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Distributed Opportunistic Scheduling for Ad Hoc
Networks With Random Access: An Optimal
Stopping Approach

Dong Zheng, Weiyan Ge, and Junshan Zhang

Abstract—In this paper, we study distributed opportunistic
scheduling (DOS) in an ad hoc network, where many links con-
tend for the same channel using random access. In such a network,
DOS involves a process of joint channel probing and distributed
scheduling. Due to channel fading, the link condition corre-
sponding to a successful channel probing could be either good or
poor. In the latter case, further channel probing, although at the
cost of additional delay, may lead to better channel conditions and
hence yield higher throughput. The desired tradeoff boils down to
judiciously choosing the optimal stopping rule for channel probing
and distributed scheduling. In this paper, we pursue a rigorous
characterization of the optimal strategies from two perspectives,
namely, a network-centric perspective and a user-centric per-
spective. We first consider DOS from a network-centric point
of view, where links cooperate to maximize the overall network
throughput. Using optimal stopping theory, we show that the
optimal scheme for DOS turns out to be a pure threshold policy,
where the rate threshold can be obtained by solving a fixed-point
equation. We further devise iterative algorithms for computing
the threshold. We also generalize the studies to take into account
fairness requirements. Next, we explore DOS from a user-centric
perspective, where each link seeks to maximize its own throughput.
We treat the problem of threshold selection across different links
as a noncooperative game. We explore the existence and unique-
ness of the Nash equilibrium, and show that the Nash equilibrium
can be approached by the best response strategy. Since the best
response strategy requires message passing from neighboring
nodes, we then develop an online stochastic iterative algorithm
based on local observations only, and establish its convergence to
the Nash equilibrium. Because there is an efficiency loss at the
Nash equilibrium, we then study pricing-based mechanisms to
mitigate the loss. Our results reveal that rich physical layer/MAC
layer (PHY/MAC) diversities are available for exploitation in ad
hoc networks. We believe that these initial steps open a new avenue
for channel-aware distributed scheduling.

Manuscript received August 24, 2007; revised September 09, 2008. The ma-
terial in this paper was presented in part at MobiHoc, Montréal, QC, Canada,
September 2007. This work was supported in part by the U.S. Office of Naval
Research under Grant NO0014-05-1-0636 and by the National Science Founda-
tion under Grants ANI-0238550 and CNS-0721820.

D. Zheng is with the NextWireless, Inc., San Diego, CA 92130 USA.

W. Ge is with Qualcomm, Inc., San Diego, CA 92121 USA.

J. Zhang is with the Department of Electrical Engineering, Arizona State Uni-
versity, Tempe, AZ 85287 USA (e-mail: junshan.zhang @asu.edu).

Color versions of Figures 4—7 and 9 in this paper are available online at http://
ieeexplore.ieee.org.

Communicated by P. Viswanath, Associate Editor for Communications.

Digital Object Identifier 10.1109/TIT.2008.2008137

Index Terms—Ad hoc networks, distributed opportunistic
scheduling (DOS), game theory, optimal stopping, threshold
policy.

1. INTRODUCTION

A. Motivation

IRELESS ad hoc networks have emerged as a

promising solution that can facilitate communications
between wireless devices without a planned fixed infrastructure.
Different from its wireline counterpart, the design of wireless ad
hoc networks faces a number of unique challenges in wireless
communications, including: 1) cochannel interference among
active links in a neighborhood; and 2) time-varying channel
conditions over fading channels. The traditional wisdom for
wireless network design is to separate link losses caused by
fading from those by interference. That is, the PHY Ilayer
addresses the issues of fading, and the MAC layer addresses the
issue of contention. However, as shown in [1] and [2], fading
can often adversely affect the MAC layer in many realistic
scenarios. The coupling between the time scales of fading and
MAC calls for a unified PHY/MAC design for wireless ad hoc
networks, in order to achieve optimal throughput and latency.

Notably, there has recently been a surge of interest in
channel-aware scheduling and channel-aware access control.
Channel-aware opportunistic scheduling was first developed
for the downlink transmissions in multiuser wireless networks
(see, e.g., [3] and [4]). Opportunistic scheduling originates
from a holistic view: roughly speaking, in a multiuser wireless
network, at each moment, it is likely that there exists a user
with good channel conditions; and by picking the instantaneous
“on-peak” user for data transmission, opportunistic scheduling
can utilize the wireless resource more efficiently. A key assump-
tion in these studies is that the scheduler has knowledge of the
instantaneous channel conditions for all links, and therefore,
the scheduling is centralized.

Channel-aware random access has been investigated for the
uplink transmissions in a many-to-one network, where channel
probing can be realized by broadcasting pilot signals from the
base station. Notably, [5] and [6] study opportunistic ALOHA
under a collision model, with a basic idea being that in every slot
each user transmits with a probability based on its own channel
condition. While recent work [7] does not assume a base station
in a wireless local area network (LAN), the transmitter node still
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needs to collect channel information from potential receivers,
thereby serving as a tentative “virtual” base station. A key ob-
servation is that in the existing work on rate adaptation for ad
hoc communications (see, e.g., [§]-[10]), a link continues trans-
mission after a successful channel contention, no matter whether
the channel condition is good or poor. Clearly, this leaves much
room for improvement by devising channel-aware scheduling.

Unfortunately, little work has been done on developing
channel-aware distributed scheduling to reap rich diversity
gains for enhancing ad hoc communications. This is perhaps
due to the fact that channel-aware distributed scheduling is
indeed challenging, since the distributed nature of ad hoc
communications dictates that each link has no knowledge
of others’ channel conditions (in fact, even its own channel
condition is unknown before channel probing). A principal
goal of this study is to fill this void, and obtain a rigorous
understanding of distributed opportunistic scheduling (DOS)
for ad hoc communications.

In this paper, we take some initial steps in this direction
and consider a single-hop ad hoc network where all links can
hear others’ transmissions. In such a network, links contend
for the same channel using random access, and a collision
model is assumed which indicates that at most one link can
transmit successfully at each time. We assume that after a
successful contention, the channel condition of the successful
link is measured (e.g., by using some pilot signals embedded
in the probing packets). Due to channel fading, the link con-
dition corresponding to this successful channel probing can
be either good or poor. In the latter case, data packets have
to be transmitted at low rates, leading to possible throughput
degradation. A plausible alternative is to let this link give up
this transmission opportunity, and allow all the links recon-
tend for the channel, in the hope that some link with a better
channel condition can transmit after the recontention. Intu-
itively speaking, because different links at different time slots
experience different channel conditions, it is likely that after
further probing, the channel can be taken by a link with a better
channel condition, resulting in possible higher throughput.
In this way, the multiuser diversity across links and the time
diversity across slots can be exploited in a joint opportunistic
manner. It is in this sense that we call this process of joint
probing and scheduling “DOS.” We should caution that on the
other hand, each channel probing comes with a cost in terms of
the contention time, which could be used for data transmission.

Clearly, there is a tradeoff between the throughput gain
from better channel conditions and the cost for further channel
probing. The desired tradeoff boils down to judiciously
choosing the optimal stopping rule for channel probing, in
order to maximize the throughput. In this paper, we obtain
a systematic characterization of this tradeoff by appealing to
optimal stopping theory [11], [12], and explore channel-aware
distributed scheduling to exploit multiuser diversity and time
diversity for wireless ad hoc networks in an opportunistic
manner. We will tackle this problem from the following two
perspectives: 1) a network-centric perspective in which all links
“cooperate” to maximize the overall network throughput; and
2) a user-centric view where each link seeks to maximize its
own throughput selfishly.
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B. Summary of Main Results

The common theme of the first thrust is DOS from a net-
work-centric perspective. We start with the basic case where
all links have the same channel statistics. Recall that when a
link discovers that its channel condition is relatively poor after
a successful channel contention, it can skip the transmission op-
portunity so that some link with a better condition would have
the chance to transmit in the next round channel probing. We
should point out that there is no guarantee for this to happen due
to the stochastic nature of random contention and time-varying
channel conditions. Nevertheless, as channel probing continues,
the likelihood of reaching a better channel condition increases.
In a nutshell, DOS boils down to a process of joint channel
probing and scheduling.

Mathematically speaking, we treat DOS as a team game.
Building on optimal stopping theory [11], [12], we cast the
problem as a maximal rate of return problem, where the rate
of return refers to the average throughput. As noted above,
since the cost, in terms of the contention duration, is random,
we use the maximal inequality to establish the existence of the
optimal stopping rule. Then, we develop the optimal strategy
for DOS, by characterizing the optimal stopping rule to control
the channel probing process and hence to maximize the overall
throughput. In particular, we show that the optimal strategy is a
pure threshold policy, ! in the sense that the decision on further
channel probing or data transmission is based on the local
channel condition only, and the threshold is invariant in time.
Therefore, it is amenable to easy distributed implementation.
Furthermore, it turns out that the optimal threshold can be
chosen to be the maximum network throughput, which can be
obtained by solving a fixed point equation. We then generalize
the above study to the case with heterogeneous links, where
different links may have different channel statistics. Due to the
channel heterogeneity, the channel conditions corresponding to
consecutive successful channel probings may follow different
distributions. Again, we show that the optimal strategy for joint
channel probing and distributed scheduling is a pure threshold
policy. Somewhat surprisingly, the optimal thresholds turn out
to be the same across all the links regardless of the channel
statistics and contention probabilities. We further devise an
iterative algorithm to compute the optimal threshold. We note
that the proof for the convergence of the iterative algorithm
is nontrivial, and the standard techniques (e.g., contraction
mapping [13]) are not applicable here. Instead, we use a novel
approach exploiting the properties of the iterates to establish
the convergence. We also generalize the studies to take into
account fairness requirements.

In the second thrust, we focus on DOS from a user-cen-
tric perspective, where each link seeks to maximize its own
throughput in a selfish manner. We treat the rate threshold
selection problem across different links as a noncooperative
game. Needless to say, game theory is a powerful tool to
describe complex interactions among players, and predict their
choices of strategies. In a noncooperative game, each player
seeks to maximize some utility function (payoff function) in
a distributed manner by choosing its strategy from a strategy

1A threshold policy is called pure if the threshold is invariant in time.
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set. The game settles at an equilibrium point if one exists.
Due to the selfish nature of the players, the equilibrium is not
necessarily the optimal point that maximizes the social utility.

More specifically, we first characterize each link’s individual
throughput as its payoff function. We establish the existence of
the Nash equilibrium for the noncooperative game, and show
the uniqueness of the Nash equilibrium under some sufficient
conditions. Based on the best response strategy, we devise a
distributed iterative algorithm, and establish its convergence
to the Nash equilibrium for any nonnegative initial threshold
values. It is worth noting that the convergence proof for this
distributed iterative algorithm is nontrivial, and the standard
approaches (e.g., using contraction mapping [13] or standard
interference functions in [14]) are not applicable here. Indeed,
the proof is constructive and involves an interesting sandwich
argument. Observing that the best response strategy requires
message passing from neighboring nodes, we then develop
an online stochastic iterative algorithm based on local ob-
servations only. In light of the asynchronous feature of the
online algorithm, we appeal to recent results on asynchronous
stochastic approximation algorithms [15] and establish its
convergence under some regularity conditions. Finally, since
the equilibrium point does not maximize the social utility, we
examine the efficiency loss in terms of the throughput in the
noncooperative game, compared to the network-centric case,
and explore pricing-based mechanisms to mitigate the loss.

In summary, the study in this paper on DOS, for both the
network-centric case and the user-centric case, reveals that rich
PHY/MAC diversities are available for exploitation in ad hoc
communications. We believe that these initial steps open a new
avenue for channel-aware distributed scheduling, and are useful
for enhancing MAC protocol design for wireless LANs and
wireless mesh networks.

C. Related Work and Organization

As noted above, there has been much work on centralized op-
portunistic scheduling (e.g., [3], [4], and [16]-[21]), channel-
aware ALOHA (e.g., [5] and [6]) and MAC design with rate
adaptation (e.g., [8]-[10]). Most relevant to our study are per-
haps e.g., [5], [6], [8], and [10]. The main differences between
this study and the studies [5] and [6] lie in the following two as-
pects: 1) we consider ad hoc communications assuming no cen-
tralized coordination, and the transmission scheduling is done
distributively; and 2) the transmitter nodes have no knowledge
of other links’ channel conditions, and even their own channel
conditions are not available before contention. These limita-
tions, dictated by the distributed nature of ad hoc communica-
tions, pose great challenges for exploiting channel diversity in
distributed scheduling. A major difference between our study
and the studies in [8] and [10] is that our scheme allows links to
opportunistically utilize the channel whereas in the schemes in
[8] and [10] the transmission rate is adapted based on the cur-
rent channel condition, regardless of whether the channel con-
dition is poor or good. The delay-throughput tradeoff in wire-
less networks has been studied in [21], and a centralized dynam-
ical control algorithm has been developed to achieve the optimal
tradeoff.

Along a different avenue, opportunistic channel probing for
single-user multichannel systems has been studied in [22] and
[23], where the basic idea is to opportunistically probe and se-
lect a transmission channel among multiple channels between
the transmitter node and the receiver node. In contrast, in this
study, we consider multiple links (each with its own transmitter
and receiver) sharing one single channel and explore distributed
scheduling, assuming that each link has no knowledge of other
links’ channel conditions.

There has also been a surge of interest in using game theory
to study wireless networks (see, e.g., [24]-[27]). We note that
a game theoretic formulation on random access protocols has
been investigated in [28]—[30], with one major difference being
that none of these works exploit time-varying channel condi-
tions for scheduling.

The rest of this paper is organized as follows. Section II gives
a brief introduction on optimal stopping theory and presents
the model for random-access-based channel probing and sched-
uling. In Sections Il and IV, we investigate in depth the problem
of joint channel probing and scheduling from the network-cen-
tric perspective and the user-centric perspective, respectively.
Section V investigates the efficiency loss of the noncooperative
game, compared to that of the team game, and proposes a pricing
mechanism to mitigate the price of anarchy. In Section VI, we
provide numerical examples to corroborate the theoretic results.
Finally, Section VII concludes this paper.

II. BACKGROUND AND SYSTEM MODEL

A. A Preliminary on Optimal Stopping Theory

As noted above, in an ad hoc network with many links, when
a link discovers that its channel condition is “relatively poor”
after a successful channel contention, it can either transmit or
skip this opportunity so that in the next round some link with
a better condition would have the chance to transmit. This is
intimately related to the optimal stopping strategy in sequential
analysis [12].

Simply put, an optimal stopping rule is a strategy for deciding
when to take a given action based on the past events in order to
maximize the average return, where the return is the net gain (the
difference between the reward and the cost) [11], [12]. More
specifically, let {71, Za,...} denote a sequence of random
variables, and {yo,y1(21),y2(21,22), - -, Yoo (21,22, ...)}
a sequence of real-valued reward functions. The reward is
Yn(z1,...,2n) if the strategy chooses to stop at time n. The
theory of optimal stopping is concerned with determining the
stopping time N to maximize the expected reward E[Yy]; and
in general, N is called a stopping time if {N = n} € F,,
where F,, is the o-algebra generated by {Z;,j < n}.

B. System Model

Random access is widely used for medium access control in
wireless ad hoc networks. Consider a single-hop ad hoc network
with M links (see Fig. 1), where link m contends for the channel
with probability p,,, m = 1,..., M. A collision model is as-
sumed for the random access, where a channel contention of
a link is said to be successful if no other links transmit at the
same time. We assume that the local channel condition can be
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Fig. 1. Example of a single-hop ad hoc network.
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Fig. 2. Sample realization of channel probing and data transmission.

obtained after a successful channel contention. Accordingly, the
overall successful channel probing probability in each slot p; is
then given by Z%Zl(pm [Tizm (1 = pi)) [6]. (To avoid trivi-
ality, we assume that p; > 0.)

For convenience, we call the random duration of achieving a
successful channel contention as one round of channel probing.
It is clear that the number of slots (denoted by K) for a suc-
cessful channel contention (probing) is a Geometric random
variable, i.e., K ~ Geometric(ps). Let T denote the duration
of mini slot for channel contention. It follows that the random
duration corresponding to one round of channel probing is K7,
with expectation 7 /ps.

Let s(n) denote the successful link in the nth round of
channel probing, and R, s(,) denote the corresponding trans-
mission rate. In wireless communications, R, ;) depends
on the time-varying channel condition, and hence is random.
Following the standard assumption on the block-fading channel
in wireless communications [8], [10], we assume that Rn,s(n)
remains constant for a duration of 7", where 7’ is the data trans-
mission duration and is no greater than the channel coherence
time.

To get a more concrete sense of joint channel probing and
distributed scheduling, we depict in Fig. 2 an example with N
rounds of channel probing and one single data transmission.
Specifically, suppose after the first round of channel probing
with a duration of K, the rate of link s(1), Ry 41, is small
(indicating a poor channel condition); and as a result, s(1) gives
up this transmission opportunity and lets all the links recontend.
Then, after the second round of channel probing with a duration
of Ko7, link 5(2) also gives up the transmission because 125 ;(2)
is small. This continues for N rounds until link s(/N) transmits
because Ry () is good.

In this study, we provide a systematic treatment of DOS by
using optimal stopping theory. We first impose the following
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assumption on the transmission rates across different rounds of
channel probing.

Al) {R, sn),n = 1,2,...} are independent.

We note that the above condition holds well in many practical
scenarios of interest, and the rationale behind this is as follows:
The time duration of one mini slot, denoted by 7, is smaller
than 7' [similar to carrier sensing multiple access (CSMA)]. In
a network with many links, due to collision, it takes multiple
mini slots to achieve a successful contention. Furthermore, for
one particular user (out of M users), it takes many more mini
slots to achieve one successful contention.

To get a more concrete sense, we next quantify the channel
correlation corresponding to the two instants at two adjacent
successful channel contentions. To this end, let ¢s(k) be the
probability that two adjacent successful contentions, separated
by k£ mini slots, are occupied by the same user, where k =
0,1,.... It can be shown that

¢s(k) 2 Pr(s(n + 1) = s(n), k mini slots in between)

M P
= Z ﬂ(l _ps)kps,m
m=1 Ds

. M

1 — Ds k

_ Uz p) o ) > P2 (1
- m=1

Let 7w denote the channel correlation between two adjacent mini
slots. Then, the probability that the channel correlation of two
adjacent successful contentions is smaller than some threshold
€ is given by

k* M
Yy Mp?,m
k=0m=1 DPs

where k* £ arg max, {7F > €}, and ps ,, is the successful
contention probability of user m and is on the order of ﬁ For
example, when p,,, = 1/M, M = 10, 7 = 0.9, the probability
the correlation is no greater than 0.1 is 0.903.

In a nutshell, assumption A1l is applicable to many practical
scenarios of interest.

III. DISTRIBUTED OPPORTUNISTIC SCHEDULING:
A TEAM GAME VIEW

In this section, we treat DOS, namely, joint channel probing
and distributed scheduling, as a team game in which all links
collaborate to maximize the overall network throughput. In par-
ticular, building on optimal stopping theory, we cast the problem
as maximizing the rate of return, where the rate of return refers
to the average throughput [12]. For convenience, let R(,) de-
note the rate corresponding to the nth round successful channel
probing, i.e., R(n) = Ry 5(n). Without loss of generality, we as-
sume that the second moment of R(n) exists.

As illustrated in Fig. 2, after one round of channel probing,
a stopping rule N decides whether the successful link carries
out data transmission, or simply skips this opportunity and
lets all the links recontend. Suppose that this game on joint
channel probing and transmission is carried out L times, and
let {Ny,...,Np} denote the corresponding stopping times,

’
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T, the lth realization of the duration for probing and data
transmission. Then, appealing to the renewal theorem, we have
that

E[R(nT]
E[Tx]

L
= Zl:é R(NI)T —
Zl:l Ty,
where E[R(y)T]/E[Ty]is the rate of return [12]. Clearly, Ry
and T’y are stopped random variables since NNV is a stopping time.

Accordingly, the distributions of R(y) and T'’x depend on that
of the stopping time V. Define

@

L

QE{N:N>1,E[Ty] < o} 3)

It then follows that the problem of maximizing the long-term
average throughput can be cast as a maximal-rate-of-return
problem, in which a key step is to characterize the optimal
stopping rule N* and the optimal throughput z*, as

E[RNT] & E[Rn)T]

N* £ arg max ——— = sup
E[TN] Ne@ E[TN]

NeQ

“

A. Optimal Stopping Rule for DOS

We now exploit optimal stopping theory [11], [12] to solve
the problem in (4).

1) The Case With Homogeneous Links: For ease of exposi-
tion, we first consider a network with homogenous links where
all links have the same channel statistics with the same distribu-
tion Fr(r). By Al), {R(,),n = 1,2,...} is a sequence of in-
dependent identically distributed (i.i.d.) random variables with
distribution Fr(r).

Observe that different from standard optimal stopping prob-
lems, the cost in terms of the probing duration is random due to
the stochastic nature of channel probing. In light of this, we use
the maximal inequality to establish the existence of the optimal
stopping rule. We have the following proposition.

Proposition 3.1:
a) The optimal stopping rule N* for DOS exists, and is given
by

N* =min{n > 1: R,y > z"}. 5)

b) The maximum throughput z* is an optimal threshold, and
is the unique solution to
xrT

— )t =
E(Reny — ) T

(6)

The proof can be found in Appendix L.

Remarks:

1) Proposition 3.1 reveals that the optimal stopping rule N*
for DOS is a pure threshold policy, and the stopping deci-
sion can be made based on the current rate only. Accord-
ingly, the optimal channel probing and scheduling strategy
takes the following simple form: If the successful link dis-
covers that the current rate R, is higher than the threshold
*, it transmits the data with rate R(n); otherwise, it skips
this transmission opportunity, and then the links recontend.

2) We note that the maximum throughput z* is unique, but
the optimal threshold in (5) may not be unique in gen-
eral. It is not difficult to show the uniqueness of the op-
timal threshold in the continuous rate case with f(r) >
0,V r > 0. In contrast, in the discrete rate case, changing
the threshold in between two adjacent quantization levels
would not affect its optimality since the new threshold
policy achieves the same throughput. (In what follows, for
the discrete rate case, we treat the thresholds in between
two adjacent quantization levels “effectively” the same.)

3) It can be shown that

EWﬂ:%MM+T %)
Based on (7) and the proof of Theorem 3.1, it can also be
shown that if the random contention time K7 is replaced
with a constant probing time 7/ps, the optimal stopping
rule (5) and the optimal throughput remain the same.

Based on the structure of the optimal stopping rule N* in (5),
we have the following corollary.

Corollary 3.1:

a) The stopping time N* is geometrically distributed with
parameter 1 — Fr(z*).

b) The stopped random variable Ry« has the following dis-
tribution:

FR(T) — FR(IL*)

Fry.(r)=8 " 1—Fgp(z®) = ="
0, otherwise.

*

¢) The stopped random variable TNT—_T is geometrically dis-
tributed with parameter ps[1 — Fr(z*)].

Part a) of Corollary 3.1 indicates that the channel probing
process would stop in a finite time almost surely. It follows from
part b) and c) of Corollary 3.1 that

E[RN-T] _ f:f rdFr(r)
E[Tn] — 2 41— Fp(a¥)

®)

where 6 = 7/T.

We note that the maximum throughput x* is obtained by
solving the fixed point (6), which in general does not admit a
closed-form solution. In what follows, we derive a lower bound
and an upper bound on z*. We have the following proposition.

Proposition 3.2:
b <gr <V
where z” and 2V are given by

ElR]
)
p—s-f'l

.’L‘L

(1>

s ©)

The proof is relegated to Appendix II.

Remarks:

1) Observe that 2 is the throughput of the opportunistic au-
torate (OAR) scheme in [10], which can be viewed as a
degenerated stopping algorithm with threshold zero.
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E[R?]

257
sponding to the optimal genie-aided scheduling when all
channel realizations are known a priori. Indeed, this can
be seen from the proof of Proposition 3.2.

2) The Case With Heterogeneous Links: In the above, it is
assumed that all links have the same channel statistics. As a re-
sult, I?,, s(n) follows the same distribution F(r). In many prac-
tical scenarios, it is likely that different links may have different
channel statistics. As a result, if s(n + 1) # s(n), R, 5(») and
Rpt1,5(nt+1) may follow different distributions. Nevertheless,
we can treat R, () as a compound random variable. Accord-
ingly, a key step is to characterize the distribution of R,, ,(,, for
the heterogeneous case.

To this end, let F,,(-) denote the distribution for each link
m € {1,2,..., M}. It can be shown that

2) Note that is the maximum throughput corre-

P(R(n) < 1") =

(10)

where ps 20 H#m (1—p;) is the successful probing prob-
ability of user m. Based on (10), it is clear that R,) is a com-
pound random variable whose distribution is a “mixed” version
of that across the links. We have the following proposition re-
garding the optimal threshold policy.

Proposition 3.3: The maximum throughput z* in the hetero-
geneous case is an optimal threshold, and is the unique solution
to the following equation:

Yo 1psmf rdF,,
5+Zm 1 Ps,m(1 —Fm(l’))

Remarks: For the heterogeneous case a priori, it is not clear
that different links would have different thresholds or not since
their channel statistics are different. However, Proposition 3.3
indicates that in the optimal strategy, the threshold is the same
for all the links (again, for the discrete rate case, we treat the
thresholds in between two adjacent quantization levels “effec-
tively” the same). Our intuition is as follows: When all the links
have the same threshold, links with better channel conditions
would have a higher likelihood to transmit accordingly.

Y

B. Iterative Computation Algorithm for ©*

In the following, we devise an iterative algorithm to compute
x*. To this end, rewrite (11) as © = ®(x), with

Yo Pan o rdFo(7)
6+Zm 1psm(1 _FM(SE)).

Accordingly, we propose the following iterative algorithm for
computing z*:

() 2 (12)

Tp41 = @(xk) for k = 0, 17 2./ . (13)

where x¢ is the initial value. We have the following proposition
on the convergence of the above iterative algorithm.
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Proposition 3.4: The iterates generated by the algorithm in
(13) converge to x* for any nonnegative initial value z.

A standard approach for establishing the convergence of itera-
tive fixed-point algorithms is via the contraction (or pseudo-con-
traction) mapping theorem [13], which is unfortunately not ap-
plicable here since ®(z) is not a pseudo-contraction mapping in
general. For instance, suppose for any m, f,,(r) is given by

0, r<0
0.01, 0<r<96

Jm(r) = 0.005(r —94), 96<r<98 UV
0.02(r —97)73, 7> 98.

Let psm = 0.99/M and 6 = 0.05. The corresponding optimal
point z* = 72.82. However

|®(95.5) — 2| = |45.88 — 72.82| > [95.5 — 72.82|
which violates the condition for pseudo-contraction mapping.

Remarks:

1) In light of the above observation, we provide in

Appendix III a new proof for the convergence of iter-
ative algorithm in (13).
Observe that computing the optimal throughput z* requires
the knowledge of the channel statistics of all links. Al-
ternatively, z* can be computed online by using a dis-
tributed iterative algorithm, in which each link indepen-
dently computes its threshold based on local information
only. In Section IV.E, we elaborate further on a distributed
online algorithm.

2)

C. Optimal Stopping Rule for DOS Under Fairness Constraints

In the above studies, the optimal distributed scheduling is
aimed at maximizing the overall network throughput. We next
generalize the studies to take into account fairness requirements.
Under fairness constraints, the objective of DOS boils down to
maximizing the total network utility function, where user m’s
utility is a function of its rate and serves as a measure of satis-
faction that user m has from sharing the channel. For example,
the reward function (utility function), denoted {U,,(r), ¥ m},
can take the following form [31]:

ifk =1
Kk 2>0,K

U ) = {

W, log T,
1,.1—k

wm (1 — k)" (as)

£1.

Then, the optimal strategy for DOS is to characterize the op-
timal stopping rule NNg; for maximizing the return rate of the
total network utility, i.e.,

BIU(Ry)T]

1
E[Ty] (1o

A
N{; = arg max
NeQ

Interestingly, when x = 0, the above problem degenerates to
the problem of maximizing the overall throughput. Furthermore,
when k = 1, proportional fairness is achieved by Ng;.

It is not difficult to see that the optimal stopping rule N; can
be derived, along the same line as in Propositions 3.1 and 3.3.
We note that this study can be further extended to incorporate
more complicated fairness constraints.
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IV. DISTRIBUTED OPPORTUNISTIC SCHEDULING: A
NONCOOPERATIVE GAME PERSPECTIVE

A. Rate Threshold Selection as a Noncooperative Game

We have (17) shown at the bottom of the page. In the sec-
tion above, we formulate DOS, namely, joint channel probing
and distributed scheduling, as a team game in which links col-
laborate together to optimize the overall throughput. It is worth
noting that in some applications, users behave selfishly, and it is
of much interest to investigate the network performance under
the noncooperative setting. It is also interesting to characterize
the performance loss due to the selfish behavior of users, and
develop intensive mechanisms to mitigate the loss. To this end,
in the following, we treat joint channel probing and distributed
scheduling as a noncooperative game, where links seek to max-
imize their own throughput by choosing its scheduling strategy
in a selfish manner. We will show that the threshold policy is
also optimal in the noncooperative game setting.

Without loss of generality, consider a particular user, say user
m, and assume that the other users’ scheduling policies are
given (note that these chosen policies do not have to be threshold
based). From user m’s perspective, the network can be in three
states: the channel being occupied by user m itself, the channel
free for probing, and the channel being occupied by other users.
The latter two states can be treated as one meta state that con-
tributes to the random “stretched” probing duration of user m.
As a result, the network can be recast as a game in which user
m chooses its strategy to maximize its throughput. By using a
sandwich argument, it can be shown that the optimal sched-
uling policy for user m is still a pure threshold policy. Ac-
cordingly, for a given set of thresholds across links {z,, m =
1,2,..., M}, the average throughput for each link can be char-
acterized as follows.

Lemma 4.1: Let F,,,(r) denote the rate distribution for each
link m € {1,2,..., M}. Assume that the threshold for link
is x,,. Then, the average throughput of link m is given by

pgmf rdF
5+ 11%7( —E(:c,;))'

Lemma 4.1 follows directly from ergodicity. Specifically, as-
sume there are totally L number of events including collisions,
idle events, successful channel probings of each user, and their
transmissions. The average throughput of link m is then given
by (17). Letting I, — oo yields that ¢,,, — ¢p,.

Pm(x) = (18)
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To get a more concrete understanding of ¢,,,(x), we rewrite
(18) as follows:

f:i rdFy, (1)
1= Fon(zm)
T+ D izm Ps,i(L — Fi(2:))T
ps,m(l - Fm(xm))

It can be seen that the numerator in (19) is the expected
throughput of user m, whereas the denominator can be de-

composed into two parts: 1) the expected channel probing
i T+Z7¢m ps,i(1=Fi(z:)T
me Foen))

e (1 and 2) the data transmission
time 7'. Furthermore, in the expected channel probing time,
Ps.m (1 — Fi (2 )) is the successful probing and transmission
probability of user m, while 7 + >7. psi(1 — Fi(z:))T
can be viewed as the effective channel probing time for user
m, consisting of the constant probing time 7 and the average
transmission time of other users >, ps (1 — Fi(z;))1"

Next, we cast the threshold selection problem across
different links as a noncooperative game, in which each
individual link chooses its threshold z,, to maximize
its own throughput ¢,, in a selfish manner. Specifically,
let G [{1727 M} Xme{1,2,..., M}A {¢m €
{1,2,...,M}}] denote the noncooperative threshold selection
game, where the links in {1,2,..., M} are the players of the
game, A, = {£,,|0 < x,,, < 0o} is the action set of player m,
and ¢, is treated as the utility (payoff) function for player m.
Formally, the noncooperative game is expressed as

(G) max ¢,(x)

TmE€EAm

bm(x) = (19)

+T

Vm=12,...,M. (20)
B. Nash Equilibrium of Noncooperative Game

Treating the rate threshold selection problem as a noncooper-
ative game, we investigate the corresponding Nash equilibrium
[32].

Definition 4.1: A threshold vector x* = {7, x5, ..., 2%, }is
said to be a Nash equilibrium of game G, if for every link m

¢>m(ﬂ€:n, Xim) > ¢m(xm7 Xim)

where x_,,,

Vim € Am (21

= [11,’17 s T —1, Tm+1y - - - 7.’1]‘]\,[]T.

In other words, at the Nash equilibrium, no link can increase
its throughput by unilaterally deviating its threshold from the
equilibrium, given the thresholds of other links.

We first examine the existence of Nash equilibrium in game
G. Based on [32, Proposition 20.3], by showing that ¢, (x) is

Lpsm(1

Pm =

— Fo(zm

fﬂ: rdFp (1)

) 1— Fo(zm)

qu\; Lps,i(1

= Fi@))(r +T) + L (1= S, pi(1 = Fiw:)) 7

a7
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a quasi-concave function of z,,,, we have the following propo-
sition on the existence of the Nash equilibrium for the threshold
selection game.

Proposition 4.1: There exists a Nash equilibrium in the
threshold selection game G, which satisfies the following set
of equations: form = 1,2,..., M

Ds.m foo rdFy, (1)

o+ ZL 1 Ps,i(1 = Fi(z}))
The proof is relegated to Appendix IV.

(22)

xm = qﬁm(xfn,x*_m)

C. Uniqueness of Nash Equilibrium

Needless to say, the uniqueness of Nash equilibrium is of
great interest for a noncooperative game. Unfortunately, in gen-
eral, the Nash equilibrium that satisfies (22) is not necessarily
unique, as illustrated by the following example. Suppose that
there are two links in the network, with the same rate distribu-
tion as

w.p. 0.5

w.p. 0.5. (23)

| 2 Mbps,
R(r) = { 12 Mbps,

Let ps,1 = ps2 = 0.2 and 6 = 0.35. Then, there exist two
Nash equilibria at x = (1.867,1.867) and x = (2.18,2.18)
that satisfy (22).

In what follows, we provide some sufficient conditions for es-
tablishing the uniqueness of Nash equilibrium. Consider a net-
work with homogeneous links, where all links have the same
channel statistics F'(r) and the same contention probability p.
Then, (22) boils down to

Pe [ 1 (r)
* * * M Jzy, T
Ly = (bm(xm Xfm) p ]\/[ (24)
8+ §f 2oima (1= F(27))
where p, = Mp(1 — p)M~1
Proposition 4.2: In homogeneous networks, the Nash

equilibrium is unique if and only if the equation x =
) has a unique solution.
The proof is relegated to Appendix V.

Rewrite 2 = ¢ (z,z,..., ) as

d(w) & bafp. +2(1 — F(x)) — = /

xr

rdF(r) =0. (25)
Then, the problem boils down to showing that the solution of
d(xz) = 0 is unique.

1) Continuous Rate Over Rayleigh Fading: We first consider
the case where the transmission rate is given by the Shannon
channel capacity

R(h)

where p is the normalized average SNR, and h is the channel
gain corresponding to Rayleigh fading.

= log(1 + ph)nats/s/Hz (26)

Proposition 4.3: The Nash equilibrium of the threshold se-
lection game G is unique under the rate model in (26).
The proof is relegated to Appendix VI.
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2) General Continuous Rate Case: Consider a homogenous
network where the transmission rate follows a general contin-
uous distribution with probability density function (pdf) f(r) >
0, Vr > 0. We have the following sufficient condition regarding
the uniqueness of Nash equilibrium.

Proposition 4.4: The Nash equilibrium of the threshold se-
lection game G is unique if r f(r) < m vr > 0.
Proof: The derivative of d(z) is given by

M-1)
d'(z)=6/ps + (1 M-1)
() = b/pe +( =
If xf(z) < 1#6_1), for all z > 0, then d(z) is monotoni-

cally increasing for 2 > 0. Combining this with d(0) < 0 and
d(o0) > 0, we conclude that d(z) = 0 has a unique solution.

— F(r)) -

zf(x). 27

D. Best Response Strategy

Based on the structure of game G, we can use the following
best response strategy to iteratively compute the Nash equilib-
rium: Vm € {1,2,...,M}

Tm(k+ 1) = 27, (k),

fork =0,1,2,... (28)

where x7 (k) is the unique solution to the equation

Tm = Qbm,(xma X_m(k))

Remarks:

1) The algorithm in (28) is a two time-scale iterative algo-
rithm: On the smaller time scale, each link can use an iter-
ative algorithm to compute z;, (k), which is the best re-
sponse for link m at iteration k; and on the larger time
scale, each link updates its threshold based on (28).

Proposition 4.5: Suppose that the Nash equilibrium is
unique. Then, for any nonnegative initial value x(0), the se-
quence {x(k)}, generated by the iterative algorithm in (28),
converges to the Nash equilibrium x*, as k — oo.

We note that standard techniques for establishing the conver-
gence of the best response strategy (e.g., contraction mapping
[13] and standard interference functions [14]) are unfortunately
not applicable here. Instead, we provide in Appendix VII a con-
structive proof using a sandwich argument.

Note that the convergence of the above iterative algorithm
assumes that the Nash equilibrium of game G is unique. In what
follows, we devise a different iterative algorithm to compute the
Nash equilibria for cases where this assumption does not hold.
Specifically, suppose that link m updates its threshold as

= G (Tm (k), X—m (k)
Psm f;o (%) TdFm(r)

5+ 2 pei (L= Fiwi(k)
Vme{l,2,...,M}.

T (k+ 1)

(29)
The convergence of the above iterative algorithm is estab-
lished in the following proposition.

Proposition 4.6: Starting with all zero initial value, i.e.,
x(0) = 0 componentwise, the sequence {x(k)}, generated
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by the iterative algorithm in (29), converge to one of the Nash
equilibria that satisfy (22), as k — oo.

The proof is relegated to Appendix VIIIL.

Remarks: Compared to the best response strategy in (28), the
iterative algorithm corresponding to (29) is a single time-scale
algorithm, and the complexity is lower. However, the updates
given by (29) is not necessarily the best response, and as a con-
sequence, it would take longer to converge. It is in this sense that
we call it a “pseudo-best” response strategy. We will illustrate
this by numerical examples in Section VI.

E. Online Algorithm for Computing Nash Equilibrium

Observe that in both (28) and (29), computing z, requires
the knowledge of E?; ps.i(1 — Fi(zF)), which involves
the channel information of all links. In this section, a dis-
tributed asynchronous iterative algorithm is proposed in which
each link independently computes the optimal threshold
¥, ,Vm e {1,2,..., M}, based on local observations only.

Rewrite (22) as

Ds,m f::) TdFm(T’) — fl?;knts
S pei(1 = Fi(a?))

2

*

T

Y m.

Define

a Psm fzoo TdFm(T) - :Lm&

= M — Tm-
Zi:1 Ps,i(1— Fi(z:))

If the Nash equilibrium is unique, then x* is the unique root to
the equation g(x) = 0.

1) An Asynchronous Distributed Stochastic Approximation
Algorithm: Recall that the collision model is assumed for
channel contention, indicating that at most one link can suc-
cessfully occupy the channel each time. As a result, only the
successful link can update its threshold. Clearly, the updating
is asynchronous across the links.

As illustrated in Fig. 3, let v(k) denote the duration of
channel probing in between the (k — 1)th transmission
and the kth transmission, which can be observed locally.
It can be shown that v(k) is a local “unbiased estimate” of

1/2521 ps,i(1 — Fi(zi(k))). Define

Gon(B) 2 w(k) lps,m In

gm(x)

rdFy(r) — 2m (k)6 | — zm (k).
T (k)

It is clear that g,, (k) involves local information only. Let N™
be an infinite subset of A indicating the set of times at which an
update of z,,, is performed. Based on stochastic approximation
theory, the distributed iterative algorithm can be written as

T (k+1) = [2m(k) + am (k) [gm (x(k)[T{k € N }]5 (30)

where a,,(n) is the stepsize, I{-} is the indicating func-
tion, and []} is the projection between O and b, with
[]5 = min(b, max(x,0)). The algorithm in (30) is a dis-
tributed asynchronous algorithm with stochastic perturbation.
The truncation is due to the fact that z7, is bounded above by
Bom fooo rdF,,(r).

[T Successful Handshake / Collision / Idle 7] Data transmission
T T T

T|T|T|T Tie o o T Tle o o |T
V() v(2) v(3)

Fig. 3. Sample realization of v(k).

Remarks: Recall that in Section III, the optimal threshold z*
in the team game is computed by an iterative algorithm that re-
quires message passing from neighboring nodes. Alternatively,
by using a similar algorithm as in (30), each link can compute
z* independently based on local information only.

2) Stochastic Convergence of the Algorithm: Let
{Fr,k = 0,1,...} be a family of nonincreasing c-alge-
bras defined on the probability space (£, F,P), and v(k) be
measurable with respect to Fj. Observe that at the kth iteration,
link m transmits with probability ps m (1 — Fm(zm(k))). As
a result, the probability of successful transmission is given by
vail Ps.i(1 — Fi(z;(k))). The number of mini slots required
for a successful channel ]Xrobing is a geometrical random
variable with parameter Zzil ps,i(1 — Fi(z;(k))). It follows
that the average probing time is given by:

1
S psi(l = Fi(wi(k))

(31) reveals that v(k) is a local unbiased estimate of

M
1/ 2 iz psi(1 = Fi(xi(k))).
To establish the convergence of the iterative algorithm in (30),
define the stepsize as

k
a;i(k) = a (i,ZI{k € Ni}) .
=1

Based on [33] and [15], we impose the following conditions.
B1) The sequence {a(i,k)} satisfies

oo

Elo(k)|Fx] = 3D

a(i,k) = oo and Za(i,k)2 < 0.
k=1 k=1

and for 8 € (0,1),V 4,j
ZETJ a(i, 1)

lim ==—=————~ = lim ==——*~>0.

k . k .
h=oo 3y a(i,l) k=oo 3 i1 a(d, 1)
B2) The Nash equilibrium defined in (22) is unique.

iy ali, 1)

and

Theorem 4.1: Under conditions B1 and B2, for any nonneg-
ative initial value x(0), the sequence {x(k)} generated by (30)
converges to the Nash equilibrium x* almost surely, as k — oc.

The proof is involved and quite lengthy, and is omitted (it
can be found in [34]). The sketch of the proof is as follows:
We first study the process corresponding to interpolating the se-
quence {x(k)} generated by (30), and show that the effect of
the asynchronism term and the unbiased estimate term would di-
minish as ¢ — oo. Then, the convergence of x(t) is established
by appealing to the mean ordinary differential equation (ODE)
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method. The convergence of the original sequence {x(k)} then
follows from the similar argument as in [35, Sec. 1.3].

V. THE PRICE OF ANARCHY
In this section, we study the efficiency loss of the noncooper-
ative game, compared to that of the team game.
A. Efficiency Loss of Noncooperative Game

Let z%, denote the optimal network throughput in the team
game case. Recall 2}, = =™, where 2* is the root to the equation

_ a(e) = Lot [ rdFa()
0+ S Pam (L = Fn(2))

Let z}_, denote the network throughput at the Nash equilib-
rium point x* for the noncooperative case, and that =}, =
Zm:l ¢m (x*). Clearly, the optimal network throughput in the
team game is no less than the network throughput at the Nash
equilibrium in the noncooperative game, i.e., Th, > Th.,. We
have the following result regarding the efficiency of the two dif-
ferent games.

Proposition 5.1: If M > 2 and f,,(r) > 0, ¥ mn,r, then the
optimal network throughput in the team game is always greater
than that at the Nash equilibrium in the noncooperative game,
ie, x5, > =i

nco-*

The proof is relegated to Appendix IX.

As expected, Proposition 5.1 implies that for M > 2, the
efficiency 7 defined as = z*__/x*, is strictly less than one
[36].

B. Noncooperative Game With Pricing

The Nash equilibrium is a solution to the noncooperative
game, where no link can improve its throughput any further
through individual effort. Clearly, the noncooperative game
approach is inefficient due to the selfish decisions made by
individual links, and this is the so-called price of anarchy [36].

The price of anarchy can be mitigated by introducing a
pricing-based mechanism, in which users are “encouraged” to
adopt a social behavior. In the above study, each link aims to
maximize its own throughput ¢,,, (x) by adjusting its threshold
Ty, but the overhead it imposes on other links is ignored. In
order to mitigate the overhead, a plausible pricing function is
given by ¢,,(x) = ca,,(x), where ¢ is a preset parameter for
all links and «,, ( -) is defined as

Ds, m(l - Fn (lm))
§+ M, pei(l = Fi(z:))

which points to the portion of time link m transmits. It is a
usage-based pricing policy, where the cost (charge) is propor-
tional to the amount of services consumed by the link [27].
Accordingly, define the utility function as ,, (X) = ¢, (x) —
¢m(X). Then, the “new” noncooperative game is as follows:

(1>

Ay (X)

(33)

(G) max Um,(x),

m=1,2,..., M.
Tm €Am

(34)
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Note that game G is the same game as the original game G
with different payoff functions. Next, we establish the existence
of Nash equilibrium for the new game G.

Proposition 5.2: For some ¢ > 0, there exists a Nash equilib-
rium X* in the new game G, which outperforms the one without
pricing mechanism, i.e.,

Z@n

The proof follows the same line as that of Proposition 4.1.

In Section VI, we compare the results in games with and
without pricing, and show the price of anarchy could be reduced
by the pricing-based mechanism.

prlcmg

nco

VI. NUMERICAL RESULTS

A. Numerical Examples for the Team Game

Needless to say, a key performance metric is the throughput
gain of DOS over the approaches without using optimal stop-
ping. For convenience, define the throughput gain as

Az —zh

g 7

T
where 2 is the average throughput of the OAR scheme [10]
without using optimal stopping, and ¥ = ®(0).

We consider the following two cases: 1) the continuous rate
case based on Shannon capacity, and 2) the discrete rate case
based on IEEE 802.11b.

Example 1 (The Continuous Rate Case for Homogeneous
Networks): Consider the case that the transmission rate is given
by the Shannon channel capacity

R(h)

where p is the normalized average SNR, and / is the random
channel gain corresponding to Rayleigh fading. It follows from
(6) that

=log(1 + ph) nats/s/Hz

" exp(z”) .
oo (=) 4 exn(a) )
S (-

Ps
where F1 (z) is the exponential integral function defined as

Ei(x) 2 /OO oxp(=t) )

z* = ®(p,z") = exp(z*

)

(35)

t
Note that (35) can be further simplified as

P Ps

exp <1> B (%> (36)
6 p p

We have the following results on the optimal throughput z*
and the throughput gain g(p).
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Fig. 4. ®(x) versus x.

TABLE I
CONVERGENCE BEHAVIOR OF THE ITERATIVE ALGORITHM IN (13)

*

P zo 1 T2 3 T

0.5 [ 0.5 [ 0.372213 | 0.384157 | 0.384283 | 0.384
1 0.5 | 0.603993 | 0.610418 | 0.610442 | 0.610
2 1.0 | 0.902320 | 0.906009 | 0.906014 | 0.906
5 1.0 | 1.357985 | 1.389121 | 1.389379 | 1.389
10 | 1.0 | 1.728041 | 1.807727 | 1.809031 | 1.809

Proposition 6.1:

a) The optimal throughput 2* is an increasing function of the
average SNR p.

b) The throughput gain g(p) is maximized when p — 0,

and
6\ dxr*
9(p) — <1+—> WOy ap—0 67
Ps dp p=0
where dx;(p ) ‘ is the root of
P p=0
Ds
xexp(z) = 5 (38)

The proof is relegated in Appendix X.

Remarks: Proposition 6.1 reveals that the maximum gain is
achieved in the low SNR region. In the extreme case when p —
0, the gain is determined by the system parameters § and p; only.
From (37) and (38), it is not difficult to see that the throughput
gain increases as § decreases or ps increases. This is because a
smaller ¢ or a larger p, indicates that the probing cost is rela-
tively insignificant.

We provide numerical examples to illustrate the above results.
Unless otherwise specified, we assume that 7, T, ps, and M are
chosen such that § = 0.1, p; = exp(—1).

Fig. 4 depicts ®(p, ) as a function of z, for different p. It
can be seen that the optimal average throughput z* is strictly
increasing in p. In Table I, we examine the convergence of the
iterative algorithm in (13). It can be seen that the convergence
speed of the iterative algorithm in (13) is fast, and the iterates

TABLE II
THROUGHPUT GAIN

I 05 i 2 5 10
z* | 040 | 060 | 090 | 1.40 180
zF | 028 | 047 | 073 | 1.17 1.58

9(p) | 428% | 27.1% | 233% | 19.7% | 139 %

TABLE III

MAXIMUM THROUGHPUT GAIN

4/ps 0.136 0.271 0.544 | 1.359 | 2.718
g (numerical) | 76.4% | 47.0% | 25.7% | 9.2% | 3.5%
g (by (37)) 76.6% | 47.2% | 25.7% | 9.2% | 3.5%

approaches z* usually within three or four iterations indifferent
to the initial value zg.

Table II illustrates that g(p) is more significant in the low
SNR region, and is a decreasing function of p. In Table III,
we present the maximum throughput gain ¢(0) as a function
of §/ps. It can be observed that ¢(0) increases as the value of
8/ps decreases. Intuitively speaking, a smaller value of § indi-
cates that the channel probing incurs less overhead; and a larger
value of p, implies that the random access scheme yields higher
throughput.

Example 2 (The Discrete Rate Case for Homogeneous Net-
works): Next, we study an example based on IEEE 802.11b, in
which the transmission rates can be 2, 5.5, and 11 Mb/s, with
the following distribution:

P(v2 < ph < 75.5)

2 .p. =
» W.p. P2 P(ph Z 72)
P(ys5 < ph <
R(h)={ 55, wp.pss= 0 P(ph‘; 72)”1” (39)
P(y < PE)
11, w.p. ==
’ b- P11 Pph > 7o)

where 72,755, and ;1 are the minimum SNR thresholds to

support transmission rates of 2, 5.5, and 11 Mb/s, respectively.

Needless to say, the optimal throughput can be computed by

using the general iterative algorithm presented in (13). However,

since the number of quantization levels is small (i.e., three in

this case), we can use “trial and error” to obtain the optimal
p% +1-p2

throughput z* as
< 5.5)
< 11)

where zL is given by Proposition 3.2, ps, ps5.5, and p1; can be
computed from (39), and I( - ) is the indicator function.

As in centralized opportunistic scheduling, significant mul-
tiuser diversity gain can be achieved if the rate exhibits enough
variation. Indeed, this can be observed in Fig. 5, in which we
plot the throughput gain of DOS for different sets of thresholds

{72,75.5,711}

z*(p) = 2 I(2" < 2)
5.5ps5.5 + 11p1q
— I
P +1—p2

11
I(55<—2L
». TP

9 < 5.5p5.5 + 11p11

11p1y

+
p%-f-pn
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Fig. 5. Throughput gain g(p) as a function of average SNR p.
Fig. 6. Throughput gain g(p) as a function of average SNR p; .

TABLE IV
CONVERGENCE BEHAVIOR OF THE ITERATIVE ALGORITHM IN (13)
p (dB) zo x1 x2 T3 x* 0.6 —Link 1 I
[0 10 10 8.5 6] 0.684 | 1.259 | 1.382 | 1.385 | 1.385 )
[10 10 10 8.5 6] | 0.026 | 1.620 | 1.877 | 1.892 | 1.892 N — Link 2,
[20 10 10 8.5 6] | 0.777 | 2.695 | 3.054 | 3.073 | 3.073 % 0.5
3
(=
5 04
Example 3 (The Continuous Rate Case for Heterogeneous 2
Networks): Based on (11), it can be shown that the optimal é 0.3}
threshold for the heterogeneous case «* satisfies the following 3
equation: % 02!
o )
)
0.1}
M )
1 1 exp(x* i
¥ = 5 Z Ds,m €XP <—> Eq (L) (40) E ‘
m=1 Pm pm . 0 100 200 300 400 500 600 700 800

Note that the average throughput without using optimal stopping
rule is given by

M Do exp(1/pm) Er(1/ pum)
5+ ps '

L _

(41)

T

In the following example, we consider a heterogeneous network
model with five users, each with different transmission proba-
bilities and channel statistics. The performance of the iterative
algorithm in (13) is examined in Table IV. Clearly, the iterative
algorithm in (13) exhibits fast convergence rate.

As s clear in (40), the optimal threshold z* (namely, the max-
imum throughput) depends on all SNR parameters {p,,, V m}
across links, and is monotonically increasing in each p,,. How-
ever, different from the homogeneous case, the gain g is no
longer monotonically decreasing in each individual SNR. To get
amore concrete sense, we plot in Fig. 6 the relationship between
g and p1, with other SNR parameters fixed. As illustrated in the
figure, g decreases as p; increases from —10 to 10 dB. This
is because when p; is small, the optimal throughput z* is de-
termined mainly by other SNR parameters and remains almost
constant, whereas the throughput without using optimal stop-
ping strategy (%) always increases. Furthermore, g increases

Iteration index (n)

Fig.7. Convergence behavior of the online algorithm for computing Nash equi-
librium.

when p; exceeds 10 dB. Our intuition is that in this SNR regime
user 1 becomes the dominating user in the system, and therefore,

2* increases much faster than zL.

B. Numerical Examples for the Noncooperative Game

Table V illustrates the convergence behavior of the best re-
sponse strategy in (28), for two links randomly picked from the
five links. It can be seen that with the knowledge of neighboring
information, the threshold converges to the optimal point within
a few iterations. For comparison, Table VI shows the conver-
gence behavior of the “pseudo-best” response strategy in (29),
which takes more iterations to converge. Fig. 7 depicts the con-
vergence behavior of the online algorithm for computing Nash
equilibrium. As expected, it takes hundreds of iterations for the
proposed asynchronous distributed stochastic algorithm to con-
verge. Moreover, all three algorithms converge to the same equi-

librium point.
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TABLE V
CONVERGENCE BEHAVIOR OF THE BEST RESPONSE STRATEGY
Link index xQ T T2 xs3 x*
Link 1 (p1 = 3dB) | 1.00 | 0.267 | 0.298 | 0.300 | 0.30
Link 2 (p2 = 5dB) | 1.00 | 0.175 | 0.389 | 0.390 | 0.39
TABLE VI
CONVERGENCE BEHAVIOR OF THE “PSEUDO-BEST” RESPONSE STRATEGY
Link ) T T2 T3 T4 5 x*
Link 1 | 1.00 | 0.360 | 0.293 | 0.299 | 0.300 | 0.300 | 0.30
Link 2 | 1.00 | 0.108 | 0.386 | 0.388 | 0.388 | 0.390 | 0.39
1 . .
N e SNR=0 dB
1:“ - - -SNR=10dB
095 | \\‘ ——SNR=20dB 1
~ o9f i N 1
£ PRI
e
8
o
i o085} 1
0.8+ 8
0.75 ! . !
10° 10' 10? 10° 10*
Number of Links (M)
Fig. 8. Efficiency # as the number of links M.
TABLE VII
THE PRICE OF ANARCHY
Number of
links 2 3 4 5
Tk, 0.664 1.085 1.217 1.364
5 co 0.624 0.994 1.043 1.127
n 94.0% | 91.6% | 85.7% | 82.6%
;ricinq 0.650 1.055 1.170 1.293
n 97.9% | 97.2% | 96.1% | 94.8%

C. Numerical Examples for Price of Anarchy

We also present in Table VII the efficiency loss due to the
selfish behavior of individual links, i.e., the price of anarchy. It
can be seen from Table VII that the efficiency is strictly less than
1 when two or more links exist in the network, which corrobo-
rates the conclusion of Proposition 5.1. Moreover, the efficiency
71 decreases as the number of links M increases, as illustrated in
Fig. 8. When M goes to oo, the total throughput for noncooper-
ative game w7, converges to zX, which implies that every link
transmits with threshold z;, = 0. Furthermore, 77 approaches to
1/(1 + g), where g is the throughput gain. Our intuition is as
follows: In the noncooperative game, when the number of links
increases, the effective channel probing time in (19) increases
as well. As a result, the thresholds across links decrease and ap-
proach zero.

In Table VII, we also present the efficiency improvement by
using the pricing mechanism. Let z ; ;,, denote the network
throughput at the Nash equilibrium for the noncooperative game
with pricing G defined in (34). The efficiency 7’ is defined as
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/ *

N = T} icing/ Teo- It can be seen from Table VII that by care-
fully choosing the parameter c, the efficiency loss can be signifi-
cantly reduced. However, it is still unable to achieve the optimal
throughput in the team game case (the social optimum).

VII. CONCLUSION

In this study, we considered an ad hoc network model where
many links contend for the channel using random access, and
studied DOS to resolve collisions therein while exploiting mul-
tiuser diversity and time diversity for data transmission. In such
anetwork, DOS boils down to a process of joint channel probing
and distributed scheduling. We first investigated DOS from a
network-centric point of view, where links cooperate to maxi-
mize the overall network throughput. Specifically, we treated the
joint process of channel probing and scheduling as a maximal-
rate-of-return problem, and characterized the optimal strategies,
for both homogenous networks and heterogeneous networks.
We showed that the optimal DOS strategy is a pure threshold
policy, where the threshold is the solution to a fixed-point equa-
tion. Furthermore, we devised iterative algorithms to compute
it.

Next, we studied DOS from a user-centric perspective, where
links seek to maximize their own throughput in a selfish manner.
We treated the problem of threshold selection across different
links as a noncooperative game. Then, we explored the exis-
tence and uniqueness of the Nash equilibrium, and showed that
the Nash equilibrium can be approached by the best response
strategy. We then developed an online stochastic iterative algo-
rithm based on local observations only, and we established its
convergence under some regularity conditions, using recent re-
sults on asynchronous stochastic approximation algorithms. As
expected, we observed an efficiency loss at the Nash equilib-
rium, and we proposed a pricing-based mechanism to mitigate
the efficiency loss.

In summary, this paper presented some initial steps towards
studying channel-aware distributed scheduling in ad hoc net-
works. In particular, building on optimal stopping theory, we
characterized the fundamental tradeoff between the throughput
gain from better channel conditions and the cost for further
channel probing, and explored channel-aware distributed sched-
uling to exploit multiuser diversity and time diversity in an op-
portunistic manner. Our findings in this study reveal that rich
PHY/MAC diversity gains can be achieved by devising channel-
aware scheduling in ad hoc networks.

Clearly, the coupling between the time scales of fading and
MAC calls for unified PHY/MAC optimization. It is of great
interest to generalize this study to multihop ad hoc networks,
and develop channel-aware scheduling for MIMO links. Along
a different avenue, delay is another important metric for perfor-
mance evaluation and remains largely under-explored in gen-
eral. Future work is needed to obtain a rigorous understanding of
the delay-throughput tradeoff corresponding to channel-aware
distributed scheduling. Another interesting direction is to ex-
plore channel-aware scheduling under random arrival-departure
models, and improve channel-aware scheduling by exploiting
queueing information, e.g., max-weight matching (MWM) type
of scheduling. We are currently pursuing a theoretic foundation
of channel-aware distributed scheduling along these avenues.



APPENDIX |
PROOF OF PROPOSITION 3.1

The proof of Proposition 3.1 hinges heavily on the tools in op-
timal stopping theory [12]. More specifically, based on [12, Ch.
6, Th. 1], in order to maximize the average throughput E?%’J? ] s
a key step is to find an optimal stopping algorithm N (JZS such
that

V*(:E) = E[R(N(Z))T — JZTN(QE)]
= sup E[Rn)T — 2TN].
NeQ

It then follows from [12, Ch. 3, Th. 1] that N(x) exists if the
following conditions are satisfied:

limsup Z,, = —cc a.s. 42)

n——oo

FEsup Z, < oo and

where Z,, = RyT —xT,, T, £ i Kjm+ T, and Kj, j =
1,2,...,n, denote the number of contentions during the jth
channel probing.

The rest of the proof has two main steps: Step 1) we establish
the existence of the optimal stopping rule N (z); and Step 2) we
characterize the optimal strategy N*.

Step 1) Itis clear that limsup,,_,., Z, — —o0.
Observe that E[sup,, Z,] is bounded above by

Elsup Z,| < E [sup {R(n)T — nxT <i - e) }] —Tx

Ds

(i —e— Kj> (43)
Ps

where € is chosen such that 0 < ¢ < 1/p;. It then
follows from the maximal inequalities in [12, Ch. 4.
Th. 1 and 2] that the first term and the last term of
the right-hand side of (43) are both finite, and hence
E[sup,, Z,] < 0.

Step 2) Next, we characterize N (x) and N*. It can be shown
that N (z) is given by

+FE |sup 2": TT

N(z) =min{n > 1: R,)T > V*(x) + 2T} (44)
and V*(z) satisfies the following optimality equa-
tion:

Elmax(R)T — 2T — Ko, V* (1) — Kat)] = V*(x). (45)

Note that V*(2*) = 0 from [12, Ch. 6. Th. 1] and

(45) becomes B[R,y — «*]* = £ since E[K] =
1/ps. The optimal stopping rule (44) now becomes
N* = min{n > 1: R > z*}.

Next we show that (6) has a unique solution. We first note
that f(z) £ E [R(ny — «]T is continuous in x. To see this, let
{z;,l = 1,2,...} be a sequence of real positive numbers, and
lim;_, o ;7 = x, then R(n) —x; — R(n) —x almost surely. Since
|R(ny — 71| < Ry, we have that f(2;) — f(z) by using dom-
inated convergence theorem [11]. Since f(z) decreases from
E[R )] to 0 and the right-hand side of (6) strictly increases
from 0 to oo as x grows, it follows that (6) has a unique finite
solution.
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APPENDIX 11
PROOF OF PROPOSITION 3.2

It is clear that 2" is achieved by a special stopping algorithm
(which stops at the very first time). Therefore, by the definition
of z*, zt < z*.

To show that 2V is an upper-bound on x*, recall that from
Remark 3) for Proposition 3.1, replacing the random contention
period (K7) with a constant access time (7/ps) would yield
the same optimal long-term average rate z*. Accordingly, the
upper-bound derived for the constant access time case also
serves an upper-bound on z*.

Observe that for any constant

ot s (Zav1)]]

=F [sup <R(n)T — xlnﬂ —aT
n Ps
2 p2
< % —aT (46)
Ps

where the last inequality follows from the maximal inequalities

in[12, Ch. 4, Th. 1]. Plugging = = , [ 2 into (46) yields that

: (ln + T)
Ds
Furthermore, we have that

E[ }*\TT—x*-<lN*+T>} = 0.
Ds

E[R2
E % <0. (47)
Ps

sup { RT —

(48)

Combining (47) and (48), we have that

.<p£sn+T>}

<E [RMT—x* . (1N* +T>}

Ds

vt -0 (Znr)]

{rr,—5-(Zn+1)}]

where (a) is by the definition of N*, and (b) can be obtained
using the same technique as in Fatou’s lemma [37].
It is clear that for any 1 < x5

E [Sup {R(n)T -z - <ln + T> }]
n ps
>F {Sup {R(n)T — T - (Ln + T) }} .
n Ps

E[R?]

26
Ps

E[R?
sup {RnT — 2[6 )

E

Ps

(@)

sup
NeQ

(®) {
< F |su

n

(49)

It follows from (49) that z* <
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Fig. 9. Convergence of the iterative algorithm (13).

APPENDIX III
PROOF OF PROPOSITION 3.4

It can be shown that ®(z) is the average network throughput
under the following stopping rule:

N =min{n > 1: R, > =}.

It then follows from Proposition 3.1 that z* is a global maximum
point of ®(z), i.e.,

z* = max ®(x).

(50)

From (50) and Proposition 3.3, it is clear that y = ®(z) only
intersects y = x at the point z*. See Fig. 9 for a pictorial illus-
tration. This, together with the fact that ®(0) > 0, yields that

O(z) >x Ve<az* &z)<z Vao>z*. (51
Without loss of generality, we can assume that o < z* [we
note that if 29 > z*, 1 = ®(xg) < P(2*) = 2* according
to (50)]. Next, suppose that z, < x*. From (51), we obtain
that 2, < ®(z) = xp41 < z*, where the last inequality is
due to the fact that ®(z;) < ®(z*) = 2* from (50). Since
0 < xg < z*, it follows that {zy, k = 1,2,...} is a monotoni-
cally increasing positive sequence with an upper-bound z*. As
a result, the sequence {zy,k = 1,2,...} converges to a limit,
denoted as 2.

To show that z, = z*, we rewrite £;11 = ®(zy) as

o
E[R(n) - .Z‘k]+ — T —

S

= (Tpg1 — T1) (pi + 3 P Fm(a:k))) . (52

Ps

Observe that E[R ) — x]* is continuous in z (see the proof of
Proposition 3.1), x4+1 — 2 — 0 as k — oo, and

PR— 5
;+ZI’;)J(1_Fm(xk))s 241 < o
S m=1 S

Ps

Therefore, taking limits on both sides of (52) yields that
E[R() — Too]t — 6300 /ps = 0.

It follows from Proposition 3.3 that E[R(,,) — z]T =« pi has a
unique solution; we conclude that z., = x*.

APPENDIX IV
PROOF OF PROPOSITION 4.1

To establish the existence of a Nash equilibrium for the
threshold selection game, we apply [32, Proposition 20.3],
which requires that the action set A,, is a nonempty com-
pact convex set for any m and the utility function ¢,,(-) is
quasi-concave on A,,. Recall that a function f : R — [0, c0)
is quasi-concave if the sublevel sets S. = {z|f(z) > ¢} are
convex for all ¢ [38]. To this end, rewrite ¢, (2, X_p,) > cas

A~

bm(x) 2 Ds.m /oo(r —¢)dFy,(r) — b

—e Y pa(1— Fi(a;) 2 0. (53)
j#Em

Then, it suffices to show that for any given c, ¢A>m (z) is quasi-
concave in [0, 00).

Observe that for any given c, ¢, () is nondecreasing in [0, ¢,
and is nonincreasing in [¢, 00). It follows from [38] that ¢,,, ()
is a quasi-concave function in [0, co), which implies that for any
¢, the sublevel set S. = {z|¢m (2, %) > ¢} is convex. Thus,
the Nash equilibrium for the noncooperative game G exists.

Observe from Proposition 3.3 that ¢,,(z,x*_,,) is maxi-
mized at z = z,, which is the unique solution to the equation
T = ¢m(z,x*,,). By the definition of Nash equilibrium, x* is
the Nash equilibrium, thereby concluding the proof.

APPENDIX V
PROOF OF PROPOSITION 4.2

We need the following lemma first.

LemmaV.1: If x = [x1, T2, ..., 22" is a Nash equilibrium,
then all its elements are equal, i.e., 11 = z2 = - - - = x ).
Proof: Assume that there exists a Nash equilibrium with
unequal elements. Without loss of generality, assume that z; >
x5. It follows from (24) that

Ty = ¢1(r1,X_1) = ¢2(21,X_1)

Ty = (w2, X_2) = d1(v2,X_2) (54)
which indicates that X' = [z, 21,23 ...,7]7 is also a Nash
equilibrium. This contradicts the componentwise monotonicity
of Nash equilibria. O

Lemma V.1 indicates that Nash equilibrium satisfies the
equation £ = ¢,,(x,x,...,x). Conversely, based on Proposi-
tion 4.1, the solutions of the equation z = ¢,,,(z, z, ..., z) are

Nash equilibria.
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APPENDIX VI
PROOF OF PROPOSITION 4.3

It suffices to show that the equation d(z) = 0 has a unique
solution. To this end, rewrite d(z) as

d(g;):ﬁx/ps+ ((1 € )/P)_Me( /P

Ey(e”/p)
where E(z) is the exponential integral function defined as

/m expz(t )dt

Then, the derivative of d(z) is given by
M —

Ey(z) (55)

@ 1
d'(x) = 6/ps + e((1=e")/p) _ pell—e )/p)er/p. (56)

To show that d(xz) = 0 has a unique solution, we need the
following lemmas.

Lemma VI.1:
Proof: Ttis clear that

(z),Yz > 0.

_ /
<e - El(x)> =—e"/2° <0 Yz > 0. (57)
T
Moreover
<e - —El(a:)> -0, as £ — 0o (58)
T
(x),Vz > 0. O
Lemma VI.2: d(x) > 0,Yx € {x > 0]d'(x) =0} > 0.
Proof: Tt follows from (56) that if d’(z) = 0, then
(M —1)ze®/p > M. (59)
It follows that
ay (M —1 . (1/p)
d(z) (>) %xe((l—e e B (6% )
(1/p) .
= (M = D)2/ — By (e /p)]
() e(1/p) e(=€*/p)
— Eq(c®
> 3 =/ 1(e"/p)
o (60)

where (a) follows from 6z /ps > 0, (b) from (59), and (¢) from
Lemma VI.1. O

Clearly, d(0) < 0 and d(co0) > 0 implies that the solution
to d(z) = 0 exists. Next, suppose that the equation d(z) = 0
has more than one solutions. Then, it can be shown that there
exists an zo > 0 such that d’'(zo) = 0 and d(z¢) < 0, which
contradicts Lemma V1.2, thereby concluding the proof.

APPENDIX VII
PROOF OF PROPOSITION 4.5

For convenience, let 1,,,(x) denote the unique solution to the
fixed-point equation z = ¢, (2, X)), form = 1,2,... . M,
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and \IJ( . ) = [1/}1( . )7¢2( . ), . ,1/}]\[( . )]T Note that \I’(X) is
monotonically increasing on x since for any x' > x? > 0, we
have that

wm(xl) = max¢m($7 Xl—m) Z maxd)m(x, X2—m)

x

= b (x2).

Given any nonnegative initial value x(0), it follows that

\/A

0< x(0 < 0
w0 < ux0)=x(1)  <U(x)
020) 2 0(0(0) < Ux(1)=x(2) < U(¥(c0))
UH0) < W(x(k—1) =x(k) < T¥(cx).

(61)

It is clear that the sequence {¥*(0), %k = 1,2,...} is mono-
tonically increasing and bounded above, and as a result, the se-
quence converges to a limit, denoted as U>°(0). To show that
U>(0) = x*, by definition, we have that

U (0) = dm (17(0), U™, (0))

which indicates that ¥>°(0) satisfies (22), and thus it is a Nash
equilibrium. By the assumption on the uniqueness of the Nash
equilibrium, we have that ¥°>°(0) = x*.

Similarly, we can show that the sequence {U*(00),k
1,2,...} is monotonically decreasing and bounded below,
and thus also converges to x*. Using a sandwich argument,
it follows from (61) that the sequence {x(k),k = 1,2,...}
converges to x*.

Ym=1,2,....M

APPENDIX VIII
PROOF OF PROPOSITION 4.6

We first show by induction that {x(k)} converges. De-
fine =z}, £ max, ¢m(x,X_m(k)). Given the initial value
xm(O) = 0,VYm, we have that
(62)

0 < zm(l) = ¢m(0,0) <y,

Next, suppose that =, (k) > zn,(k — 1), and x,,(k) <
T}, x—1VYm. Then, observe that

xm(k + 1) = qsm(xm(k) X_ m(k))
> Gm (T (k), X—m(k — 1))
2 Pm(@m(k — 1), x_m(k —1))
Moreover
Tm(k +1) = G (2m(k), X—m (k)
< mxax¢m(a:,x_m(k))
=z} - (64)

5

It follows that Vm, {z,.(k),k 1,2,...} is a mono-
tonically increasing sequence with an upper-bound z¥
Lo [ rdF,,(r). As a result, the sequence {x(k),k
1,2,...} converges to a limit, denoted as x(o0).
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To show that x(c0) is a Nash equilibrium, using the similar
argument as in the proof of Proposition 3.3, we can take limits
on both sides of (29) to conclude that

VYm

g/)m(:vm(oo%X,m(oo)) (65)

:L’m(oc) =

which indicates that x (oo
proof.

) satisfies (22), thereby concluding the

APPENDIX IX
PROOF OF PROPOSITION 5.1

It is clear from Proposition 4.1 that =}, > xz}.,. We next
examine the efficiency loss due to noncooperativity. We first

present the following lemma.

Lemma IX.1: Consider the following nonlinear optimization
problem:

[I]

max

66
{0<wm<oom 1,2,. ( )

M
" mzzjl bm(x

where ¢,, is defined in (18). Then, the optimal solution to
problem = in (66) is z*u, where u = [1,...,1], and z* is the
unique solution to (11).

Proof: First, take derivative of the objective function in =
with respect to {z,, }. After some algebra, it turns out that

> fm(x)

which indicates all x;, are the same at the optimal point. Let
xy = x5,V m. It follows from (67) that z; is the solution of the
following fixed-point equation:

= T, m=1,2....M 67)

S e [ rdF o (r)

(68)

T4 pe(l— Ful2))
which is exactly (11). Since the solution of (11) is unique, we
have that z; = z*. O

Clearly, z7, > x},... Next, we prove the second part of Propo-
sition 5.1 by showing that the equality cannot be achieved. To
this end, it is sufficient to examine the following two cases. 1)
If the components of x* are not the same, then Lemma IX.1 im-
plies that 2%, > x} .. 2) If the components of x* are the same,
say x* = x.u, combining (32) and (22), it is not difficult to see
that z. # z*. Accordingly, z7, > 7.

APPENDIX X
PROOF OF PROPOSITION 6.1

It is not difficult to show that %% p(p ) > 0 for any p > 0.
Therefore, 2*(p) is strictly increasing in p. Similarly, we can
show that g(p) is a decreasing function of p, and g(p) — 0 as
p — o0.

To examine the extreme case when p — 0, write g(p) as
follows using (36):

Ds P
o) = (1+2) 2 (69)
P
Using L’Hospital’s rule yields that
Ds
9(p) — (1 + 3)
d *
% exp [ - LP) ~1,  asp—0. (70)
dp p=0
Next, we characterize dmd—;p) o Rewrite (36) as follows:

(71)

ix* exp (—l> =F <—exp(a: )> .
Ps p p

Taking derivative with respect to p on both sides of (71) and
rearranging the terms yield that

6dz*e (%) +5z*e (%)
——exp(z”)p + —— exp(zx
ps dp Ds P
~ exp <_M> <1 _ da” p> exp(z®). (72)
P dp
Let p — 0in (72). Using the facts that 2*(p) — 0, 22

and

d g SREENL _, dr <P>‘ as p — 0, it follows

that dz (p ) ‘ is the root of z exp(z) = p, /8. The proposition
follows from (70)
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