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Abstract

Wireless sensor networks are capable of collecting an enormous amount of data over space and time.
Often, the ultimate objective is to derive an estimate of a parameter or function from these data. This
paper investigates a general class of distributed algorithms for “in-network” data processing, eliminating
the need to transmit raw data to a central point. This can provide significant reductions in the amount of
communication and energy required to obtain an accurate estimate. The estimation problems we consider
are expressed as the optimization of a cost function involving data from all sensor nodes. The distributed
algorithms are based on an incremental optimization process. A parameter estimate is circulated through
the network, and along the way each node makes a small adjustment to the estimate based on its lo-
cal data. Applying results from the theory of incremental subgradient optimization, we show that for
a broad class of estimation problems the distributed algorithms converge to withibadinaround the
globally optimal value. Furthermore, bounds on the number incremental steps required for a particular
level of accuracy provide insight into the trade-off between estimation performance and communication
overhead. In many realistic scenarios, the distributed algorithms are much more efficient, in terms of en-
ergy and communications, than centralized estimation schemes. The theory is verified through simulated
applications in robust estimation, source localization, cluster analysis and density estimation.

1 Introduction

Wireless sensor networks provide an attractive approach to spatially monitoring environments. Wireless
technology makes these systems relatively easy to deploy, but also places heavy demands on energy con-
sumption for communication.

A major challenge in developing sensor network systems and algorithms is that transmitting data from
each sensor node to a central processing location may place a significant drain on communication and
energy resources. Such concerns could place undesirable limits on the amount of data collected by sensor
networks. However, in many applications, the ultimate objective is not merely the collection of “raw” data,
but rather an estimate of certain environmental parameters or functions of interest (e.g., source locations,
spatial distributions). One means of achieving this objective is to transmit all data to a central point for
processing. This paper considers an alternate approach based on distribudédorkprocessing which,
in many cases, may significantly decrease the communication and energy resources consumed.

The basic idea is illustrated by a simple example. Consider a sensor network compriseodafs uni-
formly distributed over a square meter, each of which collecteeasurements. Suppose that our objective
is to compute the average value of all the measurements. There are three approaches one might consider:

1. Sensors transmit all the data to a central processor which then computes the average. In this approach
O(mn) bits need to be transmitted over an average of) meter.
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2. Sensors first compute a local average and then transmit the local averages to a central processor which
computes the global average. This requires @iy ) bits to be transmitted ove&p(1) meter.

3. Construct a path through the network which passes through all nodes and visits each node just once.
The sequence of nodes can be constructed so that the path hops from neighbor to neighbor. The global
average can be computed by a single accumulation process from start node to finish, with each node
adding its own local average to the total along the way. This reqaifes bits to be transmitted over
only O(n~'/2) meters.

Clearly the last procedure could be much more communication efficient than the other two approaches.
It is also clear that a similar procedure could be employed to compute any average queagtjgy least
squares fit to any number of parameters). Are similar procedures possible for computing other sorts of
estimates?

The answer is yes. Averages can be viewed as the values minimizing quadratic cost functions. Quadratic
optimization problems are very special since their solutions are linear functions of the data, in which case
a simple accumulation process leads to a solution. More general optimization problems do not share this
simple feature, but nonetheless can often be solved using simple, distributed algorithms reminiscent of the
way the average was calculated above in the third approach. In particular, many estimation criteria possess
the following important form:

O) = 350,
=1

wheref is the parameter of function to be estimated, #x) is the cost function which can be expressed
as a sum of: “local” functions { f;(¢) }—, in which f;() only depends on the data measured at seisor
For example, in the case of the average considered above,

1 n m
f0)=— D (@i —0)?,
i=1 j=1
and
1 m
fil) = — D (@i —0)%,
j=1

wherez; ; is thej-th measurement at theth sensor.

The distributed algorithms proposed in this paper operate in a very simple manner. An estimate of
the parametef is passed from node to node. Each node updates the parameter by adjusting the previous
value to improve (e.g., reduce) its local cost and then passes the update to the next node. In the case of
a quadratic cost function, one pass through the network is sufficient to solve the optimization. In more
general cases, several “cycles” through the network are required to obtain a solution. These distributed
algorithms can be viewed as incremental subgradient optimization procedures, and the number of cycles
required to obtain a good solution can be characterized theoretically. A typical sort of result states that
after K cycles, the distributed minimization procedure is guaranteed to produce an estiseitsfying
f(8) < f(6*) + O(K~1/?), whered#* is the minimizer off. Also, the procedure only requires tf@nK)
bits be communicated ovér(n—1/2) meters. Alternatively, transmitting all data to a fusion center requires
O(mn) bits over an average of O(1) meter. 7if andn are large, then a high quality estimate can be
obtained using a distributed optimization algorithm for far less energy and far fewer communications than
the centralized approach.



In addition to a theoretical analysis of distributed estimation algorithms of this sort, we also investigate
their application in three problems:
Robust estimation: Robust estimates are often derived from criteria other than squared error. We will
consider one such case, wherein the sum-of-squared errors criterion is replaced by the Huber loss function.
Source localization: Source localization algorithms are often based on a squared-error criterion (e.g., Gaus-
sian noise model), but the location parameter of interest is usually nonlinearly related to the data (received
signal strength is inversely proportional to the distance from source to sensor) leading to a nonlinear estima-
tion problem.
Cluster and density estimation: In the “discovery” process, one may have very little prior information
about characteristics of the environment and distribution of the data. Clustering and density estimation are
standard first-steps in data exploration and analysis and usually lead to non-quadratic optimizations.

All three problems can be tackled using our distributed algorithms, and simulation experiments in these
applications will demonstrate the potential gains obtainable in practical settings.

1.1 Related Work

In the research community, an emphasis has been made on developing energy and bandwidth efficient algo-
rithms for communication, routing, and data processing in wireless sensor network. In [4] Estrin et al. argue
that there are significant robustness and scalability advantages to distributed coordination and present a gen-
eral model for describing distributed algorithms. D’Costa and Sayeed analyze three schemes for distributed
classification in [3], and in [13] Shin et al. present a scheme for tracking multiple targets in a distributed fash-
ion. In[1], Boulis et al. describe a scheme for performing distributed estimation in the context of aggregation
applications, and Moallemi and Van Roy present a distributed scheme for optimizing power consumption
in [8]. All of the papers mentioned are related to the work presented here in that they describe distributed
algorithms for accomplishing tasks in sensor networks and balance the same fundamental trade-offs.

In the remainder of the paper we develop a general framework for distributed optimization in wire-
less sensor networks. The basic theory and explanation of incremental subgradient methods for distributed
optimization are discussed in Section 2. An analysis of the energy used for communication by these meth-
ods is presented in Section 3. In Section 4 we demonstrate three example applications using incremental
subgradient algorithms. Finally, we conclude in Section 5.

2 Decentralized Incremental Optimization

In this section we formalize the proposed decentralized incremental algorithm for performing in-network
optimization. We then review the basic theory, methods, and convergence behavior of incremental subgradi-
ent optimization presented by Nédind Bertsekas in [9, 10]. These tools are useful for the energy-accuracy
analysis presented in the next section.

We introduce the concept of a subgradient by first recalling an important property of the gradient of a
convex differentiable function. For a convex differentiable functipn,©® — R, the following inequality
for the gradient off at a pointdy holds for alld € ©:

F0) > F(6o)+ (8 —60)"V f(6o).

In general, for a convex functiofy, asubgradienof f at#, (observing thaf may not be differentiable at
o) is any directiory such that

F0) = f(8) + (0 —60)"g, 1)



and thesubdifferentialof f at6,, denotedf(6y), is the set of all subgradients ¢fatd,. Note that if f is
differentiable at, thendf(6y) = {V f(6p)}; i.e.,the gradient off at6, is the only direction satisfying (1).

Recall that we are considering a networkrogensors in which each sensor collectmeasurements.
Let z; ; denote the-th measurement taken at theéh sensor. We would like to compute

~
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wheref is a set of parameters which describe the global phenomena being sensed by the network. The
functions f; : R — R are convex (but not necessarily differentiable) #&nds a nonempty, closed, and
convex subset oR?. To simplify notation, we will writef;(6) instead offi({xi7j};.’”‘:1 ,0); that is, the
function f;(9) depends on the data at tih sensor as well as the global paraméter

Gradient and subgradient methods (e.g., gradient descent) are a popular technique for iteratively solving
optimization problems of this nature. The update equation for a centralized subgradient descent approach to
solving (2) is

gED = 0 — 0" g, (3)
i=1

whereg; ;. € 8fi(§(’“)), « is a positive step size, arkdis the iteration number. Note that each update step in
this approach uses data from all of the sensors.

We propose a decentralized incremental approach for solving (2) in which each update iteration (3) is
divided into a cycle ofr subiterations, and each subiteration focuses on optimizing a single component
£:(8). 1f 9% is the vector obtained aftércycles then

gk O (4)

n

Wherewq(f) is the result of: subiterations of the form
¢Z(k) :1/)1(5)1 _agi,ka Z: 177” (5)

with g; . € 0 fz’(%@l) andw(()k) = 1/1,(1’“*1). For the purposes of analyzing the rate of convergence we can

assume that the algorithm is initialized to an arbitrary starting @%te O.

As stated above, our algorithm fits into the general framework of incremental subgradient optimization.
Nedic and Bertsekas analyze the convergence behavior of incremental subgradient algorithms in [10]. Their
results are based on two assumptions. First, they assume that an optimal sétutexists. Additionally,
they assume that there is a scalar> 0, such that|g; .|| < ¢ for all subgradients of the functiong(),
i=1,...,nandf € ©. Both assumptions are reasonable for practical, realistic applications as illustrated
later in this paper. Under these assumptions and for a constant positive step sieehen have that after

K cycles, with
9(0) _ p*
K w 2 GHJ,
a?(?

min f(OW) < F(0") +ac 6)

0<k<K

we are guaranteed that



where6* optimizesf. A proof of this result can be found in [10]. Assume that the distance between the
starting pointf?), and an optimal solutiofi* is bounded]| #(°) — 6*|| < ¢o. Setting

e=al? (7

we can interpret (6) as guaranteeing convergence to a solution which brings the objective function within an
e-ball of the optimal valuef (6*), after at most

2
s ®

= 0(e?)

K

update cycles. The result also directly explains how to set the step gjizen a desired level of accuracy

€, according to (7). In practice we find that (8) is a loose upper bound on the number of cycles required.
Convergence to within a ball around the optimal value is generally the best we can hope to do using iterative
algorithms with a fixed step size. Alternatively, one could consider using a diminishing sequence of step
sizesa, — 0 ask — oo. In this case, it is possible to show tha®™*)) — f(6*) ask — oo. However,

while the diminishing step size approach is guaranteed to converge to the optimal value, the rate of conver-
gence generally becomes very slowaasgets small. In many applications of sensor networks, acquiring a
coarse estimate of the desired parameter or function may be an acceptable trade-off if the amount of energy
and bandwidth used by the network is less than that required to achieve a more accurate estimate. Fur-
thermore, many of the proposed applications of wireless sensor networks involve deployment in a dynamic
environment for the purpose of not only identifying but also tracking phenomena. Using a fixed step size
allows the iterative algorithm to be more adaptive. For these reasons we advocate the use of a fixed step size.

3 Energy-Accuracy Tradeoffs

Energy consumption and bandwidth usage must be taken into consideration when developing algorithms
for wireless sensor networks. For the incremental subgradient methods described in this paper, the amount
of communication is directly proportional to the number of cycles required for the algorithm to converge.
Using the theory described in the previous section we precisely quantify the amount of communication
needed to guarantee a certain level of accuracy.

It is well-known that the amount of energy consumed for a single wireless communication of one bit
can be many orders of magnitude greater than the energy required for a single local computation. Thus,
we focus our analysis to the energy used for wireless communication. Specifically, we are interested in
how the amount of communication scales with the size of the network. We assume a packet-based multi-
hop communication model. Based on this model, the total energy used for in-network communication as a
function of the number of nodes in the sensor network for a general data processing algorithm is

E(n) = b(n) x h(n) x e(n),

whereb(n) is the number of packets transmittédn) is the average number of hops over which communi-
cations occur, and(n) is the average amount of energy required to transmit one packet over one hop.

We compare the energy consumed by our incremental approach to a scheme where all of the sensors
transmit their data to a fusion center for processing. Compressing the data at each sensor is an alternative
approach (not considered here) that could be used to reduce the number of bits transmitted to the fusion
center. See [6] and [7] for two examples of techniques which take this approach. In the centralized ap-
proach, the number of packets being transmittegds(n) = c¢ymn, wherec; is the ratio of packet size to
measurement size. The average number of hops from any node to the fusion ceptgis = O(n'/?),
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whered is the dimension of the space that the sensor network is deployed.ini (= 2 if the sensors are
uniformly distributed over a plane, = 3 for a cube). For the purpose of comparing the energy consumed

by a centralized approach to the incremental approach we do not need to precisely guantiypce we

assume a multi-hop communication model and the average hop distance is the same for either approach.
Thus, the total energy required for all sensors to transmit their data to a fusion center is

Eeen(n) > cymn'tde(n).

According to this relation, the number of single-hop communications increases as either the number of
sensors in the network increases or the number of measurements taken at each sensor increases.

Alternatively, in one cycle of our incremental approach each node makes a single communication — the
current parameter estimate — to its nearest neighbor. Thus,

biner(n) o« nkK,

the number of packets transmitted is proportionat 6, whereK is the number of cycles required for the
incremental algorithm to be withi® (K ~1/2) of the true solution. In the previous section we saw that the
number of cycles required to achieve an estinfg# <)) < f(6*) + ¢ is bounded above b = O(e~2).

Thus, the relationship between optimization accuracy and the number of packets transmitted is given by
e2biner(n) = O(n). Each communication to a nearest neighbor can be made in one hép,.sc= 1.

Thus, for the incremental subgradient algorithm described in this paper, the total energy is

Einer(n) < 62n672e(n),

where the positive constant depends on the ratio of the packet size to the number of bits required to
describe parameter vectéy as well as the constants in the numerator of (8). This quantity describes the
energy-accuracy tradeoff for incremental subgradient algorithms. That is, for a fixed aceuttaeyotal
energy used for communication grows linearly with the size of the network.

Next, to characterize the advantages of using incremental algorithms for processing, define the energy
savings ratio to be

Eeen(n)  cymnltl/d
R = — )
Einer(N) Cane
= cymnt/de2.

This ratio describes how much energy is saved (by way of fewer wireless transmissions) when an incremental
— rather than centralized — algorithm is used for computation. Specifically, Rhenl it is more efficient

to use an incremental algorithm for processing. Observe that as either the size of the network or the amount
of data collected at each node increase the energy savings ratio increases and it becomes more and more
advantageous to use an incremental algorithm.

4 Applications

4.1 Robust Estimation

While statistical inference procedures are based on observations, the model underlying the inference pro-
cedure plays an equally important part in the accuracy of inference. If the model used in constructing the
inference procedure does not exactly match the true model, then the accuracy and variance can suffer greatly.
The field of statistics known asbust statisticss concerned with developing inference procedures which

are insensitive to small deviations from the modelling assumptions [5].
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In sensor networks, there are many reasons one might want to consider using robust estimates rather than
standard inference schemes. Consider the following illustrative example. Suppose that a sensor network has
been deployed over an urban region for the purpose of monitoring pollution. Each sensor collects a set of
m pollution level measurementgy; ;17,7 = 1,...,n, over the course of a day, and at the end of the day
the sample mean pollution level,= -1 >_i; Tij, is calculated. If the variance of each measurement is
o? then, assuming i.i.d. samples, the variance of the estimatot/isn. However, what if some fraction
— say10% — of the sensors are damaged or mis-calibrated so that they give readings with vafiance
Then the estimator variance increases by a factor of roughly 10. Ideally, we would identify and discard these
“bad” measurements from the estimation process. Robust estimation techniques attempt to do exactly this
by modifying the cost function.

In robust estimation, the classical least squares loss fundtion; 0||?, is replaced with a different
(robust) loss functiory(z, #), with p(x, 8) typically chosen to give less weight to data points which deviate
greatly from the parametet, We then have a modified cost function,

Frovust®) = 53" plai,0),

i=1 j=1
to be optimized. Thé; distance is one example of a robust loss function. Another standard example is the
Huber loss function,

{ |z —0l?/2,  for|lz — 0] <~

x; 60
pu(w;6) Az — 8] = ~2/2, for |z — 8] > .

This choice of loss function acts as the usual squared error loss function if the data ahbse (within
~) to the parameteft, but gives less weight to points outside a radjusom the locatior? [5].
A distributed robust estimation algorithm is easily attained in the incremental subgradient framework by
equating
1 m
fio) = — ; p(13:0).

Consider an incremental subgradient algorithm using the Huber loss function. In order to fix a step size and
determine the convergence rate of this algorithm, observe that

IVAOI < v=¢

To demonstrate the efficacy of this procedure we have simulated the scenario described above where
sensors are uniformly distributed over a homogeneous region, taking i.i.d. one dimensional measurements
corrupted by additive white Gaussian noise. In this example 100 sensors each make 10 measurements, how-
ever some sensors are damaged and give noisier readings than the other sensd(g., &&t denote the
Gaussian distribution with meanand variance2. A sensor which is working makes readings with distri-
butionz; ; ~ N (10,1), and a damaged sensor makes readings distributed according 10V (10, 100).

We use the Huber loss function with= 1 and step size« = 0.1. An example illustrating the incremen-

tal robust estimate convergence rate is shown in Figure 1(a), Mithof the sensors being damaged. In
contrast, Figure 1(b) depicts the convergence behavior of an incremental subgradient implementation of the
least squares algorithm using the same step size. Notice that the least squares estimate converges faster
than the robust estimate, but the variance of the distributed least squares result is larger. As a more extreme
example, Figures 1(c) and (d) illustrates a scenario wh@feof the sensors are damaged and give noisier
readings. In both of these scenarios we repeated the simulation 100 times and found that the algorithm
always converges after two cycles (200 subiterations), which is much lower than the theoretical bound. We
declare that the incremental procedure has converged if after successive cycles, the change in estimate values
is less thart.1.
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Figure 1: Example of a robust incremental estimation procedure using the Huber loss function ibign (a)

and (cp0% of the sensors are damaged. The network consists of 100 sensors, each making 10 measure-
ments. Good sensors make measurements frangld, 1) distribution, and measurements from damaged
sensors are distributed accordingX@10, 100). In comparison, least squares estimates are depicted in (b)
and (d) with10% and50% of the sensors damaged.

4.2 Energy-Based Source Localization

Estimating the location of an acoustic source is an important problem in both environmental and military
applications [2,12]. In this problem an acoustic source is positioned at an unknown lo¢htiarnthe

sensor field. The source emits isotropically a signal, and we would like to estimate the source’s location
using received signal energy measurements take at each sensor. Again, suppose each sensor collects
measurements. In this example we assume that the sensors are uniformly distributed over either a square
or cube with side of lengtl® > 1, and that each sensor knows its own locatiqn; = 1, ..., n, relative

to a fixed reference point. Then we use an isotropic energy propagation model feththeceived signal
strength measurement at noide

A

T T =P

+ Wi 5,
whereA > 0 is a constant and
0 —rif| > 1, (9)

for all .. The exponenfi > 1 describes the attenuation characteristics of the medium through which the
acoustic signal propagates, ang; are i.i.d. samples of a zero-mean Gaussian noise process with variance
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o2. A maximum likelihood estimate for the source’s location is found by solving
0 = in — o2 )
mwm;;@”w%w

This non-linear least squares problem clearly fits into the general incremental subgradient framework. Tak-
ing

1 & A 2
fi(0) = m; <l’i,j - W) )
we find that the gradient of;(0) is
28A - A
VfZH = 0 25 (.CCZ‘"—) H—TZ‘.
O = = 2\ ) €

Next we bound the magnitude of the gradient by first observing that

2BA110 —rill - A
va( )H = mHH—TiHBJFQ = Li,4 He_m,Hﬁ
From the assumption (9),
2BA & A
. < £ E 7
26A
o 2BAcym
m
= 28Ac,

where the constart; comes from an assumption on limitations of sensor measurement capabilities:

A

=P

' < 4. (10)
That is, based on our Gaussian model for the noise, the measurememtsuld theoretically take values
over the entire support of the real line. However, we assume that the sensors are only capable of reporting
values in a bounded range according to (10).

We have simulated this scenario with 100 sensors uniformly distributed @ & 100 square, and the
source location chosen randomly. The source emits a signal with strdngth00 and each sensor makes
10 measurements at a signal-to-noise ratiddB. Figure 2 depicts an example path taken by the algorithm
plotted on top of contours of the log likelihood. Over a sample of 100 simulations with this configuration
the algorithm converged to within a radius of 1 of the true source location after an average of 45 cycles.

4.3 Clustering and Density Estimation

The Distributed Expectation-Maximization (DEM) algorithm has previously been proposed in the context

of density estimation and clustering for wireless sensor networks [11]. In this scenario, measurements
are modelled as being samples drawn from a mixture of Gaussian distributions with unknown means and
covariances, with mixture weights potentially being different at each sensor in the network. Such a scenario
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Figure 2: An example path taken by the incremental subgradient algorithm displayed on top of contours of
log-likelihood function. The true source location in this example is at the point (10,40). There were 100
sensors in this simulation, each taking 10 measurements.

could arise in cases where the sensors are deployed over an inhomogeneous region. From the data analysis
point-of-view, a first step in this setting would involve estimating the parameters of the global density. Once
estimates have been obtained, the parameter estimates could be circulated allowing each node to determine
which component of the density gives the best fit to its local data, thereby completing the clustering process.
While DEM is not exactly an incremental subgradient method, in this section we relate it to incremental
subgradient methods and study its convergence in this context. The goal of DEM is to minimize the function

n m J
F0) = =) > log <Zai,kN(yi,j|NkaEk)>,
k=1

i=1 j=1

wheref = {a; .} U {ur} U {Ex}, and N (y|u, X) denotes the multivariate Gaussian density with mean
1 and covariance evaluated at the point. There are a few well-known results about the EM algorithm
such as the monotonicity and guaranteed convergence to a fixed point. Less is know about convergence
of the incremental EM algorithm, of which DEM is a variant. However, roughly speaking, in each step
DEM is behaving like the regular EM algorithm acting locally. In [14], Xu and Jordan discuss convergence
properties of the EM algorithm for Gaussian mixture models. A key result which we will use relates the EM
steps to the gradient of the log-likelihood function. Corollary 1 of [14] states that

ol

g+l —  pk) L prpk)y ¥ 7
(0) 4 o

where, with probability one, the matriR(6(%)) is positive-definite. That is, the search directiéff;+?) —
9¥) has a positive projection on the gradient of the log-likelihood function. Because projection may not be
exactly aligned along the gradient of the log-likelihood, strictly speaking, DEM is not an incremental sub-
gradient method. However, suppose that the paraméters and{%;} are known. Xu and Jordan show
that for this case, the projection matrix tends to a diagonal so that EM is equivalent to a gradient method.
Thus, under these conditions DEM behaves like an incremental subgradient method and the convergence
theory described above applies.

As an example application of the DEM algorithm, suppose that a sensor network is deployed over an
inhomogeneous region like the one depicted in Figure 3(a). Sensors located in the light region measure
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i.i.d. samples from aV'(5,5) distribution, and sensors in the dark region measure i.i.d. samples from a

N (15,15) distribution. We assume that the number of components (2 in this case) is already known, as
the model-order selection problem is a separate, challenging issue in itself. Then, in an initial phase, the
sensors run DEM to determine the means and variances of each distribution. Next, each sensor executes a
hypothesis test based on its local data and the estimated global parameters in order to determine which class
it belongs to (region it is located in). Finally, each sensor transmits it's decision (region 1 or region 2 — a
single bit) back to the fusion center which then has a rough image of the field.

\ .
o EEEEN LAY
\ .
. e o ® .
o .
.
° N )
o oSl L °
o R ~
o o .
% o ° h
o o \
o [¢] \ L4
O \
o \
o o o ov o
o O
o © o o \ F3
o © o © \
o \
0® o
o \
o © & \
© °© o .
o .
© @® o | °
o \
% \
e} \
o
o o °
@ ° 0o \
o o ° o \

() (b)

Figure 3: (a)Example of a region composed of two areas. Sensors located in the white area make i.i.d. mea-
surements distributed accordinghtf(5, 5) and sensors in the black measure i.i.d. samples franfie, 15)
distribution. (b) The outcome of one simulation with 100 sensors each making 100 measurements. The sen-
sors first run DEM to estimate the means and variances of each Gaussian component in the mixture model.
Next, based on their local estimates of the mixing probabilitieandas, each sensor decides whether it is
located in the dark region or the light region. In the figure, open circles correspond to nodes deciding that
they are in the light region and filled circles correspond to nodes deciding they are in the dark region. The
dotted line shows the true boundary.

We have simulated the procedure described above for a network with 100 sensors uniformly distributed
over the region, each making 100 measurements. Figure 3(b) depicts the outcome of one such simulation.
The dotted line shows the true boundary separating region 1 from region 2, and sensors are shown in their
locations as either open or filled circles. The type of circle indicates the region chosen by the sensor in
the hypothesis test. We repeated the simulation 100 times and found that each node always classified itself

correctly. Additionally, the DEM procedure converged in an average of 3 cycles, with the maximum being
10.

5 Conclusions

This paper investigated a family of simple, distributed algorithms for sensor network data processing. The
basic operation involves circulating a parameter estimate through the network, and making small adjust-
ments to the estimate at each node based on its local data. These distributed algorithms can be viewed as
incremental subgradient optimization procedures, and the number of cycles required to obtain a good solu-
tion can be characterized theoretically. In particular, we showed that the convergence theory can be applied
to gauge the potential benefits (in terms of communication and energy savings) of the distributed algorithms
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in comparison with centralized approaches. The theory predictditwfcles of the distributed algorithm
procedure will produce an estimatesatisfyingf(6) < f(6*) + O(K~'/?), wheref is the underlying cost
function andd* is the minimizer off. For a network comprised of nodes uniformly distributed over the

unit square or cube angk measurements per node, the number of communications required for the dis-
tributed algorithm is roughly a factor dt’/(mn'/?) less than the number required to transmit all the data

to a centralized location for processing. As the size or density of the sensor network increases, the savings
provided by the distributed approach can be enormous. Simulated experiments demonstrated the potential
of the algorithms in three applications of practical interest in sensor networking.
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