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Abstract. In this paper we study distributed online learning of locomo-
tion gaits for modular robots. The learning is based on a stochastic ap-
proximation method, SPSA, which optimizes the parameters of coupled
oscillators used to generate periodic actuation patterns. The strategy is
implemented in a distributed fashion, based on a globally shared reward
signal, but otherwise utilizing local communication only. In a physics-
based simulation of modular Roombots robots we experiment with on-
line learning of gaits and study the effects of: module failures, different
robot morphologies, and rough terrains. The experiments demonstrate
fast online learning, typically 5-30 min. for convergence to high per-
forming gaits (≈ 30 cm/sec), despite high numbers of open parameters
(45-54). We conclude that the proposed approach is efficient, effective
and a promising candidate for online learning on many other robotic
platforms.

1 Introduction

Modular robots are made up from a number of interconnected robotic modules.
Each module can communicate with neighbor modules, sense its local environ-
ment, and control its own actuators. By combining the modules in different con-
figurations robots with different capabilities can be constructed. Since a robot’s
mobility is highly dependent on the details of its morphology, the flexibility of
modular robot’s morphology makes them an interesting platform for studying lo-
comotion. However, control and adaptation of locomotion must be implemented
in the context of the modular robot’s distributed morphology. Further, since
modular robots are polymorphic we desire a strategy which is not designed for
a specific morphology. The strategy should rather optimize a variable number
of control parameters, for a class of morphologies, while the robot is moving in
its environment. In this paper we take a distributed control approach to tackle
the problem: All modules have individual, identical, and autonomous controllers.
Any module optimizes its own set of control parameters based on a global reward
signal. The robot’s locomotion pattern then emerges from the collective adap-
tations and behaviors of its modules. We hypothesize that such a distributed
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strategy may be more robust and flexible since it may be independent to the spe-
cific robot’s morphology and can adapt online to module failures or morphology
changes. Ultimately, we anticipate that by studying such distributed strategies
we may gain insights into how adaptive sensory-motor coordination can emerge
and self-organize from billions of individual cells in biological organisms.

In this paper we study a distributed learning strategy for online optimiza-
tion of locomotion gaits. We experiment with two quadruped robots constructed
from Roombots modules. Each Roombots module has three actuators which we
control using periodic actuation patterns generated by three local oscillators.
Neighbor-to-neighbor communication between modules is used to synchronize
the module’s oscillators. These local connections make the oscillators form a
central pattern generator (CPG) network covering the whole robot thereby en-
abling global synchronization. To enable life-long learning based on noisy fitness
measurements we apply the model-less Simultaneous Perturbation Stochastic
Approximation (SPSA) method. Each module optimizes its own local CPG pa-
rameter set based on a globally shared reward signal. Therefore, both the control
and the learning are distributed without any centralized control necessary.

The rest of this paper is organized as follows: In Section 2 we summarize
related work. In Section 3 we describe the methods which comprise the online
learning strategy. The experimental platform and setup is described in Section
4. A number of experiments with simulated Roombots robots are presented in
Section 5. The experiments demonstrate that the proposed strategy finds fitter
gaits than random search optimization, works for different morphologies, can
adapt to module failures, but converges to suboptimal gaits in rough terrains.
We conclude in Section 6 that the proposed approach is efficient, effective and
a good candidate for online learning of locomotion on many robotic platforms.

2 Related Work

Here, we review related work on evolutionary adaptation and online learning
of modular robots for the task of locomotion. Karl Sims pioneered the field in
the early 90’s by co-evolving the morphology and control of simulated modular
robots [10]. Later work succeeded in transferring similar co-evolved robots from
simulation to hardware [6, 8]. An example of adaptation by evolution in modular
robots was conducted by Kamimura et al., who evolved the coupling parameters
of central pattern generators for straight line locomotion of modular M-TRAN
robots [5]. By incorporating sensory entrainment in the optimization the authors
were able to bridge the reality gap. Although appealing, one challenge with evo-
lutionary approaches is that once transferred the robot is typically no longer
able to adapt to major changes in the morphology or environment. To overcome
this limitation optimization of locomotion gaits can be performed online. This
was studied by Marbach and Ijspeert on the YaMoR modular robotic system
[9]. Their strategy was based on Powell’s method, which performed a localized
search in the space of selected parameters of coupled oscillators. Parameters were
manually extracted from the modular robot by exploiting symmetries. Follow-up
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work by Spröwitz et al. demonstrated online optimization of 6 parameters on a
physical robot in roughly 25-40 minutes [14]. We also try to realize simple, ro-
bust, fast, model-free, life-long learning on a modular robot. The main difference
is that we seek to automate the controller design further in the sense that no pa-
rameters have to be extracted from symmetric properties of the robot. Further,
our approach utilizes a form of distributed optimization. A similar approach was
taken by Maes and Brooks who performed distributed learning of locomotion on
a 6-legged robot [7]. The learning was distributed to the legs themselves. Our
strategy is not dependent on the robot’s specific morphology. Similarly, Bon-
gard et al. demonstrated learning of locomotion and adaptation to changes in
the configuration of a modular robot [1]. They took a self-modeling approach,
where the robot developed a model of its own configuration by performing basic
motor actions. In a physical simulator a model of the robot configuration was
evolved to match the sampled sensor data (from accelerometers). By co-evolving
the model with a locomotion gait, the robot could then learn to move with differ-
ent morphologies. Our work presented here is similar in purpose but different in
approach: The strategy is simple, model-less and computationally cheap to allow
implementation on small embedded devices, such as modular robots. In previ-
ous work we studied distributed, morphology independent, online learning for
ATRON and M-TRAN robots [2, 3]. This work was based on the same principles
but the methods applied were different: instead of SPSA optimization we applied
a simple reinforcement learning strategy and instead of coupled oscillators we
applied discrete actions and gait-tables.

3 Methods

This section describes the methods for generating periodic actuation patterns
for gait implementation and for online optimization of gait parameters. The
methods are selected and combined into an online learning strategy with the
following design goals in mind:

Morphology Independence: Since a modular robot can take on many different
morphologies, the strategy should not be designed for any particular morphology
but rather function on a class of different morphologies.

Life-long Learning: The morphology of a modular robot can change over
time, either due to module failures, adding or removing of modules, or due to
voluntary morphosis, therefore, the strategy must be able to continuously adapt
while performing its function.

Noise Tolerance: The gaits must eventually be optimized directly on the
physical robot. The interactions between the robot and its environment will
be complex and in practice impossible to predict, therefore, the optimization
strategy must be tolerant to noisy fitness measurements.

Simple Implementation: Modular robots are embedded devices with limited
communication and computation abilities, thus, the strategy must require a min-
imal amount of resources and ideally be simple to implement on the distributed
morphology that modular robots are.
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3.1 Central Pattern Generators

Biological CPGs are special neural circuits found in vertebrates, able to produce
a rhythmic signal without any external sensory input, where they for example
control muscles during locomotion. We apply a CPG model for gait control
because of their ability to generate periodic actuation patterns, ability to self-
synchronize in a distributed system, open parameters which are appropriate for
optimization, and finally since CPGs are biologically plausible. A review of CPGs
and their use in robot control can be found in [4]. The specific CPG model we
utilize is a Hopf oscillator in Cartesian space with diffusive coupling [15]. The
advantages of this model include its simplicity, stable limit-cycle behavior, and
explicit parameters for setting phase, amplitude and frequency. For an oscillator
i the coupled differential equations are:

ẋi = γ(µ − r2
i )xi − ω̄yi (1)

ẏi = γ(µ − r2
i )yi + ω̄xi (2)

Where ri =
√

x2
i + y2

i and the state variables are x and y. γ is a parameter that
affects the speed of convergence towards the oscillators amplitude µ2. ω̄ is the
oscillator’s frequency which is a function of a frequency parameter, ω, and is also
affected by the sum of couplings to other oscillators. A coupling from oscillator
i to oscillator j has a weight parameter, wij , and a desired phase difference φij .
Then the oscillator may be coupled to other oscillators using:

ω̄ = ω +

N
∑

j=1

wij

ri

[(xiyj − xjyi) cos φij − (xixj + yiyj) sin φij ] (3)

We use one oscillator to control the position of an actuator by using xi as the
control set-point for the actuator.

3.2 CPG Network Architecture

To enable a scalable, distributed, and morphology independent control strat-
egy we design the network of CPG couplings so that it is equivalent on each
module (homogeneous control). Each Roombots module is programmed with
four oscillators: three which are used as set-points for its actuators (Cm1, Cm2

and Cm3) and one which acts as a clock (Cc). The architecture is illustrated in
Fig. 1. The robot is equipped with a distributed global clock, implemented as
a network of in-phase clock oscillators, one per module. Each clock oscillator is
coupled with the clock oscillators on its neighbor modules using local communi-
cation channels. This architecture is scalable since oscillators are only coupled
neighbor-to-neighbor, so the computation/communication load is independent
on the number of modules in the robot. Further, the architecture is distributed
since the module controls itself based on its local state and local interactions.
Finally, the architecture is morphology independent since when adding a new
module to the robot new couplings can automatically be established using local
communication. Therefore, the individual modules are not aware of the global
module configuration.
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Fig. 1. The CPG network architecture of coupled oscillators within each Roombots.
Three oscillators provide the set-points for the three servos (M1 -M3). A forth oscillator
acts as a clock which is coupled in phase with clock oscillators on neighbor modules.
The servo position, pi, can be used as feedback in the oscillators although we do not
use it here.

3.3 Learning Algorithm

For online optimization of CPG parameters we select the Simultaneous Pertur-
bation Stochastic Approximation (SPSA) method by Spall [12]. This algorithm
requires no explicit gradient and therefore no model of the robot. It is designed
to build an approximation of the gradient from direct (generally noisy) measure-
ments of the objective function. Further, SPSA only requires two measurements
of the objective function per iteration (i.e. two robot trials with different con-
trollers) independent on the number of adjustable parameters. Also, these mea-
surements are made based on small perturbations of the same parameter set.
Hence the robot’s behavior only alters slightly while it is learning, unlike opti-
mization based on population-based methods such as evolutionary algorithms.
Finally, SPSA is simple to implement in a distributed fashion since each mod-
ule may independently optimize its own parameters without knowledge of the
other modules parameters or the need for any other coordination than simple
synchronization of when the parameters are updated.

The SPSA method optimizes the parameter set θ̂ defined by the experi-
menter. In an iteration, k, it estimates the gradient, g(θ̂), based on two noisy

measurements of the objective function y(θ̂):

ĝk(θ̂k) =
y(θ̂k + ck∆k) − y(θ̂k − ck∆k)
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(a) (b) Quadruped Type 1 (c) Quadruped Type 2

Fig. 2. (a) An illustration of the Roombots’ three degrees of freedom. (b) A robot
comprised of five Roombots modules. (c) A robot comprised of six Roombots modules.

Where ck is a learning parameter and ∆k is an vector of randomized ±1. SPSA
then updates θ̂ based on ĝk(θ̂k).

∆θ̂k = −ak · ĝk(θ̂k) (5)

θ̂k+1 = θ̂k + sign(∆θ̂k) · min(|∆θ̂k|, ǫ) (6)

ak is a learning parameter, we also added a max step-size, ǫ, to reduce the risk
of instability.

4 Experimental Setup

The Roombots is a self-reconfigurable modular robot which is being developed
at EPFL [13]. A Roombots module consists of two spherical parts, made up
by four hemispheres in total, see Fig. 2(a). The hemispheres can actively be
rotated relative to each other, thereby giving a Roombots module two “outer”
and one “inner” actuated degree of freedom. The outer and inner hemispheres
contain up to three active connectors respectively, which enable a module to
connect to other modules. In this paper we experiment with the two different
quadrupedal Roombots robots shown in Fig. 2. The Roombots modules are
simulated in the commercial Webots robot simulator by Cyberbotics Ltd [16]
which relies on Open Dynamic Engine (ODE) for simulation of collisions and
rigid body dynamics [11]. The details of the Roombots model used are based on
the current prototype of the Roombots as well as expected characteristics of the
final design. The characteristics are kept fairly conservative but since module
details will vary slightly compared to the final Roombots design, we cannot
expect a perfect transfer to the physical modules once ready. The most important
module parameters are: mass = 0.975 kg, actuation torque = 5 Nm, and a
maximum rotational velocity = 2.62 rad/sec. Other environmental parameters
include coefficients of friction and restitution, which are 1.0 and 0.5 respectively.

In the following experiments each module runs identical learning controllers
and optimizes their behavior based on a single shared reward signal. For simplic-
ity the reward is velocity computed as the distance traveled by the robot’s center
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(a) Coupled Oscillators

Symbol Description Value

ω Frequency 0.8 Hz
γ Amp. Contraction 1.0

θcc Phase Difference 0.0
θmc Phase Difference 2π - θcm

wcc, wcm Coupling strength 5.0
wmc Coupling strength 1.5

(b) SPSA-based Learning

Symbol Description Value

ck Gain parameter 0.025 or 0.05
ak Gain parameter 0.00015
ǫ Max Stepsize 5% of range
T Time Step 4 sec.

Table 1. Fixed parameters.

Symbol Description Init. Val. Range

µ2 Amplitude 0.35π [0; 0.7π]
θcm Phase Difference 0.0 [−π; π]

xoffset Offset 0.0 [-0.2π; 0.2π]
Table 2. Open parameters in the coupled oscillators.

of mass in the xy-plane in a fixed length time duration: y(θ̂) =
√

∆x2 + ∆y2/T .
Each T seconds a single reward signal is sent to all the modules which corre-
sponds to a measurement of either y(θ̂k + ck∆k) or y(θ̂k − ck∆k). After both

measurements are performed the new θ̂k+1 is computed. Fixed parameters for
the SPSA-based learning and the CPG architecture are set as indicated in Table
1. The only parameter which is not the same for the two robots is the learning
parameter ck. For Type 1 ck = 0.025 is appropriate, while it causes divergence in
the learning for Type 2. Instead we set ck = 0.05 for Type 2 at the cost of more
gait variance during learning. The open parameters which must be optimized by
the learning algorithm are shown in Table 2. For SPSA-based learning the open
parameters, θ̂, are scaled between 0 and 1 and initialized to 0.5 (midpoint of the
valid range). We found that random initialization often produces initial gaits
too far from near optimal gaits, which causes the learning system to sometimes
get caught in local optima. We plan to experiment with using random search
optimization to find a good initial parameter set.

5 Experiments

In this section we present experiments with the proposed SPSA based strategy
on simulated Roombots robots.

5.1 Morphology Independent Learning

To study the effects of different morphologies we performed experiments with
SPSA-based learning and random search optimization on the Type 1 and Type
2 Quadruped robots. The average result of 10 trials with Type 1 is shown in Fig.
3(a). We observe that both the SPSA-based strategy and random search converge
after approximately 10 minutes of trial and error behavior by the robot. This fast
convergence gives strength to the claim that the learning could realistically be
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(a) Flat Terrain (Robot Type 1)
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(b) Flat Terrain (Robot Type 2)
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(c) Module Failure (Robot Type 1)
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(d) Different Terrains (Robot Type 1)

Fig. 3. The graphs show the average velocity of the robots as it improves over time. (a)
and (b) SPSA-based learning compared to random search optimization. “Max” graphs
indicate the average of the highest velocity measured so far in the trial. (c) Adaptation
after back module failure. (d) Adaptation in three different terrains. All graphs are the
average of 10 independent trials, bars indicate standard deviation.

utilized for life-long adaptation on the physical robot. Further, we observe that
the online average velocity (30.7 cm/sec), measured from iteration 400 to 500,
using the SPSA-based strategy is significantly higher than the maximum gait
velocities (20.4 cm/sec) found by random search optimization (P = 4.88∗10−7).
This result indicates that the parameter space is too large for random search
to find the same solutions within the time given, further it also indicates the
existence of gradients in the objective function that the SPSA-based strategy
can exploit. For comparison we performed the equivalent experiment, using the
same controller with the Type 2 robot. The results are shown in Fig. 3(b).
Compared to learning with Type 1 robot we observe that for Type 2 the SPSA-
based strategy converges slower (approx. 30 minutes) but still manages to finds
high performing gaits. Also here we find that the SPSA-based strategy converges
to significantly better gaits (27.6 cm/sec) than those found with random search
(20.5 cm/sec) (P=1.64 ∗ 10−6).

By inspecting the solutions found by SPSA for the two robots we observe that
all found gaits are similar to a trot, where the legs move together in diagonal
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pairs. Although the solutions found with random search optimization showed
greater variability all the gaits were still some variation of a fundamental trot.
These observations indicate that a trot gait is a strong attractor point in the
objective function for these particular combinations of robots, environment, and
parameterized CPG controller.

In summary the SPSA-based control strategy allows us to perform online
learning with two different robot morphologies without changing any part of the
strategy. Except that we found it necessary to change the learning parameter, ck.
In future work we will try to remove this limitation by using adaptive learning
rates to increase the strategy’s morphology independence.

5.2 Adaptation after Morphosis and in Rugged Terrain

To study the effects of involuntary morphosis, i.e. morphological change, we per-
formed experiments with module failures using the Type 1 robot. Initially the
five modules comprising the robot are fully functional. After 500 iterations (2000
seconds), a module fails by locking its three actuators in their initial position de-
fined by the starting pose of the robot (the CPG couplings stays intact). We then
observe if the robot is able to adapt to this change in morphology by letting the
robot learn for additional 500 iterations without resetting the learning parame-
ters or any other part of the control system. For comparison we also performed
the equivalent experiments with the learning disabled after module failure. In
this case the robot does no longer adapt but keeps performing the same gait as
just before the module failure. We performed two experiments: (1) In the first ex-
periment a leg module fails. The module failure event is followed by a minor drop
in velocity (from 31.4 cm/sec to 27.6 cm/sec), with no clear later improvement.
The results of the equivalent experiment with no adaptation after module fail-
ure yields an average velocity of 27.1 cm/sec after module failure. Consistently
we find that there is no significant difference in the average velocity between
adaptation/no-adaptation after module failure (P = 0.33). So adaptation after
morphosis seems not important in the case of a failing leg module for this robot
structure. (2) In the second experiment the back module fails. In this case the
event is followed by a major drop in average velocity, which seems to gradually
improve after the event, see Fig. 3(c). The average velocity in the time interval
3000 sec to 4000 sec is 20.9 cm/sec with adaptation and 13.2 cm/sec without
adaptation. Statistical analysis confirms that there is a significant difference be-
tween adaptation/no-adaptation in this case (P = 0.00063). So unlike the case
of a failed leg module, in the case of failed back module life-long adaptation is
important.

To study the effects of environment parameters on the learning we perform
experiments with SPSA-based learning using a Type 1 robot in simulated rugged
terrains. In the xy-plane the height of the terrain is defined by: height(x, y) =
a·cos (b · y)·sin (b · x). We set the parameters to: b = 2.5 meters and a to 0, 0.075
and 0.15 meters to create a terrain which vary from completely flat to a hilly
terrain with relatively steep slopes and deep valleys. Fig. 3(d) shows the result of
learning in these three different terrains. By visually inspecting the found gaits
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we observe that in all cases the learning finds gaits which are able to move in the
given terrain. As for flat terrain, in rough terrain the found gaits were also trot-
like, however, the stride length was generally shorter. In addition, we found two
effects on learning in increasingly rough terrain: (1) The first effect is a decrease
in the final average velocity: 32.8 cm/sec (σ = 2.59), 23.2 cm/sec (σ = 3.67),
15.1 cm/sec (σ = 2.31) for a = 0.0, a = 0.075 and a = 0.150 respectively
(measured by reevaluating the final gaits without adaptation). This effect is not
surprising since we expect the robot to move slower in rougher terrain. (2) The
second effect is a decrease in the ability to learn near optimal gaits. We observe
this by reevaluating the gaits found in flat terrain (a = 0.0) in the two non-flat
terrains (a = 0.150 and a = 0.075). Because the gaits are optimized in a different
environment we would expect to see a decrease in performance compared to those
optimized for the environment. However, instead we observe a drastic relative
increase in performance: 30.6 cm/sec (σ = 2.51) and 24.7 cm/sec (σ = 4.36)
for a = 0.075 and a = 0.150 respectively. This result indicates that the SPSA-
based learning do not find near optimal gaits in the two terrains. The reason for
the second effect is likely due to increased noise in the objective measurement
(beyond the limits of SPSA’s noise tolerance). We have observed a drastic drop in

the average signal to noise ratio for the found gaits from SNR = y(θ̂)/σ = 23.1,
SNR = 10.5 to SNR = 4.00 for the three terrains respectively.

6 Conclusion

This paper reported on experiments using a distributed strategy based on the
SPSA method for online optimization of a CPG network controlling the locomo-
tion of modular robots. This online learning and control strategy was designed
to be independent to the particular robot morphology, simple to implement in
a distributed system, and to enable life-long adaptation based on a noisy re-
ward signal. The strategy was evaluated in simulations of different quadrupedal
Roombots robots. First, we found that the proposed strategy was appropriate
for life-long learning since it could maintain a high performance during learning.
Seconds, we found that the strategy could reliably optimize gaits with a con-
siderably higher velocity than those found by random search. A near optimal
gait (≈ 30 cm/sec) was typically found in 5-30 minutes. Third, we also found
that the strategy enabled the robot to readapt its gait after involuntary mor-
phosis (failed back module). Finally, we found that rough terrains decrease the
strategy’s effectiveness considerably since it drastically increased the amount of
noise in the measured objective function. In conclusion the proposed strategy
is efficient and effective on the Roombots robots and is a promising candidate
for life-long online learning on many other robotic platforms. However, further
work is required to integrate the strategy with appropriate sensor feedback to
modulate or change between gaits while learning. In addition, we plan to study
the strategy’s ability to online co-optimize gait and morphological parameters
for a broader class of robot morphologies.
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