To our knowledge, the use of this representation in
the support of conflict detection in regulated MAS has not
been reported elsewhere.

Finally, we present a distributed mechanism to resolve
normative conflicts. Sartor [25] treats normative conflicts
from the point of view of legal theory and suggests a way to
order the norms involved. His idea is implemented in [12]
but requires a central resource for norm maintenance. The
approach to conflict detection and resolution is an adapta-
tion and extension of the work on instantiation graphs re-
ported in [17] and a related algorithm in [27]. The algorithm
presented in the current paper can be used to manage nor-
mative states distributedly: normative scenes that happen
in parallel have an associated normative state ∆ to which the
algorithm is independently applied each time a new norm is
to be introduced.

These three contributions we present in this paper open
many possibilities for future work. We should mention first,
that as a broad strategy we are working on a generalisa-
tion of the notion of normative structure to make it operate
with different coordination models, with richer deontic con-
tent and on top of different computational realisations of
regulated MAS. As a first step in this direction we are tak-
ing advantage of the de-coupling between interaction proto-
cols and declarative normative guidance that the normative
structure makes available, to provide a normative layer for
electronic institutions (as defined in [1]). We expect such
coupling will endow electronic institutions with a more flex-
ible –and more expressive– normative environment.

Furthermore, we want to extend our model along several
directions: (1) to handle negation and constraints as part
of the norm language, and in particular the notion of time;
(2) to accommodate multiple, hierarchical norm authorities
based on roles, along the lines of Cholvy and Cuppens [3]
and power relationships as suggested by Carabelea et al. [2];
(3) to capture in the conflict resolution algorithm different
semantics relating the deontic notions by supporting differ-
ent axiomations (e.g., relative strength of prohibition versus
obligation, default deontic notions, deontic inconsistencies).

On the theoretical side, we intend to use analysis tech-
niques of CPNs in order to characterise classes of CPNs
(e.g., acyclic, symmetric, etc.) corresponding to families of
Normative Structures that are susceptible to tractable off-
line conflict detection. The combination of these techniques
along with our online conflict resolution mechanisms is in-
tended to endow MAS designers with the ability to incorpo-
rate norms into their systems in a principled way.

8. REFERENCES
[1] J. L. Arcos, M. Esteva, P. Noriega, J. A. Rodŕıguez, and

C. Sierra. Engineering open environments with electronic
institutions. Journal on Engineering Applications of Artificial
Intelligence, 18(2):191–204, 2005.

[2] C. Carabelea, O. Boissier, and C. Castelfranchi. Using social
power to enable agents to reason about being part of a group.
In 5th Internat. Workshop, ESAW 2004, pages 166–177, 2004.

[3] L. Cholvy and F. Cuppens. Solving normative conflicts by
merging roles. In Fifth International Conference on Artificial
Intelligence and Law, Washington, USA, 1995.

[4] S. Christensen and T. B. Haagh. Design CPN - overview of
CPN ML syntax. Technical report, University of Aarhus, 1996.

[5] R. S. Cost, Y. Chen, T. W. Finin, Y. Labrou, and Y. Peng.
Using colored petri nets for conversation modeling. In Issues in
Agent Communication, pages 178–192, London, UK, 2000.

[6] F. Dignum. Autonomous Agents with Norms. Artificial
Intelligence and Law, 7(1):69–79, 1999.

[7] A. Elhag, J. Breuker, and P. Brouwer. On the Formal Analysis
of Normative Conflicts. Information & Comms. Techn. Law,
9(3):207–217, Oct. 2000.

[8] M. Esteva, W. Vasconcelos, C. Sierra, and J. A.
Rodŕıguez-Aguilar. Norm consistency in electronic institutions.
volume 3171 (LNAI), pages 494–505. Springer-Verlag, 2004.

[9] M. Fitting. First-Order Logic and Automated Theorem
Proving. Springer-Verlag, New York, U.S.A., 1990.

[10] N. Fornara, F. Viganò, and M. Colombetti. An Event Driven
Approach to Norms in Artificial Institutions. In AAMAS05
Workshop: Agents, Norms and Institutions for Regulated
Multiagent Systems (ANI@REM), Utrecht, 2005.

[11] D. Gaertner, P. Noriega, and C. Sierra. Extending the BDI
architecture with commitments. In Proceedings of the 9th
International Conference of the Catalan Association of
Artificial Intelligence, 2006.

[12] A. Garćıa-Camino, P. Noriega, and J.-A. Rodŕıguez-Aguilar.
An Algorithm for Conflict Resolution in Regulated Compound
Activities. In 7th Int.Workshop - ESAW ’06, 2006.

[13] A. Garćıa-Camino, J.-A. Rodŕıguez-Aguilar, C. Sierra, and
W. Vasconcelos. A Distributed Architecture for Norm-Aware
Agent Societies. In DALT III, volume 3904 (LNAI), pages
89–105. Springer, 2006.

[14] F. Giunchiglia and L. Serafini. Multi-language hierarchical
logics or: How we can do without modal logics. Artificial
Intelligence, 65(1):29–70, 1994.

[15] J. Habermas. The Theory of Communication Action, Volume
One, Reason and the Rationalization of Society. Beacon
Press, 1984.

[16] K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis
Methods and Practical Uses (Volume 1). Springer, 1997.

[17] M. Kollingbaum and T. Norman. Strategies for resolving norm
conflict in practical reasoning. In ECAI Workshop
Coordination in Emergent Agent Societies 2004, 2004.

[18] J.-L. Koning, G. Francois, and Y. Demazeau. Formalization
and pre-validation for interaction protocols in a multi agent
systems. In ECAI, pages 298–307, 1998.

[19] B. Kramer and J. Mylopoulos. Knowledge Representation. In
S. C. Shapiro, editor, Encyclopedia of Artificial Intelligence,
volume 1, pages 743–759. John Wiley & Sons, 1992.

[20] F. Lin, D. H. Norrie, W. Shen, and R. Kremer. A schema-based
approach to specifying conversation policies. In Issues in Agent
Communication, pages 193–204, 2000.

[21] N. Minsky. Law Governed Interaction (LGI): A Distributed
Coordination and Control Mechanism (An Introduction, and a
Reference Manual). Technical report, Rutgers University, 2005.

[22] T. Murata. Petri nets: Properties, analysis and applications.
Proceedings of the IEEE, 77(4):541–580, 1989.

[23] S. Parsons, C. Sierra, and N. Jennings. Agents that reason and
negotiate by arguing. Journal of Logic and Computation,
8(3):261–292, 1998.

[24] A. Ricci and M. Viroli. Coordination Artifacts: A Unifying
Abstraction for Engineering Environment-Mediated
Coordination in MAS. Informatica, 29:433–443, 2005.

[25] G. Sartor. Normative conflicts in legal reasoning. Artificial
Intelligence and Law, 1(2-3):209–235, June 1992.

[26] M. Sergot. A Computational Theory of Normative Positions.
ACM Trans. Comput. Logic, 2(4):581–622, 2001.

[27] W. W. Vasconcelos, M. Kollingbaum, and T. Norman.
Resolving Conflict and Inconsistency in Norm-Regulated
Virtual Organisations. In Proceedings of AAMAS ’07, Hawai’i,
USA, 2007. IFAAMAS.

[28] G. H. von Wright. Norm and Action: A Logical Inquiry.
Routledge and Kegan Paul, London, 1963.

[29] M. Wooldridge. An Introduction to Multiagent Systems. John
Wiley & Sons, Chichester, UK, Feb. 2002.

