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Abstract—The contribution of this paper is articulated around
a new software design approach of autonomous control systems
for connected vehicle platoons. Our control system is distributed
and real-time based on object-oriented component-based method
of design that brakes with the industrial traditions subject to
cyclic OS-free approaches. We illustrate our design by relevant
case studies of the longitudinal speed control widely studied in
industrial and academic research around automotive platooning.
Our software is mainly implemented using the Ada standard of
programming (in particular the annexes D and E of real-time and
distributed systems). The distribution in our software is managed
by the versatile middleware PolyORB. The control scenarios and
communication aspects covered by the case studies are animated
by wheeled robot prototypes commanded by single-board ARM
Cortex computers under real-time Linux kernels.

Index Terms—Embedded systems, distributed architectures,
object-oriented components, real-time, smart automotive systems,
vehicle platooning.

I. INTRODUCTION

The impact of massive usage of cars in terms of traffic jams

and air pollution makes the mastery of automotive systems of a

paramount importance and a hot topic in today’s politics. Over

the last decades, several solutions have been proposed and

shaped. They range from increasing road capacities by creating

more roads and adopting smart circulation modalities (platoon-

ing, green wave, smart roads, etc) to the encouragement of

car sharing and the choice of public and electric transport [1].

Most of these solutions have shown positive affects but have

not been able to solve congestion problems. In fact, the traffic

jams have become more severe because of the growing number

of vehicles and hence, more drastic and innovative solutions

are needed. Few years ago, embedded electronics and software

advances are transforming progressively computers to become

ambient in human mobility which renders transport systems

more advanced. One of the innovations are Advanced Driver

Assistance Systems (ADAS) that aim to improve efficiency,

safety and comfort using advanced information and commu-

nication technologies [2]. In this context, the industrial actors

of automotive systems are becoming increasingly interested

in embedding sensors and actuators massively in cars to make

them sensitive to their external environment circumstances and

intelligent by allowing them to take decisions on behalf of or

to assist the driver for safer and less expensive journey and

more fluid and nature-friendly traffic.

However, current mature industrial products are limited by

the driver able to overrule the system. To make vehicles highly

cooperative, a system that automates human tasks with high

performance electronic and networking counterparts would be

ultimate. For example, enabling data exchange and automation

in vehicle platooning systems would allow more reliable and

faster control of circulation and smaller inter-vehicle headway

which increase road capacities and reduce energy consump-

tion. Semi-autonomous platooning control systems have been

a lively research topic for decades. A strong theoretical focus

already exists on the longitudinal and lateral control [3] and

string stability [4].

As a first contribution, we propose an automatic process to

control the longitudinal speed and ensure collision avoidance

in vehicle platoons. Two simple scenarios are presented and

studied in order to illustrate the speed control system: i) the

tail-merging of a new connected vehicle in a platoon already

in circulation, and ii) the propagation of the braking alarm

to followers by the leader’s detection of obstacles. As said

earlier, many theoretical contributions were proposed to deal

with the physical aspects of longitudinal and lateral control and

string stability in vehicle platooning. Our approach to deal with

the longitudinal speed control is purely algorithmic and takes

advantage from Vehicle-To-Everything (V2X) communication

technologies recently being used in automotive smart systems

under several forms and network support and standards like

the IEEE 802.11p [5]. We made the choice to not rely on

rigorous physical approaches of analysis and simulation of the

control behavior because they require a thorough knowledge of

different parameters (like vehicles masses, friction errors, loss

of energy, etc) difficult to consider in robot prototypes. A deep

investigation of these issues quickly derails us from the scope

of our work rather oriented towards the software engineering

issues in Intelligent Transportation Systems (ITS).

On the other hand, automation is clearly critical in this kind

of systems: an equipment failure or malfunction may result in

catastrophic outcomes and harms on people, environment and

properties. Safety is strictly required face to this emergence.

We talk about High Integrity Safety-Critical (HISC) systems:

the different parts of such systems are networked and coordi-

nated with an intelligent software that understands and learns

the state of its environment and takes sensible decisions under

hard and/or soft real-time constraints.



In industry, the software layer of HISC systems is built using

component-based cyclic reactive OS-free approaches [6]–[8].

Safety requirements are checked using the V-Model’s testing

techniques, posterior formal proof, or prior incremental formal

design. The classic test is out of step compared to the size and

complexity of large-scale applications. Formal methods are

usually used to check low level software requirements on the

software components “separately” while nearly ignoring high

level system requirements (covering in part the interoperability

of components and their composite behavior) relevant to reach

the required high level of integrity.

The second main contribution of this work is to demonstrate

that the Distributed Object-Oriented Component-Based Design

(DOOCBD) is appropriate to build HISC embedded software,

scalable in concrete implementation, and can help solve the

problems above. Object-oriented design has often been a hard

sell to manufacturers of HISC systems in many areas like au-

tomotive, railway, avionic, etc. Standards like [9], [10] require

extensive verification processes and sometimes hard real-time

difficult to carry on by the dynamic aspect and flexibility of

object-oriented paradigms (polymorphism, dynamic dispatch,

late binding, overriding, etc). Distribution is also penalizing

because of its semantics (message passing, remote dispatch

and procedure call, etc). The Ada ISO standard can decidedly

settle these disadvantages. It has built-in strong typed pro-

gramming language with powerful support for explicit tasking

and concurrency, protected objects, design-by-contracts [11],

compiler directives (pragmas), and other features allowing the

developers to exploit the object-oriented assets while avoiding

vulnerabilities and ensuring real-time. Ada is also provided

with powerful compilers allowing the detection of run-time

errors which improves safety and maintainability [12].

We present a software architecture of generic speed control

in vehicle platoons using a DOOCBD approach. An object-

oriented component is a unit of a third-party composition with

environment-dependent interfaces provided and required [13]

and may exhibit progressive behavior. By allowing distribution

and object-orientation, component instances can communicate

while being deployed in distant sub-systems. Unlike the cyclic

reactive approaches, their interaction and data exchange are

easy to trace and debug in the components implementation.

Besides, they can be checked early during the design phase by

using formal techniques for example. Our approach is flexible

and suitable for the design of HISC communicating systems in

general and ensure both safety and reliability for sub-systems

individually but also for their interactive behavior.

Our design is implemented using the annexes D [14] and

E [15] of the Ada Reference Manual resp. of real-time and

distributed systems. The Annex E (abbreviated DSA) provides

support for efficient distribution by making the middleware

layer completely transparent and the development more easier.

We opt for the middleware PolyORB [16], [17] maintained

by AdaCore to deploy and animate the implementation. It

supports many distribution models including CORBA [18] and

DSA but also the Ravenscar profile [19] (a restricted tasking

Ada subset used for hard real-time).

The platooning scenarios provided were tested on mock-up

wheeled robots controlled by Arduino-based boards enslaved

by ARM Cortex-A single-board computers on which our soft-

ware distributed application is deployed and executed under

real-time (Preempt RT) Linux kernels.

In Section II, we provide a brief survey about the common

implementations of vehicle platooning systems and some of

their underlying control problems. In Section III, we present

the platooning case study scenarios considered in this paper.

They are recalled gradually in the next sections to illustrate

our contributions. In Section IV, we introduce our concept of

object-oriented components and interoperability and explain

with details our distributed software design of speed control in

vehicle platoons. The Ada implementation, robot prototyping,

distributed deployment, real-time considerations, and finally

testing results are given in Section V. Conclusion discussions,

related works and some of the future directions of our work

are provided in Section VI.

II. VEHICLE PLATOONING, A BRIEF SURVEY

The concept of vehicle platooning aims to increase roads

capacities and traffic fluidity. Vehicles are organized in tightly

controlled platoons that operate close together. A highway for

example can accommodate more vehicles when organized as

platoons compared to classic human driving conditions [1].

Adaptive Cruise Control (ACC) systems are well-known in

vehicle platooning systems and currently available in many of

upscale vehicles. A vehicle with ACC is commonly equipped

with front radars. When a preceding vehicle is detected by

these radars, the ACC system adjusts the vehicle’s velocity in

order to maintain a fixed time-gap to the preceding vehicle.

This all happens without the driver’s intervention. The follow-

up is the Cooperative Adaptive Cruise Control (CACC). This

concept augments ACC with wireless communication capabil-

ities and enables a closer inter-vehicular cooperation which

improves the traffic flow even more. Wireless communication

allows vehicles to extend view beyond the line of sight of the

front radars and allows faster transmission of speed updates

between vehicles. However, in both kinds of system, the driver

is partly responsible for the vehicle’s operation [20].

By adopting an Autonomous Connected Vehicle Platooning

(ACVP) concept, control becomes fully automated, driver-free

and cooperative. The Automated Highway Systems (AHS) is a

variant of ACVP systems and has been under research by the

Program of Advanced Technology for Highway (PATH) for

years [21], [22]. It aims to make vehicles in highways guided

autonomously to their destination under both controlled and

optimized traffic flow for maximum efficiency and safety.

Platooning control functions

The main functions to control the behavior of vehicles in

a platoon are mostly: longitudinal and lateral control, string

stability, lane tracking and changing, maneuver coordination

for platoon formation and split. We provide in the paragraphs

below a brief description of these control functions and some

of their related research contributions.
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Fig. 1. Tail-merging in platoon already in circulation; step (1): V3 requests the references of vehicles covered by BS installed on the platoon’s leader vehicle
(V1); step (2): BS sends back to V3 the references of V1 and V2; step (3): V3 tail-merges in the platoon (already composed of V1 and V2) and accelerates
to catch up with V2; step (4): V3 controls (C) its velocity based on that of V2 in order to keep a minimal safety distance and avoid collision between them.

The longitudinal speed control [3], [23] consists in adapting

the vehicle’s velocity compared to that of the preceding one

using the powertrain and brakes. Implementations of longitudi-

nal control are also highly dependent on the headway from the

preceding vehicle. Front-radar and image-processing sensors

are typically used to get the measurements of these inputs. It

should provide comfortable ride for passengers and be accurate

so that safety can be guaranteed.

The lateral control [3], [24] consists in keeping the vehicle

in the middle of the road (or the lane) by tracking its median

trajectory. Designing such functionality involves a trade-off

between the ride quality and the system accuracy, just like for

longitudinal control. The challenges handled in the design of

lateral control systems include high-speed operation using a

purely “look-down” sensor system without transitional lateral

position measurements. It is also concerned with lane changing

from the current lane to an adjacent one. This aspect of lateral

control is considered to be the most challenging as it involves

more vehicle dynamics, changes of the radar targets but also

more coordination and communication between vehicles.

The string stability [4] ensures that range errors decrease by

propagation along the vehicle stream. It is widely known that

when the transfer function from the range error of a vehicle

in the platoon to that of its follower has a magnitude value

less than 1, string stability is guaranteed. V2X communication

was shown to be necessary in order to achieve string stability

with constant inter-vehicle spacing.

Platoon formation, also called joining or merging, is the

term used for a situation where two platoons (or a platoon

and one or several vehicles) are combined into one platoon.

Platoon split is however the situation where one or several ve-

hicles leave the platoon. Communication is obviously required

in such scenarios to ensure safety and stability.

III. PLATOON CASE STUDIES

Sensing technologies like on-board sensors, cameras, radar,

and lidar devices are mature nowadays and adopted by many

car manufacturers. They are well-suited for ITS in general and

ADAS in particular by allowing the drivers to be warned from

impending dangers so that they take corrective actions, or the

system to intervene on their behalf autonomously.

While these technologies are highly beneficial, our proposal

relies on V2X communication technologies based on forceful

wireless exchange of information between connected vehicles

and infrastructure devices. They represent a major upgrade in

improving passengers comfort, preventing dangers, but also

they promote a smooth transition to fully automated autos.

We consider two common control scenarios in ACVP systems

based on V2X communications to illustrate our approach of

software design detailed in depth in the next sections: 1) the

tail-merging of a new connected vehicle in a platoon already

in circulation, and 2) the propagation of braking alarms to

followers when the leader vehicle detects an obstacle.

We consider three connected vehicles V1, V2 and V3. V1

and V2 are already forming a platoon of which V1 is the

leader. At the instant t0 of Fig. 1 (left), in order to tail-merge

in the platoon, V3 sends its remote reference by wireless

to a mobile base station (BS) installed on the leader when

entering its coverage area (step 1). In turn, BS sends back the

references of V1 and V2 to V3 (step 2). We talk here about

Vehicle-To-Base (V2B) communication. Once connection is

established and the references of V1 and V2 are acquired, V3

can consequently communicate directly with each of them.

We point here that the coverage area of BS should be larger

than that of vehicles to detect the approach of new merging

vehicles as soon as possible. At t1 > t0 of Fig. 1 (middle),

V3 accelerates briskly to catch up with V2 (step 3). The front-

radars of V3 and V2 are clearly used to compute the distances

to their predecessors resp. V2 and V1. By approaching V2 at

t2 > t1 of Fig. 1 (right), V3 controls velocity so that collision

with V2 is avoided by respecting a prefixed minimal inter

safe distance. Besides, stability should be guaranteed for the

platoon by preventing shake-up in case where a vehicle does

not respect the safety distance to its predecessor and brakes

prematurely (step 4). The speed control of a vehicle is defined

based on the velocity of its predecessor communicated by

Vehicle-To-Vehicle (V2V) under real-time determinism.

We propose an intuitive longitudinal speed control process,

pragmatic and easy to implement. As said before, we abandon

mathematical control approaches since they require a deep

consideration of the system parameters in software design,

rather considered to be the central focus of our work.
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Fig. 2. Longitudinal speed control.

The relative distance between a vehicle and its predecessor

is subdivided into three zones as schematized in Fig. 2:

• Safety zone (SZ): this is the area behind the predecessor

vehicle between its rear position pr and the limit the

successor shall not cross, that is ps = pr − ds with ds is

a constant safety distance;

• Control zone (CZ): this is the area beyond SZ between

ps and the position from which the successor starts to

stabilize gradually its regime Vs so that the safety distance

ds is maintained between them, that is pc = ps−os with

os is a relative distance called the stabilization offset;

• Acceleration zone (AZ): being in this zone, the successor

is still far from the predecessor and has a leeway to

accelerate briskly and reach CZ quickly.

When the successor’s front position Xs exceeds pc, it requests,

at periodic instants, the predecessor’s velocity Vp (constant in

Fig. 2) which in turn responds by sending the information

before the next request. This is critical: the exchange delay

should be deterministic to guarantee a safe and stable behavior.

The successor adapts accordingly its acceleration so that both

vehicles roll at the same velocity. The stabilization offset os
shall be large enough to prevent bodywork shake-up during

speed control. Shake-up occurs when the successor enters SZ

while it is reducing velocity to align progressively with that

of its predecessor, braking is triggered prematurely.

V3

V2

V1 (leader)

Obstacle

(1):(B)

(2):(B)

Fig. 3. Platoon obstacle handling: the steps (1) and (2) represent the braking
alarm (B) propagation to the followers by the leader’s detection of the obstacle.

The second control scenario is depicted in Fig. 3. When the

leader detects an obstacle, it brakes immediately and alerts

(by V2V) V2 to perform an emergency brake and propagate

alert to V3. These situations are unpredictable and handled as

aperiodic events in the control design (cf. Section IV).

IV. DESIGN APPROACH

In this section, we present a DOOCBD design approach

to handle V2X communications between vehicles in ACVP

systems. Before presenting our software design approach, we

start first by providing a preliminary description of distributed

systems and object-oriented components.

A. Distributed systems and object-oriented components

A distributed system is a set of distant computing nodes

connected by a network. Each node incorporates one or several

distributed partitions interacting locally within the node or

remotely with partitions instantiated in other nodes. Each par-

tition is a set of live software components. They may interact

locally within the partition or remotely with components of

other partitions in the same or distant nodes.

Component

Attributes

f1, ..., fk (private)

Required methods

r1, ..., rm

(callable from references to

external local or remote

component instances)

Output interfaces

Input interfacesProvided methods

a1, ..., an (public and private)

Jobs

£j1, ..., £jl (behavioral periodic jobs)

use

use

Fig. 4. Abstract representation of an object-oriented component.

A component is typically a description of an open entity

interacting with others composing its environment. It accepts

inputs provided by the environment, generates some outputs

(or provides some services) and may express activities. In

DOOCBD, a component is object-oriented consisting of a set

of attributes and a set of named services and jobs. Concretely, a

service is a method callable locally by the component (private

or public) or by its environment (only public), and may require

internal and external methods. A job (if defined) represents the

actions and reactions impacting the component’s visible state,

and may also require internal or external methods (cf. Fig. 4).

Inputs to a component are the parameters passed as arguments

to its provided methods and outputs are their return parameters

or raised exceptions and errors.

We start by defining the concept of a component context M

which is a collection of object-oriented components. Given a

component M ∈ M, at run-time an instance c of M (c :: M )

is an active running entity of the component M . It reserves

resources (memory) for attributes, provides methods for open

use, requires methods from components in M, and exhibits a

progressive behavior by running jobs. A distributed system is

seen as a collection of instance sets, each of them corresponds

to a separate node or partition. A given node or partition may

contain several instances of the same component and a given

component may be instantiated in several nodes or partitions.

From now on, we use the term “component” (for short) instead

of object-oriented component.



Vehicle

Attributes

- identifier : Integer

- brake alarm : Boolean

- velocity, acceleration : Float

References

sct :: Speed Controller

spd :: Speedometer

bs :: @Base Station

platoon : (Integer, @Vehicle) map

Required methods

+ Get Acceleration Command

+ Get Velocity

+@ Register Vehicle

+@ Get Remote Vehicles

+@ Get Velocity

+@ Trigger Brake Alarm

Provided methods

+ Get Velocity (→ vel : Float) # Unknown Velocity

+ Trigger Brake Alarm

- Brake

Jobs

£ Drive (period : Integer)

Base Station

Attributes

- connected vehicles : (Integer, @Vehicle) map

References

(No references)

Required methods

(No required methods)

Provided methods

+ Register Vehicle (id : Integer, veh : @Vehicle)

# Illegal Vehicle Identifier

+ Get Remote Vehicles (→ ngbs : (Integer,@Vehicle) map)

# No Connected Vehicles

Jobs

(No jobs)

Speed Controller

Attributes

- speed request, acceleration command : Float

References

sns :: Sensor

spd :: Speedometer

Required methods

+ Get Distance To Obstacle

+ Get Velocity

Provided methods

+ Get Acceleration Command (→ acc : Float)

# Erroneous Acceleration

- Compute Acceleration (dt : Float → acc : Float)

Jobs

£ Dependent Control (period : Integer, pvel : Float)

£ Autonomous Control (period : Integer)

Speedometer

Attributes

- velocity, distance : Float

References

odo :: Odometer

Required methods

+ Get Traveled Distance

Provided methods

+ Get Velocity (→ vel : Float) # Erroneous Velocity

- Compute Velocity (dt : Integer → vel : Float)

Jobs

£ Update (period : Integer)

Sensor

Attributes

- distance to obstacle : Float

References

(No references)

Required methods

(No required methods)

Provided methods

+ Get Distance To Obstacle (→ dist : Float)

# Erroneous Distance

Jobs

£ Update (period : Integer)

Odometer

Attributes

- absolute distance : Float

References

(No references)

Required methods

(No required methods)

Provided methods

+ Get Traveled Distance (→ dist : Float)

# Erroneous Distance

Jobs

£ Update (period : Integer)
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Fig. 5. Component static UML-like architecture.

Let’s X be the universe of variables and consider X ⊆ X,

we define by T[x] the type of x ∈ X i.e., x:T[x]. We define

a component M ∈ M by a tuple (FM ,PM ,JM , EM ,RM )
where FM is the set of its attributes f :T[f ], PM is the set of

its provided methods, JM is the set of its jobs, EM is a set of

references to instances of components in M, and RM is the

set of its required methods. The set PM of provided methods

is split into P+
M and P−

M resp. of public and private provided

methods. We deduce obviously from the above definitions that

RM ⊆ {b ∈ P+
N , (∀N ∈ M(M), c ∈ EM and c :: N)} where

M(M) = {N ∈ M,P+
N 6= ∅} is the contextual environment

of the component M under M.

The input signature of a method a ∈ PM ∪ RM is written

by a(i1:T[i1], ..., ik:T[ik]→o1:T[o1], ..., ol:T[ol])#(e1, ..., em)
where {i1, ..., ik} and {o1, ..., ol} are resp. the sets of input

and return parameters of a, and {e1, ..., em} is the set of

exceptions throwable by a. Methods with no return parameters

are called void methods. The signature of a job b ∈ JM is

written b(j1:T[j1], .., jp:T[jp]) where {j1, ..., jp} is the set of

input parameters of b. Absence of input/return parameters or

exceptions is represented by a void.

Jobs are periodic stateful tasks evolving in time i.e., they

represent the component’s progressive operation within its

environment while updating the attributes by sequential com-

putations and method invocations. Methods are stateless one-

shot programs invoked if needed by both local and remote

environments. No evolving behavior is expected by method

executions. Inter nodes and partitions method invocations are

handled concurrently as aperiodic events with other tasks.

B. Software architecture

The static architecture shown in Fig. 5 presents the software

components interfacing with various electronic control devices

embedded in the connected vehicles of our ACVP system. The

implementation of control scenarios of Section III is based on

that architecture. We consider a component context composed

of six components: Vehicle, Base Station, Speed Controller,

Speedometer, Odometer and Sensor.

The component Speedometer calculates the attribute velocity

of a vehicle by computing ∆d
∆t

where ∆t is time period and

∆d is the relative distance traveled during ∆t. The public

(+) method Get Traveled Distance, provided by Odometer via

the interface Distance Computer, returns the current traveled

absolute distance since the beginning of the journey. At each

period ∆t of the job (£) Update, ∆d is calculated by subtract-

ing form the current absolute distance, the last measured one

(attribute distance). Second, the current velocity (attribute) is

the result of computing ∆d
∆t

. Both of the operations are grouped

in the private method Compute Velocity (-). It provides the

public method Get Velocity (that returns the current value of

velocity) to its contextual environment via the input interface

Speed Computer which is both required by the components

Speed Controller and Vehicle according to Fig. 5.

The component Sensor is the software facet of front-radars.

It computes the distance separating the vehicle to the nearest

front obstacle (attribute distance to obstacle). It provides the

method Get Distance To Obstacle to its contextual environ-

ment through the interface Sensing Engine.



Speed Controller is a central component responsible for the

longitudinal speed control. It has two main jobs, the first one

Autonomous Control is the leader’s speed control task. Since

the leader is the vehicle guiding the rest of the platoon, its

velocity may be controlled automatically or by human driving.

This job handles the obstacle detection, triggers braking, and

initiates the propagation of braking alarms to followers (cf.

Fig. 3). The second Dependent Control is the speed control

task of the followers. The velocity of a follower vehicle is

computed according to the principle explained in Section III

and represented in Fig. 1 (middle and right) and Fig. 2. The pa-

rameter pvel is the velocity value inputted from the predecessor

when the vehicle’s front position crosses the border pc of CZ.

Both jobs compute an acceleration command (attribute) peri-

odically based on a speed request (attribute) by calculating ∆v
∆t

where ∆t is a time period and ∆v is the difference between

the current speed request (defined by the control decision)

and the current velocity recoverable by invoking the method

Get Velocity of Speedometer. This operation is performed by

the method Compute Acceleration. Speed Controller outputs

periodically the acceleration command to adjust the engine

velocity by providing the method Get Acceleration through

the interface Accelerator.

The component Vehicle represents the software unit of a

connected vehicle. It contains two main instance references sct

and spd resp. of Speed Controller and Speedometer used to

get the actual acceleration command and velocity in attributes.

Besides, it contains also a reference bs to remote instance (@)

of the component Base Station that represents the mobile BS

installed on the leader. As soon as the V2B connection to

BS is established, a new tail-merging vehicle to the platoon

stores a remote reference to its Vehicle instance by it (integer)

identifier in the map attribute connected vehicles by invoking

Register Vehicle. It can acquire as return a map platoon con-

taining references the other connected vehicles of the platoon

by invoking Get Remote Vehicles. By the way, an instance of

a connected vehicle provides the methods Get Velocity and

Trigger Brake Alarm (via the interface V2V) to the others. It

has a job Drive used to initialize the system and motors but

also to adopt the autonomous driving mode if needed.

The dynamic distributed architecture is given in the model

of Fig. 6. The component Vehicle is instantiated thrice in

three partitions Leader, Follower 1 and Follower 2 running

in three distributed nodes resp. dispatched in V1, V2 and V3.

Locally within each node, each of them embodies component

instances of Speed Controller, Speedometer, Odometer and

Sensor. They also require remotely i) from each other, the

methods of the interface V2V, and ii) those of the interface V2B

from the component Base Station instantiated in a separate

partition Base running in the leader’s node.

At t0 (cf. Fig. 1), by having the intention to tail-merge in the

platoon and being under the coverage area of BS, V1 acquires

the reference of BS remote instance, registers itself into it by

invoking Register Vehicle, and requests the references of other

registered vehicles by invoking Get Remote Vehicles (step 1).

BS responds by sending them back to V1 (step 2).

leader :: Vehicle

follower :: Vehicle follower :: Vehicle

spd :: Speedometer

odo :: Odometer

sct :: Speed Controller

sns :: Sensor

bs :: Base Station

spd :: Speedometer

odo :: Odometer

sct :: Speed Controller

sns :: Sensor

spd :: Speedometer

odo :: Odometer

sct :: Speed Controller

sns :: Sensor
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Partition 1: Base

Partition 2: Leader

Distributed node of V2
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Distributed node of V3

Partition: Follower 2

Fig. 6. Distributed dynamic architecture; interfaces are input and output.

At t1, V3 accelerates to catch up with V2 (step 3) as said

before in Section III. No V2X communication is required

because V3 is still rolling in AZ. At t2 (step 4), by entering

CZ, V3 requests periodically the velocity of V2 (by calling

remotely Get Velocity). We assume that synchronization is

required between the caller body (the job Dependent Control

of Speedometer instance) in V2 and that of the called method

Get Velocity i.e., the body of Dependent Control is blocked as

long as Get Velocity does not return. This blocking time shall

be bounded by the period of Dependent Control. A trick to

implement this requirement is given at the end of Section V-D.

The propagation of braking alarm is also handled using V2V

exchange between vehicles as explained above in Section III

and shown in Fig. 3. When the leader (V1) detects an obstacle

in the road, it brakes immediately and notifies its direct

follower (V2) by invoking the method Trigger Brake Alarm

in which the private procedure Brake is executed to actuate

the brakes. V2 performs the same actions to notify V3.

V. ROBOT PROTOTYPING AND IMPLEMENTATION

We present in this section the software implementation

and the robotic prototyping of our design method detailed in

Section IV. Specifics about the distributed deployment of our

application and respectfulness of real-time constraints are also

provided. We start by presenting the robots architecture.

A. Robots architecture

The architecture of Fig. 7 represents the hardware structure

of our prototypes of four-wheeled robots. A robot is composed

of: 1) four micro DC (Direct Current) geared motors used

to rotate four wheels with a power supply of 7.5V, 2) two

motor encoders with a resolution of 20 PPR (Pulses Per motor

Revolution) which can be fixed on the front or rear motors,

3) an ultrasonic sensor (HC-SR04) positioned at the front of

the robot, 4) a Romeo (DFRobot product) low-level slave

robot controller used to efficiently interface (using Arduino

functions) with the three first hardware components, and 5) a

Raspberry Pi (RPi) master high-level control card on which

our distributed software is deployed to command the Romeo

board. The control outputs and the sensing inputs are wired

between the two boards using the I2C bus.
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Fig. 7. Wheeled robot architecture; acronym legend of pins and connectors:
GND (Ground), VCC/VIN/5V (Power-Supply), Echo (Ultrasonic Echo), Trig
(Ultrasonic Chirp), SDA (Serial DAta line of I2C), SCL (Serial CLock line
of I2C), M1 and M2 (Power inputs for resp. left and right motors).

B. Robot speed controller

The block diagram of Fig. 8 illustrates the speed control

process of our wheeled robots. Light gray boxes are software

instances of the design components (cf. Section IV-B). Dark

gray boxes are some of the robot hardware components shown

in Fig. 7. The velocity of a given robot in the platoon is

controlled using two inputs: i) the error err (∆v) between the

speed request sr and the current velocity vc of the robot, and

ii) the distance do to the nearest obstacle acquired by calling

the method Get Distance To Obstacle from the instance sns

of Sensor (cf. Section IV-B). The distance is computed using

the duration uo from the moment the chirp output signal is

emitted by the ultrasonic sensor until the echo input one is

received. The current velocity vc is computed using the relative

distance traveled during a period of the job Update of the

instance spd of Speedometer based on the current absolute

distance ad acquired by calling Get Traveled Distance from

the instance odo of Odometer (cf. Section IV-B). The absolute

distance ad is computed based on the number of revolutions rl
and rg resp. of the left and right motors which can be traced

by getting the number of interrupts (pulses) il and ig registered

resp. by the left and right encoders having a resolution of 20

PPR as mentioned above. The instance sct of Speed Controller

computes periodically the acceleration command ctl using err
and do. If no braking alarm is triggered locally by the robot in

case an obstacle is detected or remotely by other robots, ctl is

supposed to be err
∆t

where ∆t is the time period of one of the

jobs Dependent Control (if follower) or Autonomous Control

(if leader) as explained in Section IV-B.

sct :: Speed Controller

sns :: Sensor Ultrasonic sensor

Left motor

Right motor

Left encoder

Right encoder

odo :: Odometerspd :: Speedometer

–

ctlsr err

vc

ad

il

ig

rl

rg

do

uo

.

Fig. 8. Block diagram of the robot speed controller.

In our prototyping context, the command ctl is implemented

by Pulse-Width Modulation (PWM), a technique for getting

analog voltage control using a digital square signal switched

between On (7.5V) and Off (0V). The duration of “On time” is

called the pulse width. It is modulated to get varying the analog

values. This On-Off pattern is fast repeated under the Romeo

with a short duty cycle of about 2 milliseconds (ms) which

produces a steady voltage used to control the rotation speed

of motors. The PWM command is an integer varying in the

interval [0,255] where 0 and 255 resp. correspond to 0% (null

speed) and 100% (max speed) duty cycle. At a given instant,

the actual PWM value of ctl is calibrated proportionally to

err to reach the desired value sr of velocity.

I2C Connector

Attributes

- descriptor : Integer

References

(No references)

Required methods

(No required methods)

Provided methods

+ Set Connection # I2C Connection Failure

+ Acquire Bus # I2C Bus Acquiring Failure

+ Send Data (data : Byte array)

# I2C Sending Failure

+ Receive Data (→ data : Byte array)

# I2C Receiving Failure

+ Disconnect

Jobs

£ Data Exchange (period : Integer)

I2C

Fig. 9. The component I2C Connector.

The Romeo acquires il, ig and uo resp. from the left and

right encoders and the ultrasonic sensor and transmits them

to the RPi. In turn, the PWM command ctl is computed and

transmitted from the RPi to the Romeo. This bidirectional data

exchange is rooted by I2C between the cards. The component

I2C Connector (cf. Fig. 9) plays the role of the I2C connection

endpoint from the side of the software application running on

the RPi. A parallel endpoint Arduino code is executed from the

Romeo side. The job Data Exchange serves to exchange data

periodically with the Romeo. The methods Set Connection

and Acquire Bus initiate resp. the connection with the Romeo,

acquire the bus, and set the attribute file descriptor serving to

identify the memory area, handled by the I2C driver, in which

the component reads/writes data. The methods Send Data and

Receive Data are called by Data Exchange to resp. send and

receive data as byte arrays.



C. Ada implementation

In this subsection, we present the Ada implementation of

components. For that, we select the components Odometer and

Speedometer (cf. Fig. 5). The package specification (.ads file)

of Odometer is given by the code below.

-- Specification file ‘‘odometer_component.ads’’

package Odometer_Component is

type Odometer is tagged private;

type Access_Odometer is access all Odometer;

function Get_Absolute_Distance (O: in Odometer) return Float;

procedure Update (O: in out Odometer; Period: Integer;

IG, IL: access Integer);

Erroneous_Distance: exception;

private

type Odometer is tagged record

Right_Interrupts: Integer;

Left_Interrupts: Integer;

Absolute_Distance: Float; -- in millimeters (mm)

end record;

procedure Compute_Absolute_Distance (O: in out Odometer);

end Odometer_Component;

In the package Odometer_Component, Odometer is defined

as a tagged (heritable) private type implemented as a record

containing the main attribute Absolute_Distance with two ex-

tra attributes Left_Interrupts and Right_Interrupts resp.

the actual numbers of interrupts registered by resp. the left

and right encoders. The latter two attributes are updated by the

job Update (implemented as a procedure) by getting as inputs

the current values of il and ig (parameters IL and IG) sent

by I2C from the Romeo. The job uses for that the procedure

Compute_Absolute_Distance that computes first adl and adg
the distances traveled resp. by the left and the right wheels by

using the wheel’s circumference and the encoder resolution

(20 PPD). Then, it sets the attribute Absolute_Distance by

calculating (adl+ adg)/2. The body of Update (code below)

is defined as a periodic loop under Ada.Real_Time.

with Ada.Real_Time; use Ada.Real_Time;

procedure Update (O: in out Odometer; Period: Integer;

IL, IG: access Integer) is

-- Relative deadline is implicit (Deadline = Period)

Deadline: Time_Span := Milliseconds(Period);

Next: Time; -- Periodic release instants

begin

-- First release instant

Next := Clock;

loop

-- Undertake the periodic job

O.Left_Interrupts := IL.all;

O.Right_Interrupts := IG.all;

O.Compute_Absolute_Distance;

-- Test if the deadline is missed (Next is not yet updated)

if Clock - Next > Deadline then

Put_Line("Odometer: Update misses deadline !");

end if;

-- Wait until the next release instant

Next := Next + Period;

delay until Next;

end loop;

end Update_Distance;

The package Ada.Real_Time provides accurate access to

the hardware clock. It defines a type Time that represents real

time with a clock high precision of at most 1ms but can reach

down the nanosecond (ns), notably on the RPi. Time values are

strictly monotonic (cannot be adjusted backwards or forwards

as in Ada.Calendar) since a starting point epoch. We use

the delay until primitive to specify task periodicity since it

allows to establish a precise stamp of periodic absolute release

instants in time useful to check whether deadlines are met or

not by the repetitive computations of tasks [25].

The package Speedometer_Component is structured exactly

like Odometer_Component as shown in the following specifica-

tion. It defines the component Speedometer as a tagged private

record containing in addition to the attributes Distance and

Velocity an instance reference of Odometer (cf. Fig. 5) typed

Access_Odometer, pointer to objects of type Odometer.

-- Specification file ‘‘speedometer_component.ads’’

with Odometer_Component; use Odometer_Component;

package Speedometer_Component is

type Speedometer is tagged private;

type Access_Speedometer is access all Speedometer;

function Get_Velocity (S: in out Speedometer) return Float;

procedure Update (S: in out Speedometer; Period: Integer);

Erroneous_Velocity: exception;

private

type Speedometer is tagged record

Odo: Access_Odometer; -- Instance reference of Odometer

Distance: Float;

Velocity: Float; -- in mm/ms

end record;

procedure Compute_Velocity (S: in out Speedometer; Delta_T: Integer);

end Speedometer_Component;

Distribution is handled by the components Base Station and

Vehicle (cf. Section IV-B) given by the specifications below.
-- Specification file ‘‘remote_vehicle_component.ads’’

package Remote_Vehicle_Component is

pragma Remote_Types;

type Remote_Vehicle is tagged limited private;

function Get_Velocity (V: access Remote_Vehicle) return Float;

procedure Trigger_Brake_Alarm (V: access Remote_Vehicle);

Unknown_Velocity: exception;

private

type Remote_Vehicle is tagged limited record

Identifier, PWM_Command: Integer;

Brake_Alarm: Boolean;

Velocity: Float;

end record;

end Remote_Vehicle_Component;

-- Specification file ‘‘base_station.ads’’

with Remote_Vehicle_Component; use Remote_Vehicle_Component;

package Base_Station is

pragma Remote_Call_Interface;

Max: constant Integer;

type Remote_Vehicle_Ref is access all Remote_Vehicle’Class;

type Reference_Table is array (0 .. Max) of Remote_Vehicle_Ref;

procedure Register_Vehicle (Id: Integer; V: Remote_Vehicle_Ref);

function Get_References return Reference_Table;

Illegal_Vehicle_Identifier, Not_Connected_Vehicle: exception;

end Base_Station;

-- Specification file ‘‘vehicle_component.ads’’

with Remote_Vehicle_Component; use Remote_Vehicle_Component;

with Base_Station; use Base_Station;

with Speed_Controller_Component; use Speed_Controller_Component;

with Speedometer_Component; use Speedometer_Component;

package Vehicle_Component is

type Vehicle is new Remote_Vehicle with private;

type Access_Vehicle is access all Vehicle;

procedure Drive (V: in out Vehicle; Period: Integer);

private

type Vehicle is new Remote_Vehicle with record

Sct: Access_Speed_Controller; -- Specification not provided

Spd: Access_Speedometer;

Platoon: Reference_Table;

end record;

procedure Brake (V: in out Vehicle);

end Vehicle_Component;

The package Remote_Vehicle_Component implements the

remote facet of the component Vehicle using the tagged limited

(not assignable by simple copy) abstract type Remote_Vehicle

with the methods Get_Velocity and Trigger_Brake_Alarm

under the pragma Remote_Types. Library units (packages)

categorized with this pragma define distributed objects with

remote methods. They can be duplicated within one partition

or several ones. The attribute PWM_Command of Remote_Vehicle

stands for the attribute acceleration (cf. Fig. 5) in our proto-

typing context as explained in Section V-B.



The package Vehicle_Component provides a definition of

the component Vehicle as a concrete type Vehicle that inherits

from Remote_Vehicle. This inheritance makes a separation

between remote and local interfaces of Vehicle very useful for

reusability under different implementation contexts. Moreover,

Remote_Type packages cannot semantically depend on normal

ones (like Speedometer_Component for example). They can

only depend on other remote type library units and pure or

shared passive categorizations.

Base Station is specified by the package Base_Station

and categorized by pragma Remote_Call_Interface (RCI).

Packages categorized by this pragma act as stateless servers

providing to client environments a collection of remote subpro-

grams (typically procedures and functions). This service-based

aspect is fully compliant with the nature of Base Station since

it reacts only if necessary to environment invocations which

may update or not its internal state. This argues absence of jobs

in the component since they are not relevant for the system

operation. The attribute connected vehicles is implemented as

a variable Connected_Vehicles of type Reference_Table that

is defined as (Integer, @Vehicle) map (cf. Fig. 5).

D. Middleware deployment and real-time determinism

Our implementation is built by a cross-compiled version for

ARM architectures of po_gnatdist, the compilation tool of

the PolyORB package. Three procedures Leader, Follower_1

and Follower_2 are compiled in three partitions deployed on

three robots according to Section IV-B and Fig. 6. A fourth

one Base providing the RCI subprograms of Base_Station is

deployed in a second partition running in the leader robot.

The application is executed under fully preemptible versions

of the Linux kernel 4.4.21 (patch Preempt RT) [26]. Prior tests

were made to evaluate low latency, preemption and deadline

respectfulness of the scheduler SCHED_FIFO under extremely

stressful processing conditions using the tools cyclictest and

hackbench [27], but also Ada concurrent programs. Results

were positive arguing a high level of real-time determinism and

low run-time overhead. Jobs are executed concurrently with

periods defined according to the component dependencies. For

example, the period duration of the job Update in Speedometer

is the double of the same in Odometer. Tasks have priority over

system calls and scheduled using SCHED_FIFO enabled by the

Ada dispatching policy FIFO_Within_Priorities.

According to Section III, the response delay a vehicle can

wait for when requesting periodically the predecessor velocity

by being in CZ shall be bounded to ensure safe stable behavior.

In our prototyping context, this requirement cannot be met by

repetitive remote and synchronous invocations of the method

Get_Velocity in a periodic deadline-sensitive task because of

the TCP/IP-based WiFi connection used by the middleware. In

order to overcome this problem, we short-circuit PolyORB by

Bluetooth talk/listen socket-based communication much more

faster than WiFi since we use the model B3 of the RPi.

Video animations of the platooning scenarios of Section III

using two and three robots are available in YouTube under the

links http://y2u.be/2WHyy5Z7nv4 and http://y2u.be/Cl-vGISxBe4.

VI. DISCUSSIONS, PERSPECTIVES AND RELATED WORKS

The industrial actors of HISC systems are still using cyclic

reactive software design [6]–[8] rigid and hard to maintain.

System operation is a periodic execution of procedures under

offline non-preemptive OS-free scheduling policies. Aperiodic

unpredictable environment events, for which a HISC system

should be sensitive, are directly handled in the functional

description of its nominal behavior. This significantly erodes

the implementation and discriminates modularity. Besides, the

cyclic approaches are unsuitable to ensure safe interoperability

between the system parts. Messages are sent/received between

sub-systems asynchronously as stamped data flow using wired

or wireless network. This exchange has two major drawbacks:

1) it is error-prone by naming and processing crude data flow,

and 2) it does not elucidate the interaction scenarios between

sub-systems during design and hardens their verification.

Our design was mainly shaped to address these problems. It

is result of two-years effort to build an innovative distributed

object-oriented solution to control vehicle platoons powered

by V2X communication. To the best of our knowledge, our

eyesight to object-oriented components is new compared to the

existing definitions [13] in which jobs and instance references

are implicit. Our approach is appropriate to design autonomous

communicating systems in general, quite compliant with the

Ada language widely used in HISC development, and allows

explicit traceability and verification of components interactive

behavior. Our implementation of the longitudinal speed control

in ACVP systems was deployed and tested on wheeled robots

using the middleware PolyORB recently being selected by

the defense division (Astrium) of the European Aeronautic

Defense and Space (EADS) company for use in the European

contribution to the International Space Station (ISS) [28].

We see two main directions for future work. The first is

the introduction of contract-based formal top-down approach

(work in progress) based on our ground implementation frame-

work to build correct-by-design HISC systems. The second is

prototyping this formal approach in design, verification, and

code generation toolboxes based on SMT-LIB [29] solvers.

Of the extensive literature around ITS, we discuss some

topicality and works related to the ours. From a holistic view-

point, the literature converges to the concept of Cyber-Physical

Systems (CPS), in which embedded computers and networks

monitor autonomously physical processes with feedback loops.

They are able to both understand and learn the environment

and act consequently. This is why CPS principles, methods and

tools are easy applied in smart automotive systems and self-

driving cars. At the legal level, this autonomy in automotive

systems implies consideration of traffic laws and insurance

costs. In this regard, we probably witness to a change in

drivers from “how to drive” to “how to use smart commands”.

This involves investment in Human Interface Machines (HIM).

Recently, the PSA group for example are integrating vocal and

tactile commands and smart-phones in car dashboards with

visual display in order to better respect road signs and avoid

potential dangers (see www.peugeot-connect.fr).

www.peugeot-connect.fr


Worldwide, the United States are acquiring the leadership

in autonomous vehicles. The technological innovations is not

only fast, but also sharp and pretty violent. Prototypes (like

Waymo and Uber self-driving cars) are already being tested on

streets. However, safety issues are not properly addressed and

not fixed yet. Few months ago, Uber stopped tests in Pittsburgh

after road accident to focus on safety solutions [30].

In Europe, the industy of autonomous vehicles is booming to

remain competitive. Efforts are first concentrated on standard-

ization like ISO 26262 [9] and AUTOSAR (AUTomotive Open

System ARchitecture) [31]. Currently, Europe is accelerating

the technological innovation in this field while establishing

the related ecosystem. The VEDECOM institute created in

2014 as part of the plan “Investissement d’Avenir” launched

by the French Government few years ago is among the striking

examples of that transition. It is dedicated for R&D around

smart, carbon-free and sustainable mobility. The DESERVE

European project (www.deserve-project.eu) mainly focusing

on ADAS technologies is another example. All these efforts

reflect that the European community is convinced that common

specification and development platforms are necessary for the

future automotive ecosystem of the continent.

Few academic experimental works exist around prototyping

control systems for vehicle platoons. We reserve the remaining

space to quote some selected references. In [32], the authors

provide a speed control system of autonomous platoon of RPi-

commanded slot cars. They simulate various control strategies

(like CACC) using Matlab. The controller is implemented and

animated using an object-oriented cyclic-based Java library.

The cars share states between each other using UDP-based

wireless broadcast and object serialization. In [33], the authors

propose a trace-based platooning control system without inter-

vehicle communication. A given vehicle is controlled to follow

the predecessor estimated trajectory. Control robustness was

validated on Pioneer 3AT mobile robots. We finish by [34],

the authors of this work present a longitudinal speed controller

for autonomous platoons of unconnected wheeled robots. The

velocity of follower robots is found based on the inter-robot

distances and estimations of the leader velocity obtained from

the controller adaptive dynamic. The controller stability was

studied using the Lyapunov criterion.
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