
Distributed Ontology Development Environment for Multi-agent
Systems

Motoyuki Takaai, Hideaki Takeda and Toyoaki Nishida
Graduate School of Information Science, Nara Institute of Science and Technology

8916-5, Takayama, Ikoma, Nara 630-01, Japan
{motoyu-t,takeda, nishida} ~is.aist-nara.ac.jp

Abstract

In this paper, we propose a new environment
that supports distributed ontology development
for multi-agent systems. In our distributed ontol-
ogy development environment (Donden), users 
program agents can build ontologies locally which
can be associated to each other. Donden consists
ontology browser which is provided for each user
and ontology server which is provided for a group
of users which want to share ontologies. Ontol-
ogy browser helps user to edit ontology and to
make links to other user’s ontology by graphi-
cal user interface. Ontology server helps users to
synthesize ontologies by computing similarity be-
tween concepts of ontologies. We also show an-
other application of distributed ontology devel-
opment which supports distributed engineering
information base.

Introduction

In recent years, researchers are interested in prob-
lem solving and knowledge information processing by
multi-agent systems. In multi-agent systems, a num-
ber of computer programs (so called agents) are con-
nected to each other, so that larger and more complex
problems can be solved.

The most important problem of multi-agent sys-
tems is how to use the concepts in different descrip-
tion and conceptualization together. When two agents
with different descriptions of concepts try to commu-
nicate each other, difference of descriptions disturbs
their communication.

Ontology(Patil et al. 1992) is an answer for this
problem. An ontology is a specification of a conceptu-
alization. Agents with a common ontology can share
their knowledge and work cooperatively by common
descriptions of concepts in the ontology. Generally,
ontology is large and have many ways to describe con-
cepts, so that ontology is difficult to build and to keep
consistency.

In this paper, we discuss the way of building ontol-
ogy and propose a distributed ontology development
environment for ontology builders.

There are two ways of building ontology for multi-
agent systems. The first approach is by bottom-up
method, i.e., ontology is build along agent building.
Ontology inconsistencies are removed at the same time
or after building. The second is by top-down method,
i.e., ontology is build before agent building.

KC-Kansai (Nishida & Takeda 1993) is a testbed 
knowledge sharing and reuse for very large knowledge
base. Ontology of KC-Kansai was built by the first
approach. In PACT (Cutkosky et al. 1993) took the
same approach. In this approach, users can build on-
tology which is convenient for their agents. But they
must build the ontology cooperatively in order to avoid
inconsistency in ontology.

Geographically distributed users are building ontolo-
gies in collaboration through WWW (Farquhar et al.
1995). It takes the second approach. The ontologies
each of which is built separately from agent build-
ing may be consistent, but not convenient for agent
builders because relations among them are not clear.

In this paper we discuss how to realize the bottom-
up approach for ontology building and propose a
distributed ontology development environment called
Donden. Donden supports building ontologies as fol-
lows: 1) to edit ontology and to make links to other
user’s ontology by graphical user interface. 2) to
synthesize ontologies by computing similarity between
concepts of ontologies.

In section 2, we show Donden architecture. In sec-
tion 3, we discuss how to reflect many aspects of a
concept on ontology descriptions. In section 4, we
show how Donden supports distributed ontology de-
velopment. In section 5, we show experiments of the
integration among ontologies. In section 6, we show
another application of distributed ontology develop-
ment which supports distributed engineering informa-
tion base. Finally we summarize the paper in the last
section.

Donden: a distributed ontology
development environment

Figure 1 is the architecture of Donden. Donden
consists of ontology browser which is provided for

149

From: AAAI Technical Report SS-97-06. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved. 



Figure 1: the architecture of Donden

each user and ontology server which is provided for a
group of users who want to share ontologies. Ontology
browser helps user to edit ontology and to make links to
other user’s ontology by graphical user interface. On-
tology server manages multiple ontologies at the same
time by using an ontology description language AS-
PECTOL. Ontology server helps users to synthesize
ontologies by computing similarity between concepts
of ontologies. Ontology server and ontology browser
are realized as the KQML(Finin et al. 1992) agents.

Frame ontology of Ontolingua
Ontolingua is an ontology description language which
was made by KSE (Knowledge Sharing Effort) 
DARPA. With Ontolingua, we can write declarative
frame expression. We can define classes, relations,
functions, and instances by using Ontolingua prim-
itives as define-class, define-relation, define-function,
and define-instance.

Aspect

Generally, a concept has different description. To share
the concept among systems, we must use a common
description for the concept. But different systems usu-
ally have different descriptions for a concept because
of differences of their purpose and a point of view. It
may disturb agents to understand each other. Aspect
is a framework which can manage such different de-
scriptions of concepts. Ontology is a set of the concept
units called aspect. Different aspects for a concept are
different expression for it. And translation rules be-
tween aspects make agents to share knowledge.

Figure 2 and Figure 3 are the example expression
of the rail and taxi fare system. The description after
:def is a necessary condition for the instance (shown
by ?fare ) into the class. In Figure 2, the instance is
defined as a thing having one adult-fare slot (the type
is Basic :money ) and one child-fare slot (the type 
also Basic :money ).

Figure 4 shows a example of the translation rule
from taxi fare to rail fare. The taxi:fare slot of

(define-class rail:fare (?fare)
:def
(and
(has-one ?fare rail:adult-fare)
(value-type ?f~.’e rail:adult-fare Basic:money)
(has-one ?fare rail:child-fare)
(value-type ?fare rail:child-fare Basic:money)))

Figure 2: the fare class of rail way

(define-class taxi:fare (?fare)
:dsf
(and
(has-one ?faro taxi:fare)
(value-type ?fare taxi: fare Basic :money) 

Figure 3: the fare class of taxi

?taxi-fare is translated to the rail:adult-fare
slot of ?rail-fare and the rail:child-fare slot of
?rail-fare.

Editing ontology by Donden
Deaden provides Ontology Browser for each user and

Ontology Server for a group of users who want to share
ontologies.

Ontology Server has following functions.

1. Management of users

2. Management of ontology for each ontology builder

3. Support of the integration of concepts for ontology
builders.

4. Translation between expression inside Ontology
Server and Ontolingua.

Ontology Browser exchanges information of ontolo-
gies with Ontology Server and realizes the following
functions.

1. To indicate class and class-instance relations by us-
ing graph and make possible to edit ontology visu-
ally.

2. To show and take the ontology of other ontology
builder in.

We implemented the prototype of Ontology Browser
and Ontology Server by using scheme interpreter, STk.

(define-translation category-of-fare
(=> (taxi:fare ?taxi-fare)

(rail:fare ?rail-fare))
((-> (taxi:fare ?taxi-faro ?fare)

(and (rail:adult-fare ?rail-fare ?fare)
(rail: child-fare ?rail-fare ?fare) ) ) 

Figure 4: a translation rule from a taxi fare to a rail
fare

150



Figure 5: Ontology Browser

Figure 8: Editing class by Ontology Browser

Figure 5 shows that a user of a rail roazl agent makes
ontology by using Ontology Browser. In this figure,
there are class hierarchy about train, class about train,
class about the money which is brought in from Basic
ontology builder. Edit is chosen in the pop-up menu
of fare class in this screen.

Figure 5 shows the scene editing the fare actually.
Here, we can edit class name, slot and so on.

Ontology Server translates the class of fare into On-
tolingua in Figure 2.

Support of ontology integration
Donden supports ontology integration by collecting
similar expression of concepts and showing them to
the ontology builder. We employ hierarchical clus-
ter analyses as the method of collecting similar classes
and multidimensional scaling (TypeIV quantification
method) as the method of arranging the classes on 
plane.

Method of calculating similarity of
concepts

Mainly there are following relations between classes of
similar expression.

Table 1: Clusters of a concept for travel

(1)

(2)

(4)

timepoint:univers~l-time-spec
timepoint :long-time-spec
timepoint:calendar-date
timepoint:calendar- year
hotelguide:hotel
guesthouse:guesthouse
hotel-with-building-information:hotel
business-hotel:hotel generic-hotel:hotel
overnight-with-two-meals:hotel-charge
overnight-with-breakfast:hotel-charge
overnight- wit hou t- meals:hotel -charge
lowest-highest-room:hotel-charge
move-with-traBc:transfer
move-with-place:destination

I. same concepts of different expressions

2. similar expressions of different concepts (e.g. super
- subclass relation and so on)

The example of Figure 2 and Figure 3 have the same
name fare, but since the are not showing the same
concepts, these examples belong to (2). To count the
similarity of classes we use the following things:

i. the name of class
2. the name of super class and sub class

3. the name of slot and the type of slot

4. the instance that belongs to the class

5. the relations and the functions which use the class

6. the document of the class

Donden calculates the similarity of classes by using
this information and shows the possibility of concept
integration to ontology builder.

We performed an experiment for integration of class
expression. In this case the c~culation of the similarity
is a sum of the name similarity of each slot combina-
tion. The other types of information are omitted. The
name similarity is
¯ 1.0 if they are same name.

¯ 0.5 if one name includes the other.

¯ 0.0 else case.

Collecting similar concepts by hierarchical
cluster analyses

Table 1 is the result of the experience of hierarchical
cluster analyses with the method of calculating sim-
ilarity. The ontology for this experiment is a set of
aspects for travel concepts e.g. time, hotel and sight-
seeing place. It is written in Ontolingua (Iino 1995;
Gruber ) . This table shows higher four clusters. The
cluster (1) is a~l about time, and the cluster (2) is 
about hotel. We can collect similar concepts from the
similarity of slot expression.

151



Figure 7: Classes arranged by multidimensional scaling

Arranging the concepts by
multidimensional scaling
Figure 7 is the result of the experience of multidimen-
sional scaling from the same ontology and the same
method of calculating similarity with hierarchical clus-
ter analyses. We can find some groups from it. The
groups are classified three types as follows:

1. the group of same or similar concepts. For example,
the four classes enclosed oval A on Figure 7 are all
about time.

2. the group including different concepts which have
same property concept. For example, the three
classes enclosed oval B on Figure 7 are "transfer",
"destination" and "temple" which have the trans-
portation slot.

3. the others. Sometimes, we can find some groups in
the group by zooming in. For example, the twelve
classes enclosed oval C on Figure 7 consists three
groups (five classes about hotel, six classes about
hotel-charge and one class about museum.

Sharing engineering knowledge by
distributed ontology development

environment
We adopt the distributed ontology development envi-
ronment to share engineering knowledge among engi-

ICOB Client

Z

Figure 8: Architecture for Intelligent Corporate Base

neers.
In this environment, ontologies are developed by

bottom-up method along development of engineering
knowledge and role the bridge between multiple users.

Figure 8 shows an architecture for engineering
knowledge and communication bases called ICoB (In-
telligent Corporate Base) which is based on distributed
ontology development environment.

There are servers which contains shared documents
and communication messages, and clients each of
which an engineer uses. Users can retrieve or sub-
mit documents or communication messages by using
shared and private ontologies. The ICoB servers or-
ganize documents and messages by using ontologies
which consist of shared and users’ ontologies. At the
same time, they can extend and their ontologies by
referring and comparing shared and other private on-
tologies. The latter process corresponds organization
of information we discussed in the previous section.
ICoB clients and servers can have some facilities to
assist users’ information organization.

Conclusion and further work
By managing ontology based on Aspect, Donden sup-
ports distributed ontology development. In this ap-
proach, geographically distributed users can build on-
tology which is convenient for their agents, and can
reuse other agent systems with different ontologies.

In the current implementation, only two integration
methods are supported. Both methods mainly concern
with semantics of ontologies. We are planning to pro-
vide various kinds of integration methods for examples,
the syntactic approach to calculate similarity shown in
(Nishida, Koujitani, & Takeda 1995) can work with
our semantic approach together.

References
Cutkosky, M. R.; Engelmore, R. S.; Fikes, R. E.;
Genesereth, M. R.; Gruber, T. R.; Mark, W. S.;
Tenenbaum, J. M.; and Weber, J. C. 1993. PACT:
An experiment in integrating concurrent engineering
systems. IEEE Computer January 1993:28-38.
Farquhar, A.; Fikes, R.; Pratt, W.; and Rice., J. 1995.
Collarborative ontology construction for information

152



integration. Technical Report KSL 95-63, Knowledge
Systems Laboratory, Stanford University.

Finin, T.; Weber, J.; Wiederhold, G.; Genesereth,
M.; Fritzson, R.; McKay, D.; McGuire, J.; Pelavin,
P.; Shapiro, S.; and Beck, C. 1992. Specification of
the KQML agent-communication language. Technical
Report EIT TR 92-04, Enterprise Integration Tech-
nologies. (Updated July 1993).
Gruber, T. Sharable ontology library.
lino, K. 1995. Knowledge sharing with multiple on-
tologies. Master’s Thesis.
Nishida, T., and Takeda, H. 1993. Towards the knowl-
edgeable community. In Proceedings of International
Conference on Building and Sharing of Very Large-
Scale Knowledge bases ’93, 157-166. Tokyo: Japan
Information Processing Development Center.

Nishida, T.; Koujitani, K.; and Takeda, H. 1995.
A plain indexing method for organizing conceptually
promiscuous data. In 1995 AAAI Fall Symposium
on AI Applications in Knowledge Navigation and Re-
trieval, 103-109.

Patti, R. S.; Fikes, R. E.; Patel-Schneider, P. F.;
MeKay, D.; Finin, T.; Gruber, T. R.; and Neches, R.
1992. The DARPA knowledge sharing effort: Progress
report. In Rich, C.; Nebel, B.; and Swaxtout, W., eds.,
Principles of Knowledge Representation and Reason-
ing: Proceedings of the Third International Confer-
ence. Morgan Kaufmann.

153


