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Abstract. Testbeds as a means to evaluate protocol and software de-
velopment are gaining importance, not least because of the oftentimes
unpredictable influence of environmental behaviour. IBBT, the Interdis-
ciplinary Institute for Broadband Technology, recognizes the importance
of such testbeds and has therefore invested in WiLab.t, a wireless sen-
sor and mesh testbed. It contains over 200 wireless and programmable
nodes. The monitoring and management of such a testbed is very im-
portant so as to guarantee a proper functioning and stable environment
to be used by researchers. This is however not a trivial task, even more
so when in the future, the testbed is expanded with new devices and
as such becomes a heterogeneous environment. Therefore, we have de-
veloped an ontology-based monitoring approach, which allows hiding the
heterogeneity from the monitoring application and enables to process the
data in a formal manner. Additionally, it allows adaptation according to
characteristics of the local deployment, without the need to re-engineer
the entire monitoring application every time alterations are made to the
testbed.
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1 Introduction

Whereas network simulators can be used to evaluate the performance of appli-
cations in general and for wireless sensor networks in particular, these do not
have the capabilities to simulate all effects of real-life deployments, leading to a
considerable discrepancy between experiments and simulations. Therefore, both
wireless and other testbeds are a valuable tool for evaluating the performance
of such applications.

IBBT, the Interdisciplinary Institute for Broadband Technology has recog-
nized the importance of such testbeds. IBBT is an independent research insti-
tute founded by the Flemish government to stimulate ICT innovation. The IBBT
team offers companies and organizations active support in research and develop-
ment. It brings together companies, authorities, and non-profit organizations to
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join forces on research projects. Both technical and non-technical issues are ad-
dressed within each of these projects. Because of its belief in testbeds to enhance
research and development, it has therefore invested heavily in the installation of
a number of testbeds, to support a variety of research topics.

To enable intelligent monitoring and management of this testbed, an ontology-
based monitoring framework has been developed. This framework has been de-
ployed on the WiLab.t wireless sensor and mesh network testbed, but because
of the adoption of a generic ontology approach, the framework could be used on
other testbeds as well. Apart from offering monitoring information, the ontology-
based approach also allows classification and inference to be performed on the
monitored information. As such, only pre-processed and important information
is exposed to the administrative team, avoiding the need to constantly manually
analyze the data being produced by the monitoring application.

Although the monitoring use-case presented in this paper is very important
on itself, it has supported and demonstrated the research and development of
an ontology-based collaboration and data-aggregation platform, which can also
be used in a wider context. Originally, the development of such a distributed
ontology-based collaboration platform in a constrained environment was the
main research task, but the monitoring use-case has proven very important and
worthwhile to further exploit.

The remainder of this paper is structured as follows. The next section intro-
duces related work on similar research topics. Section 3 describes in more detail
the nodes and topology of the WiLab.t testbed. In Section 4 the complete ar-
chitecture is introduced, starting from the software components on the sensor
devices, through the mesh and back-end modules, concluding with the monitor-
ing application. The platform has been thoroughly evaluated and the results are
presented in Section 7. Finally, in Section 8 we present our main conclusions and
introduce aspects for future research.

2 Related Work

The first generation of experimental set-ups’ main purpose was the evaluation
of nature monitoring applications. These set-ups did not have any advanced
benchmarking facilities or have any flexibility regarding the reconfiguration of
test set-ups [1]. To increase the reuse of existing testbed set-ups, newly devel-
oped testbeds offer more advanced management functions, such as automatic
code deployment and scheduling mechanisms. These testbeds are deployed in a
wide range of scenarios, from city monitoring [2] to office monitoring [3,4]. The
number of active nodes in a single testbed ranges from a few nodes to more than
150 nodes. As of recently, efforts are being made to merge the different testing
facilities into a single, world-wide testing environment [5].

However, many innovations are still missing in regards to the flexibility of
wireless sensor testbeds. (i) Even though energy efficiency is very important for
wireless sensor networks, very few testbeds have fine-grained and detailed power
management and measurement capabilities. Similarly, the ability to emulate dif-
ferent battery types is still missing in most current testbeds. (ii) The topology
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of current deployments is fixed, resulting in inaccurate results when testing dif-
ferent sensor deployment scenarios. (iii) Accurate timestamp logging and time
synchronization is frequently missing from the management platform. (iv) Sen-
sor testbeds consist of at most a few hundred nodes, which is far less than the
thousands of nodes which are foreseen in the vision of “the future internet of
things” for office buildings. (v) Finally, the types of nodes deployed in a single
testbed are very similar, whereas future sensor networks are foreseen to contain
heterogeneous nodes with very diverse capabilities.

In this paper, we propose an ontology-based approach towards the monitoring
of the WiLab.t testbed. A brief, but all-embracing definition of an ontology, can
be found in [6]: “An ontology is a specification of a conceptualisation in the
context of knowledge sharing.” Accordingly, an ontology describes in a formal
manner the concepts and relationships, existing in a particular system and using
a machine-processable common vocabulary within a computerised system.

OWL, a modelling language for ontologies, consists of three sublanguages,
each of them varying in their trade-off between expressiveness and inferential
complexity. They are, in order of increasing expressiveness: (i) OWL Lite: sup-
ports classification hierarchies and simple constraint features, (ii) OWL DL:
OWL Description Logics, a subset providing great expressiveness without los-
ing computational completeness and decidability and (iii) OWL Full: supports
maximum expressiveness and syntactic freedom, however without computational
guarantees.

Using one of the three sublanguage flavours of OWL, one can easily adapt to
the required expressiveness. Arguably the most interesting sublanguage for many
application domains is OWL DL, balancing great expressiveness with inferential
efficiency. The efficiency is guaranteed by the underlying Description Logics.
Due to its foundation in Description Logics, OWL DL is also very flexible and
computationally complete.

A number of initiatives were investigated previously to incorporate web se-
mantic technology in wireless sensor environments. [7] presents a proposal that
combines the benefits of autonomic and semantic sensor networks to build a
semantic middleware for autonomic wireless sensor networks. Ontology-based
data provisioning mechanisms for wireless sensor networks, in order to deal with
varying applications, are presented in [8], while [9] defines a set of ontologies and
accompanying architecture for knowledge sharing.

To conclude, even as there are currently a wide variety of testbeds available,
many of these could be improvedby providingmore flexibility in regards to the con-
figuration, power management, scale and topology of the testbeds. Also the adop-
tion of ontologies and more specifically distributed reasoning mechanisms within
the specific nature of wireless sensor and mesh networks to support reasoning in
constrained environments is an additional feature presented in this research.

3 WiLab.t Infrastructure

The WiLab.t test infrastructure is located at the IBBT office building of Ghent
University, Belgium. This testbed consists of 200 TMoteSky [10] sensor nodes,
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spread over 3 floors. Wireless communication between the different floors is pos-
sible through 2 air shafts, in which several sensor nodes are installed.

Each sensor node is connected with an ‘Environment Emulator’ (EE) (see Fig-
ure 1(b)). This device can be used to control the physical properties of connected
sensor nodes, i.e. sensor values can be emulated, the battery voltage can be reg-
ulated, general purpose pins can be connected with the sensor node and energy
harvesting or battery models can be programmed. Finally, the EE also enables
very accurate power measurements, in the order of microsecond intervals.

Finally, for ease of programming and debugging as well as to experiment with
software in constrained environments, the wireless sensor nodes are connected
with intermediate nodes, called iNodes, which are Alix 3C3 devices [11] running
Linux Voyage [12]. Management of the testbed is performed using a modified
version of the motelab [4] management software. This software is expanded with
additional features such as a visualizer tool, a tool for graphical analysis of
measured data and a customizable SQL database. A picture of a node in the
WiLab.t testbed can be seen in Figure 1(a).

(a) A tesbed node consist-
ing out of an Alix device, a
TMoteSky sensor board and
an Environment Emulator

(b) Component break-down diagram of the
testbed nodes

Fig. 1. The nodes in the WiLab.t testbed infrastructure

4 Monitoring Architecture

This section introduces the architecture of the software components developed to
monitor the behaviour of the WiLab.t infrastructure. The TinyOS NesC com-
ponents to be run on the TMoteSky devices are described. Additionally, the
more heavy-weight reasoning components, deployed on the iNodes, are presented.
These components reason on the raw data being produced by the sensors. Fi-
nally, the overall workflow to trigger a monitoring task from the client, through
the back-end and iNodes, finishing at the TMoteSky sensors is detailed.

Our general ontology-based monitoring approach has already been thoroughly
evaluated in a back-end heavy-duty environment. This was published in [13].
Here, the ontology processing modules and mechanisms for query partitioning



Distributed Ontology-Based Monitoring on the IBBT WiLab.t Infrastructure 513

and execution have been detailed. However, because of the constrained envi-
ronments taken into account in this scenario, we have had to define a number
of additional modules and enhance certain mechanisms, in order to facilitate
the deployment of the platform in this constrained environment. The extended
platform architecture is given in Figure 2.
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Fig. 2. Extended ontology-based agent collaboration platform

The main building blocks of the architecture are the Reasoning Distribu-
tion Module and Reasoning Engine Module. Additionally, to improve the trans-
parency for the outside world, an extra indirection layer has been included at the
interface level, namely the Interface Module. This layer is introduced to facilitate
multiple reasoning technologies without the need for the clients to be aware of
this. As such, only generic interface operations should be defined, avoiding the
usage of reasoning technology dependent query and invocation mechanisms, e.g.
SPARQL [14]. Additionally, to decouple the reasoning from the data storage,
which was not the case in the original architecture presented in [13], two extra
modules are introduced, namely the Data Provider/Resource Module and the
Aggregator Module. The Data Provider/Resource Module will collect the data
from the resources on which it has been deployed or for which it is responsible
and feed it to the Aggregator Module. Upon request of the Reasoning Engine
Module, the Aggregator Module will feed this collected data to the reasoning
process. This way of working allows including sensor devices in the workflow
and thus facilitates the monitoring of the sensor network, by means of sensor
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information generated from the Data Provider/Resource Modules deployed on
the sensor devices.

4.1 The Data Components

Each node that contains an Aggregator Module needs to collect the appropriate
data. To this end, each sensor node regularly gathers system statistics, such
as internal voltage, node ID, total queue occupation, network statistics, such as
number of bytes and packets sent, number of bytes and packets received, number
of packet drops, number of failed transmissions and number of faulty packets
received and measurement data, e.g. external temperature, internal temperature
and humidity.

The information is sent at-runtime and wirelessly over an IEEE 802.15.4 wire-
less interface to the sensor node connected to the Alix board responsible for the
reasoning on the data from that sensor node. This particular node is called the
aggregator. It forwards the incoming data immediately to the back-end database.
Since we want to include information about the networking layer in the reason-
ing, we need to set up a wireless sensor cloud with sufficient network traffic.
Therefore we do not use every local iNode with its WiFi connection to transmit
its information, but use the senor nodes for this matter. However, due to the large
scale of typical sensor networks, measured information cannot be sent directly
to the aggregator node. Instead, sensor nodes use a multi-hop approach whereby
measured information is sent over intermediate nodes to reach the Aggregator
Module. Each Aggregator Module contains a software component responsible for
notifying nearby sensor nodes. Therefore, a software component is installed that
regularly broadcasts “sink” notification messages [15]. Each sensor node that
receives a sink message checks if the hop count is lower than any previously
received sink message. If it is, the notification is further forwarded by the node,
and the address of the neighbour from which the sink message was received is
used as the default next hop address when forwarding measured data. This way,
each sensor node sends its information from neighbour to neighbour until the in-
formation reaches the nearest aggregator node. Thus, to collect the appropriate
data, the following software components are installed on each sensor node:

SensorMeasurement. This component regularly gathers system, network and
measures sensor data from the appropriate data components. All information
is encapsulated in a packet and is sent to the DataDistribution component.

DataDistribution. This component is responsible for selecting the next hop
neighbour to which packets are forwarded. As part of this component, the
sink with lowest distance is selected, and unreliable routes are regularly
purged.

4.2 The Reasoning Components

As indicated earlier in Section 3, every node in the WiLab.t infrastructure, con-
sists out of two devices. One of the devices is a TMoteSky [10] sensor, the other is
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an Alix [11] board. This allows for a hybrid approach concerning the deployment
of software components. More specifically for components having different func-
tionalities, requiring different specifications. The software components on the
sensors producing the data in a non-intrusive manner, were detailed in Subsec-
tion 4.1. However, as detailed in Section 1, an intelligent monitoring framework,
based on distributed formal first-order logic reasoning using ontologies, is pur-
sued. This goal resulted in a number of reasoning components being developed
and deployed in the WiLab.t testbed. The reasoning modules impose more strin-
gent requirements on the hardware running these components. Using the iNodes,
reasoning components can be deployed to process the data in a more intelligent
way. These reasoning modules, using standard reasoning software, such as Pel-
let [17], analyze the data using the ontology model to draw conclusions about
the status of the nodes in the testbed.

4.3 Ontology Used for WiLab.t Monitoring

Starting from the Sensor Node Ontology [16], which describes various states of
a sensor node depending upon states of its constituent modules, additions and
enhancements were modelled to take the specific situation of the WiLab.t into
account. An important addition to the ontology is the location information. In
this way, we can model the physical location of the nodes in the ontology. Ad-
ditionally, a further component breakdown of the sensor nodes was modelled.
To facilitate this, the concepts SensorBoard and SensorPart have been intro-
duced. The general goal of the ontology is to classify the sensor nodes based on
the values of the monitored metrics. Therefore, we used a typical observation
pattern.

The two most important concepts in the ontology in terms of reasoning are
Fault and Solution. A Fault subconcept is defined based on a logical statement

Room ObservationSystem Symptom Fault Solution
has has has defines defines

Fig. 3. Main property chain

Table 1. Additional properties and their characteristics in the WiLab.t Monitoring
Ontology

Object Property Name Characteristics Domain Range Inverse Property

hasObservation System Observation isObservationOf
hasSolution Fault Solution isSolutionForFault
hasSensorPart System System isSensorPartOf
hasSymptom Observation Symptom isSymptomOf
hasNextObservation Functional Observation Observation hasPrevObservation
requiresAction Solution Action isActionFor
hasFault Symptom Fault isFaultOf
hasSystem Inv. Functional Room System isLocatedIn
hasRoom Inv. Functional Floor Room isOn
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mainly combining Symptoms. In turn a Solution is defined mainly using a combi-
nation of Faults. Example definitions of two Fault concepts can be found below.

Detected TMoteSkyFault definition

[hasSensorPart some
(hasObservation some
(hasSymptom some HumidityZeroSymptom)) and

hasSensorPart some
(hasObservation some
(hasSymptom some LightIntensityZeroSymptom)) and

hasSensorPart some
(hasObservation some
(hasSymptom some TemperatureZeroSymptom))] or

[hasObservation some
(hasSymptom some MissingReportsSymptom)]

This definition specifies that a TMoteSky sensor node which has a sensor part
that outputs at the same time zero as value for temperature, humidity and light
intensity or which does not produce anything is to be classified as faulty.

Incipient HVACFault definition

hasSystem some
(hasSensorPart some
(hasObservation some

((hasSymptom some
(TemperatureBelow15Symptom or

TemperatureAbove25Symptom))
and
(hasSymptom some
TemperatureNotZeroSymptom))))

In this definition, a room which has a system - i.e. a TMoteSky - which in its
turn has a sensor part that outputs a non-zero temperature value below 15 ◦C
or above 25 ◦C, probably has a faulty HVAC system.

4.4 The Coordinating Back-End Component

In the context of the WiLab.t infrastructure monitoring application, two typical
queries are used. The first type queries for the inferred Fault individuals, while
the second type triggers the reasoner to infer the possible Solution individuals
for a given nodeID. The information contained in an ontology is modelled in a
triple type format. This means that a subject is linked to an object by means of
a predicate. This mechanism is used by the SPARQL query language to specify
queries. By inserting unbound variables in the triple patterns, the reasoner will
search the model and its data to find the individuals satisfying the triple. For
more information we refer to [14].
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Incipient fault query

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX wsn: <http://users.atlantis.ugent.be/svrstich/deus/wsn#>
SELECT ?x0 WHERE {

?x0 rdf:type wsn:IncipientFault .
?x0 rdf:type wsn:System

}

This first query searches for all individuals which belong at the same time to
the IncipientFault and System concept. As described in the previous section, the
IncipientFault concept is modelled by means of a description logic statement.
As such the reasoner will check at-runtime which of the System individuals, i.e.
the sensors, satisfies this logic statement and will only return those sensors that
do match this description.

HVAC query

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX wsn: <http://users.atlantis.ugent.be/svrstich/deus/wsn#>
SELECT ?x0 WHERE {

?x0 rdf:type wsn:PossibleHeatingFault .
}

Dually to the previous query, this query triggers the reasoner to search through
the entire set of data to find those objects which satisfy the logic description of
a PossibleHeatingFault. Its definition is presented in Section 4.3.

Solution query

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX wsn: <http://users.atlantis.ugent.be/svrstich/deus/wsn#>
SELECT ?x0 ?x1 WHERE {
(1) ?x0 rdf:type wsn:DetectedFault .
(2) ?x0 wsn:hasID \"24\"^^xsd:integer .
(3) ?x0 rdf:type ?x1 .
(4) ?x1 rdfs:subClassOf wsn:Solution
}

The line indicated with (1) in this last query can be replaced with an appropriate
Fault concept from the ontology. The nodeID mentioned as object in pattern (2)
might obviously be replaced with the id of the node concerned in the query.
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Additionally, for that sensor node, the reasoner is asked to infer which other
types can be linked to the individual representing the faulty sensor node. This
is defined by line (3). However, by also including line (4) in the query, we limit
the search for other types, to those types that are modelled in the ontology as a
subclass of Solution. After all, the goal of this query is to find the solution for a
given node with a certain fault.

5 Deployment Overview

This section demonstrates that the architecture defined in the previous sections
can be deployed on the different nodes of heterogeneous networks, such as the
WiLab.t infrastructure, facilitating a distributed monitoring platform which can
be tuned to the needs of each individual deployment. Although only a single
type of sensors is currently deployed on the testbed, future extensions with dif-
ferent types of hardware are planned. After the integration of this new hardware,
the addition of new ontology models and data providers will suffice to include
them in the monitoring workflow. After all, the specific definitions of the con-
cepts against which the observations are checked to realise the correct Fault and
Solution classification, can be changed independently from the end monitoring
application.

An example of this claim is the detection of faulty HVAC (Heating, Ventila-
tion and AirConditioning). In a normal office environment, an upper threshold
of 25 ◦C can already indicate an HVAC problem, while in a lab environment this
threshold could easily be 35 ◦C or 40 ◦C. To support this kind of adaptation, the
ontology T-Box which is deployed on the reasoning agent can be altered accord-
ing to the needs of this particular situation. The other parts of the platform do
not need to know about this, because the communication will only involve the
request for rooms in which the HVAC system might be corrupted. The reasoner
will use the locally deployed definition to check the local data. Figure 4 presents
this deployment in a graphical manner.

The monitoring of the sensor network within the WiLab.t infrastructure has
been defined in an office environment. In this setting, every office has a number
of deployed sensors, working together in a wireless sensor network. Each of the
offices is networked together by means of a light-weight dedicated access point,
establishing a mesh network for communication between the offices. This mesh
network in its turn is supported by a back-end network to facilitate more services,
e.g. an uplink to the internet. Starting from the data generated at the source
of a sensor node, we deployed the Data Provider/Resources Modules on the
TMoteSky sensor nodes in the sensor network. As described, these modules
provide the data to be included in the reasoner for the monitoring process. It
makes this information available to the Aggregator Module, which stores it in a
MySQL database. We envisage deploying such a database either in the backend
network, or ideally on a mesh node. In this situation, the mesh node can handle
locally the data coming from the sensor nodes attached to it. Therefore we
included the Aggregator Module on the mesh node as well. Additionally, the
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Fig. 4. Deployment view of the platform modules on the devices of a DEUS network

Reasoning Engine Module was deployed on the same mesh node. After all, since
there is a mesh node for every office in which a number of sensors have been
deployed, this mesh node is the ideal place to locally process and reason on the
information coming from the locally deployed sensor nodes. As indicated, the
description of the local situation in the ontology T-Box, the model, included
in the reasoning process on this mesh node, can be tuned to the particular
needs. Using D2R [18], an automatic conversion between raw data in the MySQL
database and the ontology A-Box, the data, is supported. An example mapping
for a certain Symptom concept, namely the observation that no information
is being generated by the nodes, can be found below. By using a left-join SQL
statement, even the absence of observations can be represented in specific A-Box
individuals. For a detailed description of the constructs used in this mapping
language, we refer to [18].

map:TMoteNoObservationSymptoms a d2rq:ClassMap;
d2rq:uriPattern "NoObservationSymptoms/@@coordinates.id@@";
d2rq:class vocab:MissingReportsSymptom;
d2rq:classDefinitionLabel "MissingReportsSymptom";
d2rq:condition "coordinates.id NOT IN

(SELECT DISTINCT sensorinfo.moteid FROM sensorinfo)";

All other remaining modules are deployed on a back-end server, which can be
used by monitoring clients to trigger the monitoring process.

The adoption of ontologies has not only been driven by the logical formalisms
defining the constructs in such models, but also by their ability to be used
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for communication. After all, an ontology can easily by serialized in a number
of specific and well-defined languages, such as RDF/XML, n-triple, etc. Their
communication nature has always been considered as one of the main strongholds
of ontologies. Not surprisingly so, given their origin in the Semantic Web. This
means that not only the data is serialized and/or transmitted, but also the
meaning of this data. This turns it into machine-processable information. The
architecture described earlier takes full advantage of this.

All high-level communication is performed using the SPARQL [14] query lan-
guage. As such, only certain parts and certain views of the ontology are trans-
ferred. Additionally, only one interface operation is necessary, no matter what
the content of the ontology T-Boxes is. The argument of this operation is a
SPARQL query, and according to the T-Box of the ontology deployed, other
SPARQL queries can be used. However, by making use of logically defined con-
cepts, even these queries themselves won’t have to change all that drastically.
Of course, if a complete new ontology is used in a given deployment, serving
a completely different use case, this argument does not hold. But for similar
use cases, a specific alteration of the definition of the logically defined concept
should be sufficient to handle the different scenarios. Additionally, by introduc-
ing the Interface Module, even the usage of SPARQL as implementation within
the reasoning platform is transparent to the monitoring client. The interfaces
and protocols used in the low-level part of the platform, namely the sensors, are
specifically implemented to be used on those devices and for the information to
be exchanged.

6 The Front-End Monitoring Application

In addition to the monitoring framework as detailed in the previous sections,
a front-end application to visualise the reasoned and inferred information was
developed as well. The goal of this application is to demonstrate the transparency
of the approach, as well as its ability to be used as monitoring application as such.
The Data Provider/Resource modules are only deployed and actively collecting
information about the environment when no other jobs are scheduled on the
WiLab.t testbed. This ensures that the monitoring framework does not interfere
with the experiments scheduled by other users. A screenshot of this monitoring
application can be seen in Figure 5.

Three queries were predefined in this application, one for Incipient Faults,
Detected Faults and HVAC Faults. The exact implementation of the queries has
been detailed in Section 4.4.

The complete workflow results in a list of nodes with their IDs in the case
of node classification, and a list of room numbers in the case of Heating, Ven-
tilation and AirConditioning monitoring. These logical IDs are captured in a
tree-based view, which the administrative staff can expand to check the results
of the reasoned monitoring process. This process is initiated iteratively by the
monitoring application. This results in continuous monitoring and reasoning on
the information available in the MySQL database. However, by doing this on
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Fig. 5. WiLab.t ontology-based monitoring application front-end

historical data, superseded information is sometimes taken into account even
after the fault has been rectified. This is a result of the design of the database
and the Data Provider/Resource Modules’ implementation. We plan to enhance
this mechanism into an online deployment in future versions of the monitoring
framework, where the information is to be fetched at-runtime during the reason-
ing process, thus also eliminating the need for maintaining a MySQL database
with all raw data.

7 Performance Evaluation

Having presented the developed architecture and components supporting an
ontology-based monitoring framework using distributed reasoning mechanisms
for the IBBT WiLab.t infrastructure in the previous sections, this section de-
tails the evaluation of the platform. Apart from checking whether the conclusions
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drawn automatically by the distributed reasoning process are really correct, we
evaluated the overall round trip time starting from the triggering of the reasoning
process until the reception of the conclusions.

We constructed a WiLab.t test setup, using 5 offices. Each of the offices has on
average 6 nodes, producing in total between 500 and 700 measurement reports
per office. The scenario measured is as follows:

1. The request is initiated in the back-end, by the monitoring application,
2. The query is analysed by the back-end engine [splitting],
3. The correct iNodes are located by the back-end engine [locating],
4. The reasoning tasks are scheduled on the iNodes,
5. The 5 iNodes collect the local data and convert it into ontology A-Box data

[populating],
6. The 5 iNodes execute the reasoning on the local data and return the results

to the back-end [reasoning],
7. The back-end merges the results and returns it to the monitoring application.

Of the 7 tasks enumerated here, only task 2, 3, 5 and 6 significantly contribute to
the overall round-trip time. The others can be neglected. After all, Task 1 only
triggers the action. Secondly, since there is only a single concurrent reasoning
task being executed, the scheduling has no effect. Task 7 marks the end of the
process, by returning the list of merged results.

The results can be seen in the graph in Figure 6. The reasoning process was
triggered 30 times. The average was recorded in the graph for each of the offices.
A number of important conclusions can be drawn from this graph. First of all, it
is clear that two main contributing phases in the workflow are the “populating”
and “reasoning” tasks. The time the reasoning takes for even a limited number
of sensor nodes per iNode clearly underlines the need for a distributed approach
in constrained environments. Secondly, the influence of the amount of reports
to be included in a single iNode is also of great influence. Office 1 contains the
most sensor nodes, namely 13, while office 2 contains the least nodes, namely 3.
Thirdly, the populating phase of the reasoning process has a significant contri-
bution to the overall processing times. However, by implementing the intended
transition towards an online approach, the need for this population approach can
be avoided. We expect this to result in a lower overall round-trip time. Finally,
the distribution mechanism implemented in this platform penalises the quicker
offices, by not returning the results to the monitoring client until all contribut-
ing reasoning tasks have completed. Therefore, the iNode in the office taking the
most time to complete will define the overall round-trip time. However, because
a post-processing merger phase is included to eliminate potential duplicates, this
would otherwise have to be handled by the invoking client.

On the iNodes, Java 1.6.0 update 13 was used to run an Apache Tomcat 6.0
Webserver. The reasoning and populating modules deployed in this container
were implemented using Pellet 2.0.0rc4 [17] as reasoner and d2rq6 [18] as popu-
lator to convert the raw data from the MySQL database into an ontology A-Box.
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Office 1 Office 2 Office 3 Office 4 Office 5

reasoning 87181,2 10041,07 27419,53 55282,4 47328,27

populating 123099,97 2628,53 34768,4 6897,93 6670,3

locating 443,9 443,9 443,9 443,9 443,9

splitting 6,23 6,23 6,23 6,23 6,23
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200

250
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s
Round Trip Time

Fig. 6. Total round-trip time including a component break-down for the 4 major con-
tributing phases

8 Conclusions and Future Work

In this paper, we have presented how an ontology-based monitoring framework
was developed for IBBT’s WiLab.t infrastructure. The adoption of the ontol-
ogy technology supported by distributed reasoning mechanisms facilitates the
transparent monitoring in a heterogeneous environment, where the rules ac-
cording to which nodes and the environment variables need to classified can be
changed according to the locally deployed hardware, specifications and environ-
ment. We have detailed the implementation of the contributing components on
sensors, iNodes, back-end and front-end. The platform has been evaluated on
the testbed through analysis of the processing times of the different contributing
components. Moreover, the presented platform is currently in daily use for the
monitoring of the WiLab.t testbed. It demonstrates that by introducing intelli-
gent and advanced technologies in a cross-domain manner, great improvements
can be achieved both in extendibility and maintainability. As can be concluded
from the presentation of the monitoring platform in this paper, changes over
time of classification rules are easily implemented through adaptation of the on-
tology deployed on the iNodes. New hardware can also be included with minimal
effort if new ontology models are created modelling the new hardware. The in-
clusion of this new information, or the adaptation of local rules based on the
local environment is achieved transparently from the monitoring application.

We plan to further exploit the developed platform to introduce a permanent
monitoring application, by migrating from an offline database backed deployment
towards an online fully distributed and autonomous platform. This will not only
result in faster response times, but will also avoid the inclusion of potentially
superseded information which might still be present in the database, even after
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a given detected fault has been rectified. Finally, we plan to develop mechanisms
to take changing network topologies and deployments into account in an online
manner and optimise the deployment based on certain networking metrics.
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