
Boston University
OpenBU http://open.bu.edu
Computer Science CAS: Computer Science: Technical Reports

1998-02-01

Distributed Packet Rewriting and
its Application to Scalable Server
Architectures

Bestavros, Azer; Crovella, Mark; Liu, Jun; Martin, David. "Distributed Packet
Rewriting and its Application to Scalable Server Architectures", Technical Report
BUCS-1998-003, Computer Science Department, Boston University, February 1,
1998. [Available from: http://hdl.handle.net/2144/1760]
https://hdl.handle.net/2144/1760
Boston University

Distributed Packet Rewriting

and its Application to Scalable Server Architectures�

Azer Bestavros Mark Crovella Jun Liu David Martin

Computer Science Department

Boston University

Boston, MA 02215

(fbest,crovella,junliu,dmg@cs.bu.edu)

December 1, 1997

Abstract

To construct high performance Web servers, system builders are increasingly turning to distributed designs.

An important challenge that arises in distributed Web servers is the need to direct incoming connections to

individual hosts. Previous methods for connection routing have employed a centralized node which handles

all incoming requests. In contrast, we propose a distributed approach, called Distributed Packet Rewrit-

ing (DPR), in which all hosts of the distributed system participate in connection routing. We argue that

this approach promises better scalability and fault-tolerance than the centralized approach. We describe

our implementation of four variants of DPR and compare their performance. We show that DPR provides

performance comparable to centralized alternatives, measured in terms of throughput and delay under the

SPECweb96 benchmark. Finally, we argue that DPR is particularly attractive both for small scale systems

and for systems following the emerging trend toward increasingly intelligent I/O subsystems.

Keywords: TCP/IP; TCP Routers; Round Robin DNS; Scalable Web servers; IP Masquerading.

1 Introduction

The phenomenal, continual growth of the World Wide Web (Web) is imposing considerable strain on

Internet resources, prompting numerous concerns about the Web's continued viability. In that respect, one

of the most common bottlenecks is the performance of Web servers|popular ones in particular.

To build high performance Web servers, designers are increasingly turning to distributed systems. In

such systems, a collection of hosts work together to serve Web requests. Distributed designs have the

potential for scalability and cost-e�ectiveness; however a number of challenges must be addressed to make

a set of hosts function e�ciently as a single server.

In this paper we show how a number of the challenges involved in building distributed servers can be

addressed using Distributed Packet Rewriting (DPR). DPR is one of the features of Commonwealth|an

�This work was partially supported by NSF research grants CCR-9706685 and CCR-9501822.

1

architecture and prototype for scalable Web servers being developed at Boston University. The Common-

wealth project aims to design, implement, and evaluate a prototype architecture and a set of associated

protocols for scalable Web services.

The function of DPR is to direct requests for Web service to one of the hosts in the distributed server.

DPR is novel because its function is distributed, that is, all hosts in the system participate in request

redirection. To illustrate the need for a function like DPR, consider the sequence of events when a client

requests a document from a Web server. First, the client resolves the host's domain name to an initial

IP address. Second, the IP address itself may represent a distributed system, and one of the hosts in the

system must be chosen to serve the request. There are many ways to perform the �rst mapping (from

domain name to initial IP address). For example, this mapping could be coded in the application as is

done within Netscape Navigator to access Netscape's Home Page [8]. Alternately, this mapping could be

done through DNS by advertising a number of IP addresses for a single domain name. Similarily, there

are many ways to perform the second mapping (from initial IP address to actual host). For example,

this mapping could be done at the application level, using the HTTP redirection approach [1] or using a

dispatcher at the server [2, 17].

While initial attempts to construct scalable Web servers focussed on using the mapping from domain

names to IP addresses [10], recent attempts have focussed on the second kind of mapping (IP addresses to

hosts) because of the potential for �ner control of load distribution. One common feature of all of these

attempts (whether proposed or implemented) is that a centralized mechanism is employed to perform the

mapping from IP addresses to hosts. Examples include the Berkeley MagicRouter [2], the Cisco Local

Director [17], and IBM's TCP Router [6] and Network Dispatcher [4].

In contrast, DPR is a technique that allows the mapping between IP address and host to be implemented

in a distributed, e�cient, and scalable fashion. In particular, DPR can be viewed as a distributed method

of mapping m IP addresses to n servers. If m = 1, then DPR becomes similar to the centralized solutions

mentioned above.1

The design of DPR was driven by a large set of goals for the server, derived from the goals of the

Commonwealth project. These goals (which are not necessarily all compatible) are:

1. Transparency: Clients should not be exposed to design internals. For example, a solution that allows a

client to distinguish between the various servers in the cluster|and hence target servers individually|

is hard to control.

2. Scalability: Increasing the size of the cluster should result in a proportional improvement in perfor-

mance. In particular, no performance bottlenecks should prevent the design from scaling up. For

example, a design that employs a centralized function cannot be scaled up once the capacity of the

centralized resource is reached.

3. E�ciency: The capacity of the cluster as a whole should be as close as possible to the total capacity

of its constituent servers. Thus, solutions that impose a large overhead are not desired.

4. Graceful Degradation: The failure of a system component should result in a proportional degradation

1If m = 1, the di�erence between DPR and the centralized solutions proposed in [2, 6, 4] is that DPR allows both packet

routing and service to be combined on the same node.

2

in the o�ered quality of service. For example, a solution that allows for a single point of failure may

result in major disruptions due to the failure of a miniscule fraction of the system.

5. Connection Assignment Flexibility: The technique used to assign connections to servers in a cluster

should be
exible enough to support resource management functionalities|such as admission control

and load balancing.

In the remainder of this paper we show how DPR supports these goals in the construction of the

Commonwealth server. In the next section we review related work, and show why DPR is di�erent from

previous proposals for connection routing in Web servers. Then in Section 3 we describe the design of

DPR, and the four variants of DPR that we have implemented. In Section 4 we show performance results

using DPR, indicating that DPR achieves performance comparable to the best known alternatives. Finally,

in Section 5 we conclude.

2 Related Work

Preliminary work on scalability of Web servers has been performed at NCSA [10] and DEC WRL [13]. In

both cases, load is balanced across server hosts by providing a mapping from a single host name to multiple

IP addresses. In accordance with DNS standard, the di�erent host IP addresses are advertised in turn

[16]. In addition to its violation of the transparency property discussed in the previous section, both the

NCSA group and the DEC WRL group observe that this \Round Robin DNS" (RR-DNS) approach leads

to signi�cant imbalance in load distribution among servers. The main reason is that mappings from host

names to IP addresses are cached by DNS servers, and therefore can be accessed by many clients while in

the cache.

In [13], Mogul empirically characterized the imbalance caused by RR-DNS for a cluster or 3 servers. His

measurements suggest that over 25% of the time, the most-loaded server sustained more than 54% of the

of the total load in the system compared to a 33% of the total load under perfect balance|an imbalance

of 0.54/0.33 = 1.6. Dias et al [6] con�rmed these empirical results via simulations. They showed that the

peak load on nodes of a cluster can be up to 40% higher than the mean load on all nodes (an imbalance

of 1.4), and that this load imbalance is independent of the number of servers in the cluster.

The simulations in [6] unveil another interesting observation. Even if the anomaly caused by DNS

caching is resolved, the caching of Host-to-IP translations at the clients is enough to introduce signi�cant

imbalance. In particular, the experiments of Dias et al [6] show that even if DNS caching is turned o�|by

setting the Time-To-Live (TTL) for cached entries to 0|the load imbalance amongst servers persists due

to the burstiness of client requests.2

Rather than delegating to DNS the responsibility of distributing requests to individual servers in a

cluster, several research groups have suggested the use of a local \router" to perform this function. For

example, the NOW project at Berkeley has developed the MagicRouter [2], which is a packet-�lter-based

approach [14] to distributing network packets in a cluster. The MagicRouter acts as a switchboard that

distributes requests for Web service to the individual nodes in the cluster. To do so requires that packets

2A \user click" results in a burst of requests to fetch the page and all its embedded components. Even under RR-DNS, all

of these requests would be directed to the same server.

3

Internet

Lo
ca

l N
et

w
or

k

Client C

Client A

Client B

Server 1

Server 3

Server 4

Server 2

MagicRouter

R
ed

ir
ec

t

Response

Request

(a) MagicRouter/LocalDirector

Internet

Lo
ca

l N
et

w
or

k

Server 1

Server 3

Server 4

Server 2

Client B

Client A

Client C

Response

Request

F
o

rw
ar

d

TCP Router

(b) TCP Router

Internet

Lo
ca

l N
et

w
or

k

Server 3

Client B

Client A

Client C

Server 2

Server 5

Server 4

Request

Response

F
o

rw
ar

d

Server 1

(c) Distributed Packet Rewriting

Figure 1: Illustration of various architectures for distributed Web Servers

from a client be forwarded (or \rewritten") by the MagicRouter to the individual server chosen to service the

client's TCP connection. Also, it requires that packets from the server be \rewritten" by the MagicRouter

on their way back to the client. This packet rewriting mechanism gives the illusion of a \high-performance"

Web Server, which in reality consists of a router and a cluster of servers. The emphasis of the MagicRouter

work is on reducing packet processing time through \Fast Packet Interposing"|but not on the issue of

balancing load. Other solutions based on similar architectures include the Local Director by Cisco [17] and

the Interactive Network Dispatcher by IBM [4].

An architecture slightly di�erent from that of the MagicRouter is described in [6], in which a \TCP

Router" acts as a front-end that forwards requests for Web service to the individual back-end servers of the

cluster. Two features of the TCP Router di�erentiate it from the MagicRouter solution mentioned above.

First, rewriting packets from servers to clients is eliminated. This is particularly important when serving

large volumes of data (which is the purpose of the system described in [6] for Video Service). To allow for the

elimination of packet rewriting from server hosts to clients requires modifying the server host kernels, which

is not needed under the MagicRouter solution. Second, the TCP Router assigns connections to servers

based on the state of these servers. This means that the TCP Router must keep track of connection

assignments. In [6], the authors sketch various options for distributing the TCP Router functionality.

However, no design or implementation details were given with respect to this proposed architecture.

The architecture presented in [11] uses a TCP-based switching mechanism to implement a distributed

proxy server. The motivation for this work is to address the performance limitations of client-side caching

proxies by allowing a number of servers to act as a single proxy for clients of an institutional network. The

architecture in [11] uses a centralized dispatcher (a Depot) to distribute client requests to one of the servers

in the cluster representing the proxy. The function of the Depot is similar to that of the MagicRouter.

However, due to the caching functionality of the distributed proxy, additional issues are addressed|mostly

related to the maintenance of cache consistency amongst all servers in the cluster.

4

Server 2

Server 4 Server 1

Server 3

Server 3

S
ite 2 N

etw
ork

Server 1

Client A Client B

Client C

Internet

S
ite

 1
 N

et
w

or
k

Server 2

Server 4

Figure 2: Range of forwarding possibilities under DPR

3 Implementation of DPR

3.1 Design Principles for Distributed Packet Rewriting

As described in Section 1, our goals in developing DPR were transparency, scalability, e�ciency, fault

tolerance, and
exibility in connection assignment. Previous centralized approaches (described in Section 2)

have focused on transparency and load balance: these are natural features deriving from a design using

centralized routing. The two dominant styles of centralized routing are shown in Figure 1 (a) and (b).

Figure 1 (a) shows the MagicRouter style, in which packets traveling in both directions are rewritten by

a centralized host. Figure 1 (b) shows the TCP router style, in which only packets traveling from the

clients are rewritten, still by a centralized host. An important advantage of the TCP router style is that

the majority of bytes in a Web server
ow from the server to the client, and these packets do not require

rewriting.

In contrast to centralized approaches, we seek to address our wider set of goals, which also include

scalability and fault tolerance. As a result we adopt a distributed approach to TCP routing, namely

distributed packet rewriting. Under DPR, each host in the system provides both Web service and packet

routing functions, as shown in Figure 1 (c). Under DPR the structure of any connection is conceptually

a loop passing through three hosts (client and two server hosts). The entire set may have no hosts in

common with another connection on the same server. We refer to the �rst server host to which a packet

arrives as the rewriter, and the second host as the destination.

Figure 2 illustrates the diversity of service paths supported by the DPR architecture. Client A initially

5

contacts Server 2 on Site 2. Server 2 rewrites that connection through Server 1, which then delivers the

requested data to Client A. Meanwhile, Client B intially connects to Server 3 on Site 1; although DPR-

enabled, it decides not to redirect the connection and so serves the request itself. Finally, Client C's

requests visit both Site 2 and Site 1 before �nding the correct server.

In each case the packets must traverse the pictured routers. While the centralized schemes attempt to

place the rewriting task within these routers or as close to them as possible, DPR transfers this responsibility

to the Web servers it concerns. This can be seen as an instantiation of the end-to-end argument: the choice

of the �nal server is essentially a service-speci�c decision, and so should be made as close as possible to

the service points rather than being distributed throughout general-purpose network components.

Another important advantage of DPR is that the amount of routing bandwidth scales with the size

of the system, in contrast to the centralized (MagicRouter or TCP Router) approaches. Furthermore,

since the routing function is distributed, this system can not be wholly disabled by the failure of a single

node|as is possible under centralized approaches.

The DPR scheme assumes that requests arrive to the individual hosts of the server. This can occur in

a number of ways. The simplest approach (which we currently use) is to distribute requests using Round-

Robin DNS. Although requests may well arrive in a unbalanced manner because of the limitations of RR-

DNS, hosts experience balanced demands for service because of the redistribution of requests performed

by DPR.

3.2 Design Tradeo�s

Two design issues arise in determining the speci�c capabilities of a DPR implementation. First, will routing

be based on stateless functions, or will it require per-connection state? Second, will DPR routing occur

only within a single LAN, or will rewritten packets travel over an internetwork?

The �rst issue is related to the choice of algorithm used to balance load in the server. It is possible to

balance load across server hosts using a stateless routing function, e.g., a function that computes a hash

value based on the source and destination IP and port addresses of the packet. On the other hand, more

sophisticated load balancing policies may require more information than what is contained in the packets;

for example, knowledge of load on other hosts. In this case, each rewriting host must maintain a routing

table with an entry for each connection that is currently being handled by that host.

The second issue is concerned with the question of whether all the hosts of the distributed server reside

on a single LAN. If so, it is not strictly necessary to encode the IP header consistently for the packet while it

is traveling from the rewriting host to the destination host. This allows for a more e�cient implementation,

but prevents the server from being widely distributed in a geographical sense.

These two design tradeo�s suggest four variants of DPR, all of which we have implemented. In order

of the overhead of the implementation, they are: Stateless/LAN, Stateless/WAN, Stateful/LAN, and

Stateful/WAN. Each of these was implemented in the Linux 2.0.x kernel. Note that while the generic term

\TCP routing" implies decisions made at the TCP layer, it is not generally necessary to modify TCP-layer

code to implement TCP routing. Enough information is available at lower levels (the IP level and the

device driver level) and implementing at these levels provides greater e�ciency.3 The remainder of this

3In Linux, the network \stack" is essentially monolithic anyway, so there is no real layering violation in making DPR-style

6

section overviews implementation details of these four variants.

3.2.1 Stateless Approaches

In the stateless approach, we use a simple hash function based on the sender's IP address and port number

to determine the destination for each packet. Since the IP/port of the sender forms a unique key for

requests arriving at the server, this function is su�cient to distribute requests.

Using server logs from the BU Web site in simple simulations, we have veri�ed that our hash function

is e�ective at balancing load for actual client request arrivals. An important factor in this success is the

use of the client port number as an input to the hash function. Successive port numbers from the same

client should map to di�erent server hosts because of the bursty nature of requests arriving from a single

client, as discussed in Section 2.

Stateless/LAN implementation. The Stateless/LAN implementation o�ers the greatest opportunities

for e�ciency. Because no state is stored, the additional code and data required is small. Furthermore,

because the packet will not travel across an internetwork, it can be retransmitted without any modi�cation.

The Stateless/LAN implementation simply changes the MAC address of the packet and retransmits it on

the LAN. The simplicity of the transformation allows rewriting to occur in the context of the network

device driver, namely, in the kernel routine that device drivers use to register incoming packets. This

implementation thus receives, rewrites, and retransmits packets all within a single interrupt service cycle;

furthermore, no device-speci�c modi�cations are required.

Stateless/WAN implementation. The Stateless/WAN implementation forwards packets based on the

same hash function, but does so in a way that allows the rewritten packets to travel over an IP network.

To do this we use simple IP tunneling, known as IPIP, described in RFC2003 [15]. In this implementation,

the rewriting host prepends an additional IP header to the packet with the IP address of the destination,

and retransmits the packet. The e�ect is to transform the old headers and data into the payload of the

new packet. The receiver strips the IP header o�, and �nding an IP packet inside, re-registers the packet

with the IP protocol's incoming packet handler. As a result packets in this scheme require slightly more

processing time on both the rewriter and the receiver as compared to the LAN variant.

3.2.2 Stateful Approach

In the stateful approach, the packet routing decision is based on more information than is contained in the

packet. For example, a stateful approach is necessary in order to route connections based on the current

load on each server host.

In the stateful method, rewriters must track TCP connection establishment and termination. A table

of connections currently being rewritten is maintained by each host and is consulted in order to rewrite each

packet. In implementing these functions we were able to adapt features from code already present in the

Linux kernel that supports IP Masquerading. IP Masquerading [12] was developed to allow multiple hosts

routing decisions at the IP level.

7

to function behind a �rewall without valid IP addresses. Thus, IP Masquerading supports connections

that are initiated from the \hidden" hosts. In order to support a distributed server, we need to support

connections connecting to the hidden hosts.

Using the IP Masquerading functions adapted to support a distributed server, the rewriter has complete

freedom to choose a destination when it receives the �rst packet of a client's TCP stream. After noting

its decision in a state table, it then forwards each packet associated with the connection using either the

local (Stateful/LAN) or the IPIP (Stateful/WAN) technique, depending on the network location of

the destination. Each destination hosts maintains IP aliases for its rewriters in order to handle streams

that do not bear its primary IP address.

We note that independently and at approximately the same time as our work, Clarke has developed a

general-purpose TCP forwarding kernel extension based on IP Masquerading [3] which can also be used to

support implementation of distributed Web servers.

4 Performance Evaluation

In this section we describe the performance of DPR variants. We restricted our experiments to a single

LAN in order to provide repeatable results. Although the LAN was not completely isolated during our

measurements, only a negligible amount of unrelated tra�c (mostly ARP requests) was present.

Since we con�ne ourselves to single-LAN measurements, our main results concentrate on the State-

less/LAN and Stateful/LAN variants of DPR. However, our measurements of packet processing costs show

that the WAN variants are only slightly slower than the LAN variants. For example, the Stateless/LAN

variant requires about 75 �s of CPU time to rewrite a packet, and adds less than 10 �s to the processing

cost of the packet on the receiver; in comparison, the Stateless/WAN variant also requires about 75 �s of

CPU time to rewrite a packet, while adding about 50�s to the processing cost of the packet on the receiver.

We used the SPECweb96 [5] benchmarking tool to measure the throughput and delay characteristics

of DPR implementations. SPECweb96's principal independent parameter is the requested throughput,

measured in HTTPGETs per second. The measured results of each experiment are the achieved throughput

(which may be lower than what was requested) and the average time to complete an HTTP GET (measured

in msec/GET). For each experiment, we ran SPECweb96 for the recommended 5 minute warmup, after

which measurements were taken for 10 minutes. System hosts (both clients and servers) consisted of

Hewlett-Packard Vectra PCs, each having a 200MHz Pentium Pro processor, 32 MB of memory, and a

SCSI hard drive. Servers ran Linux 2.0.30 on Linux ext2 �lesystems,4 while clients ran Windows NT 4.0.

The LAN was a 100 Mbit/sec Hewlett-Packard AnyLAN switch; this star network is frame-compatible

with Ethernet, but it also uses a round-robin schedule together with a client sensing mechanism so that

packet collisions do not occur. The Web servers used were Apache 1.2.4.

We describe the results of six experiments:

Baseline 1-Host. This experiment simply tests the performance of a single, unmodi�ed server driven by

a single client.

4In the course of experimentation, we found that MS-DOS �lesystems performed very badly when mounted under Linux.

8

Baseline 2-Host. This experiment consists of two simultaneous copies of the Baseline 11Host experiment.

It uses two clients and two servers, and each client sends requests to only one server.

TCP Router. This experiment consists of two clients sending requests to a TCP router (a centralized

rewriter) which then distributes the load evenly between two server hosts.

Stateless/Imbalanced. This experiment uses the Stateless/LAN variant of DPR, running on two hosts.

Two clients generate requests, but they send all requests to one of the server hosts, which then redis-

tributes half of them.

Stateful/Imbalanced. This experiment uses the Stateful/LAN variant, running on two hosts. Again

two clients generate requests, sending all requests to one host, which redistributes half of them.

Stateful/Balanced. This experiment again uses the Stateful/LAN variant, but now the two clients gen-

erate equal amounts of requests for each server host. Each host then redistributes half of its requests,

sending them to the other server.

Baseline 1-Host and Baseline 2-Host de�ne the range of possible performance for the systems under

study, with Baseline 2-Host de�ning the best performance that might be expected from a 2-host server

system. The TCP Router results represent the performance of the most common alternative to DPR, and

show the e�ect of removing the packet rewriting function from the server hosts. Note that each packet

travels through two server nodes in the DPR and TCP Router cases, and through only one server node in

the Baseline cases.

The Stateless/Imbalanced and Stateful/Imbalanced experiments serve to show the worst possible per-

formance of DPR, i.e., when the arriving request load is maximally imbalanced (all requests to one host).

The Stateful/Balanced experiment allows comparison of the best and worst possible load arrival distribu-

tions for DPR.

Although our experiments only include two server hosts, we expect that the DPR approach will scale

better than the TCP router approach; as a result we believe that our results are conservative and that

larger systems would show even more favorable comparisons for DPR.

4.1 Throughput

In Figure 3 we show the achieved throughput of each experimental system as a function of the requested

throughput. The Baseline 1-Host case saturates at about 100 GETs/sec, and the Baseline 2-Host case

at the corresponding level of about 200 GETs/sec. In between the experiments fall into two groups: the

Stateful experiments saturate at about 180 GETs/sec, while the Stateless/Imbalanced and TCP Router

saturate at about 195 GETs/sec.

The fact that the Stateful/Balanced and Stateful/Imbalanced show nearly identical performance indi-

cates that the when requests arrive in a highly imbalanced way and all packet rewriting occurs on only

one host, DPR is still able to achieve good throughput. This comparison indicates that the performance

demand of packet rewriting is quite moderate; and so adding a packet rewriting function to a host already

performing Web service does not represent a signi�cant additional burden.

9

0

50

100

150

200

0 50 100 150 200 250

A
ch

ei
ve

d
T

hr
ou

gh
pu

t (
G

E
T

s/
se

c)

Requested Throughput (GETs/sec)

Baseline, 2 Hosts
TCP Router

Stateless/Imbalanced
Stateful/Imbalanced

Stateful/Balanced
Baseline, 1 Host

Figure 3: Throughput of DPR Variants and Comparison Cases

Comparing the Stateful and Stateless cases, we see that the Stateless case performs indistinguishably

from the TCP router case, and they both are equivalent to the Baseline 2-Host case (in which no packet

rewriting is taking place at all). The similarity of the Stateless to the Baseline 2-Host case shows that the

performance cost of packet rewriting in the Stateless/LAN implementation is negligible. In addition, the

similarity of the Stateless and TCP Router cases suggests that the additional cost of adding a TCP router

to a small system may not be justi�ed. It is just as e�cient, and cheaper, to use the server hosts already

present to perform the load balancing function.

4.2 Delay

In addition to providing high throughput, it is important to verify that DPR does not add unacceptable

delays to the system. In Figure 4 we show the average response time of an HTTP GET (in msec/GET) as

a function of system throughput, for the same six experiments. In this �gure we only plot those points for

which achieved and requested throughput are nearly equal, so throughput does not reach quite the same

maximum values as in Figure 3.

Figure 4 shows that the experiments break into the same groupings as before. Again, the State-

ful/Balanced and Stateful/Imbalanced cases show approximately similar performance. Furthermore the

Stateless case shows approximately similar delays to the TCP Router and the Baseline 2-Host cases.

Since packets travel through an additional server node in the DPR and TCP Router cases as compared

to the Baseline 2-Host case, there is a potential for greater delay in those cases. However, it appears that

the additional delays induced by the additional hop are small compared to the average response time for

an HTTP GET. The response time of an average HTTP GET under SPECweb96 is in the range of 25 to

150 milliseconds on a LAN. Were the system serving packets over the global Internet, response times would

be even greater since the added round-trip times would be tens to hundreds of milliseconds as well. The

10

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 D
el

ay
 (

m
se

c/
G

E
T

)

Throughput (GETs/sec)

Baseline, 2 Hosts
TCP Router

Stateless/Imbalanced
Stateful/Imbalanced

Stateful/Balanced
Baseline, 1 Host

Figure 4: Request Delay of DPR Variants and Comparison Cases

Max Throughput Corresponding

Experiment Achieved in HTTP Avg Latency in

GETs/sec msec/HTTP GET

Baseline 1-Host 104 912.4

Stateful/Imbalanced 183 150.5

Stateful/Balanced 180 150.4

Stateless/Imbalanced 194 131.3

TCP Router 194 126.9

Baseline 2-Hosts 196 124.0

Table 1: Maximum Throughput in Each Experiment.

addition of additional packet processing due to Stateless/LAN DPR, which appears to be on the order of

tens to hundreds of microseconds, is a negligible additional cost for a Web server application.

These results are summarized in Table 1, which shows the maximum throughput achieved in each

experiment. This table shows that in terms of both throughput and delay, the Stateless/LAN implemen-

tation of DPR achieves performance comparable to a perfectly balanced system with no packet rewriting

(Baseline 2-Host) as well as to a system with an additional host whose sole task is packet rewriting (TCP

Router). In addition, the Stateful versions of DPR show performance that is close, in both throughput

and delay, to the best possible case as well.

11

5 Conclusion

In this paper we have described a method for balancing load in a distributed server without any centralized

resource. Instead of using a distinguished node to route connections to their destinations, as in previous

systems, DPR employs all the hosts of the distributed system in the connection routing function.

One concern about such an approach is that the addition of connection routing to the responsibilities

of the hosts in a server may overburden them with an unacceptable amount of additional work. We have

shown that in our implementations, this is not the case. Furthermore, we believe that architectural trends

will increasingly favor the colocation of packet routing functions with other system functions in individual

hosts. This is because I/O interface hardware, and network interface cards in particular, are rapidly

increasing in sophistication. The Intelligent I/O initiative (I2O) [9] is in fact standardizing hardware and

software interfaces for the use of highly intelligent I/O cards in general purpose computing systems. As

these trends accelerate, approaches like DPR will become even more attractive.

The functions of DPR do not completely replace those of a TCP router such as Network Dispatcher

[4] or Local Director [17]. TCP routers present a single IP address while performing packet rewriting,

load balancing, and (potentially) network gatewaying (that is, IP routing). DPR does not present a single

IP address, and does not perform network gatewaying. However, we have shown that simple RR-DNS is

su�cient for providing the illusion of a single IP address, and standard routers are su�cient (and preferable)

for providing gatewaying functions. Although sophisticated load balancing (e.g., based on feedback from

server hosts) is more di�cult under DPR than under a centralized approach, we have found that static

policies can often work well, and we are investigating distributed feedback approaches.

The bene�ts that DPR presents over centralized approaches are considerable: the amount of routing

power in the system scales with the number of nodes, and the system is not completely disabled by the

failure of any one node. DPR also has special value for small scale systems. For example, consider the

case in which a Web server needs to grow in capacity from one host to two. Under a centralized approach,

two additional hosts must be purchased: the new host plus a connection router, even though most of the

capacity of the connection router will be unused. DPR allows more cost-e�ective scaling of distributed

servers, and as a result more directly supports the goals of the Commonwealth project.

References

[1] D. Anderson, T. Yang, V. Holmedahl, and O.H. Ibarra. SWEB: Towards a Scalable World Wide

Server on Multicomputers. In Proceedings of IPPS'96, April 1996.

[2] Eric Anderson, David Patterson, and Eric Brewer. The MagicRouter: An application of fast packet

interposing. submitted to OSDI 1996, May 1996.

[3] Steven Clarke. Linux Port Forwarding. See http://www.ox.compsoc.org.uk/�steve/

portforwarding.html.

[4] IBM Corporation. The IBM Interactive Network Dispatcher. See http://www.ics.raleigh.ibm.

com/netdispatch.

12

[5] The Standard Performance Evaluation Corporation. Specweb96. http://www.specbench.org/

org/web96/.

[6] Daniel M. Dias, William Kish, Rajat Mukherjee, and Renu Tewari. A scalable and highly available

web server. In Proceedings of IEEE COMPCON'96, pages 85{92, 1996.

[7] Damani et al. ONE-IP: Techniques for Hosting a Service on a Cluster of Machines. In Proceedings of

the Sixth International WWW Conference, April 1997.

[8] S.L. Gar�nkel. The Wizard of Netscape. WebServer Magazine, pages 58{64, July/August 1996.

[9] I2O Special Interest Group. See http://www.i2osig.com.

[10] E. D. Katz, M. Butler, and R. McGrath. A scalable HTTP server: The NCSA prototype. In Proceed-

ings of the First International World-Wide Web Conference, May 1994.

[11] K.L.E. Law, B. Nandy, and A. Chapman. A Scalable and Distributed WWW Proxy System. Technical

report, Nortel Limited Research Report, 1997.

[12] Linux IP Masquerade Resource. See http://ipmasq.home.ml.org.

[13] Je�ery C. Mogul. Network behavior of a busy Web server and its clients. Research Report 95/5, DEC

Western Research Laboratory, October 1995.

[14] Je�rey Mogul, Richard Rashid, and Michael Accetta. The Packet Filter: An E�cient Mechanism

for User-level Network Code. In Proceedings of SOSP'87: The 11th ACM Symposium on Operating

Systems Principles, 1987.

[15] C. Perkins. IETF RFC2003: IP Encapsulation within IP. See http://ds.internic.net/rfc/

rfc2003.txt.

[16] Roland J. Schemers. lbnamed: A Load Balancing Name Server in Perl. In Proceedings of LISA'95:

The 9th Systems Administration Conference, 1995.

[17] Cisco Systems. Scaling the Internet Web Servers: A white Paper. http://www.cisco.com/warp/

public/751/lodir/scale wp.htm, 1997.

13

