
Marquette University

e-Publications@Marquette

Electrical and Computer Engineering Faculty
Research and Publications

Engineering, College of

8-1-2008

Distributed Object Tracking Using a Cluster-Based
Kalman Filter in Wireless Camera Networks
Henry Medeiros
Marquette University, henry.medeiros@marquette.edu

Johnny Park
Purdue University

Avinash Kak
Purdue University

Accepted version. © 2008 IEEE. Reprinted, with permission, from Henry Medeiros, Johnny Mark
and Avinash C. Kak, "Distributed Object Tracking Using a Cluster-Based Kalman Filter in Wireless
Camera Networks," IEEE Journal of Selected Topics in Signal Processing, August 2008.
This material is posted here with permission of the IEEE. Such permission of the IEEE does not in
any way imply IEEE endorsement of any of Marquette University’s products or services. Internal or
personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this
document, you agree to all provisions of the copyright laws protecting it.
Henry Medeiros was affiliated with Purdue University at the time of publication.

http://epublications.marquette.edu
http://epublications.marquette.edu/electric_fac
http://epublications.marquette.edu/electric_fac
http://epublications.marquette.edu/engineering

1

Distributed Object Tracking Using a Cluster-Based

Kalman Filter in Wireless Camera Networks
Henry Medeiros, Johnny Park, Member, IEEE, and Avinash Kak

Abstract—Local data aggregation is an effective means to save
sensor node energy and prolong the lifespan of wireless sensor
networks. However, when a sensor network is used to track
moving objects, the task of local data aggregation in the network
presents a new set of challenges such as the necessity to estimate,
usually in real-time, the constantly-changing state of the target
based on information acquired by the nodes at different time
instants. To address these issues, we propose a distributed object
tracking system which employs a cluster-based Kalman filter in a
network of wireless cameras. When a target is detected, cameras
that can observe the same target interact with one another to
form a cluster and elect a cluster head. Local measurements
of the target acquired by members of the cluster are sent to
the cluster head, which then estimates the target position via
Kalman filtering and periodically transmits this information to
a base station. The underlying clustering protocol allows the
current state and uncertainty of the target position to be easily
handed-off among clusters as the object is being tracked. This
allows Kalman filter based object tracking to be carried out in a
distributed manner. An extended Kalman filter is necessary since
measurements acquired by the cameras are related to the actual
position of the target by a non-linear transformation. In addition,
in order to take into consideration the time uncertainty in the
measurements acquired by the different cameras, it is necessary
to introduce non-linearity in the system dynamics. Our object
tracking protocol requires the transmission of significantly fewer
messages than a centralized tracker that naively transmits all the
local measurements to the base station. It is also more accurate
than a decentralized tracker that employs linear interpolation
for local data aggregation. Besides, the protocol is able to
perform real-time estimation because our implementation takes
into consideration the sparsity of the matrices involved in the
problem. The experimental results show that our distributed
object tracking protocol is able to achieve tracking accuracy
comparable to the centralized tracking method, while requiring
a significantly smaller number of message transmissions in the

network.

Index Terms—cameras, wireless camera networks, wireless
sensor networks, sensor clustering, distributed tracking, Kalman
filtering

I. INTRODUCTION

I
T is well known that local data aggregation is an effective

means to save sensor node energy and prolong the lifespan

of wireless sensor networks. This has motivated many previous

researchers to employ sensor clustering techniques to enable

local data aggregation for environment monitoring applications

[1], [2], [3], [4], [5]. However, when a sensor network is used

to track moving objects, the task of local data aggregation in

the network presents a new set of challenges. One challenge

The authors are with the School of Electrical and Computer Engineering,
Purdue University, Electrical Engineering Building, 465 Northwestern Ave.,
West Lafayette, IN 47907-2035. E-mail: {hmedeiro, jpark, kak}@purdue.edu.

is that the system must be able to estimate the current state

of the target based on information acquired by the nodes

at different time instants while the state of the target is

constantly changing. Another challenge comes from the fact

that most object tracking systems demand the position of

the target object to be estimated in real-time which puts

heavy constraints on the time it takes to carry out local data

aggregation in the network. The work presented in this paper

attempts to address these issues.

In our earlier work [6], we have presented a clustering

protocol to allow for dynamic formation of camera clusters

as a target with specific visual features is detected in the

network. In this paper we extend that work by employing the

Kalman filter [7] — one of the most commonly used and

time-honored techniques for reliable parameter estimation —

to aggregate information collected by different nodes. We use

our clustering algorithm to manage a decentralized Kalman

filter to locally aggregate the data collected by the cameras.

The information on a target object is acquired by the cluster

members and transmitted to the cluster head. The cluster

head then aggregates the data and transmits the information

to a base station at a predefined rate. As the target moves

in physical space, so does the corresponding cluster in the

network. During cluster propagation, the state information

regarding the target is handed off from cluster head to cluster

head. As we will demonstrate, it is possible for a single target

to result in multiple clusters — this is owing to the directional

properties of the cameras. Multiple clusters will also result

from multiple targets executing motions in the physical space.

The results we show in this paper are limited to the case of

clusters formed by the motion of a single target.

This paper is organized as follows. In section II, we present

an overview of some works related to both clustering in

wireless sensor networks and distributed Kalman filtering. In

section III, we discuss some of the challenges involved in

cluster-based object tracking using wireless camera networks

and present the clustering protocol we have designed to

cope with these challenges. Section IV presents the main

contribution of this paper, the cluster-based Kalman filter.

In section V, we present some experimental results obtained

using our wireless camera network simulator and our network

of wireless cameras. Finally, we conclude the paper in section

VI.

II. RELATED WORK

A. Event-driven Clustering Protocols

In environment monitoring applications, the nodes of a

sensor network are usually clustered using one of the three

2

different strategies: (1) the nodes may be clustered only once at

the system initialization time; (2) periodically based on some

predefined network-wide time interval; and (3) aperiodically

on the basis of some internal node parameter, such as the

remaining energy reserve at the nodes [1], [2], [3]. However,

in object tracking applications, clustering must be triggered by

the detection of an event of interest external to the network.

This section presents some of the works that take external

events into consideration in the cluster formation process.

Chen et al. [8] have proposed an algorithm for distributed

target tracking using acoustic information. Their system

is composed of sparsely placed high-capability nodes and

densely spaced low-end sensors. The high-capability nodes act

as cluster heads and the low-end sensors as cluster members.

Cluster heads close to the detected event become active with

higher probability than cluster heads that are farther from the

event. Similarly, the probability that a cluster member sends

data to the cluster head is proportional to its distance to the

event.

Fang et al. [9] have proposed a distributed aggregate man-

agement (DAM) protocol, in which nodes that detect energy

peaks become cluster heads, and a tree of cluster members

is formed by their neighbors that detect lower energy levels.

When many targets lie within the same cluster, they use their

energy-based activity monitoring (EBAM) algorithm to count

the number of targets. EBAM assumes that all the targets are

equally strong emitters of energy and counts the number of

targets within a cluster based on the total energy detected

by the cluster. To drop this assumption, they proposed the

expectation-maximization like activity monitoring (EMLAM)

algorithm. This algorithm assumes that the targets are initially

well separated and uses a motion prediction model along with

message exchanges among cluster leaders to keep track of the

total number of objects.

Zhang and Cao [10] proposed the dynamic convoy tree-

based collaboration (DCTC) algorithm, in which the nodes

that can detect an object create a tree rooted at a node near

the detected object. As the object moves, nodes are added to

and pruned from the tree, and the root moves to nodes closer

to the object. This work is similar to our clustering protocol

in that it also provides mechanisms for cluster propagation as

the object moves. However, no mechanisms are provided for

interaction among clusters since a single cluster is formed to

keep track of the target. As we will see, in camera networks,

it may be necessary to have multiple clusters simultaneously

tracking the same target.

Blum et al. [11] proposed a middleware architecture to allow

for distributed applications to communicate with groups of

sensors assigned to track multiple events in the environment.

Their architecture is divided into two modules: the entity

management module (EMM) and the entity connection module

(ECM). The EMM is responsible for creating unique groups

of sensors to track each event, keeping persistent identities to

these groups, and storing information about the state of the

event. The ECM provides end-to-end communication among

different groups of sensors.

All of these works have in common the fact that they

are designed for omni-directional sensors. Therefore, they

do not account for challenges specific to directional sensors

such as cameras. One of these challenges is the fact that

physical proximity between a sensor and the target does not

imply that the sensor is able to acquire information about the

target. Hence, distance based cluster formation protocols are

not directly applicable to camera networks. The challenges

of sensor clustering in wireless camera networks will be

addressed in detail in section III.

B. Distributed Kalman Filtering

The idea of distributing the computations involved in esti-

mation problems using Kalman filters in sensor networks has

been a subject of research since the late 1970’s [12]. This

section presents some of the recent contributions in this area.

Olfati-Saber [13] presented a distributed Kalman filter

wherein a system with an np-dimensional measurement vector

is first split into n sub-systems of p-dimensional measurement

vectors, then these sub-systems are individually processed by

micro Kalman filters in the nodes of the network. In this

system, the sensors compute an average inverse-covariance and

average measurements using consensus filters. These averaged

values are then used by each node to individually compute the

estimated state of the system using the information form of

the Kalman filter. Even though this approach is effective in an

environment monitoring application where the state vector is

partially known by each node in the network, it is not valid

for an object tracking application where, at a given time, each

node in a small number of nodes knows the entire state vector

(although possibly not accurately).

Nettleton et. al. [14] proposed a tree-based architecture

in which each node computes the update equations of the

Kalman filter in its information form and sends the results

to its immediate predecessor in the tree. The predecessor then

aggregates the received data and computes a new update. Node

asynchrony is handled by predicting asynchronously received

information to the current time in the receiving node. This

approach is scalable since the information transmitted between

any pair of nodes is fixed. However, the size of the information

matrix is proportional to m2 where m is the dimension of

the state vector. In a sensor network setting, this information

may be too large to be transmitted between nodes, therefore,

methods to effectively quantize this information may need to

be devised

Regarding quantization, the work by Ribeiro et. al. [15]

studied a network environment wherein each node transmits

a single bit per observation, the sign of innovation (SOI), at

every iteration of the filter. The system assumes an underlying

sensor scheduling mechanism so that only one node transmits

the information at a time. It also assumes the update infor-

mation, i.e., the signs of innovations, to be available to each

node of the network. They showed that the mean squared error

of their SOI Kalman filter is closely related to the error of a

clairvoyant Kalman filter, which has access to all the data in

analog form.

There is an interesting trade-off between the works by

Nettleton et. al. and Ribeiro et. al.. The former presents a

high level of locality, i.e., each node only needs information

3

(a)

(b)

Figure 1. (a) Multiple clusters tracking the same object in a wireless camera
network, dotted circles represent the communication ranges of the clusters.
(b) Two single-hop clusters in a network of cameras that can communicate
in multiple hops. Blue (dark) circles represent cluster heads, green (light)
circles represent cluster members. The lines connecting the nodes correspond
to communication links among them.

about its immediate neighbors. On the other hand, a reasonably

large amount of information must be transmitted by each

node. The later, by its turn, requires the transmission of a

very small amount of information by each node, however, the

algorithm does not present locality since the information must

be propagated throughout the network. This kind of trade-off

must be carefully considered when designing an algorithm for

real wireless sensor network applications.

To the best of our knowledge, the only work that applies

Kalman filtering to a cluster-based architecture for object

tracking using camera networks is that proposed by Goshorn

et. al. [16]. Their system assumes that the network is previ-

ously partitioned into clusters of cameras with similar fields

of view. As the target moves, information within a cluster is

handed-off to a neighboring cluster.

III. CLUSTER-BASED OBJECT TRACKING WITH WIRELESS

CAMERA NETWORKS

Most of the current event-driven clustering protocols as-

sume that sensors closest to an event-generating target can

best acquire information about the target. In wireless camera

networks, however, the distance-based criteria for sensor node

clustering are not sufficient since, depending on their pointing

directions, physically proximal cameras may view segments of

space that are disjointed and even far from one another. What

that means is that even when only a single object is being

tracked, a clustering protocol must allow for the formation

of multiple disjointed clusters of cameras to track the same

object. An example is illustrated in Figure 1(a) where, in spite

of the fact that the cameras in cluster A cannot communicate

with the cameras in cluster B, both clusters of cameras can

track the object. Therefore, multiple clusters must be allowed

to track the same target.

Even if all the cameras that can detect a common object

can communicate with one another in multiple hops, the

communication overhead involved in tracking the object using

a large cluster may be unacceptable as collaborative processing

(a) (b)

Figure 2. Fragmentation of a single cluster. As the cluster head in (a) leaves
the cluster, it is fragmented into two clusters as illustrated in (b).

generally requires intensive message exchange among the

cluster members. Therefore, rather than creating a single large

multi-hop cluster to track an object, it is often desirable to

have multiple single-hop clusters that may interact as needed.

An example is illustrated in Figure 1(b) where, whereas all

the cameras that can see the same object may constitute a

connected graph if we allow multi-hop communications, it

may be more efficient to require that two single-hop clusters

be formed in this case.

Dynamic cluster formation requires all cluster members to

interact to select a cluster head. There are many algorithms

available [17],[18] that could be used for electing a leader from

amongst all the cameras that are able to see the same object.

Nevertheless, these algorithms would not work for us since we

must allow for the formation of multiple single-hop clusters

(for the reasons previously explained) and for the election of

a separate leader for each cluster. Therefore, it is necessary to

devise a new leader election protocol suitable for the creation

of single-hop clusters in a wireless camera network setting.

After clusters are created to track specific targets, these

clusters must be allowed to propagate through the network

as the targets move. Cluster propagation refers to the process

of accepting new members into the cluster as they identify the

same object, removing members that can no longer see the

object, and assigning new cluster heads as the current cluster

head leaves the cluster. Since cluster propagation in wireless

camera networks can be based on distinctive visual features of

the target, it is possible for clusters tracking different objects to

propagate independently, or even overlap if necessary. In other

words, cameras that can detect multiple targets may belong

simultaneously to multiple clusters. Including a new member

into a cluster and removing an existing member from a cluster

are rather simple operations. However, when a cluster head

leaves the cluster, mechanisms must be provided to account

for the possibility that the cluster be fragmented into two or

more clusters, as illustrated in Figure 2.

Since multiple clusters are allowed to track the same target,

if these clusters overlap they must be able to coalesce into

a single cluster. Coalescence of clusters is made possible by

permitting the overhearing of intra-cluster communications as

different clusters come into each other’s communication range.

Overhearing obviously implies inter-cluster communication.

It is important to note that inter-cluster communication can

play a role in intra-cluster computation of a parameter of

the environment even when cluster merging is not an issue.

For example, a cluster composed of overhead cameras may

4

MONITORING

TRACKING INTERACTING

Object detected

Formation of clusters

Object moves

Propagation

Approaches other clusters

Inter−clusters communication

Object lost

Fragmentation

Coalescence

Figure 3. State transition diagram of a cluster-based object tracking system
using a wireless camera network.

request information about the z coordinate of the target from

a neighboring cluster composed of wall-mounted cameras.

Therefore, it is necessary to provide mechanisms to allow

inter-cluster interactions in wireless camera networks.

To summarize these points, Figure 3 illustrates the state tran-

sition diagram of a cluster-based object tracking system using

a wireless camera network. The network initially monitors the

environment. As an object is detected, one or more clusters

are formed to track this object. To keep track of the object,

these clusters must propagate through the network as the object

moves and, if necessary, fragment themselves into smaller

clusters. Finally, if two or more clusters tracking the same

object meet each other, they may interact to share information

or coalesce into larger clusters.

One of the primary contributions of the clustering protocol

we present below is that it does allow for the formation and

propagation of multiple clusters. When needed, the protocol

also allows for clusters to interact or coalesce into larger

clusters and for large clusters to fragment into smaller clusters.

Moreover, our clustering protocol allows for distributed appli-

cations to be easily implemented in wireless camera networks

since it releases the application of much of the burden of

assigning roles to the cameras (i.e., leader/member) and of

the collection of the data generated by the cameras.

A. Clustering Protocol

In this section we present our clustering protocol. We

believe that the best way to present the protocol would be to

show the state transition diagram at each node. Such a diagram

would define all of the states of a node as it transitions from

initial object detection to participation in a cluster, to possibly

its role as a leader, and, finally, to relinquishing its mem-

bership in the cluster. Unfortunately, such a diagram would

be much too complex for a clear presentation. So instead

we have opted to present this diagram in three pieces. The

individual pieces we will present in this section correspond to

the cluster formation and head election, cluster propagation,

and inter-cluster communications. The state transition diagram

for cluster propagation includes the transitions needed for

cluster coalescence and fragmentation. As the reader will note,

our state transitions allow for wireless camera networks to

dynamically create one or more clusters to track objects based

on visual features. Note that our protocol is lightweight in the

IDLE

WAITING

Object Detected

SEND:create cluster
update candidate list

PROVISORY

MEMBER

HEAD

SEND: cluster ready Remove first candidate

CH = next candidate

DEFINITIVE

MEMBER

RCV: criteria from Sj

RCV: criteria from Sj

RCV: cluster ready from first candidate

REPLY: join cluster

SEND: cluster ready

Timeout && first candidate != local id

RCV: cluster ready from CH

REPLY: join cluster

Timeout && CH != local id

Timeout && CH == local id

Timeout

&&
first candidate == local id

FIRST PHASE

SECOND PHASE

update candidate list

update candidate list

Figure 4. Cluster head election state transition diagram.

sense that it creates single-level clusters, i.e. clusters composed

only of cameras that can communicate in a single hop, rather

than multiple-level clusters, which incur large communication

overhead and latency during collaborative processing and

require complex cluster management strategies. Cameras that

can communicate in multiple hops may share information as

needed by inter-cluster interactions.

1) Cluster Head Election: To select cluster heads for

single-hop clusters, we employ a two-phase cluster head

election algorithm. In the first phase, nodes compete to find

a node that minimizes (or maximizes) some criterion, such as

the distance from the camera center to the object center in the

image plane. By the end of this phase, at most one camera in a

single-hop neighborhood elects itself leader and its neighbors

join its cluster. During the second phase, cameras that were

left without a leader (because their leader candidate joined

another cluster) identify the next best leader candidate.

As illustrated by the state transition diagram on the left

side of Figure 4, in the first phase of the cluster head election

algorithm, each camera that detects an object sends a message

requesting the creation of a cluster and includes itself in

a list of cluster head candidates sorted by the cluster head

selection criteria. The cluster creation message includes the

values of the cluster head selection criteria from the sender.

After a camera sends a cluster creation message, it waits for a

predefined timeout period for cluster creation messages from

other cameras. Whenever a camera receives a cluster creation

message from another camera, it updates the list of cluster

head candidates. To make sure that cameras that detect the

object at later moments do not lose information about the

available cluster head candidates, all the cameras that can hear

the create cluster messages update their candidate lists. After

the end of the timeout period, if the camera finds itself in the

first position of the candidate list, it sends a message informing

its neighbors that it is ready to become the cluster head. If the

camera does not decide to become a cluster head, it proceeds

to the second phase of the algorithm.

The first phase of the algorithm guarantees that a single

5

Figure 5. Orphan cameras after the first stage of the leader election algorithm.

camera chooses to become a cluster head within its communi-

cation range. However, it might be the case that cameras that

can communicate to the cluster head in multiple hops are left

without a leader. Figure 5 shows an example of this situation.

Cameras 1 and 2 decide that camera 3 is the best cluster head

candidate. However, camera 3 chooses to become a member

of the cluster headed by camera 4. Hence, cameras 1 and 2

are left orphans after the first stage of the leader election and

must proceed to the second phase of the algorithm to choose

their cluster heads.

During the second phase of the cluster head election,

cameras that did not receive a cluster ready message after

a time interval remove the first element of the cluster head

candidate list. If the camera then finds itself in the first position

of the candidate list, it sends a cluster ready message and

becomes a cluster head. Otherwise, the camera waits for a

timeout period for a cluster ready message from the next

candidate in the list. This process is illustrated in the right

side of the state transition diagram of Figure 4. Eventually,

the camera will either become a cluster head or join a cluster

from a neighboring camera. To avoid that multiple cameras

decide to become cluster heads simultaneously, it is important

that the cluster head election criteria impose a strict ordering

to the candidates (if it does not, ties must be broken during

the first phase).

The second phase of our leader election algorithm bears

some similarities with Garcia-Molina’s bully election algo-

rithm [19]. As a consequence, the algorithm is not robust to

communication failures in the network. However, the conse-

quences of communication failures are relatively mild in the

sense that, as the algorithm terminates, every cluster will have

exactly one cluster head, even if more than one cluster is

formed where a single cluster should. This property holds

because each camera eventually chooses a cluster head, even

if it is itself, and after receiving a cluster ready message

from a cluster head, a camera no longer accepts cluster ready

messages. Therefore, we believe that the simplicity of the

algorithm overcomes its relative lack of robustness.

In the final step of the algorithm, to establish a bidirectional

connection among the cluster head and its members, each

member sends a message to report the cluster head that it

has joined the cluster. This step is not strictly necessary if the

cluster head does not need to know about the cluster members.

However, in general, for collaborative processing, the cluster

head needs to know its cluster members so that it can assign

them tasks and coordinate the distributed processing.

IDLE

WAITING

Object Detected

SEND:create cluster

PROVISORY

MEMBER

DEFINITIVE

MEMBER

Lose Object

SEND: leave cluster

RCV: force join

Lose Object

SEND: candidates list

RCV: candidates

remove non−neighbors

OVERHEAR: force join
to head candidate

CLUSTER
HEAD

RCV: create cluster
or cluster ready

RCV: leave cluster or
join cluster

update cluster
members list

RCV: force join

OVERHEAR: force join
to cluster head

REPLY: force join

REPLY: join cluster
CH = sender

REPLY: join cluster
CH = sender

REPLY: join cluster
CH = sender

REPLY: join cluster
CH = sender

Figure 6. State transition diagram for cluster propagation.

2) Cluster Propagation: Inclusion of new members into

active clusters takes place as follows. When a camera detects

a new target, it proceeds normally as in the cluster formation

step by sending to its neighbors a create cluster message

and waiting for the election process to take place. However,

if there is an active cluster tracking the same object in the

neighborhood of this camera, the cluster head replies with a

message requesting the camera to join its cluster. The camera

that initiated the formation of a new cluster then halts the

election process and replies with a join cluster message.

If there are multiple cluster heads near a camera that has

detected a target, the camera could, at the cost of a unit of time

delay, choose the cluster head which is closest to the target

and become its member. However, we believe that any extra

waiting period during cluster propagation should be avoided

since it could degrade the tracking performance. Hence, we

simply allow a new camera (that has just seen the target) to

join the cluster whose cluster head first responds to the camera.

Removal of cluster members is trivial; when the target

leaves the field of view of a cluster member, all it has to do

is send a message informing the cluster head that it is leaving

the cluster. The cluster head then updates its list of cluster

members. If the cluster member can track multiple targets, it

terminates only the connection related to the lost target.

Figure 6 shows the state transition diagram for cluster prop-

agation. The diagram shows the transitions for inclusion and

removal of cluster members as well as cluster fragmentation

and coalescence, which we explain below.

a) Cluster Fragmentation: When the cluster head leaves

the cluster, we must make sure that, if the cluster is frag-

mented, each fragment will be assigned a new cluster head.

Cluster head reassignment works as follows. We assume that

the cluster head has access to the latest information about

the position of the target with respect to each cluster member

and, consequently, is able to keep an updated list of the best

cluster head candidates. We also assume that cluster members

6

BORDER NODES

(a)

JOIN CLUSTER B

BORDER

NODE

CLUSTER

HEAD

JOIN CLUSTER B

BORDER NODE

CLUSTER

HEAD

BORDER

NODE

CLUSTER A CLUSTER B

BORDER NODE

BORDER NODE

(b)

Figure 7. (a) Border nodes. (b) Messages transmitted to establish inter-cluster
connections.

know their neighbors. When the cluster head decides to leave

the cluster, it sends a message to its neighbors containing a

sorted list of the best cluster head candidates. Each cluster

member removes from that list all the nodes that are not within

its neighborhood. Leader election then takes place as in the

second phase of the regular cluster head election mechanism.

b) Cluster Coalescence: When two clusters come within

each other’s communication range, there can be two possible

scenarios: (1) we may either have a non-coalescing inter-

cluster interaction, or (2) the clusters may coalesce to form a

larger cluster. We will address the non-coalescing inter-cluster

interactions in the next section. As far as two clusters coa-

lescing into one is concerned, our cluster head reassignment

procedure allows for seamless cluster coalescence. Consider

two clusters, A and B, that are propagating toward each

other. As the reader will recall, cluster propagation entails

establishing a new cluster head as the previous head loses

sight of the object. Now consider the situation when a camera

is designated to become the new cluster head of cluster A

and that this camera is in the communication range of the

cluster head of B. Under this circumstance, the camera that

was meant to be A’s new leader is forced to join cluster B. The

members of cluster A that overhear their prospective cluster

head joining cluster B also join B. If there are members of

cluster A that are not within the communication range of the

cluster head of cluster B, they do not join cluster B. Instead,

they proceed to select another cluster head for what remains

of cluster A following the second phase of the regular cluster

head election mechanism.

3) Non-coalescing Inter-cluster Interaction: It may be the

case that members of multiple clusters come into one another’s

communication range but their respective cluster heads are not

able to communicate in a single hop. In that case, the clusters

are not able to coalesce, but they may need to interact to share

information. The same situation prevails when a new cluster

comes into existence in the vicinity of an existing cluster but

without the head of the former being able to communicate

with the head of the later. In both these cases, information

can be shared among clusters through border nodes. Border

nodes are the nodes that can communicate with other nodes

in neighboring clusters, as illustrated in Figure 7(a).

Members of neighboring clusters become border nodes

through the border node discovery procedure that takes place

BORDER
NODE

OVERHEAR: join cluster

SEND:border node
increase border node counter

DEFINITIVE
MEMBER

OVERHEAR: leave cluster &&
border node counter ==1

SEND: not border node
decrease border node counter

OVERHEAR: leave cluster &&
border node counter >1

decrease border node counter

Figure 8. Inter-cluster communication state transition diagram.

as follows. Consider two clusters, A and B, and suppose a

new node that joins cluster B is in the communication range

of a member of cluster A. As previously explained, when a

node joins a cluster, either at cluster creation time or during

cluster propagation, it sends a join cluster message to its

corresponding cluster head. This is illustrated by the first arrow

on the right side of the space-time diagram shown in Figure

7(b). Since the member of cluster A is in the communication

range of the new member of cluster B, it can overhear that

message (first dashed line) and be aware that it has become a

border node. This new border node in cluster A then sends a

border node message to its own cluster head informing it that

it has become a border node, as illustrated in the cluster A

part of Fig. 7(b). When the cluster B member overhears that

message (second dashed line), it also becomes a border node

and informs its own cluster head of that fact by sending it a

border node message.

However, it is not sufficient for a border node to know

that it is in the communication range of some member of

another cluster. As we illustrated in Figure 7(a), border nodes

may communicate with multiple border nodes. Hence, it is

necessary for each border node to keep track of how many

connections it has to other clusters. This can be achieved by

simply incrementing a counter each time a new connection

among border nodes is established and decrementing it when

a connection is terminated. Figure 8 shows the state transition

diagram for inter-cluster communication.

When a cluster head is informed that one of its members

became a border node, it can, in effect, request information

from the neighboring clusters as needed.

4) Cluster Maintenance: Additional robustness vis-a-vis

communication failures is achieved by a periodic refresh of

the cluster status. Since our protocol is designed for clusters

to perform collaborative processing, we assume that cluster

members and cluster heads exchange messages periodically.

Therefore, we can use a soft-state based approach [20] to

keep track of cluster membership. What that implies is that

if the cluster head does not hear from a member within a

certain designated time interval, that membership is considered

terminated (by the same token, if a cluster member stops

receiving messages from its cluster head, it assumes the cluster

no longer exists and starts the creation of its own cluster). If

a specific application requires unidirectional communication,

i.e. communication only from head to members or only from

members to head, refresh messages can be sent by the receiver

7

side periodically to achieve the same soft-state based updating

of cluster membership.

Inter-cluster communication can also be maintained in a

similar manner. If a border node does not hear from nodes

outside its own cluster for a predefined timeout period, it

assumes it is no longer a border node. If communication is

unidirectional, border nodes can overhear the explicit refresh

messages sent by the neighboring cluster’s border nodes to

their respective cluster heads.

IV. CLUSTER-BASED KALMAN FILTER ALGORITHM

As we have shown in the previous section, our clustering

protocol provides a simple and effective means to dynamically

create clusters of cameras while tracking objects with specific

visual features. After a cluster is created, cameras within this

cluster are able to share information about the target with

very small overhead. Besides, the information shared by the

cameras is automatically carried by the cluster as it propagates.

This protocol provides a natural framework for the design of

a decentralized Kalman filter wherein data acquired by the

cameras is aggregated by the cluster head and the estimated

target position is carried along with the cluster as it propagates.

When designing our Kalman filter algorithm, we took into

consideration the two major constraints of wireless sensor

networks. First, the processing power of each node is very lim-

ited; hence, sophisticated algorithms cannot be implemented in

real time. Even relatively simple algorithms must be carefully

implemented to use the available hardware resources wisely.

Second, communication is very expensive in terms of its

energy overhead and in terms of the increased probability of

packet collisions should there be too many messages. The

second constraint implies that the data must be transmitted

sparingly. To deal with the first constraint, we took advantage

of the sparsity of the matrices involved in the estimation

problem at hand, as explained in detail in section IV-A. To

deal with the second constraint, we keep to a minimum the

number of messages that need to be exchanged between the

nodes for the Kalman filter to do its work. Besides, since

most of the traffic in an object tracking application in a wide

area network consists of object information transmitted to the

base station via multi-hop messages, we limit that traffic by

transmitting such information at a predefined rate. The result

is an algorithm that is able to estimate the target position in a

distributed manner, accurately, and in real-time while reducing

overall energy consumption in the network compared to a

centralized approach.

A. Kalman Filter Equations

We model our state as a 5-dimensional vector which in-

cludes the target position (xk, yk) at discrete time instant k,

its velocity (ẋk, ẏk), and the time interval δk between the two

latest measurements. That is, the state vector is given by:

xk=
[

xk yk δk ẋk ẏk

]T

The dynamic equations of the system are described by the

non-linear equations:

xk+1 =

xk + δkẋk + ax

2 δ2
k

yk + δkẏk +
ay

2 δ2
k

δk + ε

ẋk + axδk

ẏk + ayδk

In our system, following [21], the target acceleration (ax, ay)
is modeled by white Gaussian noise. We also model the

time uncertainty ε between the latest measurements as white

Gaussian noise. It is necessary to consider the time uncertainty

since we only want to loosely synchronize the cameras to

allow for consistency among their measurements. That is, we

do not want to use complex time synchronization algorithms

and, therefore, there may be a small time offset in the

measurements from different cameras. The dynamic equations

can be represented more compactly as:

xk+1 = f(xk,wk)

where wk =
[

ax ay ε
]T

is the process noise vector,

assumed white Gaussian with covariance matrix Q.

The measurements are given by the pixel coordinates of

the target and the time elapsed between the two most recent

measurements. We assume the target moves on the xy plane

of the reference frame and that the cameras were previously

calibrated, i.e., the homographies between the xy plane of

the reference frame and the image plane of each camera are

known. Hence, the homographies relate the pixel coordinates

to the elements of the state vector corresponding to the target

coordinates of the object. The measurement model can now

be defined as:

zk = hi(xk) + vk

where

hi(xk) =

hi1(xk)
hi2(xk)

δk

 =

Hi
11xk+Hi

12yk+Hi
13

Hi
31xk+Hi

32yk+Hi
33

Hi
21xk+Hi

22yk+Hi
23

Hi
31xk+Hi

32yk+Hi
33

δk

Here (hi1(xk), hi2(xk)) are the pixel coordinates based on

the homography Hi corresponding to camera i, δk is the

time elapsed between the two most recent measurements, and

vk is the measurement noise, assumed white Gaussian with

covariance matrix R.

Since both the dynamic equations of the system as well as

the measurement equations are given by non-linear functions,

we designed an extended Kalman filter to estimate the state of

the target. The time update equations of the extended Kalman

filter are given by:

x̂k|k−1 = f(x̂k−1|k−1, 0) (1)

Pk|k−1 = FkPk−1|k−1F
T
k + WkQWT

k (2)

where x̂k|k−1 and x̂k−1|k−1 are the predicted and the pre-

viously estimated state vectors, and similarly Pk|k−1 and

Pk−1|k−1 are the predicted and previously estimated covari-

ance matrices for the state vector. Fk, the Jacobian matrix of

8

the state transition function f(·) with respect to xk, is given

by:

Fk =
∂f

∂xk

∣

∣

∣

∣

x̂k−1|k−1,0

=

1 0 ẋk δk 0
0 1 ẏk 0 δk

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

(3)

Similarly, Wk is the Jacobian matrix of f(·) with respect to

wk, given by:

Wk =
∂f

∂wk

∣

∣

∣

∣

x̂k−1|k−1,0

=

δ2
k

2 0 0

0
δ2

k

2 0
0 0 1
δk 0 0
0 δk 0

(4)

The measurement update equations for the filter are given

by:

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k + R)−1 (5)

x̂k|k = x̂k|k−1 + Kk(zk − hi(x̂k|k−1, 0)) (6)

Pk|k = (I − KkHk)Pk|k−1 (7)

where Hk is the Jacobian matrix of the function hi(·) with

respect to xk evaluated at x̂k−1|k−1, given by:

Hk =
∂hi

∂xk

∣

∣

∣

∣

x̂k−1|k−1,0

=

∂hi1

∂xk

∂hi1

∂yk
0 0 0

∂hi2

∂xk

∂hi2

∂yk
0 0 0

0 0 1 0 0

 (8)

As we can see, the Jacobian matrices in Eqs. (3), (4), and

(8) are relatively sparse. This allows us to rewrite the filter

equations to achieve an efficient implementation more suitable

for wireless sensor nodes with limited processing power. To do

so, we first divide the Jacobian matrix Fk of Eq. (3) into four

sub-matrices as follows. Let FA = I2, FB = [v |δI2], FC =
03×2, and FD = I3, where In is an n-dimensional identity

matrix, 0n×m is an n × m zero matrix, and v = (ẋk, ẏk)T .

Then, Eq. (3) becomes1:

F =

[

FA(2×2)
FB(2×3)

FC(3×2)
FD(3×3)

]

=

[

I2 v | δI2

03×2 I3

]

Now let the error covariance matrix Pk|k−1 be represented by:

P =

[

PA(2×2)
PB(2×3)

PT
B(3×2)

PD(3×3)

]

then the first term on the right hand side of equation (2) can

be rewritten as:

FPFT = U =

[

UA UB

UT
B UD

]

=

[

PA + FBPT
B +

(

FBPT
B

)T
+ FBPDFT

B PB + FBPD

(PB + FBPD)
T

PD

]

Now if we further subdivide the matrices PB and PD into:

PB =
[

PBA(2×1)
PBB(2×2)

]

1Note that we have dropped the discrete time subscript to simplify the
notation.

PD =

[

pDA(1×1)
PDB(1×2)

PT
DB(2×1)

PDD(2×2)

]

then we have

UA = PA + vPT
BA + δP T

BB

+ PBAv
T + δPBB + vpDAv

T

+ δvPDB + δP T
DBv

T + δ2PDD

UB =
[

UBA UBB

]

=
[

PBA + vpDA + δP T
DB PBB + vPDB + δPDD

]

UD =PD

Similarly, let the second term on the right hand side of Eq.

(2) be represented by:

WQWT = V =

[

VA VB

V T
B VD

]

and let

Q =

[

Qxy(2×2)
0

0 qt

]

then, we have

VA =
δ4

4
Qxy

VB =
[

VBA VBB

]

=
[

0(2×1)
δ3

2 Qxy

]

VD =

[

vDA VDB

V T
DB VDD

]

=

[

qt 0(1×2)

0(2×1) δ2Qxy

]

Finally, the covariance update equation (2) becomes:

Pk|k−1 = Uk−1|k−1 + Vk−1|k−1 =

UA + VA UBA UBB + VBB

UT
BA pDA + vDA PDB

UT
BB + V T

BB PT
DB PDD + VDD

k−1|k−1

Let us now turn our attention to the measurement update

equations. Following a similar derivation, the Jacobian matrix

Hk of Eq. (8) can be divided into:

H =

[

HA(2×2)
HB(2×3)

HC(1×2)
HD(1×3)

]

=

[

HA(2×2)
0(2×3)

0(1×2) 1 0 0

]

Then, since HB = 0(2×3) and HC = 0(1×2), the first

element inside the parenthesis on the right hand side of Eq.

(5) becomes:

HPHT =

[

HAPAHT
A HAPBA

(HAPBA)
T

pDA

]

Let the covariance matrix of the measurement noise R be

represented by

R =

[

RA(2×2)
0

0 rB

]

Then, it follows from the Schur complement that

(HPHT + R)−1 = M =

[

MA MB

MT
B MD

]

=

[

S −SHAPBA

d

−
(

SHAPBA

d

)T P T
BAHT

ASHAPBA+d

d2

]

9

where d = rB + pDD and

S(2×2) =

(

HAPAHT
A + RA −

HAPBAPT
BAHT

A

d

)−1

Finally, the equation for the Kalman gain, Eq. (5), then

becomes:

K = PHT M =

PAHT
A PBA

PT
BAHT

A pDA

PT
BBHT

A PT
DB

[

MA MB

MT
B MD

]

It is important to note that in the above equations all operations

are carried out on small matrices. Besides, many elements used

in each step of the computations are reused in later steps.

Therefore, it is possible to temporarily store them and reuse

them later, saving computation time.

B. State Estimation

Algorithm 1 summarizes the state estimation algorithm that

runs at each node of the wireless camera network. As we

already mentioned, we use our clustering protocol as the

underlying framework for the implementation of the Kalman

filter. Therefore, the algorithm is initialized when a camera

joins a cluster (either as a cluster member or as a cluster

head) and is terminated when the camera leaves the cluster.

Therefore, the algorithm only runs while a camera is actively

tracking a target. After the target leaves the field of view

of the camera, it may switch to an energy saving mode that

periodically observes the environment to detect the presence

of new targets. In that sense, the initialization step presented

in Algorithm 1 is a local intra-cluster process that prepares the

cameras to track a specific target, as opposed to the network

wide system initialization procedure described in section IV-C.

The initialization in the state estimation algorithm takes

place after cluster formation is concluded, and its main goals

are to initialize the Kalman filter and to synchronize the

cluster members so that they can estimate the state of the

target consistently. To synchronize the cluster members, the

newly elected cluster head broadcasts a message to its cluster

members informing its current time. The cluster members

then synchronize their internal clocks to the time received

from the cluster head and time-stamp any future measurements

based on that time. It is important to note that neither clock

drifts between the cluster head and its cluster members nor

potential message delays (caused by the underlying algorithm

for medium access control or by message queuing) are taken

into consideration in this approach. Therefore, this time syn-

chronization is inherently not very accurate. This is the reason

why we modeled the uncertainty in the measurement times in

the state estimation equations, as explained in section IV-A.

It is interesting to note that our synchronization approach is

similar to the post-facto synchronization using undisciplined

clocks [22], except for the fact that the source of the synchro-

nization message is the cluster head rather than a third-party

node. Therefore, this method provides only a local consistent

time suitable for the Kalman filter to operate. To achieve global

time synchronization for the nodes, the time stamp can be

propagated along with the clusters using a synchronization

protocol such as TPSN [23]. Evidently, this method does not

Algorithm 1 Cluster-Based Kalman Filter

Initialization

if cluster_head = local_ID

initialize target state

broadcast time stamp

Maintenance

new local measurement available:

if cluster_head = local_ID

estimate target state

else

send measurement to

cluster head

measurement received:

estimate target position

sample period elapsed:

if cluster_head = local_ID

send current estimated

state to the user

Termination

if cluster_head = local_ID

send current estimated state

to new cluster head

provide a time stamp consistent with any external reference

(such as the time in the base station). Therefore, it is only

possible to know the position of the target at a given time

with respect to the instant it is initially detected. To obtain

a global reference consistent with an external clock, a more

complex time synchronization algorithm is required. Some of

the existing options are surveyed in [24].

In our approach, the cluster head is responsible for esti-

mating the state of the target and reporting it to the base

station. Therefore, whenever a cluster member acquires a new

measurement, it sends it to the cluster head which updates the

estimated target state based on that measurement. Similarly,

when a cluster head acquires a new local measurement, it also

updates the state of the target based on this measurement.

However, since the base station may be multiple hops away

from the cluster, transmitting every new estimate to the user

could result in high energy consumption. Therefore, the cluster

head sends information to the base station at a predefined rate.

Since the cluster head is responsible for keeping track of

the state of the target, as the cluster propagates and a new

cluster head is chosen, it is necessary to hand-off the state

information to the new cluster head. As explained in section

III-A2, our clustering protocol allows information about the

state of the target to be carried by the cluster as new cluster

heads are assigned. Therefore, all our Kalman filter algorithm

has to do is piggy-back a message containing the target state to

the cluster head reassignment message. After the new cluster

head is assigned, it continues state estimation.

It is important to note that the simplicity of Algorithm

1 is only possible due to the underlying clustering protocol

that handles all the aspects of distributed data collection and

information hand-off among different cameras.

10

C. System Initialization

As we observe in the Kalman filter equations presented in

section IV-A, the cluster head needs to know the homographies

between the cluster members and the xy plane in order to

estimate the position of the target based on the measurements

acquired by the cluster members. Therefore, to avoid trans-

mitting large amounts of data while tracking the object, when

the system is initialized each node stores the homographies of

its one-hop neighbors, i.e., its potential cluster members.

The system initialization works as follows. When a new

camera joins the network, it broadcasts its own homography to

its one-hop neighbors. When a camera receives a homography

from a new neighboring camera, it stores this homography

and replies to this camera by sending its own homography.

Even though this procedure can take O(n2) steps, where n is

the number of nodes in the network, it is a local algorithm,

meaning that no information needs to be broadcast beyond

a single hop neighborhood. Therefore, if we assume that m

is the average number of nodes in a single hop region, the

algorithm terminates in expected O(m2) iterations. Since we

can assume that m ≪ n for a wide area camera network, the

algorithm is feasible in practice.

V. EXPERIMENTS

To evaluate the performance of our algorithm, we carried

out a number of experiments in a simulated multi-hop network.

Also, in order to demonstrate the feasibility of the system in

practice, we implemented the object tracking system in a real

network of wireless cameras.

A. Simulations

We implemented a camera network simulator that provides

the pixel coordinates of a moving target based on each

camera’s calibration matrix. Figures 9(a) and (b) show two

views of the graphical user interface of the simulator. The

simulator creates a target that moves randomly or that follows

a predefined trajectory in the xy plane in the world frame.

The simulated cameras operate independently and the data

generated by each camera is output via TCP connection to

an individual node in a sensor network simulation using the

Avrora simulator [25]. Avrora is a simulator for the Atmel

AVR family of microcontrollers used in the Mica motes

[26]. Avrora is capable of performing simulations with high

accuracy on code natively generated for the AVR micro-

controllers. The simulator also provides a free space radio

model that allows for simulation of wireless communications

in sensor networks. Our Kalman filter code, along with the

clustering protocol, both implemented in the nesC language

[27] and running under the TinyOS operating system [28],

were executed directly in Avrora.

We used our testbed described above to evaluate the perfor-

mance of the proposed cluster-based Kalman filter for object

tracking. Figure 9 shows the configuration of 15 wireless cam-

eras used in the experiment. All the cameras were randomly

placed on the top plane of a cuboid volume with the dimension

of 50× 50× 5 meters. Each camera node is assumed to have

a communication range of 18m in all directions, and a view

angle of 120 degrees. Each red line between a pair of cameras

shown in Figure 9 indicates that the two cameras are able

to communicate directly (i.e., one-hop neighbors), and each

green pyramid represents the viewing volume of the camera.

It is assumed that all cameras have been fully calibrated (both

intrinsic and extrinsic parameters of the cameras are known).

Additionally, we assume that all objects move on the floor

(i.e., the bottom plane of the working environment), which

allows each camera to compute the 2D world coordinates of

the object given its image coordinates using the homography

relating the camera plane and the floor. Based on the results of

the experiments in [6] we set the clustering timeout to 300ms.

This timeout value provides an adequate balance between the

effectiveness of cluster formation and the speed with which a

cluster is able to follow a target.

1) Estimation Accuracy: To evaluate the accuracy of our

algorithm, we introduced Gaussian random noise into the

camera measurements and computed the root mean squared

error of the estimates obtained by our system. We then

compared the performance of our cluster-based Kalman filter

with the performance of a centralized tracking method. In the

centralized approach, we transmitted all the data collected

by the network to the base station, which then applied a

centralized Kalman filter to the data. Figure 10(a) shows

plots of the root mean squared error of the unfiltered data,

of our distributed Kalman filter, and that of the centralized

Kalman filter as a function of the standard deviation of the

measurement noise. As we can see, our algorithm is able to

substantially reduce the error in the unfiltered data. Although

the centralized Kalman filter is able to provide more accurate

results, it requires the transmission of all the data to the base

station.

It is important to note that this centralized tracker is an

idealized concept since every message generated by the motes

is processed. It does not consider the message drops that would

occur in a real centralized tracker as the messages are routed to

the base station. These message drops are difficult to quantify,

however, since they depend on the network topology and the

distance between the nodes that detect the event and the base

station.

We also compared the accuracy of our cluster-based Kalman

filter to that of an alternative decentralized tracking method.

In the alternative method, we used linear interpolation for

local data aggregation. That is, the target position was period-

ically estimated by linearly interpolating the two most recent

measurements available to the cluster head. The results of

the experiment are shown in Figure 10(b). Due to the noisy

nature of the data, the performance of linear interpolation

degrades significantly as the standard deviation of the pixel

error increases. As the experiment shows, even for small pixel

error, our algorithm is able to significantly reduce the total

error when compared to local data aggregation using linear

interpolation. This performance gain becomes larger as the

pixel error increases.

2) Average Number of Messages Transmitted: To evaluate

the potential energy savings obtained by restricting the number

of multi-hop messages transmitted by the system, we measured

the average number of messages transmitted per node per

11

(a) (b)

Figure 9. GUI showing the configuration of 15 wireless cameras. The red lines connecting pairs of cameras indicate communication links between camera
nodes, and the green tetrahedral volumes represent the field of views of cameras.

(a) (b)

Figure 10. (a) Root mean squared error of the target position as a function of the standard deviation of the pixel noise. (b) Performance of the cluster-based
algorithm compared to a decentralized tracker using linear interpolation.

minute in our simulator using our Kalman filter algorithm.

We also measured the average number of messages needed

to transmit all the information to the base station, which is

required by the centralized Kalman filter approach. Figure 11

shows the number of messages transmitted as a function of

the average distance to the base station. In order to estimate

the number of messages required to reach the base station, we

multiplied the number of messages by the average distance to

the base station.

The results of the experiment show that, for networks of

small diameter where the average distance to the base station

is small, the number of messages transmitted by our algorithm

is higher than transmitting all the data to the base station

due to the overhead introduced by clustering. However, as

the average distance to the base station grows, the number

of messages transmitted to the base station in the centralized

system increases while the clustering overhead remains con-

stant. Eventually, a threshold is reached where sending all the

messages becomes more expensive than creating the clusters.

This threshold depends on the sampling period of the cluster-

based Kalman filter. For example, for the case of a sampling

period of 750ms, the cluster-based approach performs better

than the centralized approach for an average distance to the

base station larger than 2 hops.

3) Model Error: As explained in section IV-A, we model

the movement of our target as a constant velocity movement

12

Figure 11. Number of messages transmitted by the system as a function of
the average distance to the base station.

Figure 12. Estimation error in the target position for varying movement.
Solid curves represent the ground truth, and the superimposed red markers
the filtered data.

with random acceleration. The more the target movement

resembles this model, the better the estimates obtained. This

is illustrated in Figure 12; the two topmost plots in the figure

show the x and y positions of the target as a function of time.

The plot on the bottom shows the corresponding error in the

target position after applying the Kalman filter. As the figure

shows, at the time instants when the target undergoes abrupt

changes in direction, the error is larger since the constant

velocity model is not valid. On the other hand, the algorithm

is able to accurately track the target as long as its movement is

smooth. This is illustrated in Figure 13 where we plot the x and

y positions of a target moving with constant velocity in the y

direction and with varying accelerations in the x direction. The

bottom plots show the corresponding root mean squared error

with respect to the ground truth. As we can see, although the

acceleration in each plot is different, the average error remains

approximately constant.

Figure 15. Cyclops camera attached to a MicaZ mote.

Overall, the total error obtained with the decentralized

Kalman filter is comparable to the error obtained using the

centralized Kalman filter, as qualitatively illustrated in Figure

14. Figure 14(a) shows the x and y coordinates of the target

when tracked by the ideal centralized Kalman filter. Figure

14(b) shows the x and y coordinates of the target when tracked

by the decentralized Kalman filter.

However, as we see in the figure, due to the delays intro-

duced by the clustering protocol, our decentralized algorithm

occasionally loses track of the target. Tracking is lost when the

sensor network is engaged in cluster formation. In the example

presented in Figure 14, if we consider any two measurements

more than 5 seconds apart as defining a region that is not

covered by the tracker, while the ideal centralized tracker is

able follow the target approximately 95% of the total distance

traveled by the target, the cluster-based version is able to keep

track of the target approximately 77% of the total distance.

4) Computation Time: Since the Avrora simulator provides

instruction level accuracy at the actual clock frequency of

the microcontroller, it was possible to compute precisely the

time it takes to perform each step of our algorithm. In our

current implementation, the time required for the Kalman

filtering update is 15ms whereas the prediction takes 4.5ms.

The variance in these measurements is very small since it is

only due to the time required to attend to the interrupt service

routines; those times are of the order of microseconds.

B. Experiments on Real Wireless Cameras

To demonstrate the feasibility of our algorithm, we tested it

on a network that consists of 12 Cyclops cameras [29] attached

to MicaZ motes (Figure 15) mounted on the ceiling of our

laboratory. The cameras are spaced roughly 1m (39 inches)

apart so that there is partial overlap between the fields of

view of the neighboring cameras. The field of view of all

the cameras covers a region of about 5 by 3.5 meters (16.4 by

11.5 feet). Figure 16 shows a picture of our wireless camera

network.

To evaluate the performance of the system while tracking an

object, we moved the object randomly and, at the same time,

computed the target coordinates using the wireless camera

network and a single wired camera at 30 frames per second.

The data gathered by the wired camera was used as the

ground truth. Figure 17 shows the trajectory of the object for

13

Figure 13. Position of the target as a function of time for different values of acceleration. Solid curves represent the ground truth, and the superimposed red
markers the filtered data.

(a) (b)

Figure 14. Tracking results for (a) ideal centralized Kalman filter and (b) decentralized Kalman filter. The solid black curves represent the ground truth of
the target trajectory. The superimposed red curves with markers represents the estimated positions of the target.

Figure 16. Ceiling mounted wireless cameras.

three different runs of the experiment. The ground truth is

represented by the solid black lines, the dashed lines show the

trajectory of the target as computed by the wireless cameras.

The markers placed on the dashed tracks correspond to the

actual target positions computed by the wireless cameras. The

reason for showing both the trajectory with the dashed line and

the markers on this line is to give the reader a sense of when

the system loses track of the target. Each time the track is

lost, the system creates a new object identifier for the moving

target. This is illustrated by the different markers in Figure 17.

VI. CONCLUSION

We have presented an object tracking algorithm suitable

for a network of wireless cameras. The algorithm has a

low message overhead and can be executed in real time

even in resource constrained wireless sensors such as the

MicaZ motes. It represents an effective approach for local

data aggregation in the context of object tracking by wireless

camera networks. The algorithm uses a clustering protocol to

establish connections among cameras that detect the target and

14

Figure 17. Tracking performance for three different runs of the tracking experiment.

to enable the propagation of the state of the target as it moves.

Data aggregation is carried out using a decentralized Kalman

filter.

Regarding the accuracy of our filter, our experiments have

shown that the algorithm is indeed capable of tracking a target

with accuracy comparable to that achieved by a centralized

approach wherein every measurement is transmitted to the

base station. Although Wan and van der Merwe [30] reported

that the extended Kalman filter can introduce large errors in

the estimated parameters and that the unscented Kalman filter

(UKF) [31] usually provides better results, we found that our

approach is able to substantially decrease the noise in the

target position and that filter instability was not an issue in

our application. Furthermore, the implementation of the UKF

requires the computation of the square-root of the covariance

matrix of the augmented state vector which includes the state

variables and the noise variables. In our case, such matrix

would be of dimension 11 × 11 and, even if we employ

efficient square-root implementations as suggested in [32], the

computation of such matrix would be too complex for the

resource-limited processors used by wireless cameras. Even if

we consider the fact that the measurement noise is additive and

apply the technique proposed in [31] and [32] to reduce the

dimension of the augmented state vector, we would still need

to compute the square-root of an 8 × 8 matrix. Nevertheless,

it may be possible to obtain a more effective implementation

of UKF if we take into account the sparsity of the matrices

involved in the problem as we did in this paper for the EKF.

Therefore, devising an efficient implementation of a cluster-

based UKF for object tracking using wireless camera networks

and comparing it with the performance of our cluster-based

EKF is a subject of further investigation.

In this paper we have focused on the problem of a single

cluster tracking a single object. The issues of multiple clusters

tracking the same object and the inter-cluster interactions

involved in that process as well as tracking multiple objects

simultaneously are subjects of future studies. Besides, since

the focus of this work is on the cluster-based Kalman filter,

further analysis of the clustering protocol itself is necessary.

Although some preliminary experimental results regarding the

clustering protocol were presented in [6], further investigation

of our protocol is needed with respect to the density of

cameras with common viewing areas as well as the density of

single hop neighbors since these parameters greatly influence

the overhead involved in the clustering protocol and the

performance of local data aggregation.

VII. ACKNOWLEDGMENTS

This work was supported by Olympus Corporation. We

greatly acknowledge Dr. Akio Kosaka for the helpful discus-

sions about this work.

REFERENCES

[1] S. Bandyopadhyay and E. Coyle, “An Energy Efficient Hierarchical
Clustering Algorithm for Wireless Sensor Networks,” in Proc. IEEE
INFOCOM, 2003.

[2] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An
Application-Specific Protocol Architecture for Wireless Microsensor
Networks,” IEEE Transactions on Wireless Communications, vol. 1,
no. 4, pp. 660–670, Oct. 2002.

[3] O. Younis and S. Fahmy, “HEED: A Hybrid, Energy-Efficient, Dis-
tributed Clustering Approach for Ad Hoc Sensor Networks,” IEEE

Transactions on Mobile Computing, vol. 3, no. 4, pp. 366–379, 2004.
[4] I. Gupta, D. Riordan, and S. Sampalli, “Cluster-head Election Using

Fuzzy Logic for Wireless Sensor Networks,” in Proceedings of the 3rd

Annual Communication Networks and Services Research Conference,
2005, pp. 255–260.

[5] V. Mhatre, C. Rosenberg, D. Kofman, R. Mazumdar, and N. Shroff,
“A Minimum Cost Heterogeneous Sensor Network with a Lifetime
Constraint,” IEEE Transactions on Mobile Computing, vol. 4, no. 1,
pp. 4–15, 2005.

[6] H. Medeiros, J. Park, and A. Kak, “A Light-Weight Event-Driven
Protocol for Sensor Clustering in Wireless Camera Networks,” in First

IEEE/ACM International Conference on Distributed Smart Cameras,
Sep. 2007.

[7] G. Welch and G. Bishop, “An Introduction to the Kalman Filter,”
University of North Carolina at Chapel Hill, Tech. Rep., 1995.

[8] W.-P. Chen, J. Hou, and L. Sha, “Dynamic Clustering for Acoustic Target
Tracking in Wireless Sensor Networks,” IEEE Transactions on Mobile

Computing, vol. 3, no. 3, 2004.
[9] Q. Fang, F. Zhao, and L. Guibas, “Lightweight Sensing and Commu-

nication Protocols for Target Enumeration and Aggregation,” in ACM

Symp. on Mobile Ad Hoc Networking and Computing (MobiHoc), 2003.
[10] W. Zhang and G. Cao, “DCTC: Dynamic Convoy Tree-Based Collabo-

ration for Target Tracking in Sensor Networks,” IEEE Transactions on
Wireless Communications, vol. 3, no. 5, Sep. 2004.

[11] B. Blum, P. Nagaraddi, A. Wood, T. Abdelzaher, S. Son, and
J. Stankovic, “An Entity Maintenance and Connection Service for Sensor
Networks,” Proceedings of the 1st international Conference on Mobile
Systems, Applications and Services (MobiSys), May 2003.

[12] J. L. Speyer, “Computation and Transmission Requirements for a De-
centralized Linear-Quadratic-Gaussian Control Problem,” IEEE Trans-

actions on Automatic Control, Apr. 1979.
[13] R. Olfati-Saber, “Distributed Kalman Filter with Embedded Consensus

Filter,” in 44th IEEE Conference on Decision and Control, and the

European Control Conference, Dec. 2005.
[14] E. Nettleton, H. Durrant-Whyte, and S. Sukkarieh, “A Robust Archi-

tecture for Decentralised Data Fusion,” in International Conference on

Advanced Robotics, 2003.

15

[15] A. Ribeiro, G. Giannakis, and S. Roumeliotis, “SOI-KF: Distributed
Kalman Filtering With Low-Cost Communications Using the Sign of
Innovations,” IEEE Transactions on Signal Processing, vol. 54, no. 12,
pp. 4782–4795, Dec. 2006.

[16] R. Goshorn, J. Goshorn, D. Goshorn, and H. Aghajan, “Architecture for
Cluster-based Automated Surveillance Network for Detecting and Track-
ing Multiple Persons,” in First IEEE/ACM International Conference on
Distributed Smart Cameras, Sep. 2007.

[17] N. Lynch, Distributed Algorithms. Morgan Kaufmann, 1997.
[18] G. Tel, Introduction to Distributed Algorithms. Cambridge, 1994.
[19] H. Garcia-Molina, “Elections in a Distributed Computing System,” IEEE

Transactions on Computers, vol. c-31, Jan. 1982.
[20] J. Kurose and K. Ross, Computer Networking: A Top-Down Approach

Featuring the Internet, 3rd ed. Addison Wesley, 2005.
[21] Y. Bar-Shalom and Xiao-Rong Li, Estimation and tracking: principles,

techniques, and software. Artech House, 1993.
[22] J. Elson and D. Estrin, “Time synchronization for wireless sensor

networks,” in Proceedings 15th International Parallel and Distributed
Processing Symposium, Apr. 2001, pp. 1965–1970.

[23] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync protocol
for sensor networks,” in SenSys ’03: Proceedings of the 1st international

conference on Embedded networked sensor systems. New York, NY,
USA: ACM, 2003, pp. 138–149.

[24] F. Sivrikaya and B. Yener, “Time synchronization in sensor networks: a
survey,” IEEE Network, vol. 18, no. 4, pp. 45–50, 2004.

[25] B. L. Titzer, D. K. Lee, and J. Palsberg, “Avrora: scalable sensor network
simulation with precise timing,” in Proceedings of the 4th International

Symposium on Information Processing in Sensor Networks, 2005.
[26] J. L. Hill and D. E. Culler, “Mica: a wireless platform for deeply

embedded networks,” IEEE Micro, vol. 22, no. 6, pp. 12–24, Dec. 2002.
[27] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler,

“The nesC language: A holistic approach to networked embedded
systems,” in Proceedings of the ACM SIGPLAN 2003 conference on

Programming language design and implementation, 2003, pp. 1–11.
[28] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,

D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler, TinyOS: An
Operating System for Sensor Networks. Springer, 12 Dec. 2005, pp.
115–148.

[29] M. Rahimi, R. Baer, O. I. Iroezi, J. C. Garcia, J. Warrior, D. Estrin,
and M. Srivastava, “Cyclops: in situ image sensing and interpretation
in wireless sensor networks,” in Proceedings of the 3rd international

conference on Embedded networked sensor systems, 2005.
[30] E. A. Wan and R. van der Merwe, “The unscented Kalman filter for

nonlinear estimation,” in The IEEE 2000 Adaptive Systems for Signal

Processing, Communications, and Control Symposium, AS-SPCC, 2000,
pp. 153–158.

[31] S. J. Julier and J. K. Uhlmann, “A New Extension of the Kalman Filter
to Nonlinear Systems,” in Proc. of AeroSense: The 11th Int. Symp. on

Aerospace/Defence Sensing, Simulation and Controls, 1997.
[32] E. A. Wan and R. van der Merwe, “The Unscented Kalman Filter,”

in Kalman Filtering and Neural Networks, S. Haykin, Ed. Wiley
Publishing, 2001, ch. 7.

Henry Medeiros received the BE and MS degrees
in Electrical Engineering from the Federal Center
of Technological Education, Parana, Brazil, in 2003
and 2005 respectively. Since 2005 he has been
pursuing his PhD degree in the School of Electrical
and Computer Engineering at Purdue University. His
current research interests include sensor networks,
computer vision, and embedded systems.

Johnny Park received the BS, MS, and PhD degrees
from the School of Electrical and Computer Engi-
neering, Purdue University, in 1998, 2000, and 2004,
respectively. Since 2004, he has been a principal
research scientist at Purdue University. His current
research interests are distributed and collaborative
information processing in sensor networks and vari-
ous topics in computer vision and robotics, including
human posture estimation, real-time 3D reconstruc-
tion, visual servoing, and 3D object recognition. He
is a member of the IEEE.

Avinash C. Kak is a professor of electrical and com-
puter engineering at Purdue University. His research
and teaching include sensor networks, computer
vision, robotics, and high-level computer languages.
He is a coauthor of Principles of Computerized
Tomographic Imaging, which was republished as a
classic in applied mathematics by SIAM, and of
Digital Picture Processing, which is also considered
by many to be a classic in computer vision and
image processing. His recent book Programming
with Objects (John Wiley & Sons, 2003) is used by

a number of leading universities as a text on object oriented programming.
His latest book Scripting with Objects, also published by John Wiley, focuses
on object-oriented scripting. These are two of the three books for an “Objects
Trilogy” that he is creating. The last, expected to be finished sometime in
2008, will be titled Designing with Objects.

	Marquette University
	e-Publications@Marquette
	8-1-2008

	Distributed Object Tracking Using a Cluster-Based Kalman Filter in Wireless Camera Networks
	Henry Medeiros
	Johnny Park
	Avinash Kak

	tmp.1426625178.pdf.vdeGx

