

Distributed Odor Source Localization

Thomas Lochmatter, Xavier Raemy Prof. Alcherio Martinoli

Project Goal

- Find an odor source – with a team of robots
 - equipped with state-ofthe-art odor sensors
 - in a collaborative fashion

Applications

- Humanitarian demining
 - Replace dogs/rats
 - Requires high sensitivity
- Search for leakages
 - E. g. pipelines, tanks
 - Appropriate sensor for leaking chemicals required

Challenges

- Air flow
 - turbulences, convection
 - changing wind directions
 - 3d flow, sensors move in 2d
- Odor propagation
 - plume packets (no "nice" gradient)
- Response times of odor sensors
 -0.1 10 seconds

Experimental setup

- 10 Khepera robots with odor sensor, localization and communication modules
- Environments
 - Wind tunnel (reproducible)
 - Outdoor (not reproducible)
- Cameras
 - Track the robots (supervised localization)
 - Observe the plume
 - Observe the experiment (robot reaction to odor)

Experimental setup

Simulation

- Webots
- Odor plume
 - Measured in the wind tunnel
 - Simulated by air flow simulators

Current state, outlook

- Current state
 - Preparing the tools (wind tunnel, robots, cameras, odor sensor) and getting familiar with them
- 2006 Q1 / Q2
 - Wind tunnel experiments
 - Webots simulations

