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SUMMARY

Functions of eigenvalues of the graph Laplacian matrix L, especially the extremal non-trivial eigenvalues,
the algebraic connectivity �2 and the spectral radius �n, have been shown to be important in determining
the performance in a host of consensus and synchronisation applications. In this paper, we focus on formu-
lating an entirely distributed control law for the control of edge weights in an undirected graph to solve a
constrained optimisation problem involving these extremal eigenvalues.

As an objective for the distributed control law, edge weights must be found that minimise the spectral
radius of the graph Laplacian, thereby maximising the robustness of the network to time delays under a
simple linear consensus protocol. To constrain the problem, we use both local weight constraints that weights
must be non-negative, and a global connectivity constraint, maintaining a designated minimum algebraic
connectivity. This ensures that the network remains sufficiently well connected.

The distributed control law is formulated as a multilayer strategy, using three layers of successive dis-
tributed estimation. Adequate timescale separation between the layers is of paramount importance for the
proper functioning of the system, and we derive conditions under which the distributed system converges
as we would expect for the centralised control or optimisation system to converge. © 2017 The Authors.
International Journal of Robust and Nonlinear Control published by John Wiley & Sons Ltd.
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1. INTRODUCTION

In the control of multi-agent systems, both the structure and strength of connections between indi-
viduals are instrumental in determining the performance of the system as a whole. The totality of
connections and their strengths uniquely defines a graph Laplacian matrix L, and the spectrum of
L, 0 D �1 6 �2 6 � � � 6 �n, concisely reveals a number of useful properties of the network
system. Importantly, it has been shown that functions of these eigenvalues often define or can be
used to bound bulk properties of the network, including the performance of tasks ranging from con-
sensus [1–4] to synchronisation [5–7]. These tasks are particularly important in the applications of
clock synchronisation in wireless networks [8, 9], energy management in smart grids [10, 11] and
formation control in multi-agent systems [12, 13].
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L. C. KEMPTON, G. HERRMANN AND M. DI BERNARDO

To illustrate this fundamental concept, we can consider the classic example of a group of
agents approaching average consensus in an undirected network under the simple linear weighted
consensus protocol [1]:

Pxi D
X

j 2Ni

w¹i;j º.xj � xi / (1)

Each agent i in the system updates its state xi according to the weighted sum of the differences

between its own state and those of its neighbours xj , defining the neighbourhood of i , Ni , as the

set of agents with which i can communicate. The strength of the connection between agents i and j
is modelled through the weight w¹i;j º. This control law is seen to be distributed as each agent only

receives information from its neighbours. The collection of all agents’ dynamics can be concisely

represented by the weighted graph Laplacian matrix L , as defined in Section 2:

Px D �L.w/x (2)

It is well known that in this system, consensus is achieved if and only if the network is connected,

which is equivalent to the second smallest eigenvalue of L, �2 the algebraic connectivity, being

strictly greater than zero [14]. Furthermore, the exponential rate at which the consensus value is

approached is governed exactly by �2, which represents the convergence rate of the slowest mode.

Defining the disagreement vector y.t/ D x.t/ � 1
n

11>x.0/ as the disagreement between the state at

time t and the arithmetic mean of x.0/ yields

jjy.t/jj2 6 jjy.0/jj2e��2t (3)

In this simple system, both the sufficient condition for consensus to be achieved and the measure

of the performance are governed by the algebraic connectivity �2 of the graph Laplacian. This

quantity is a function of all weights in the network and is therefore a global property of the network.

When the simple consensus protocol is affected by a homogeneous time delay of � ,

Px.t/ D �L.w/x.t � �/ (4)

the largest eigenvalue of the graph Laplacian, �n, becomes critically important to the stability of

the system. In a result from [1], it is shown that for the consensus solution to be stable, an upper

bound must hold on the spectral radius �n of the graph Laplacian and consequently, that a network

with lower spectral radius will be stable under longer time delays. Specifically, it is found that for

consensus to be robust to the time delay, the spectral radius of the graph Laplacian must satisfy the

following inequality:

�n <
�

2�
(5)

Because of their importance in network systems, much research has been undertaken on methods

to design networks with desirable graph Laplacian eigenvalues. These methods can broadly be cat-

egorised by which eigenvalues, or functions of eigenvalues, are controlled and by the technique

utilised to modify edge weights. Semi-definite programming (SDP) has proven to be a powerful

technique for optimising a number of functions of graph Laplacian eigenvalues, including the alge-

braic connectivity, and the total effective graph resistance (see [15] and the references therein).

Furthermore, when the graph Laplacian is state dependent, SDPs still prove to be an effective tool,

and the problem of maximising the algebraic connectivity of a mobile robot network is achieved

using a centralised algorithm in [16]. A distributed solution to this problem using repeated solution

of local approximate SDPs is presented in [17]. The research area of connectivity maintenance in

mobile robot networks [12, 13, 18–22] has developed a number of decentralised methods to control

the algebraic connectivity of a state-dependent graph Laplacian. In particular, an adaptive method

is presented in [21] for estimating the algebraic connectivity in a completely decentralised man-

ner, which we utilise in this paper. This method has been used for maintenance of connectivity in a

mobile network [21], distributed optimisation of the algebraic connectivity [23] and is extended for

switching topologies and adapting control gains in [24].

© 2017 The Authors. International Journal of Robust and

Nonlinear Control published by John Wiley & Sons Ltd.

Int. J. Robust Nonlinear Control (2017)

DOI: 10.1002/rnc



DISTRIBUTED OPTIMISATION AND CONTROL OF LAPLACIAN EIGENVALUES

In general, most methods in the literature for controlling the spectral radius �n of the graph

Laplacian or the eigenratio �n=�2 follow centralised approaches, with the notable exception of

the algorithm presented in [25], which uses decentralised power iteration methods to estimate the

eigenvectors associated with �2 and �n, in order to then adapt edge weights. However, this method

breaks down when �2 � �3, or �n � �n�1, and so cannot further optimise the network once

this point is reached. In [26] and [27], the eigenratio is minimised through simulated annealing.

And in [28], mixed integer nonlinear optimisation is utilised to solve eigenvalue optimisation prob-

lems including maximising the algebraic connectivity subject to a constraint on the spectral radius.

Edge rewiring based on the eigenvectors of the graph Laplacian is used in [29] to minimise the

eigenratio �n=�2.

In this paper, we take a different approach and formulate a decentralised method for estimating

the spectral radius of the graph Laplacian [23], on the basis of the application and extension of the

algebraic connectivity estimator presented in [21]. We use these estimators in parallel to evaluate

the extremal eigenvalues of the graph Laplacian and inform an adaptive strategy, driving the edge

weights of a network to a state that improves the robustness to time delay of the simple consensus

protocol. This is achieved by adapting the edge weights so as to minimise the spectral radius �n of

the graph Laplacian, whilst ensuring that the network remains connected through the enforcement

of a lower bound on the algebraic connectivity, �2. We find that this approach is more robust when

estimating eigenvalues close to non-uniqueness compared with [25], allowing the graph Laplacian

eigenvalues to be optimised past the first point when �2 � �3 or �n � �n�1, which can lead to

significant improvements in performance.

The distributed optimisation and control strategy that we propose consists of multiple layers of

distributed estimation. The edge weight dynamics rely on estimates of the graph Laplacian eigen-

values, and these estimators themselves require further estimated variables to function correctly. An

outline of this three-layer structure is illustrated in Figure 1. In Sections 3 to 5 of the paper, we will

first present each layer independently, and then in Section 6, we specify how the three layers are

interconnected, and derive sufficient conditions for convergence of the distributed strategy, using

the framework of multilevel singular perturbation theory [30]. In Section 7, we will illustrate the

theoretical results on a set of representative numerical examples, confirming the effectiveness of the

approach.

Figure 1. General overview of the distributed estimator-optimiser system. Each subsystem is contained
within a white box, and groups of subsystems that operate in the same timescale share a yellow box. In this
diagram, the rightmost subsystem is the slow system, then, reading to the left, we have the fast systems and
finally, the ultra-fast subsystems. Dependencies between subsystems are illustrated via arrows. The vectors
a and b are estimates of the eigenvectors associated with �2 and �n, respectively, and the proportional–

integral (PI) average consensus subsystems are used to estimate the mean of the components hai D 1
n

P
i ai ,

hbi D 1
n

P
i bi and the mean of the components squared: haı2i D 1

n

P
i a2

i
, hbı2i D 1

n

P
i b2

i
. These

estimated means are required by the eigenvalue estimators, as described in Section 4. [Colour figure can be
viewed at wileyonlinelibrary.com]
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2. PROBLEM FORMULATION

We define the weighted, undirected graph G.V; E ; A/ on n nodes, such that the vertex set V D
¹1; : : : ; nº, and with m D jE j edges, where the edge set E � V �V contains no self loops ¹i; iº … E .

An edge ¹i; j º 2 E if nodes i and j can communicate (pass local variables), which in turn defines

the neighbourhood of the i th node, Ni W j 2 Ni ” ¹i; j º 2 E . To each edge, we assign a

non-negative real weight w¹i;j º > 0 that defines the weighted adjacency matrix A D Œai;j �n�n

ai;j D

8
<
:

w¹i;j º if ¹i; j º 2 E

0 if ¹i; j º … E

0 if i D j
(6)

and the weighted graph Laplacian L D Œli;j �n�n

li;j D

8
<
:

�w¹i;j º if ¹i; j º 2 E

0 if ¹i; j º … EP
k2Ni

w¹i;kº if i D j
(7)

with non-negative diagonal elements li;i referred to as the weighted degree of node i . The graph

Laplacian is symmetric and positive semidefinite, which can clearly be seen using Gersgorin discs

[31]: L is diagonally dominant with non-negative elements on the diagonal, and so we can lower

bound the spectrum of L by 0 and upper bound the spectrum by twice the maximum weighted

degree, � D maxi¹li;iº [2]. The row sums of L all equal 0; therefore, the consensus mode 1 is an

eigenvector of L with associated eigenvalue �1 D 0. Henceforth, we can order the eigenvalues of

L, 0 D �1 6 �2 6 : : : �n 6 2�.

It is well known that the second smallest eigenvalue �2, known as the algebraic connectivity, is

non-zero if and only if the network is connected. That is, for each pair of nodes in the network, there

is a path between them that traverses only edges with non-zero weight. Moreover, the algebraic

connectivity serves as a lower bound on the edge connectivity and vertex connectivity [14, 32].

The graph Laplacian may also be defined another way, by constructing a weight vector w and

oriented incidence matrix P [33], which will be a useful notation:

Definition 1

Let q W ¹1; : : : ; mº ! E be a bijective function from the set of integers from 1 to m, to the edge set,

so that we may define an ordering on the vector of edge weights w D Œwi �m�1, where wi D wq.i/.

We may then define the unoriented incidence matrix M D Œmi;j �m�n

mi;j D
²

1 if j 2 q.i/

0 if j … q.i/
(8)

Similarly, we may define the oriented incidence matrix, P D Œpi;j �m�n

pi;j D

8
<
:

�1 if j D min¹q.i/º
C1 if j D max¹q.i/º
0 if j … q.i/

(9)

so that L.w/ D P>diag¹wºP.

In this paper, we consider, as a specific example, the problem of minimising the largest eigenvalue

of the graph Laplacian �n so that a consensus process taking place over the network will be more

robust to time delays as noted in [1, 34], whilst bounding the algebraic connectivity away from zero,

�2 > � > 0, so that the network remains sufficiently well connected. Moreover, greater algebraic

connectivity is associated with an increased convergence rate in consensus problems with time delay

(see, e.g. theorem 3 and figure 5 in [34]).
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This optimisation problem can be formulated as

minimise
w

�n.L.w// (10)

subject to �2.L.w// � � > 0

w¹i;j º > 0 8¹i; j º 2 E
(11)

which is a convex optimisation problem: the objective function, the spectral radius of the Laplacian

matrix, is a convex function of edge weights; and the constraint that the algebraic connectivity be

greater than a desired value is also convex (the algebraic connectivity is a concave function of edge

weights). These facts can be observed by noting that, respectively, the maximum and the negative

of the minimum are symmetric convex functions of the spectrum of the graph Laplacian matrix,

and hence, the spectral radius and the negative of the algebraic connectivity are convex spectral

functions [15, 35].

Moreover, we wish to solve the problem (10, 11) in an entirely distributed manner. By which,

we mean that with each edge, ¹i; j º is associated a set of variables �¹i;j º, which includes the edge

weight w¹i;j º 2 �¹i;j º, and to each node, i is associated a set of variables �i . The dynamics of these

sets of variables may be dependent only on locally available variables, and all edges and all nodes

behave identically so that no edge or node is a leader:

P�¹i;j º D f.�¹i;j º; �i ; �j / 8¹i; j º 2 E (12)

P�i D g.�i ; �j ; �¹i;j º 8j 2 Ni / 8i 2 V (13)

Furthermore, we restrict the size of these sets reflecting a limit on the memory and communica-

tion capacity of individual agents, so that the number of variables at each edge and node remains

small even as the network becomes arbitrarily large. This means that nodes cannot simply accu-

mulate information about the entire network and solve the problem with perfect knowledge of the

network. Thus, the distributed estimator system with states �¹i;j º and �i uses one-hop neighbour

information only.

In this paper, this distributed optimisation problem is solved using a multilayer strategy, shown

in Figure 1, with each layer performing successive stages of distributed estimation. Starting with

the slowest subsystem, we formulate weight dynamics, which solve the optimisation problem in

Section 3. This solution is initially centralised in the respect that it is dependent on global variables,

specifically the eigenvalues of the graph Laplacian and their partial derivatives. To render this strat-

egy completely distributed, we implement two eigenvalue estimators that converge at a faster rate:

one for the algebraic connectivity [21], described in Section 4.1, and one for the spectral radius,

expounded in Section 4.2. Each of these estimators requires access to the mean of the estimator

vector and to the estimator vector’s magnitude. To estimate these functions in a distributed man-

ner, four proportional–integral (PI) average consensus subsystems [36], as given in Section 5, are

utilised. After discussing each of the subsystems individually, we prove in Section 6, using a sin-

gular perturbation approach, that given sufficient timescale separation between layers, and under

certain assumptions, the entire distributed system is stable and converges onto the solution to the

optimisation problem. This result is demonstrated numerically in Section 7, and we also show the

performance of the system when the assumptions we make for proving convergence are relaxed.

3. WEIGHT ADAPTATION

To begin, we propose a system governing the weight dynamics, where each node and edge perform

the following updates

Pw¹i;j º D �@�n.w/

@w¹i;j º
C 1

2

�
�2

i;j C @�2.w/

@w¹i;j º
�2

¹i;j º

�
(14)

P�¹i;j º D �w¹i;j º�¹i;j º; �¹i;j º.0/ > 0 (15)

© 2017 The Authors. International Journal of Robust and
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P�¹i;j º D .� � �2.w// �¹i;j º; �¹i;j º.0/ > 0 (16)

and show that the equilibrium point Œw>
opt ; �>

opt ; �>
opt �

> satisfies the first-order necessary Karush–

Kuhn–Tucker (KKT) [37] conditions for the optimisation problem. We will show that the first-

order necessary KKT conditions are not only necessary but also sufficient for the equilibrium point

Œw>
opt ; �>

opt ; �>
opt �

> to be the optimal solution to our optimisation problem, (10) and (11). Following

this, we will discuss conditions for the equilibrium to be exponentially stable. As these conditions

are not necessarily always true, we will then suggest a minor modification to the algorithm in (14)

to (16). An important condition for the system to work as intended is the following assumption:

Assumption 1

At the optimal edge weights wopt , which solve the optimisation problem stated in (10) and (11), we

assume that the eigenvalue �2.wopt / ¤ �3.wopt / and that �n.wopt / ¤ �n�1.wopt / implying that

the spectral radius �n is distinct. Furthermore, any feasible algebraic connectivity is bounded away

from zero when � > 0, and the algebraic connectivity �2 is distinct.

We make this assumption to facilitate the analysis of the subsystems and argue that this assump-

tion is required for exponential convergence of edge weights onto the solution in the entire

distributed system. In Section 7.1, we discuss the ramifications when this assumption does not hold

and demonstrate the performance of the system in this case.

Lemma 1 ([38])

Under Assumption 1, the algebraic connectivity �2.w/, the spectral radius �n.w/ and their associ-

ated unit eigenvectors, v2.w/ and vn.w/, are analytic functions of the edge weights in the vicinity

of the solution, wopt , and hence, their partial derivatives are well defined in this region.

We may write the collection of (14) to (16) for all edges and nodes in the network in a compact

form using Hadamard (elementwise) multiplication a D b ı c , ai D bici 8i . We also introduce

Hadamard exponentiation so that aı2 D a ı a.

Pw D �@�n.w/

@w
C 1

2

�
�ı2 C @�2.w/

@w
ı �ı2

�
(17)

P� D �w ı � (18)

P� D .� � �2.w//� (19)

Lemma 2

The equilibrium point of the system given by (17) to (19) satisfies the first-order necessary KKT

conditions of the optimisation problem (10) with the feasible set (11).

Proof

The optimisation problem is of the form

minimise
x

f .x/

subject to gi .x/ 6 0; 8i D 1 : : : m C 1
(20)

where x , w, the objective function f .x/ , �n.w/ is convex, the inequality constraints gi .x/ ,
�wq.i�n/; 8i D 1 : : : m are affine and the final inequality constraint gmC1 , .� ��2.w// is convex.

The vector of dual variables is simply y , 1
2
Œ�ı2>; �ı2>�>

It can be seen that the right-hand sides of (15) and (16) are equal to zero when and only when the

complementary slackness condition holds: g.x/ ı y D 0. Feasibility of the dual variables is assured

by the initial conditions �¹i;j º D 0, �i .0/ D 0, so that y.t/ > 0; 8t > 0. Setting the right-hand

side of (17) to zero is identical to satisfying the stationarity condition �rf .x/ D
P

i rgi .x/yi .

Furthermore, if primal feasibility does not hold, then Py ¤ 0 so long as y ¤ 0, and we know that

for all finite time y > 0 and may only approach zero exponentially fast (so long as gi .x/ remains

bounded from below). �
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Lemma 3

For the optimisation problem defined by (10) and (11), the first-order necessary KKT conditions are

also sufficient.

Proof

Proof follows from the fact that the primal problem is convex and strictly feasible, thus Slater’s

condition holds (see [39] for details). �

This implies that the equilibrium Œw>
opt ; �>

opt ; �>
opt �

> of (14) to (16) is also the solution to the

optimisation problem (10), (11). It is now necessary to provide conditions for the system (14) to

(16) to be exponentially stable. This will help in the later singular perturbation analysis. Consider

the following result:

Theorem 1

The equilibrium point Œw>
opt ; �>

opt ; �>
opt �

> is locally exponentially stable if either r2�n.wopt / > 0

or r2�2.wopt / < 0.

Proof

Consider the generic convex minimisation problem (20). If the inequality constraints are such that

gi .x/ 6 0; 8i; x 2 X , and the primal feasible set X is convex and compact, f .x/ is strictly convex,

there exists a unique optimal point xopt . At this point, some r1 > 1 constraints will be tight (as

f .x/ is monotonically increasing, we can be sure that at least one inequality will be tight), and

some r2 > 1 inequality constraints may be slack (there must be at least one slack inequality; by

contradiction, if all were tight, then wopt D 0, and thus, �2 D 0, which is infeasible).

We can divide these tight and slack inequalities into strict inequalities pj .x/ < 0 and equality

constraints hj .x/ D 0 by redefining

8i s.t. gi .xopt / D 0; hj .x/ , gi .x/; j D 1; : : : ; r1 (21)

8i s.t. gi .xopt / < 0; pj .x/ , gi .x/; j D 1; : : : ; r2 (22)

Now, the equivalent optimisation problem can be formulated:

minimise
x

f .x/

subject to hi .x/ D 0; 8i D 1 : : : r1

pi .x/ < 0; 8i D 1 : : : r2;

where r1 C r2 D m C 1

(23)

The solution to this optimisation problem can be obtained from the following set of ODEs:

Px D �@f .x/

@x
� 1

2

X

i

@hi .x/

@x
˛2

i � 1

2

X

i

@pi .x/

@x
ˇ2

i (24)

P̨ D h.x/ ı ˛ (25)

P̌ D p.x/ ı ˇ (26)

Linearisation of the system about the optimal point where Qx D x�xopt , Q̨ D ˛�˛opt , Q̌ D ˇ�ˇopt ,

is:
2
64

PQx
PQ̨
PQ̌

3
75 � J0

2
4

Qx
Q̨
Q̌

3
5 (27)
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J0 D

2
4

�r2f .x/� 1
2

P
i ˛2

i r2hi .x/� 1
2

P
i ˇ2

i r2pi.x/�.diag¹˛ºrh.x//>�.diag¹ˇºrp.x//>

diag¹˛ºrh.x/ diag¹h.x/º 0

diag¹ˇºrp.x/ 0 diag¹p.x/º

3
5

(28)

evaluated at x D xopt , ˛ D ˛opt , ˇ D ˇopt :

J0 D

2
4

�r2f .xopt / � 1
2

P
i ˛2

opt;ir2hi .xopt / �.diag¹˛optºrh.xopt //
> 0

diag¹˛optºrh.xopt / 0 0

0 0 diag¹p.xopt /º

3
5 (29)

as ˇopt D 0 and h.x/ D 0.

It is evident that this Jacobian matrix has a block diagonal structure, indicating the decoupling

of the dual variables whose associated inequality constraints are slack at the optimal point. In the

vicinity of the optimal point, the square root of the (redundant) slack dual variables ˇi will decay to

zero exponentially fast with rate constants pi .xopt / < 0. That is, the ‘more slack’ the constraint is,

the faster its dual variable will decay away.

The other block is more interesting and has the form

J1 D
�

R �S

S> 0

�

R D �r2f .xopt / � 1

2

X

i

˛2
opt;ir2hi .xopt /

S D .diag¹˛optºrh.xopt //
>

(30)

In the vicinity of the optimal point, the primal variables x will converge to xopt exponentially fast

provided R is negative definite. This follows from the following lemma. �

Lemma 4

The matrix J1 D
�

R �S

S> 0

�
has eigenvalues with negative real part provided the symmetric part of

R is negative definite and S is full column rank.

Proof

det¹J1º D det¹Rºdet¹S>R�1Sº (31)

It can be seen that det¹Rº ¤ 0 as R is nonsingular, and thus, R�1 exists. Furthermore, det¹S>R�1Sº
is only full rank if S is full column rank, that is, S>S is invertible. Therefore, det¹J1º ¤ 0; J1 has

no zero eigenvalues.

Considering the eigenvector equation J1vi D �i vi, with vi , Œxi
>; yi

>�>, we have
�

R �S

S> 0

� �
xi

yi

�
D �i

�
xi

yi

�
(32)

Rxi � Syi D �i xi (33)

S>xi D �i yi (34)

Looking solely at (34), we can see that if xi D 0, then either �i D 0, which we have previously

shown not to be true, or yi D 0, so that vi D 0, which is simply the trivial solution. Therefore, we

can conclude that for all eigenvectors of J1, xi ¤ 0.

Now, we drop the subscripts and assume that v is a unit eigenvector so that

� D v�J1v (35)
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D Œx�; y��

�
R �S

S> 0

� �
x

y

�
(36)

D x�Rx � x�Sy C y�S>x (37)

D x�Rx � x�Sy C .y�S>x/> (38)

D x�Rx � x�Sy C x>Sy (39)

D x�Rx � x�Sy C x�Sy (40)

D x�Rx � 2=.x�Sy/ � i; i D
p

�1 (41)

As x ¤ 0 and the symmetric part of R is negative definite, <.x�Rx/ < 0. This is the only

contribution to the real part of the eigenvalue; thus, J1 is a stable matrix. �

Note 1

If f .x/ and all hi .x/ are convex, then it is apparent that R is negative definite only if f .x/ or any

hi .x/ is strictly convex near xopt . We can be sure that the lower bound on the algebraic connectivity

will be tight hj .x/ , � � �2.w/ (if it was not, then all weights could be scaled by a common factor

less than 1, so that �n would also be scaled down further). In our case, any other tight inequality

constraints are affine, and so the condition that f .x/ or any hi .x/ is strictly convex near xopt reduces

to the sufficient condition that either r2�n.wopt / > 0 or r2�2.wopt / < 0.

3.0.1. Strict convexity:. In note 1, it was discussed that we require either �n.w/ to be strictly con-

vex, or �2.w/ to be strictly concave, in the vicinity of the optimal point for exponential convergence.

However, neither �n.w/ nor ��2.w/ is necessarily strictly convex. To account for this, we choose

to minimise a modified function f .x/ D .�n.w//2. It is apparent that minimising .�n.w//2 is

equivalent to minimising �n, so the two optimisation problems are equivalent.

In the following lemma, we show that as �n.w/ is positive and convex (near wopt ), then its square

will be strictly convex in the vicinity of the optimal point if that optimal point is distinct.

Lemma 5

If f .x/ is (not necessarily strictly) convex and positive, then f .x/2 is strictly convex over non-flat

regions.

Proof

f .x/ is convex, so Jensen’s inequality holds:

f .�x1 C .1 � �/x2/ 6 �f .x1/ C .1 � �/f .x2/; 8� 2 .0; 1/ (42)

Squaring both sides, so long as f .x/ is non-negative, we can be sure that

f .�x1 C .1 � �/x2/2 6 �2f .x1/2 C 2�.1 � �/f .x1/f .x2/ C .1 � �/2f .x2/2; 8� 2 .0; 1/ (43)

But to prove that f .x/2 is strictly convex, we need to show that

f .�x1 C .1 � �/x2/2 < �f .x1/2 C .1 � �/f .x2/2; 8� 2 .0; 1/ (44)

By considering the right-hand side of (43) and (44), strict convexity follows if the following

inequality holds

�2f .x1/2 C 2�.1 � �/f .x1/f .x2/ C .1 � �/2f .x2/2 < �f .x1/2 C .1 � �/f .x2/2 (45)

.�2 � �/f .x1/2 C 2�.1 � �/f .x1/f .x2/ C ..1 � �/2 � .1 � �//f .x2/2 < 0 (46)
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�.� � 1/.f .x1/ � f .x2//2 < 0 (47)

which clearly holds in the interval so long as f .x1/ ¤ f .x2/.

Note 2.

If f .x1/ D f .x2/, then there may be a manifold of optimal edge weights. In this case, .�n.w//2

will not be strictly convex in this region. Instead, the set of optimal points will be a neutrally stable

manifold for the set of ODEs, but local convergence to this manifold will be exponentially fast. �
Substituting in the altered objective function f .x/ D �n.w/2 in (20), we arrive at the modified

weight adaptation law:

Pw¹i;j º D �@.�n.w//2

@w¹i;j º
C 1

2

�
�2

¹i;j º C @�2.w/

@w¹i;j º
�2

¹i;j º

�
(48)

D �2�n.w/
@�n.w/

@w¹i;j º
C 1

2

�
�2

¹i;j º C @�2.w/

@w¹i;j º
�2

¹i;j º

�
(49)

P�¹i;j º D �w¹i;j º�¹i;j º; �¹i;j º.0/ > 0 (50)

P�¹i;j º D .� � �2.w// �¹i;j º; �¹i;j º.0/ > 0 (51)

where the collection of all ODEs for each node and edge may be written in the more compact form:

Pw D �2�n.w/
@�n.w/

@w
C 1

2

�
�ı2 C @�2.w/

@w
ı �ı2

�
(52)

P� D �w ı � (53)

P� D .� � �2.w//� (54)

Observing the set of ODEs, (49) to (51), it is clear to see that these are not fully distributed. The

functions �2.w/, �n.w/ and their partial derivatives with respect to the edge weights are global func-

tions of all the edge weights. Thus, to achieve a fully distributed strategy, we must make distributed

estimates of these functions. This is achieved using the distributed algebraic connectivity estimator

from [21] and a distributed spectral radius estimator. Next, we will recall some of the results from

[21] in Section 4.1, before continuing in Section 4.2 to explain how the system can be modified for

estimating the spectral radius and its partial derivatives with respect to their edge weights.

4. EIGENVALUE ESTIMATION

4.1. Algebraic connectivity estimator

As described in [21], the algebraic connectivity of a weighted undirected network can be estimated

using the ODE :

Pa D �k1

n
11>a � k2La � k3

�
a>a

n
� 1

�
a (55)

That is, every node follows

Pai D �k1hai C k2

X

j 2Ni

w¹i;j º.aj � ai / � k3.haı2i � 1/ai (56)
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with hai D 1
n

P
i ai being the arithmetic mean of the components of a and haı2i D 1

n

P
i a2

i being

the mean of the sum of squared components. It can be shown that if the algebraic connectivity is

distinct, the stationary point a� is defined as

a� D ˙v2.w/

s
n.k3 � k2�2.w//

k3

(57)

where v2 is the unit eigenvector associated with �2.w/. This allows the following estimates to be

performed [21]:

1�2.w/ D k3

k2

�
1 � jjajj22

n

�
(58)

2@�2.w/

@w¹i;j º
D .ai � aj /2

jjajj22
(59)

The equilibrium point a� is locally exponentially stable, provided that k1 > k2�2 and k3 > k2�2,

k2 > 0. Moreover, the rate constant of this local exponential convergence is given by

c1 D � min¹k1 � k2�2; 2.k3 � k2�2/; k2.�3 � �2/º (60)

Again, observing (56), it is apparent that each node requires access to the global functions hai and

haı2i, and so the system is not fully distributed. As in [21], a solution is to use further subsystems

to make distributed estimates of these quantities, using PI average consensus estimators [36]. These

estimators will be discussed in Section 5.

4.2. Spectral radius estimator

The estimation approach used for the algebraic connectivity can be now extended to obtain an esti-

mate of the spectral radius �n and its partial derivatives with respect to each edge weight. However,

instead of the action from L being used to drive the system towards consensus so that the slowest

mode dominates (which associated with �2), L now needs to provide a diverging force so that the

fastest mode (associated with �n) dominates. Again, the consensus mode is deflated through the

action of the first term, and the third term provides a normalising force so that the vector b remains

bounded and is driven away from the origin. Specifically, we propose to use the dynamics:

Pb D �k1

n
11>b C k2Lb � k3

�
b>b

n
� 1

�
b (61)

Taking a local view of the system, every node follows,

Pbi D �k1hbi � k2

X

j 2Ni

w¹i;j º.bj � bi / � k3.hbı2i � 1/bi (62)

using the global functions hbi D 1
n

P
i bi and hbı2i D 1

n

P
i b2

i .

Taking the orthogonal matrix V D Œ 1p
n

1; v2; : : : ; vn�, which diagonalises the graph Laplacian

ƒ D V>LV, as a change of basis, the system may be easily diagonalised using the transformation

bd D V>b yielding

Pbd D
�

�k1

�
1 0>

0 0

�
C k2ƒ C k3I

�
bd � k3

n
bd b>

d bd (63)

Each mode can be taken in turn, so that for the consensus mode bd;1

Pbd;1 D
�

k3 � k1 � k3

n
b>

d bd

�
bd;1 (64)

© 2017 The Authors. International Journal of Robust and

Nonlinear Control published by John Wiley & Sons Ltd.

Int. J. Robust Nonlinear Control (2017)

DOI: 10.1002/rnc



L. C. KEMPTON, G. HERRMANN AND M. DI BERNARDO

which has stationary points at b�
d;1

D 0 or when b�>
d

b�
d

D n.k3�k1/
k3

. Clearly, if k1 > k3, then this

second equilibrium point does not exist, and the first equilibrium point is globally exponentially

stable; the consensus mode will deflate.

Other modes follow equations of the form

Pbd;i D
�

k3 C k2�i � k3

n
b>

d bd

�
bd;i (65)

for i D 2; : : : ; n

4.2.1. Location of equilibria:. For each of the non-consensus modes, either b�
d;i

D 0 or b�>
d

b�
d

D
n.k3Ck2�i /

k3
. Thus, there is one equilibrium point located at the origin b�

d
D 0, and for each unique

eigenvalue �i , there is an associated equilibrium space such that b�>
d

b�
d

D n.k3Ck2�i /
k3

, with zero

elements bd;j D 0 for all �j ¤ �i .

In the case that �i has unitary multiplicity, then the associated equilibrium is a set of two points

equidistant from the origin (a 0-sphere) given by

b�
d;i D ˙

s
n.k3 C k2�i /

k3

(66)

b�
d;j D 0; 8j ¤ i (67)

and in the general case that the eigenvalue is not distinct �i D � � � D �iCp , having algebraic

multiplicity p C 1, then the associated equilibrium set is a p-sphere of radius

q
n.k3Ck2�i /

k3
defined

by the set of solutions:

X

k2¹i;:::;iCpº
b�2

d;k D n.k3 C k2�i /

k3

(68)

b�
d;j D 0; 8j … ¹i; : : : ; i C pº (69)

Lemma 6

The system defined in (61) is bounded, contains no periodic orbits and there exists at least one stable

equilibrium.

Proof

We notice that the diagonalised system, (63), is a gradient system Pbd D �rV.bd /, where

V.bd / D 1

2
k1b2

d;1 � 1

2
k2

nX

iD2

�ib
2
d;i � 1

2
k3

nX

iD1

b2
d;i C k3

4n

nX

iD1

nX

j D1

b2
d;ib

2
d;j (70)

As such, we can be sure that the system contains no periodic orbits (see [40] for further details).

Further to this, we can immediately see that the system is bounded, as for large bd , the positive

quartic terms will dominate. The Lyapunov-like potential function V.bd / is quartic; thus, by con-

tinuity, there must exist a global minimum of the function, and this critical point will be a stable

equilibrium. �

Theorem 2

Under Assumption 1, with control parameters satisfying k1 > k3 > 0; k2 > 0, the equilibrium set

associated with �n, which consists of two distinct points,

b� D ˙vn

s
n.k3 C k2�n/

k3

(71)
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is the sole stable equilibrium set. Moreover, any trajectory that does not originate at an equilib-

rium will locally exponentially tend to one of these two points with a constant rate of convergence

given by

c2 D �k2.�n � �n�1/ (72)

Proof

Taking a small perturbationebd D b�
d

� bd , the system defined in (63) can be linearised about the

equilibrium b�
d

:

Pebd �
�

�k1

�
1 0>

0 0

�
C k2ƒ C k3I � k3

n

�
2b�

d b�>
d C .b�>

d b�
d /I
��ebd (73)

In the simplest case where all eigenvalues of the graph Laplacian are distinct, and thus, the equilibria

associated with each eigenvalue is a set of two distinct points (a 0-sphere), each i th equilibrium bd;i

will have one non-zero element only at the i th position. Thus, the only non-diagonal term in (73),

2b�
d

b�>
d

, will simplify to a diagonal matrix with the value 2b�2
d;i

located at the .i; i/ element and

zeros elsewhere. Therefore, the linearised system is diagonal, and eigenvalues may be simply read

off, noting that b�>
d

b�
d

D b�2
d;i

D n.k3Ck2�i /
k3

.

At the 1st equilibrium point (at the origin, bd D 0), the eigenvalues are

¹�k1 C k3; k3 C k2�2; : : : ; k3 C k2�nº (74)

The eigenvalues at the i th equilbria (i 2 ¹2; : : : ; nº) are

®
�k1 � k2�i ; k2.�j � �i / 8j ¤ i; �2.k3 C k2�i /

¯
(75)

It can be seen that if k1 > k3, with k1; k2; k3 > 0, then all eigenvalues are negative only at the nth

equilibrium. Again, we stress that this corresponds to an equilibrium set of two distinct points under

Assumption 1 (when �n is distinct), and thus, each of these points is going to be an exponentially

stable equilibrium point. For all other equilibria, there is at least one positive eigenvalue, and the

points will be unstable. Therefore, in the case that all eigenvalues are distinct, almost any trajectory

will converge exponentially on one of the two points in the nth equilibrium set.

When eigenvalues are not distinct, the analysis becomes somewhat more complicated. Consider

the non-trivial eigenvalue �i D � � � D �iCp ¤ 0 having multiplicity p C 1, then the matrix 2b�
d

b�>
d

in the linearised system, about any point on the p-sphere equilbrium, will not be diagonal. It will,

however, be block diagonal, with all elements being zero except for the square block between the

.i; i/ and .iCp; iCp/ elements. Therefore, it is still simple to determine the n�.pC1/ eigenvalues,

which are not affected by this block:

®
k3 � k1; k2.�j � �i / 8j … ¹i; : : : ; i C pº

¯
(76)

Thus, if there is any eigenvalue �j larger than �i , the associated p-sphere equilibrium will be

unstable in at least one direction. By the fact that the system is a bounded gradient system, there must

be at least one stable equilibrium, and through elimination, we deduce that this is the equilibrium

associated with the spectral radius �n.

We therefore conclude that for a Laplacian where �n has multiplicity p C 1, from any initial

condition that is not in the equilibrium set, the trajectory will converge to the p-sphere equilibrium

defined by

X

i2¹n�p;:::;nº
b�2

d;i D n.k3 C k2�n/

k3

(77)

b�
d;j D 0; 8j … ¹n � p; : : : ; nº (78)
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Reversing the diagonal transformation, we find the stable equilibrium set for the system in (61):

b� D
nX

iDn�p

˛i vi;
X

˛2
i D n.k3 C k2�n/

k3

(79)

In the special case where �n is distinct, then b� simplifies to

b� D ˙vn

s
n.k3 C k2�n/

k3

(80)

�

4.2.2. Use as an estimator:. From this stable equilibrium, we see that b is an estimate for the

eigenvector associated with �n. In the case that �n is distinct (Assumption 1 holds), then b almost

surely converges to the associated eigenvector, whilst when �n is not distinct, then b almost surely

converges to a vector in the associated eigenspace.

Whether distinct or not, the magnitude of b� is dependent on �n, so by rearranging (79), we have

jjb�jj22 D n.k3 C k2�n/

k3

(81)

�n D k3

k2

� jjb�jj22
n

� 1

�
(82)

and an estimate of �n can be obtained as

c�n D k3

k2

� jjbjj22
n

� 1

�
(83)

Estimates of the partial derivatives with repect to the edge weights @�n

@w¹i;j º
may also be obtained

using this estimator. Taking the eigenvalue equation for eigenvalue �.w/, with associated unit

eigenvector Ov.w/, and taking the derivative with respect to the edge weight yield

�Ov.w/ D L.w/Ov.w/ (84)

� D Ov>LOv (85)

@�

@w¹i;j º
D @OvT

@w¹i;j º
LOv C OvT @L

@w¹i;j º
Ov C OvTL

@Ov
@w¹i;j º

(86)

As L is symmetric, this ensures that, for the unit eigenvector Ov,

@OvT

@w¹i;j º
LOv C OvTL

@Ov
@w¹i;j º

D �
@.OvTOv/

@w¹i;j º
D 0 (87)

Therefore,

@�

@w¹i;j º
D OvT @L

@w¹i;j º
Ov D . Ovi � Ovj /2 (88)

Using 88 and b
ı

jjbjj2 as an estimate of the unit eigenvector vn, an estimate of the partial derivative

can be obtained as

1@�n

@wi;j

D .bi � bj /2

jjbjj22
(89)

just as for the algebraic connectivity sensitivities in 59.
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4.3. Distributed estimation

Both the �2 and �n estimators require node dynamics, (56) and (62), to be dictated by global vari-

ables, specifically through the quantities hai, haı2i and hbi, hbı2i, respectively. These four functions

are arithmetic means of the components of a and b and of the squares of the components. As such,

they require information from every node and not just those in the neighbourhood of node i . As

in [21], a solution is to use PI average consensus estimators [36] to obtain distributed estimates of

these means and use these local estimates in the eigenvector estimators.

5. PROPORTIONAL–INTEGRAL AVERAGE CONSENSUS

In [36], it is shown that the arithmetic mean of a vector, say u, can be estimated in a distributed way

on a network, using the linear system:

P�u
i D k .ui � �u

i / C kP

X

j 2Ni

w¹i;j º.�
u
j � �u

i / C kI

X

j 2Ni

w¹i;j º.�
u
j � �u

i /

P�u
i D �kI

X

j 2Ni

w¹i;j º.�
u
j � �u

i /
(90)

Here, we use the notation �u
i to designate the i th node’s proportional variable for estimating the

mean of the vector u, with �u
i being the corresponding integrator variable. This notation is introduced

as we will need to use four PI average consensus systems for estimating the means:

hai D 1>a

n
; haı2i D a>a

n
; hbi D 1>b

n
; hbı2i D b>b

n
(91)

As such, the superscripts for the four PI consensus systems will be: a; aı2, b, and bı2. However, for

the moment, we will recall some results about the generic PI system (90).

The collection of all agents proportional and integrator variable dynamics can be concisely written

as the matrix differential equation:
� P�u

P�u

�
D
�

�kP L.w/ � k I �kI L.w/

kI L.w/ 0

� �
�u

�u

�
C k

�
u

0

�
(92)

It can be shown that the stable equilibrium manifolds (provided k ; kP ; kI > 0) for these

systems are

�u;� D 11>u

n
(93)

�u;� D �k

kI

L�.w/u C 11>�u.0/

n
(94)

where L�.w/ is the Moore–Penrose inverse of the graph Laplacian:

L�.w/ ,

�
L.w/ � 11>

n

��1

� 11>

n
(95)

Considering as input u and as output �u, there is an uncontrollable and unobservable mode

in the integrator variables for each PI average consensus estimator associated with the consen-

sus mode, 1>�u.0/, which does not have any effect on any other variables. Deflating the systems

in this mode through simultaneous diagonalisation, and removal of the zero rows/columns, then

results in a distinct equilibrium point. Let V.w/ be the matrix of right eigenvectors of L.w/ so that

L D V>.w/ƒ.w/V.w/. Because we know that the unit eigenvector associated with the consensus

mode is simply v1 D 1p
n

, we can define an n � .n � 1/ matrix of the unknown unit eigenvectors

W.w/

V.w/ D
h

1p
n

W.w/
i

(96)
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and consequently perform the diagonalisation and truncation of the uncontrollable/unobservable

mode

�u
d D V>.w/�u; �u

d D W>.w/�u (97)

so that
� P�u

d
P�u

d

�
D
�

�kP ƒ.w/ � k I kI ƒ>
r .w/

�kI ƒr.w/ 0

� �
�u

d
�u

d

�
C k

�
V>.w/u

0

�
(98)

with ƒr.w/ being the truncated matrix, with the first row removed:

ƒr.w/ D

2
66664

0 �2.w/ 0 0 : : :

0 0 �3.w/ 0 : : :

0 0 0
: : :

:::
::: �n.w/

3
77775

(99)

By Lemma 4, the system matrix of (98) is Hurwitz. Thus, the distinct, stable equilibrium point in

the transformed variables is

�
u;�
d

D
"

1>up
n

0

#
(100)

�
u;�
d

D �k

kI

ƒ�1
c;r.w/W>.w/u (101)

where the square matrix ƒc;r.w/ is the further truncated matrix (the first row and the first column

are removed):

ƒc;r.w/ D

2
66664

�2.w/ 0 0 : : :

0 �3.w/ 0 : : :

0 0
: : :

::: �n.w/

3
77775

(102)

6. SINGULAR PERTURBATION FORMULATION

We are now ready to substitute the distributed estimates from the faster subsystems into the slower

subsystems, formulating an entirely distributed system. Starting with the base subsystems, the four

PI average consensus estimators, each node i maintains an estimate of the four means:

chai.i/ D �a
i (103)

1haı2i.i/ D �aı2

i (104)

chbi.i/ D �b
i (105)

1hbı2i.i/ D �bı2

i (106)

where we indicate the node i’s estimate of a function using a hat and superscript .i/. These estimates

are substituted into the eigenvalue estimators, (56) and (62), to yield the distributed estimators:

Pai D �k1
chai.i/ C k2

X

j 2Ni

w¹i;j º.aj � ai / � k3.1haı2i.i/ � 1/ai

D �k1�a
i C k2

X

j 2Ni

w¹i;j º.aj � ai / � k3.�aı2

i � 1/ai

(107)
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Pbi D �k1
chbi.i/ � k2

X

j 2Ni

w¹i;j º.bj � bi / � k3.1hbı2i.i/ � 1/bi

D �k1�b
i � k2

X

j 2Ni

w¹i;j º.bj � bi / � k3.�bı2

i � 1/bi

(108)

From (58), (59), (83) and (89), these distributed estimators allow the following local estimates to be

made at each node i :

b�2
.i/ D k3

k2

�
1 � �aı2

i

�
(109)

2@�2.w/

@w¹i;j º
.i/ D .ai � aj /2

n�aı2

i

(110)

c�n
.i/ D k3

k2

�
�bı2

i � 1
�

(111)

2@�n.w/

@w¹i;j º
.i/ D .bi � bj /2

n�bı2

i

(112)

Each edge ¹i; j º has access to both the local variables at node i and at node j ; thus, it can also make

local estimates of these functions. So as not to bias one parent node over the other, we choose to use

the mean of the consensus variables from i and j when either would do, as we expect consensus to

be reached.

b�2
.i;j / D k3

k2

 
1 �

�aı2

i C �aı2

j

2

!
(113)

2@�2.w/

@w¹i;j º
.i;j / D 2.ai � aj /2

n.�aı2

i C �aı2

j /
(114)

c�n
.i;j / D k3

k2

 
�bı2

i C �bı2

j

2
� 1

!
(115)

2@�n.w/

@w¹i;j º
.i;j / D 2.bi � bj /2

n.�bı2

i C �bı2

j /
(116)

Substituting these local estimates into the weight optimisation layer (49) and (51), we finally

accomplish the goal of formulating an entirely distributed adaptive solution to the optimisation

problem described in (10) and (11).

Pw¹i;j º D �2 1�n.w/.i;j /
2@�n.w/

@w¹i;j º
.i;j / C 1

2

2�2.w/

@w¹i;j º
.i;j /

�
�i C �j

2

�2

C 1

2
�2

¹i;j º (117)

D � 4k3

nk2

 
�bı2

i C �bı2

j

2
� 1

!
.bi � bj /2

.�bı2

i C �bı2

j /
C .ai � aj /2

n.�aı2

i C �aı2

j /

�
�i C �j

2

�2

C 1

2
�2

¹i;j º

P�¹i;j º D �w¹i;j º�¹i;j º; �¹i;j º.0/ > 0
(118)
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P�i D
�
� � 1�2.w/.i/

�
�i

D
�

� � k3

k2

�
1 � �aı2

i

��
�i ; �i .0/ > 0

(119)

Note 2

Note that we are now locating the variables �i , associated with the inequality constraint �2.w/ > �,

at each node, rather than at each edge in (51), to reduce the amount of duplication (n is typically less

than m). It is also more common that computation be performed in each node, and to this end, for

instance, the �¹i;j º variables could also be distributed over the nodes by duplication in the incident

nodes. Let the dual variable located at the i th node and responsible for guaranteeing non-negativity

for the edge ¹i; j º be denoted �
¹i;j º
i , then these variables can adapt according to

P�¹i;j º
i D �w¹i;j º�

¹i;j º
i ; �

¹i;j º
i .0/ > 0 (120)

If �
¹i;j º
i .0/ D �

¹i;j º
j .0/, then both incident nodes of the edge ¹i; j º maintain a duplicate of the dual

variable �¹i;j º as before in (118), with �
¹i;j º
i .0/ D �

¹i;j º
j .0/ D �¹i;j º.0/. It can be seen that any

edge-based dynamics can be duplicated on the incident nodes in this fashion. However, for the sake

of clarity and conciseness of notation, we continue to treat these variables as if they were located at

edges to avoid the need for duplication.

The system is now entirely decentralised, and for clarity, the interactions between the various sub-

systems within an individual node are graphically represented in Figure 2. To clarify the separation

Figure 2. A simplified flowchart of information flow within a node. Each block is labelled with a number
pointing to which equation in the paper the block represents. There are three timescales for the ordinary
differential equations indicated by the colours: yellow (slow), green (faster) and blue (fastest). White rounded
blocks are simply algebraic equations, and white squares signify control constants. [Colour figure can be

viewed at wileyonlinelibrary.com]
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in timescales between the different layers, we normalise the eigenvalue estimators by �1 D 1
k2

and

for the PI average consensus layers, by �2 D 1
kP

. We are interested in the behaviour of this sys-

tem as �1 ! 0 and �2

�1
! 0, when the control parameter ratios k1

k2
, k3

k2
,

k

kP
and kI

kP
remain fixed.

Again, the complete set of equations can be written in a more compact form, using the oriented and

unoriented incidence matrices P and M:

Pw D � 4k3

nk2

�
1

2
M�bı2 � 1

�
ı .Pb/ı2 ı .M�bı2

/ı�1

C 1

4n
.Pa/ı2 .M�/ı2 ı .M�aı2

/ı�1 C 1

2
�ı2

(121)

P� D �w ı � (122)

P� D
�

�1 � k3

k2

.1 � �aı2

/

�
ı � (123)

�1 Pa D �k1

k2

�a � L.w/a � k3

k2

.�aı2 � 1/ ı a (124)

�1
Pb D �k1

k2

�b C L.w/b � k3

k2

.�bı2 � 1/ ı b (125)

�2 P�a D
�

�L.w/ � k

kP

I

�
�a � kI

kP

L.w/�a C k

kP

a (126)

�2
P�a D kI

kP

L.w/�a (127)

�2 P�aı2 D
�

�L.w/ � k

kP

I

�
�aı2 � kI

kP

L.w/�aı2 C k

kP

aı2 (128)

�2
P�aı2

D kI

kP

L.w/�aı2

(129)

�2 P�b D
�

�L.w/ � k

kP

I

�
�b � kI

kP

L.w/�b C k

kP

b (130)

�2
P�b D kI

kP

L.w/�b (131)

�2 P�bı2 D
�

�L.w/ � k

kP

I

�
�bı2 � kI

kP

L.w/�bı2 C k

kP

bı2 (132)

�2
P�bı2

D kI

kP

L.w/�bı2

(133)

The system exhibits a three timescale structure of the form

Px D f.x; y1; y2/

�1 Py1 D g1.x; y1; y2/

�2 Py2 D g2.x; y1; y2/

(134)
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with column vectors x , Œw; �; ��, y1 , Œa; b� and y2 , Œ�a; �a; �aı2
; �aı2

; �b; �b; �bı2
; �bı2

�.

Theorem 1 from Hoppensteadt [30] deals specifically with singularly perturbed systems of this

type, and conditions are given under which the solution of system described by (134) converges to

that of the reduced system

Px D f.x; y1; y2/

0 D g1.x; y1; y2/

0 D g2.x; y1; y2/

(135)

as �1 ! 0 and �2

�1
! 0. We now proceed to go through these conditions and discuss under which

assumptions they hold.

6.1. Transformation to place the stable equilibrium point at the origin

Condition 1 from [30] requires that there exists an equilibrium point for each of the fast subsys-

tems, that this equilibrium point is located at the origin of systems faster than it and also that this

equilibrium point is isolated. That is, it is required that

g1.x; 0; 0/ D 0 (136)

g2.x; y1; 0/ D 0 (137)

To achieve this condition, a transformation of variables is required. Observing the equilibrium point

of the PI average consensus estimators ((93) and (94)), we define

Y2.x; y1/ D

2
666666666664

�a;�.y1/

�a;�.x; y1/

�aı2;�.y1/

�aı2;�.x; y1/

�b;�.y1/

�b;�.x; y1/

�bı2;�.y1/

�bı2;�.x; y1/

3
777777777775

D

2
6666666666666664

11>a
n

�k

kI
L�.w/a C 11>�a.0/

n
1a>a

n

�k

kI
L�.w/aı2 C 11>�aı2

.0/
n

11>b
n

�k

kI
L�.w/b C 11>�b.0/

n
1b>b

n

�k

kI
L�.w/bı2 C 11>�bı2

.0/
n

3
7777777777777775

(138)

Lemma 7

The equilibrium point of the PI average consensus estimators, Y2.x; y1/, is an analytic function of x

and y1.

Proof

It is evident that the equilibria of the proportional variables are analytic, as they are either linear

or quadratic functions in y1. For analyticity of the integrator equilibria, notice that the Moore–

Penrose inverse of the graph Laplacian L�.w/ D .L.w/ � 11>

n
/�1 � 11>

n
has elements that are

ratios of polynomials in w, with non-zero denominator in the feasible set of w: numerators arise

from the cofactors of L.w/ � 11>

n
, where elements of L.w/ are linear in w, and the denominator is

det¹L.w/ � 11>

n
º ¤ 0 if �2 > 0. �

Looking at (57) and (80), we define the equilibrium of the eigenvalue estimation systems

Y1.x/ D
�

a�.x/

b�.x/

�
D

2
4 Cv2.w/

q
n.k3�k2�2.w//

k3

Cvn.w/
q

n.k3Ck2�n.w//
k3

3
5 (139)

which by Lemma 1 is a real analytic function in x in the vicinity of x D wopt under Assumption

1, provided that k3 ¤ 0 and k3 > k2�2.w/. Note that here, we are restricting our view to just
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one equilibrium point of the four possible combinations of stable equilibria, in accordance with

condition 1 of [30]. However, the same analysis could be performed on each of the distinct points,

yielding the same result for each combination of equilibria.

The equilibrium point of the reduced system is also known and is the constant point

x� D

2
4

wopt

�� D C
p

2qı 1
2

�� D C1
p

2r

3
5 (140)

where q and r are, respectively, the optimal dual variables corresponding to the inequalities w > 0,

and the optimal dual variable corresponding to the inequality constraint �2.w/ > �, which solve the

first-order necessary KKT conditions of the modified optimisation problem.

As such, we can apply the transformations:

F.Qx; Qy1; Qy2/ D f.x� C Qx; Qy1 C Y1.x� C Qx/; Qy2 C Y2.x� C Qx; Qy1 C Y1.x� C Qx/// (141)

G1.Qx; Qy1; Qy2/ D g1.x� C Qx; Qy1 C Y1.x� C Qx/; Qy2 C Y2.x�C Qx; Qy1 C Y1.x�C Qx/// (142)

� �1

�
@Y1

@x
� F.Qx; Qy1; Qy2/

�

G2.Qx; Qy1; Qy2/Dg2.x�CQx; Qy1CY1.x�CQx/; Qy2CY2.x� C Qx; Qy1CY1.x� C Qx///

� �2

�
@Y2

@x
� F.Qx; Qy1; Qy2/ C @Y2

@y1

� G1.Qx; Qy1; Qy2/

� (143)

So that

G1.Qx; 0; 0/ D 0 (144)

G2.Qx; Qy1; 0/ D 0 (145)

and also that condition 2 in [30], which the equilibrium point of the slow system lies at the origin,

is satisfied:

F.0; 0; 0/ D 0 (146)

6.2. Analyticity of the right-hand sides

� Condition 3 in [30] requires that the functions F.:/, G1.:/ and G2.:/ and their derivatives with

respect to the components of Qx; Qy1; Qy2 are continuous in a ball of radius R around the origin.

� Condition 4 is a requirement that the elements of F.:/, G1.:/ and G2 and the elements of @F
@x

,
@Gi

@x
,

@Gi

@yj
are bounded within the ball around the origin.

� Further to continuity and boundedness, conditions 5 and 6 specify uniform smoothness con-

ditions on F.:/ and G2.:/. Specifically, it is required that there is a continuous non-negative

function v.jQyj/ with v.0/ D 0, defining Qy D Œ Qy1
>; Qy2

>�> such that

jF.Qx; Qy/ � F.Qx; 0/j 6 v.jQyj/ (147)

Likewise, there exists a continuous non-negative function u.j Qy2j/ with u.0/ D 0 such that

jG1.Qx; Qy1; Qy2/ � G1.Qx; Qy1; 0/j 6 u.j Qy2j/ (148)

All of these conditions are immediately satisfied if F.:/, G1.:/ and G2.:/ are analytic functions of

Qx; Qy1; Qy2.

Lemma 8

F.Qx; Qy1; Qy2/ is an analytic function in the vicinity of the equilibrium point, provided Assumption 1

holds.
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Proof

f.x; y1; y2/ is an analytic function of its variables, provided �aı2

i ¤ ��aı2

j ; 8i; j and �bı2

i ¤
��bı2

j ; 8i; j . This is apparent as f.:/ is a sum of ratios of polynomials in its variables, and the

denominators may only be zero if �aı2

i D ��aı2

j or �bı2

i D ��bı2

j . At the equilibrium point,

�aı2;� D 1a�>a�

n
; a� ¤ 0, so �

aı2;�
i D �

aı2;�
j ¤ 0. Likewise, for the spectral radius estimator

�
bı2;�
i D �

bı2;�
j ¤ 0

Further to this, both Y1.x/ and Y2.x; y1/ are analytic functions in the vicinity of the equi-

librium point under Assumption 1. Thus, F.:/, which is a composition of analytic functions,

is analytic. �

Lemma 9

G1.Qx; Qy1; Qy2/ and G2.Qx; Qy1; Qy2/ are analytic functions in the vicinity of the equilibrium point,

provided Assumption 1 holds.

Proof

It can be seen that both g1.:/ and g2.:/ are quadratic functions of their variables and are thus analytic.

Further to this, both stationary manifolds Y1.:/ and Y2.:/ are analytic provided Assumption 1 holds.

Hence, the function G1.:/, which is a composition of the analytic functions G1.:/, Y1.:/, Y2.:/
and F.:/, is analytic. The same argument can be made for G2.:/, which is a composition of the

aforementioned analytic functions and G1.:/. �

6.3. Stability of the boundary layer systems and reduced system

The final two conditions in [30], conditions 7 and 8, concern the uniform asymptotic stability of the

boundary layer systems and the reduced system. That is, it is required that the reduced system

PQx D F.Qx; 0; 0/ (149)

is uniformly asymptotically stable on the origin, as are

@ Qy1

@�1

D G1.x�; Qy1; 0/ (150)

and

@ Qy2

@�2

D G1.x�; y1
�; Qy2/ (151)

when taking x� and y1
� as any constant values (in a ball around the origin) and defining �i , t

�i
.

The fully distributed system has been designed so that the reduced system (17) is locally expo-

nentially stable (Theorem 1) implying uniform asymptotic stability. Likewise, each boundary layer

system, found by taking slower variables as constant and faster variables as having already equili-

brated, is simply the ideal estimators (55), (61) and (92) and is thus exponentially stable as proven

in Theorem 2 and elsewhere [21, 36].

All the conditions from Theorem 1 in [30] hold, and so we may draw the conclusion that there

exists a sufficiently small � D Œ�1; �2�> such that �1 ! 0 and �2

�1
! 0 as j�j ! 0, so that the

equilibrium point corresponding to the solution of the optimisation problem is locally exponentially

stable. A suitable choice for � is Œ 1
k2

; 1
kP

�>, where kP D k2
2 . There exists a kP > 1

�� sufficiently

large so that the equilibrium point of the entire distributed system is locally exponentially stable.

7. NUMERICAL VALIDATION

In this example, we start with a small network of n D 8 nodes and m D 11 edges (Figure 3). Each

edge is assigned an initial weight of one, w¹i;j º.0/ D 1, so that the initial algebraic connectivity

�2.w.0// � 0:7611 and initial spectral radius of �n.w.0// � 5:8635. Edge weights are then con-

trolled according to the distributed multilayer system, with the objective of minimising �n, whilst
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Figure 3. The initial network, at time zero, with all edge weights of w¹i;j º.0/ D 1. [Colour figure can be
viewed at wileyonlinelibrary.com]

Figure 4. Trajectories of the edge weights and the eigenvalues of the graph Laplacian.

holding the constraints that all weights are non-negative and a mininimum algebraic connectivity of

�2 > 0:5 is maintained.

As the simulation progresses, edge weights evolve over time and eventually settle to a stationary

value (Figure 4(a)). The edge weights in the network directly affect the graph Laplacian, resulting

in the eigenvalues changing over time (Figure 4(b)) and for this particular example, eigenvalues

at the solution w D wopt are distinct, so that edge weights converge as expected. At the end of

the simulation, t D 2000, the algebraic connectivity has settled to its lower bound as expected

�2.w.2000// � 0:5000, and the spectral radius has decreased to �n.w.2000// � 3:2211, shrinking

to approximately 55% of its initial value. This result agrees with the optimal value found using a

centralised SDP solver, with the relative error in the minimal spectral radius being less than 0:001%.

The simple linear consensus protocol Px.t/ D �0:01 � L.w/x.t � �/ with homogeneous time

delay � D 40 is run both on the initial and final states of the network (Figure 5). From the bound

given in [1], we know that the system is only stable on the consensus mode if �n 6 100 � �
2�40

�
3:9270. We see that in the intial network (at time t D 0), the spectral radius exceeds this bound

and as a consequence trajectories in Figure 5(a), diverge. When the same system is realised on the

near-optimal network (Figure 5(b)), trajectories now converge as the consensus mode is stable.

7.1. Ramifications of Assumption 1 not holding

To illustrate the scenario where Assumption 1 does not hold, we use a larger network of n D 50,

m D 118, so that there are n � 1 D 49 non-trivial eigenvalues in the connected graph, see Figure 6.
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Figure 5. The simple linear consensus protocol with homogeneous delay of � D 40 is run, both on the initial
network with homogenous weights L.w.0/ D 1/ and on the final state of the network L.w.2000/ � wopt /.

Figure 6. The larger network, n D 50, m D 118, at time zero, with edge weights each of w¹i;j º.0/ D 1.
[Colour figure can be viewed at wileyonlinelibrary.com]

As �n.w/ is decreased, the spectrum of the graph Laplacian is compressed into a smaller region,

increasing the likelihood that at the optimal edge, weights �2.w/ and �n.w/ will not be distinct

(Figure 7(b)).

In this example, the spectral radius of the graph Laplacian is again decreased over time, from an

initial value of �n.w.0// � 11:1450 to �n.w.4000// � 5:2514, whilst the algebraic connectivity

falls from �2.w.0// � 0:6589 to �2.w.4000// � 0:4988. Note that this time at t D 4000, the

algebraic connectivity lies slightly outside of its constraint. This is a result of Assumption 1 failing.

At the optimal edge weights wopt , the algebraic connectivity has a multiplicity greater than unity.

Therefore, the algebraic connectivity estimator subsystem does not converge to a specific eigenvec-

tor associated with �2 but converges instead onto its associated eigenspace. The effect of this is that

the algebraic connectivity derivative estimates, @�2

@w
, will be incorrect as the value is not well defined

for non-distinct eigenvalues. This error forces the edge weights off of the optimal values, and a per-

sistent oscillation in the neighbourhood of the optimum is set up. The magnitude and frequency of

these oscillations can be controlled by the size of the separation in timescales between the weight

dynamics and the eigenvalue estimation, as this controls how far the edge weights can overshoot

before the eigenvalue estimator re-converges on the correct value for @�2

@w
. We would however like to

compare the values of the extremal eigenvalues with those found using a centralised solver, specifi-

cally using an SDP formulation presented in [15]. The centralised solver finds optimal eigenvalues

of �2;opt � 0:5000 and �n;opt � 5:2178. Comparing these values with the extremal eigenvalues at
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Figure 7. Edge weight trajectories and eigenvalue trajectories.

t D 4000, of �2.w.4000// � 0:4988 and �n.w.4000// � 5:2514, we can see that the decentralised

method performs admirably despite Assumption 1 not holding, finding edge weights that result in

a cost just 0.64% greater than those found using a centralised solver. In contrast, the decentralised

method presented in [25] can only adapt edge weights up to the point when the extremal eigenval-

ues become indistinct and the algorithm breaks down, resulting in a greater disparity between the

solution to the optimisation problem and the result from the decentralised method. It is foreseen that

this issue of non-distinct extremal eigenvalues will grow with increasing network size.

8. CONCLUSION

In this paper, we have formulated a multilayer continuous control law for optimising edge weights

in an undirected network, so as to minimise the spectral radius of the weighted graph Laplacian

matrix, whilst maintaining a minimum bound on the algebraic connectivity, and enforcing the con-

straint that no edge weight may be negative. Moreover, this control law is completely distributed

over the network; both edges and nodes require only local variables that are stored in their neigh-

bours local memory. A notable application of this optimisation is that the robustness of the network

to time delays in the simple linear consensus protocol is increased, and the constraint on the lower

bound of the algebraic connectivity maintains connectivity in the network, so that consensus can

be achieved. Moreover, the algebraic connectivity is strongly related to the performance of con-

sensus protocols on networks. It should also be noticed that minimising �n whilst maintaining a

minimum �2 is equivalent to minimising the synchronisability ratio �n

�2
whilst maintaining a desired

algebraic connectivity, and so the method presented here may be readily adapted for a number of

synchronisation applications.

Local exponential convergence has been proven for sufficiently large timescale separation

between the layers, under the assumption that both �2.wopt / and �n.wopt / are distinct at the opti-

mal edge weights. This assumption is relatively strong, and for large networks, with n�1 non-trivial

eigenvalues, in which the extremal eigenvalues are being driven towards each other, this assumption

will not necessarily hold. When the assumption does not hold, the system is still shown to perform

well, but edge weights do not converge as in the distinct eigenvalue case. Instead, small oscillations

about the optimal values persist, and a limit cycle is set up. This effect is due to the extremal eigen-

values crossing and discontinuities in the eigenvectors associated with the extremal eigenvalues: as

the spectral radius is decreased, the trajectories of �n and �n�1 may cross over, and in the time it

takes for the eigenvalue estimation to re-converge on the new eigenvector associated with �n, the

weight dynamics, using incorrect estimates, will overshoot, setting up the persistent oscillation.

Future work will focus on relaxing Assumption 1, so that convergence can be guaranteed when

the extremal eigenvalues �2.wopt / and �n.wopt / are not distinct. Also, a constructive method shall

be sought for determining a sufficient timescale separation between the layers.

© 2017 The Authors. International Journal of Robust and

Nonlinear Control published by John Wiley & Sons Ltd.
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