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Abstract 

This paper summarizes the characteristics of distributed 
object models used in large-scale distributed software 
systems. We examine the common subset of requirements 
for distributed software systems and systems-on-a-chip 
(SoC), namely: openness, heterogeneity and multiple 
forms of transparency. We describe the application of 
these concepts to the emerging class of complex, parallel 
SoC's, including multiple heterogeneous embedded 
processors interacting with hardware co-processors and 
I/O devices.  An implementation of this approach is 
embodied in STMicroelectronics' DSOC (Distributed 
System Object Component) programming model. The use 
of this programming model for an architecture exploration 
of ST's Nomadik mobile multimedia platform is described. 

1. Introduction 
The current deep submicron technology era presents 

two opposing challenges: rising SoC platform 
development costs and shorter product market windows. 
The rising platform development costs are due to four 
main sources: the continued rise in gate count, the 
emergence of deep submicron effects, the rising 
proportion of embedded software development costs, and 
finally, rising mask set costs.   

As a result, the significant investment to develop the 
platform – typically between 10M$ and 100M$ for today’s 
leading-edge 90nm platforms – requires to maximize the 
time-in-market for a given platform. On the other hand, the 
consumer-led product cycles imply increasingly shorter 
time-to-market for the applications supported by the 
platform. Addressing these two conflicting requirements 
will come from two main directions [1]:  
• The development of more flexible platforms that can 

be used across a wider range of applications and can 
evolve with short-term market requirements.  

• The development of new tools which support the fast 
and efficient mapping of high-level application 
descriptions onto these flexible platforms. This 
implies the development of abstract platform 
programming models.  

2. Challenges of 4G Wireless Systems 
Next-generation wireless systems are bound to these 

same commercial realities. Moreover, competition is 
extremely high which causes extreme pressure on costs. 
Differentiation is increasingly coming from the ability to 
offer distinctive functionality quickly. Multimedia 
functions such as enhanced audio, video recording and 
playback, digital still imaging and 3D graphics are 
emerging as strong differentiators in this market.  

Providing these multimedia functions at low power 
requires the effective use of parallelism. The use of 
multiple low-frequency, simple processors is a more 
power effective means of delivering a specific MIPS 
performance target than a single, high-speed processor 
with deep pipelines, branch prediction and complex 
memory hierarchies [2]. Moreover, the combined use of 
heterogeneous RISC, DSP and application-specific 
processors is often selected to deliver a given function on 
the most appropriate processor architecture class. Finally, 
these processors will be closely coupled with highly 
parallel hardware accelerators used for simpler, regular, 
fixed functions with high computational requirements.  

This class of parallel, heterogeneous multi-processor 
SoC (MPSoC) platform needs to be programmed quickly 
and effectively, making efficient use of available 
resources. This is the key objective of an MP-SoC 
platform programming model and the associated platform 
mapping tools.  

In the next sections, we survey parallel programming 
models used in large scale distributed systems. We 
examine the common requirements for SoC-scale 
embedded systems. We then describe the DSOC 
programming model and MultiFlex mapping tool 
developed at STMicroelectronics. This approach will be 
shown to provide many of the features of distributed 
systems, but with the performance and low-cost required 
in competitive SoC markets like 4G. Finally, we describe 
the application of the MultiFlex tools for the architecture 
exploration of a next-generation NomadikTM mobile 
multimedia platform developed at STMicroelectronics.  
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3. Complexity and Change 
Designing and programming next generation wireless 

systems will become increasingly complex, due to 
heterogeneous multi-processor platforms, and the 
interactions with hardware accelerators.  In addition, 
evolving standards and market dynamics requires 
solutions that can adapt quickly to changing requirements. 

Complexity and change issues have been with us for 
some time in various guises, and partial solutions from 
related disciplines may apply.  For example, in the 
traditional computing domain, complexity and change 
problems were addressed by distributed object models [3], 
as exemplified by approaches such as CORBA [4] and 
DCOM [5].  Refinements to these systems have introduced 
component concepts, as evidenced by CORBA 
Components [6], Sun’s Enterprise Java Beans, and 
Microsoft’s .NET, for example.When reflecting on the 
software industry’s approach to dealing with complexity 
and change, it appears that a number of broad strategies 
are used, as summarized below. 

Openness 
In simple terms, openness means the system can be 

easily extended and modified. Strategies for achieving 
openness are as follows: 
• Compose the application into components with well-

defined functionality, and well-defined, well-
documented interfaces.  

• Use standards wherever possible (languages, 
development tools, etc.).  

• Design the component so it can be executed in 
different contexts (e.g., by a component on another 
machine, on a different instruction set architecture, on 
another operating system, etc).  

Heterogeneity 
CORBA/DCOM and evolutions are built from the 

ground up to deal with heterogeneity.  Microsoft .NET has 
perhaps the most aggressive strategy yet, with the common 
run-time library (CLR), which abstracts out most platform 
and language differences. Heterogeneity results from: 
• Different instruction set architectures (ISA):  ISA 

differences are a natural result of market forces and 
evolution in computer technology.  (Note: in the SoC 
environment, additional factors tend to increase ISA 
heterogeneity.  These include the widespread practice 
of tuning an ISA for a particular application domain, 
in order to increase performance and/or lower power 
consumption, area, etc.) 

• Different programming languages:   In the SoC 
environment, this is not as bad as the general S/W 
context, due to the overwhelming use of C.  However, 
in the future, we believe the limitations of C will 

result in a move to a more heterogeneous mix of 
languages. 

• Different operating systems:  Again, in the 
traditional software domain, OS differences are a 
natural result of market forces and OS evolution.  In 
the SoC environment, OS diversity increases due to 
new OS variants tuned to embedded devices 
(Symbian, embedded Linux, Nucleus, Windows CE, 
VxWorks etc.), plus innumerable “home grown” 
custom operating systems. 

Transparency 
Another key strategy for dealing with change and 

complexity involves the notion of “Transparency” [3].  
This concept was first articulated in [7], and is a key 
aspect of the International Standard on Open Distributed 
Processing (ODP) [8]. The different aspects of 
transparency form levels with dependencies, as illustrated 
in Figure 1.     

 
Figure 1: Transparency Dependencies 

The different aspects of transparency are briefly 
summarized here as follows. 

Access Transparency 
Access transparency means that the interface to a 

component is the same, regardless of target architecture or 
language that it is implemented in. 

Location Transparency 
Location transparency means components can be 

identified in service requests without knowing where the 
component is located. 

Location transparency is key to building scalable 
distributed systems.  If the location of the component is 
hard-coded into the application, the component cannot be 
easily moved to adapt to changing system loads, changing 
functional requirements, etc. 

Migration Transparency 
It may often be necessary to change the resource that 

is executing a particular component, in order to meet real 
time execution, power requirements, changing 



functionality requirements, etc.  Migration transparency 
refers to the fact that components can be moved to new 
resources without the component or interacting 
components knowing or taking any special action.  
Obviously, migration transparency is not possible if a 
source component needs to use a new interface if a target 
component is moved (e.g., the target object does not 
provide access transparency).  Similarly, migration is not 
possible if a source component has a hard coded location 
of the target component (e.g., the target is not location 
transparent). 

Replication Transparency 
A service component may be replicated on a number 

of hosts, in order to meet performance requirements, real 
time constraints, etc.  Replication transparency means the 
source component does not know or need to take any 
special action for target components that are replicated.  
Replication transparency implies the system has access 
transparency, and location transparency. 

Concurrency Transparency 
A distributed system may have many different 

components executing at the same time.  Concurrency 
transparency means several source components may 
request a target component.  The integrity of the service 
component should be preserved and application 
programmers need not see how concurrency is controlled. 

Scalability Transparency 
Scalability means the system can continue to operate 

as more resources are added, more services are added, and 
more concurrent requests are active.  Scalability 
transparency is enabled by other transparency aspects such 
as replication transparency and migration transparency. 

Performance Transparency 
Performance Transparency means it is transparent to 

users and programmers how performance is actually 
achieved.  The system could employ a variety of 
mechanisms related to the above transparency aspects in 
order to achieve performance transparency.  For example, 
it could migrate components, perform load balancing over 
resources, power up new resources, etc.  Components 
should be written without knowing or caring about the 
mechanisms used to achieve performance.  Therefore, 
performance transparency usually implies migration 
transparency and replication transparency. 

Failure Transparency 
Failure transparency implies failures can be concealed 

from users and component designers.   This usually 
implies replication transparency, so a component may fail, 
and the source components switch over to replicated target 

components without any special action on part of the 
source components.  Also, failure transparency usually 
implies a transaction can be restarted in some way, which 
in turn implies concurrency transparency.   

4. Programming Models in the Context of 
SoC 

The challenge of managing complexity in previous 
generations of technology advances in VLSI systems has 
usually been managed by creating insulation layers 
between various levels of abstractions, as illustrated in 
Figure 2. In the eighties, the standard cell library was 
defined to insulate the logic designer from the physical 
design layer and process-specific details. In the nineties, a 
register-transfer level (RTL) abstraction level was defined, 
along with a new generation of synthesis tools. This has 
become the de facto abstraction for hardware logic 
circuits. The counterpart of RTL for embedded software is 
the instruction-set architecture (ISA) specification. This 
allows to program a complex processor architecture from a 
well-defined interface.  

The current generation of SoC’s requires a higher-
level insulation layer which we refer to as a platform 
programming model. This should allow system developers 
to define high-level application descriptions without in-
depth knowledge of the underlying heterogeneous 
HW/SW platform on which it will be mapped.  

This need to formalize, simplify, and optimize the 
hardware/software interface to support higher levels of 
abstraction is of course not a recent discovery. Much 
pioneering work in this area has already been done in 
academia, e.g. TIMA laboratories [9], in the electronics 
industry, e.g. Philips Research Labs [10], and by 
commercial ESL design technology companies, e.g.  the 
interface synthesis technology of CoWareTM [11].  

Architecture Platforms
● Hard-disk drive platform
● Set-top box, DVD, HDTV
● Mobile multimedia 

System Applications
● Audio codecs
● Video codecs
● Still image processing
● Communication stacks

Components
● Processor cores, Buses, 
NoC, memories, I/O

H/W: RTL                S/W:  ISA

Platform Programming Model

NoC

I/O Mem

RISC DSP 

H/W

Cell Libraries

Control

VideoAudio

 
Figure 2 – Platform Programming Model 

However, much work remains to be done before these 
concepts become standardized and mainstream, and 



broadly applied across the industry.  One difficulty is that 
the motivation for this sort of approach comes from the 
more abstract “system-level”.  The advantages are not as 
clear when taking a locally optimal perspective.  This 
more confined viewpoint discounts the longer term 
benefits such as the ability to handle change and adapt to 
new contexts.  Similarly, engineers on the software side of 
the divide must learn to restrict the many layers of 
abstractions, and move towards simple and efficient 
interfaces that can unify hardware and software 
components. 

5. The DSOC Platform Model 
Our particular approach to the problem makes explicit 

reference and acknowledgment of the many valuable 
lessons and concepts from early work in distributed object 
systems, such as CORBA [4] and DCOM [5].   

On the other hand, we have consciously chosen 
extremely demanding target applications, e.g., 10 Gb/s 
IPv4 packet forwarding, 2.5 Gb/s traffic management [12], 
and MPEG4 video encoding [13], in order to focus on the 
boundary layer between hardware and software.  

The synthesis of CORBA concepts with the extreme 
performance of hardware accelerated applications has 
resulted in what we call a “platform programming model” 
called DSOC.  We briefly review the DSOC concepts 
here, additional details can be found in [12].  

DSOC stands for “Distributed System Object 
Components”. As in CORBA and DCOM, an application 
is composed of a set of objects with well-defined 
interfaces.  We will use the application and platform 
example of Figure 3 to illustrate the basic concepts.  The 
top of the figure depicts a simplified application, 
consisting of control, video and audio application objects. 
These objects need to be mapped to the underlying MP-
SOC platform. In most cases, the user limits the scope of 
the mapping. For example, in this case the control 
functions are mapped in many-to-one fashion to a general-
purpose processor, running a standard O/S. The imaging 
objects are mapped in many-to-many fashion onto an array 
of DSP’s (not running an O/S). The Video object is 
mapped to a hardware component.  

In CORBA and DCOM, object interfaces are 
expressed in an Interface Definition Language (IDL).  In 
our case, the IDL is called SIDL (System Interface 
Definition Language), and is a C++ subset.  We have 
chosen a C-based syntax, in order to simplify the learning 
curve for ESW developers.  

Each object exposes one or more interfaces that may 
be used by clients.  In addition, each object may require 
access to external services, which satisfy some particular 
interface.  In line with the transparency requirements of 
Section 3, the location of clients and servers associated 
with an object is of no concern to the implementation of 
the object itself.  

We have developed an interface compiler, which is 
able to process interface declarations, and 
generate/interface with various component communication 
hardware and software.  Various communication patterns 
are possible, ranging from in-process direct connections 
(e.g., as between objects Control1 and Control2 in Figure 
3), inter-space connections, connections in a data-flow 
pipeline structure (e.g., as between objects Imaging1, 
Imaging2 and Imaging3 in Figure 3), or client/server 
connection patterns.  

However, our focus is on extreme efficiency, and 
extremely light-weight implementations.  For example, to 
support the client/server communication pattern, we have 
developed a hardware implementation of the object 
request broker. This broker matches client objects 
requesting services, with server objects that can provide 
the requested service.  
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Figure 3 - DSOC Concepts 

Also note that an object implementation may be in 
hardware.  For example, in Figure 3, object Imaging1 may 
communicate through the broker with object Video, which 
is implemented in hardware. Objects Imaging1 and 
Imaging2 may communicate through a direct binding.  
From the perspective of object Imaging1, it does not know 
(or care) that object Imaging2 is local and is implemented 
in software, and object Video is remote, implemented in 
hardware, and communication is mediated through a 
broker.  This enables some of the transparency aspects as 
described in Section 3. This transparency allows easy 
reconfiguration of the system, to enable different 
hardware/software mappings for changing requirements 
(different applications, quality of service, etc.). 

Figure 3 also shows a “message passing engine”.  
This is a hardware implementation of the “marshaling” 
operation found in distributed object systems.  This 
operation takes all of the arguments for a remote object 
call, and converts them into a neutral portable format, and 
sends over the network on chip.  The message passing 
wrapper on the receiving object performs the inverse 
operation. Due to the hardware acceleration, these remote 



object calls are very efficient.  For a call with a few 
parameters, a remote object call can be done in a handful 
of instructions – roughly the same overhead as a normal 
object call in a language such as C++.  Our first 
implementation of the object request broker hardware is 
around 0.05 mm2, and each message passing wrapper is 
around 0.40 mm2 (both figures are for implementation in a 
90nm CMOS process).  

We believe the DSOC platform programming model 
is an example of how to resolve the efficiency/abstraction 
conflict, as presented in Section 4.  A high efficiency 
DSOC platform provides the abstract, high-level, object-
oriented communication mechanisms directly in the 
platform architecture, without the many levels of 
indirections and inefficiencies.  This enables direct and 
efficient communication between components 
implemented in HW/SW, HW/HW, and SW/SW.  
Implementations may be changed between HW and SW, 
remapped on to different resources, and/or load balanced 
across a set of resources, with a minimum impact on the 
design and implementation of the actual components.  This 
enables the transparency, openness and heterogeneity 
strategies as outlined in Section 3, and provides an 
efficient platform architecture that is better equipped to 
deal with the emerging change & complexity 
requirements.   

6. Application to the Nomadik Mobile Multi-
Media Platform 

The STMicroelectronics Nomadik platform is an 
interesting early example of the trends we have discussed 
in this paper.  As shown in Figure 4, our target exploration 
platform is composed of  

• A general-purpose processor running a 
standard operating system,  

• A 3D subsystem with embedded DSP 
• A video subsystem with an embedded DSP 
• An audio system with dual embedded DSPs. 
• System interconnect 
• Various Memories 

This platform is targeted at mobile applications, so 
high efficiency operation is essential.  Therefore, a great 
deal of functionality in the video and 3D subsystems is 
implemented in hardware. 

On the other hand, the platform must be very flexible.  
Media pipelines are becoming very complex, with 
multiple instances executing in parallel, each with multiple 
processing stages, and various quality of service/power 
tradeoffs, etc. The device operation is dynamic, in that 
new pipelines must be started, stopped, and reconfigured, 
as the device is running.  

In addition, previous experience has show that new 
requirements usually emerge after each generation is 
brought to market.  This typically requires rebalancing of 

the computation, and perhaps sharing resources in ways 
that were not originally intended. 
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Figure 4 - Nomadik Mobile Multi-Media Platform 

These change and flexibility requirements have 
motivated the exploration of a DSOC-style approach. To 
illustrate this, we implemented an audio processing 
example, with three different types of audio decoders 
(AAC, MP3 and SBC), distributed over two DSPs.  The 
source and final target components for each flow are on 
the ARM processor, which ran Linux in our experiment 
(the Symbian DSOC flow is currently under 
development).  The source components read the encoded 
data from an input file, and the target components store the 
decoded PCM data to the output file.  

In this example, a static binding of components to 
resources may not result in optimal processing throughput.  
For example, consider the static binding with AAC and 
SBC on one DSP, and MP3 on the other.  If a burst of 
SBC and AAC frames occur, with a momentary pause in 
MP3 frames, one DSP will be fully loaded, and the other 
idle.  Therefore, we enabled the DSOC load balancing, 
which allows both DSPs to service requests from all three 
audio decoder application components.   

Table 1 - DSP Utilization 

Function Utilization (%) 
AAC decode 50 
MP3 decode 40 
Idle 8 
SBC decode 1 
Data Transfer 0.9 
Pipeline elaboration 0.09 
DSOC overheads 0.01 
 

Table 1 shows the DSP utilization for the various 
tasks.  Note the small overheads associated with DSOC 
support.  Also, the DSP is idle for 8% of the time.  This 
was in fact due to ARM file I/O overheads (3 file sources 



and 3 file sinks).  We simulated this configuration with a 
much higher clock frequency for the ARM processor, and 
this overhead went to zero, achieving a 1.97X speedup on 
the dual DSP platform over a single DSP platform.  

Table 2gives the DSOC code size, or “footprint”, for 
the various DSOC layers.  This is the static code size, not 
the number of instructions to execute the particular 
function.  Note that ARM code size is not as sensitive as 
the DSP, as the ARM has techniques (virtual memory, 
paging, etc) to deal with code size.  On the MMDSP, we 
see the average footprint for each client interface method 
is 38 instructions, and the server size is 46 instructions.  
The methods have two or three arguments each, some of 
which are frame buffers.  With the DSPs, we are using the 
non-blocking DSOC interface, which requires around 5 
times more code than the most efficient binding (available 
for hardware multi-threaded processors).   Note that this 
overhead is per-class; multiple objects can exist for each 
class type, and only pay the code size overhead once. 

Table 2 - DSOC Code Footprint 

 ARM Processor DSP Processor 
App-specific 
user-mode 
DSOC Client 
Code 

43 instructions per 
method, avg 

38 instructions per 
method, avg 

App-specific 
user-mode 
DSOC 
ServerCode 

65 instructions per 
method, avg 

46 instructions per 
method, avg 

DSOC libs 2991 instructions 466 instructions 
System call 
overhead 

963 instructions N/A 

 
Even though these footprints are quite tiny, compared 

with other distributed object or component systems, it is 
still a cause for concern. Work is currently underway to 
extend the compilers and other parts of the DSP tool chain 
with component support.  With this approach, components 
are dynamically composed and configured on the ARM 
processor, and deployed on the DSP processors, with 
essentially 0 run time support required on the DSP. 

These experiments with the Nomadik platform 
provide a good example of how we believe the resolution 
of the abstraction and efficiency issues will be handled in 
the future:  We see embedded software moving towards 
higher object-oriented and component abstractions, while 
simultaneously removing software layers and overheads, 
achieving increasing efficiencies. 

7. Conclusion 
We have described the common subset of 

requirements for distributed software systems, as 
illustrated by approaches like CORBA and DCOM, and 
those of SoC-scale embedded systems, namely: openness, 
heterogeneity and multiple forms of transparency.  

We have demonstrated that it is possible to apply 
these concepts to the emerging class of complex, parallel 
SoC's which will be used in 4G wireless systems. These 
platforms will include multiple heterogeneous embedded 
processors interacting with hardware co-processors and 
I/O devices. An implementation of this approach is 
embodied in STMicroelectronics' DSOC (Distributed 
System Object Component) programming model and the 
associated MultiFlex platform mapping tool. The use of 
this programming model for an architecture exploration of 
ST's NomadikTM mobile multimedia platform was 
described.  
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