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DISTRIBUTED PARAMETER ACTIVE VIBRATION CONTROL

OF SMART STRUCTURES

by

Scott E. Miller

submitted to the Department of Mechanical Engineering

in partial fulfillment of the

requirements for the degree of Master of Science

ABSTRACT

A vibration control strategy for multi-component structures has been developed

in which the structural components are actively damped beam members. Each com-

ponent is mart in the sense that it is an active vibration control system which is

autonomous of all other structural components. Distributed sensor and actuator

transducers constructed from polyvinylidene fluoride (PVF 2) are embedded in each

beam element. Lyapunov's direct method was used to develop a vibration control

strategy for a generalized system consisting of an arbitrary number of smart beam

members rigidly joined at a common boundary. The analysis leads to a smart com-

ponent control law which guarantees stability to the global system. The distributed

transducer electric fields may be varied to provide controllability to all modes or to

specific modal subsets of a structure. Guidelines are presented for choosing film

electrode spatial distributions to meet design goals. A universal spatial film distri-

bution is proposed which has the potential of providing active damping to all modes

of many structures with nearly arbitrary boundary conditions.

To develop the control methodology, theoretical models for spatially distributed

transducers on flexible beam components were derived. An analytical model for

spatially distributed sensors on flexible beam elements was developed without the

necessity of modeling the beam in terms of its component vibrational modes. The

model provides insight into the observability of beams with nearly arbitrary bound-

ary conditions. The sensor electrode surface may be spatially distributed so as to

function similar to point sensors or to produce a signal in which certain vibrational

modes of the structure are weighted more than others. A previously derived model

for PVF2 actuators is presented in terms of its duality with the distributed sen-

sor analysis. The sensor model was verified experimentally for spatially uniform and

linearly-varying sensors applifed to a clamped-free beam. The signals provided by the

distributed sensors were compared to the outputs of corresponding point sensors.

PVF 2 sensors and actuators situated on the same structural component developed

radiative noise problems which were effectively compensated with noise reduction

circuitry.
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Experimental results were obtained which validate the smart structure control

strategy. A smart beam component was constructed, the component was can-

tilevered, and controllability was demonstrated for the first two vibrational modes.

A multi-component structure was then constructed from three rigidly joined au-

tonomous smart components, and the smart structure control methodology was

validated experimentally. Frequency and transient response data for the first four

modes demonstrate that the smart structure control strategy is effective in providing

active damping. A digital simulation using MSC-NASTRAN and CTRL-C yielded

results which support the experimental analysis. The simulation demonstrates a

methodology for modeling and analyzing smart structures.

Thesis Supervisor: Dr. James E. Hubbard, Jr.

Title: Lecturer of Mechanical Engineering, MIT

C.S. Draper Laboratory Technical Staff
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Chapter 1

Introduction

The component elements used in systems such as large space structures are typically

light, flexible, and have a large number of vibrational modes. These modes are

generally lightly damped. Mission requirements, such as weight constraints, often

preclude the incorporation of passive damping treatments. As a result, interest has

been generated in the past several years regarding the application of active control

techniques to the vibration control of distributed systems [1]. Traditionally, active

dampers used in this context have been based on the implementation of a finite

number of discrete sensors and actuators [2,3,4,51. Since the flexible components

are continuous and in theory possess an infinite number of degrees of freedom, these

control schemes truncate the system model to a finite number of discrete modes [51.

It is often difficult to determine the number of modes required to accurately model

the structure, and to reconcile the location of the sensors and actuators.

A research effort was initiated at MIT to apply a distributed actuator to the

vibration control of a flexible beam [6,71. The active damper consisted of a layer of

the piezoelectric polymer, polyvinylidene fluoride (PVF 2). PVF2 is a polymer which

can be made piezoelectrically active through appropriate processing during manufac-

ture. A voltage field applied across the faces of the film layer results in a longitudinal

strain over its area. Analysis has shown that controllability for nearly arbitrary beam

boundary configurations can be achieved by permitting the distributed actuator's

control to vary in space as well as in time [1]. The results further indicate that for

a broad class of boundary conditions, controllability can be achieved by producing

an electric field across the distributed film actuatoe that is proportional to a unique

feedback parameter [81.
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CHAPTER 1. INTRODUCTION

The research study described herein was begun in part to design and construct

distributed sensors using PVF2 film. The study emphasizes the versatility of film

sensors in particular applications relating to lightly damped beams, with the intention

of showing how distributed sensors may be used in alternate applications. The use of

PVF 2 film as a sensor has been studied in applications that have included detecting

tactile information for robotic endeffectors [91, utilizing PVF2 as a tactile stimulator

and mechanical transformer element in a reading aid for the blind [101, implementing

piezoelectric film in high frequency audio speaker systems [11,12,13], and others [14].

In the area of elastic continua, some research has been completed in which general

observability and controllability conditions for a flexible body have been developed.

it has been shown that in many cases, controllability and observability of all flexural

modes can be achieved in theory with only one sensor and actuator pair co-located

at a free boundary [15].

A model for the design and analysis of spatially distributed sensors is presented

which shows that observability for nearly arbitrary beam configurations is possible

by utilizing distributed sensors whose strain field is caused to vary spatially. In this

study PVF2 constitutes the active element: however, the analysis is applicable to

all candidate materials which behave in a distributed manner to produce an electric

field from applied strain. The model was derived without the necessity of modelling

the beam in terms of its component vibrational modes. The model shows that the

sensor electrode layers can be spatially varied so as to produce signals similar to

point sensors or signals in which certain vibrational modes are weighted more than

others. Experimental results are presented which support the model for two separate

spatially varying electrode distributions on a cantilever beam. The film sensors were

compared to corresponding point sensors. Radiative cross-coupling effects between

PVF 2 sensors and actuators were investigated, and a simple compensation technique

was devised which effectively eliminates adverse noise corruption.

The main intent of this research effort was to develop a vibration control strategy

for multi-component flexible structures. The control methodology that has subse-

quently been developed and presented herein utilizes distributed transducers in order

to preserve the ability to simultaneously control all modes or a specified subset of

modes. The distributed sensor and actuator models are combined with Lyapunov's

2



CHAPTER 1. INTRODUCTION

second method, leading to a control law for flexible beam components. These ac-

tively controlled beam components are smart in the sense that all of the essential

elements of the active damper are self-contained (the component is a beam/PVF 2

composite in which the control algorithm may be embedded on a microchip). A

strategy is developed for the vibration control of a generalized structure consisting

of an arbitrary number of smart structural members rigidly joined at a common

boundary. The global system can be controlled by enforcing the component control

law applied locally to each smart structural element. Lyapunov's second method is

used to derive the multi-component structure control strategy. Enforcing the con-

trol law guarantees the stability of the global system for any spatial distribution of

the transducer strain fields. Guidelines are presented for choosing spatial distribu-

tions to meet design goals. A "universal" smart component transducer electrode

distribution is presented which has the character of providing active damping to all

modes of a structure for many structural configurations.

Experimental results were obtained which validate the smart structure control

strategy. A smart beam component was constructed, the component was can-

tilevered, and controllability was demonstrated for the first two vibrational modes.

A multi-component structure was then constructed from three rigidly joined au-

tonomous smart components, and the smart structure control methodology was

validated experimentally. Frequency and transient response data for the first four

modes demonstrate that the smart structure control strategy is effective in providing

active damping. The greatest increase in modal damping was observed at the sec-

ond mode of the structure, for which the damping ratio was increased by a factor of

28.8. A digital simulation using MSC-NASTRAN and CTRL-C yielded results which

support the experimental analysis. The simulation demonstrates a methodology for

the computational modeling of smart structures.

3



Chapter 2

Theoretical Analysis of Smart Structural Components

2.1 Distributed Sensing Using PVF 2 Film

For uniaxially polarized PVF2 film, a longitudinal strain induces an electric field

across its faces [161. The induced field may be varied spatially by shaping the

electrode plating over the faces of the film or by varying the film's thickness [1].

Although in this study the active element is PVF2, the analysis assumes only that the

distributed sensor produces an electric field from longitudinal strain. The analysis is

therefore applicable to other candidate materials.

The geometric configuration of a beam/sensor composite is shown in Fig. 2-1.

A PVF2 sensor layer is adhered to the top surface of a beam component. The film

polarity vector is oriented such that the positively charged surface of the film is the

outermost surface. The strain induced on the outer face of the sensor film, Ef(y, ),

is a function of the curvature:

Ef(y,t) = -D 2 77 (2 - 1)
Oy

2

where D is the distance from the neutral axis to the sensor film surface, is time,

yq(y,t) is the elastic deflection of the neutral axis of the beam component parallel

to the x-axis, and 8
2 is the curvature. The distance, D, is given by

D Ebh2 + Efh2 + 2Efhbhf hf
= b+ f --- (2-2)2 (Ebhb + Efhf) 2

where Eb and Ef are the moduli of elasticity for the beam and film, and hb and hf

are the thicknesses of the beam and film layers, respectively. Note that if the film

4



CHAPTER 2. THEORETICAL ANALYSIS OF SMART COMPONENTS

z

Mf

Y

hb

Figure 2-1. Geometry of a beam with a film transducer adhered to a single surface.

thickness is much smaller than the beam thickness then

D hb + hf (2- 3)
2

The charge developed at a point on the surface of the sensor film is directly

proportional to the longitudinal strain acting on the film at that point,

q(y,) = (k 31 (y)(y) (2 - 4)

where 2(y) is the distribution of the electric field parallel to the z- axis, k31 is the

electromechanical coupling factor, and g31 is a piezoelectric film constant ( )

The choice of the spatial weighting function, 2(y), may be enforced in a number

of ways, such as varying the geometric shape of the electrode plating or altering

the film thickness. The electromechanical coupling factor indicates the ability of

the piezoelectric material to exchange mechanical energy for electrical energy, and

is a function of both frequency and the quality of adhesion between the film and

beam. It is assumed that the thickness of the electrode layer on the surface of the

PVF2 film is negligible, so that spatially distributing the electrode plating does not

significantly change the stiffness of the PVF 2 layer (electrode thickness is typically

on the order of 400A0 for Ni-AI plating on 28,/m film [161).

5



CHAPTER 2. THEORETICAL ANALYSIS OF SMART COMPONENTS 6

The total charge accumulated on the film surface, Q(i), is the spatial summation

of all point charges, q(y, t), along the entire length of the electroplated film surface,

L: L

Q(j) = ,/ q(y,i)dy (2 - 5)

Combining Eq.'s (2-1), (2-4), and (2-5) gives

)(i) g3= ) a2D 0 7(y, ) 2(y)dy (2 - 6)

It is preferable to nondimensionalize i(y) with respect to the width of the beam, b,,

so that
2(y)

A(y) = y--- (2- )
bo

where A(y) represents a nondimensional spatial distribution function. By considering

the capacitive effects of the film as a dielectric material and combining Eq.'s (2-6)

and (2-7), a relation for the film sensor output voltage, Vf, is obtained:

vf()=-Qc / afc-y1 -A(y)dy . (2-8)

Eq. (2-8) is the governing distributed parameter sensor r ion. Cf is the film

capacitance. The constitutive charge coefficient, Qo, has units of Coulombs and is

defined in terms of the pertinent piezoelectric and geometric constants:

Qo b k 31 D (2 - 9)

g31

The central concepts which generated the model were the strain-curvature relation-

ship for a beam in bending and the applicable piezoelectric relationship between

. longitudinal strain-and charge developed on the film surface.

2.2 Distributed Actuation Using PVF 2 Film

The flexural vibrations of an elastic beam compone... having a PVF2 actuation

layer bonded to one face (see Fig. 2-1) have been described by Bailey [6]:

a2 [E ae mV(y,)] +pL (210)
8yl MO-A = ; 0 < y < L (2 - 10)( 2 (2 10)



CHAPTER 2. THEORETICAL ANALYSIS OF SMART COMPONENTS

where

pA = pbAb + pfAf (2-11)

El = EbIb + EfIf (2-12)

EbEfhbbo
m = -d31(hb + hf)2 (Eh + Efhf) (2-13)

In the above expressions r/(y,j) is transverse displacement, d31 is a piezoelectric

constant, hb is the beam thickness, hf is the thickness of the film layer, and bo is

the beam width. Bailey implicitly assumed throughout his analysis that the polarity

vector of tie film layer was oriented such that the positively biased surface of the film

actuator was the outermost surface. The linear inhomogeneous equation (Eq. (2-

10)) is the Bernoulli-Euler beam model with a bending moment term, m.V(y, ), that

results from the distributed action of the PVF2 actuation layer. The control moment

is as characterized a constant, m, which depends on the constitutive geometric,

material, and piezoelectric properties of the composite structure and expresses the

applied bnding moment per volt. The actuation layer may be spatially varied

in order to weight the function of the distributed moment, as is described in 18].

Eq. (2-10) may be non-dimensionalized for convenience, giving

04w 2 w 2 V
y 4 + 2 = < Y < 1 (2 - 14)

where the non-dimensionalized variables have the following definitions:

Y = y- (2-15)

w = ? (2-16)
L

mL
V = El V (2-17)

t t(p--) (2-18)

Eq. (2-14) may be used to determine the complete response of a particular sys-

tem when combined with the appropriate set of boundary conditions. However

the present form of Eq. (2-14) is ideally suited for investigating the behavior of

7



CHAPTER 2. THEORETICAL ANALYSIS OF SMART COMPONENTS

distributed actuation. The application of spatially varying actuator (and sensor)

distributions is discussed in section 2.4.

A distributed parameter control algorithm was derived by Bailey [21,61 and

Burke [8] using the second, or direct method of Lyapunov [23j. A Lyapunov func-

tional was chosen that represents the sum of the beam's strain potential and kinetic

energies:

F=1 [ay2w + - dY (2-19)

Deriving the control algorithm using the Lyapunov functional in Eq. (2-19) allows for

vibration damping to be implemented based on total system energy considerations

and avoids the truncation of the system model. Burke showed that for a nearly

arbitrary combination of boundary conditions for a given beam element, the time

derivative of the Lyapunov functional (Eq. (2-19)) may be combined with the system

governing equation (Eq. (2-14)) and written in the following form [81:

dF ' ar3w w 2(Yt)dYwn(w

dt o a2t V(Y, t)dY + fcn -(- t) yt, t),f(t),g(t)) (2 - 20)

where ~ represents the boundary point Y = 0 or Y = 1, and f(t) and g(t) are

arbitrary forcing terms. The (normalized) control voltage to the actuation film,

V(Y,t), appears only in the spatial integral term. In order to insure that energy is

always removed from the system, V(Y, t) must be chosen to force the spatial integral

term in Eq. (2-20) to always be negative. The control voltage may be written as

the superposition of a control input time function, p(t), and a spatial distribution

function, A(Y), such that

V(Y, t) = VoA(Y)p(t) (2 - 21)

where Vo is the gain of the control signal. If the boundary terms are ignored in

Eq. (2-20) and Eq. (2-20) is combined with Eq. (2-21), then

dF I 1 a3w
d = VOp(t) / ay2a A(Y)dY (2 - 22)

This result will be combined in the next section with the distributed sensor relation-

ship (Eq. (2-8)) in order to formulate a generalized control law for smart structural

components.

8
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z

Mf a Mf

actuator(+)

hb bea

ensor (+)

Figure 2-2. Geometry of a smart structural component.

2.3 Derivation of Smart Component Control Law

Specific constraints regarding the geometry of smart structural components must

be rigidly obeyed in order to give validity to the control law presented in this section.

In a smart component two distinctly separate layers of piezoelectric film are adhered

to both faces of a flexible beam element as shown in Fig. 2-2. In this study PVF 2 is

used as the candidate material, but the analysis lends itself to any material which

can function in a distributed way to produce charge proportional to strain or induce

strain due to an electric field applied across its faces. One film layer acts as a sensor

and the other as an actuator. Both film layers must be oriented such that the polarity

of each layer is positively biased on the outer surface and negatively biased on the

inner surface. In this way the sign convention presented hereafter in the control law

derivation is maintained. It is further assumed that both film distributions maintain

identical spatial geometries. Regardless of what shape is chosen for a particular

application, it is essential that both the sensor and actuator distributions are of

the same shape. Finally, the sensor and actuator pair must be co-located on the

structure so that the smart component is symmetrical along the y-z plane as shown

in Fig. 2-2.

The distributed sensor model (Eq. (2-8)) may be non-dimensionalized in terms

9



CHAPTER 2. THEORETICAL ANALYSIS OF SMART COMPONENTS 10

of the new variable set described in Eq. (2-15), giving

Vf(t) = -| 1 a 2 w (Y, t)A(Y)dY (2-23)

where Vf = Vf o is the nondimensionalized film sensor voltage. If the control signal

time function, p(t), in Eq. (2-22) is defined to be proportional to the time derivative

of the sensor film output such that

p(t) = dVf (2 - 24)
dt

then the time derivative of the Lyapunov functional, Eq. (2-22), becomes

dF -=v 0 [ jY2t0 ,WA(Y)dY] (2 - 25)

Eq. (2-25) is a major result which validates the smart component control law

given in Eq. (2-24). Eq. (2-25) is always non-positive, indicating that enforcing the

control law (Eq. (2-24)) guarantees that energy will be removed from the system.

The linear control law insures stability but does not optimize the amount of energy

extracted from the system. The control law is applicable to any choice of spatially

shaped film distributions, provided that the actuator and sensor distributions are

identical and co-located. The control law insures that any film shape will provide

controllability to the system; however, the character and effectiveness of the con-

troller will ultimately be determined by the spatial distribution (see section 2.4).

Similarly stability is insured, in the sense that if Eq. (2-24) is obeyed then energy

can not be added to the system. A poor choice in a transducer shape may result

in no active energy dissipation for certain vibrational modes, but will not provide

excitation to those modes. The control law derivation has not required a modal

analysis of the dynamic system; hence, the results are applicable to broad class of

beams with nearly arbitrary boundary constraints.

2.4 Spatial Shaping of PVF 2 Transducers

In this section, theoretical results are presented which show that by spatially

varying the electric field of the PVF 2 sensor and actuator layers, specific modal
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subsets of an arbitrary beam system can be selectively controlled or all modes can

be controlled simultaneously. A detailed treatment of spatially varying distributed

sensors will be presented first, and analogies will then be made which link the

behavior of spatially shaped sensors to the behavior of spatially shaped actuators.

2.4.1 Application of Spatially Distributed Sensors

The electric fields of distributed PVF 2 sensors and actuators may be varied so as

to sense a distributed parameter or provide pure distributed actuation. PVF2 trans-

ducer shapes may be carefully chosen in order to induce response functions similar

to discrete transducers. Certain PVF2 sensors can be described as measuring point

angular and linear displacements, while similar PVF2 actuators can be modeled as

generating concentrated moments and forces. This representation is easily accom-

plished through the use of generalized functions, which are a notational restatement

of singularity functions [17]. The generalized step function, h(Y - a), is equal to

zero for all Y < a and equal to unity for all Y > a. Throughout the ensuing analysis

it is assumed that distributed transducer electric fields are caused to vary by spa-

tially shaping the electrode plating on the film surface. A spatially uniform electrode

distribution which extends along the entire beam surface is denoted as

A(Y) = h(Y)- h(Y - 1) . (2 - 26)

Similarly a "linearly-varying" electrode distribution extending along the entire length

of the beam is written as

A(Y) = (1- Y) [h(Y) - h(Y-1)] . (2 - 27)

Both distributions are illustrated in Fig.'s 2-3 and 2-4.

2.4.1.1 Uniform Sensor Distribution

If the uniform distribution (Eq. (2-26)) is applied to the sensor mooei (Eq (2-23))

and the integral is solved, the result is

Vf(t) = [aY (O,t) - ay(1 t)] (2 - 28)

11
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Figure 2-3. Spatially uniform film distribution.
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Figure 2-4. Linearly varying film distribution.
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This result has been arrived at based on the underlying assumption that the strain-

curvature relation (Eq. (2-1)) is valid and the governing relation (Eq. (2-23)) is

integrable along the entire domain. If boundary constraints are such that both

aY(0,t) and "y(1,t) are equivalent (e.g. clamp-clamped boundaries), then the

uniform sensor distribution will fail to induce charge on the film surface. If the

beam is clamped at Y = 0 and free at Y = 1, then the sensor will observe angular

displacement at the free end, (1, t).

Spatially uniform sensors can observe all modes of any beam configuration in

which one boundary is either clamped or sliding and the opposing boundary is either

pinned or free. For a cantilever beam every mode is characterized by a nonzero

angular displacement at the free boundary, and therefore every mode gives a positive

contribution to the sensor output. In this sense all modes are observable. The output

of a spatially uniform sensor will always be a measurement of angular displacement.

In a clamp-clamped configuration, however, both aw(,t) and w(1,t) are always

equivalent and equal to zero, so that all modes are unobservable. Similarly a clamp-

sliding configuration produces no sensor output.

An analysis of a uniform sensor on a pin-pinned beam lends insight into how

distributed sensors function. The mode shapes of a pin-pinned (simply supported)

beam are sinusoidal. Odd order modes exhibit even symmetry about the midspan,

while for even modes the opposite is true. With all odd order modes, aw(0,t)

-a(1,t, t),the integral in Eq. (2-23) is nonvanishing and thus all odd order modes

are observable. For even modes aw(0,t) = aw(1,t), the integral in Eq. (2-23)

vanishes and the uniform sensor is ineffective. The uniform nsor distribution may

be represented as essentially half of a square wave in space and may be described

in terms of a Fourier sine series containing only odd harmonics:

4 sin((2n + 1)rY) (2-29)
Y7r = 2n +1

n=O

The modes of a simply supported beam are sine functions,

00

w(Y,t) = E sin(mwrY)q(t). (2 - 30)
m=O

If the two preceding equations are appropriately included in the sensor relation

13
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(Eq. (2-23)), then the resulting constitutive relation nearly becomes a restatement

of modal orthogonality for odd order modes of the pin-pinned beam. All even values

for the mode number, m, cause the integral in Eq. (2-23) to be zero, since these

even modes are orthogonal to every spatial harmonic in the Fourier decomposition

of the uniformly distributed sensor.

2.4.1.2 Linearly-varying Sensor Distribution

If the linearly-varying distribution (Eq. (2-27)) is applied to the governing equa-

tion (Eq. (2-23)) and the integral is solved, then for all admissible curvatures the

result is

Vf(t) = (a (O,t) + w(O, t) - w(1 t)) . (2 - 31)

The preceding equation reveals in part the significance of applying spatially varying

sensors to certain beam configurations. Whereas the spatially uniform sensor cannot

sense motion in a clamped-sliding beam, the linearly-varying sensor can: all modes

become observable in the sense that each mode contributes a nonzero linear tip

displacement at the sliding boundary.

In the case of the pin-pinned beam, the linearly-varying film distribution de-

scribed in Eq. (2-27) may be used to effectively observe all structural modes. When

the boundary constraints are applied to Eq. (2-39), the linear displacement terms

vanish and only the angular displacement term at the Y = 0 boundary remains. A

Fourier decomposition of this distribution would include all of the sin(mirY) mode

shapes. By replacing A(Y) in the sensor governing equation (Eq. (2-23)) with the

Fourier series of the ramp functional, the result would essentially be a restatement

of orthogonality for both odd and even modes of the pin-pinned beam. With the

uniform distribution the angular displacements at both boundaries are equivalent for

even modes and cancel each other in Eq. (2-28). The linearly-varying distribution

eliminates this effect and allows for all modes to be observable in the sense that the

charge induc.Ed or the film will be the sum of nonzero contributions from all modes.

The linearly-varying sensor analysis reveals some unique features of spatially

varying the sensor within the framework of generalized functions. Discontinuous

step changes result in the sensing of angular displacements and discontinuous slope

14
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changes result in the sensing of linear displacements. The uniform film distribution

(Eq. (2-26)) on a cantilever beam senses angular displacement at the free end,

whereas the linearly-varying distribution (Eq. (2-27)) applied to a cantilevr beam

clamped at Y=O senses linear displacement at Y=1. Distributed sensors act as

discrete sensors when in these configurations, provided that the beam curvature is

admissible in the sense that the linear strain-curvature relationship (Eq. (2-1)) is

applicable.

2.4.1.3 Other Spatially Varying Sensor Distributions

In this section, spatially varying sensor distributions that are neither uniform

nor linearly-varying will be considered. The preceding discussion lends insight into

how a distributed sensor may function comparatively with a point displacement

sensor. Uniform and linearly-varying distributions may be applied to a broad class

of boundary configurations to produce an output parameter which is the sum of

contributions from even, odd, or both even and odd modes of the beam. Furthermore

it is possible to synthesize spatial sensor distributions that will weight the angular

displacement measurement more than the linear displacement measurement, or vice

versa. The result may be a sensor signal that is more sensitive to odd modes than

to even modes, etc., depending on the particular beam/sensor configuration.

The clamp-clamped beam provides an interesting example. A clamp-clamped

beam will have modes with either a vanishing displacement or a vanishing slope at

the midspan, but never both. Using insights gained from the previous analysis, an

appropriate film distribution which senses contributions from all vibrational modes

can be found. A spatial distribution with a discontinuous amplitude (step) change

and slope change at the midspan will provide observability, and the magnitude of

either the step or slope change may be varied to weight certain modes more than

others. The spatial distributions in Fig.'s 2-5 and 2-6 have both step and slope

changes at Y = . However, the magnitude of the slope change in the former figure

is twice that of the latter: thus in Fig. 2-5 odd modes are weighted twice as heavily

as even modes relative to Fig. 2-6.

In certain applications it may be advantageous to resort to distributions which

15
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Figure 2-5. Spatial sensor distribution for a clamp-clamped beam.
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Figure 2-6. Spatial sensor distribution for a clamp-clamped beam.
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have continuous slope changes that are non-uniform. An interesting example is that

of sensing a single vibrational mode. Consider a beam configuration where the cur-

vature relation corresponding to a particul a r mode has been determined analytically

or approximated through computational methods. For most beam systems it is often

impractical to determine the curvature relation corresponding to a specific mode;

however, the purpose of this section is merely to demonstrate a unique example in

which a nonlinear film distribution may be applied.

For a beam which obeys the Bernoulli-Euler equation there are two principle

statements of modal orthogonality. They are described mathematically as [181

/D kj(Y)1k(Y)dx = 6jk (2 - 32)

ID j(Y>)1"'(Y)dx = 6 jk (2 - 33)

where oj(Y) and 4'k(Y) are eigenfunctions which correspond to the j and k modes

(the notation ()' indicates spatial differentiation), respectively, and

bj·k { j 5-k (2-34)

If Eq. (2-33) is integrated twice by parts, the result is

ID it(Y)> (Y)dx - [j(Y)'(Y -(Y (Y)] D = jk (2 -35)i(Ok (Y J (Y)'Ok Y - .D = y k

Realizing that an admissible solution to the Bernoulli-Euler equation is a displace-

ment field, w(Y,t), of the form

00

w(Y,t) = Ao E l/ni(Y)eiwt (2 - 36)
m=1

and comparing Eq. (2-35) with Eq. (2-23), one observes that if A(Y) is chosen to

vary spatially as the curvature, 0k"'(Y), of the k'th mode, then the sensor output will

be proportional to the k'th mvde only, subject to the constraint

'k(Y)A(Y) - k(Y)A'(Y) = 3. (2 - 37)
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A pin-pinned beam is an example of a configuration which conforms to this con-

straint.

2.4.2 Application of Spatially Distributed Actuators

If the uniform film distribution, Eq. (2-26), is applied as a distributed actuator

then the control input expression (Eq. (2-21)) becomes

V(Y, t) = Vo [h(Y) - h(Y - 1)] p(t) (2 - 38)

The control input appears in the governing actuator equation (Eq. (2-10)) in terms

of its Laplacian due to the beam moment curvature constitutive equations. The

effective loading that the uniformly distributed actuator presents to the beam is

found by examining the Laplacian of Eq. (2-38), which is given by

02V

ay 2 = Vo ['(Y) - 6'(Y- 1)] p(t) (2 - 39)

where the 6' terms are "doublet" or "concentrated point moment" functions. If

the linearly varying distribution is applied as an actuator then the control input

expression becomes

V(Y, t) Vo(1 - Y) [h(Y) - h(Y - 1)] p(t) (2 - 40)

for which the Laplacian is given by

a2V

ay2 - V [(Y) + 6(Y) - (Y - 1)] p(t) (2 -41)

where the terms represent "Dirac delta" or "concentrated point force" functions.

A detailed treatment of PVF 2 as a distributed actuator is presented by Burke [81,

who rigorously shows that discontinuities in amplitude give rise to point moments,

while discontinuities in slope give rise to point forces. Prior studies have shown

experimentally that the location of the discontinu;4ies can be varied so as to im-

plement an actuator which will provide control to all modes or to a desired subset

of modes [1]. Distributed actuator behavior is therefore analogous to that of dis-

tributed sensors in the sense that PVF 2 sensors observe angular displacements at

18
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locations of amplitude discontinuities and linear displacements at locations of slope

discontinuities. All of the theoretical observations made in the previous sections re-

garding spatially shaped sensor distributions are applicable to distributed actuators

as well.



Chapter 3

Theoretical Analysis of Smart Structures

3.1 Equations of Motion for a Generalized Structure

In this chapter the control law stated in Eq. (2-24) is applied in a general sense

to a system constructed from an arbitrary arrangement of several smart structural

elements. A generalized system is depicted in Fig. 3-1 in which an arbitrary number

of smart components are rigidly joined to the free end of a cantilever beam. This

system was chosen to facilitate an extension of the analysis which follows to a

broad class of arbitrary structure geometries. The results of this chapter indicate

that the energetic reactions between the component members will not degrade the

stability of the actively controlled structure. The equations of motion are derived

using Hamilton's Principle. Lyapunov's direct method is then applied to the system

in conjunction with the distributed sensor and actuator models presented in the

previous chapter to arrive at a control law for the generalized system.

Fig. 3-1 shows the geometry of the system. For convenience it is assumed that

all beam components have a characteristic length, L. An inertial reference frame,

designated as the XOYoZo frame is attached to the base of the cantilever beam.

Rotating reference frames are assigned to each of the elements that are rigidly con-

nected to the free end of the cantilever. The frame associated with the j'th member

is the designated as the xjyjzj frame. The yj unit vect.r is defined as tangent to the

j'th element at the common junction, as show, in the figure. When the structure

is at rest, the xjyjzj frame is rotated with respect t the inertial frame through the

angle j in the Zo direction. The elastic deformation of the j'th element, 77j(yj,f),

is defined as the distance along a line perpendicular to the uyj-axis from any ar-

20
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Figure 3-1. Geometry of a superstructure formed from an arbitrary number of smart

structural elements.

bitrary point pj on the uyj-axis to a point qj on the j'th smart component. For a

system consisting of n components, a set of generalized coordinates which com-

pletely specifies the system configuration at any instant of time can be expressed as

Ej=o0 7j(yj,t). This set of coordinates is completely independent since each coordi-

nate can be arbitrarily varied while keeping all other coordinates fixed. Not shown

in the figure are arbitrary forces, fj(f), and arbitrary moments, gj(f), which may act

at every boundary point yj = 1.

To find the equations of motion it is first necessary to locate the point qj with

21
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respect to the inertial frame. From Fig. 3-1,

Rqo Youyo + O70UXo (3 - 1)

and

Rqj = LYo + 70o + y yj + 7Uxj j 1,...,n (3 - 2)

where 7L is defined as the translation of the 0'th component (i.e. the base beam)

in the Xo direction at Yo = L. The velocities of the points qj with respect to the

inertial frame are found by differentiating the displacement vectors:

-. dRq0

Vq - di 7/O0Xo (3 - 3)

and

dRq. dyi d.
Vqj = dt - LGx +YJ ++ u/ d[ (3 - 4)

di =t1- 1UXc+7 di . + di

where j = 1, ... , n.

The time derivative of a unit vector in a rotating frame is defined as the cross-

product between the angular velocity of the frame with respect to the inertial refer-

ence frame and the unit vector. Defining '0(t) as the slope of the base beam (beam

"0") at Yo = L, i.e. (t) = (L,t), then the angular velocity of frame xjyjzj in

inertial space is given by iu 0ZO. Since the unit vectors Zo and 0z; in the inertial

frame and in the xjyjzj frame, respectively, are equal,

d = x xj = Y(3 - 5)

and
dO

-dt = j Yj = Ux; (3-6)

The Xo vector can be expressed as the sum of components in uxj and iy'.

UXo = sin(oj + k)uxj - cos(j + )yj (3 - 7)

Combining Eq.'s (3-5), (3-6), and (3-7) with Eq. (3-4) yields

Vqj [[ sin(qj + ) - yj + j] Uxj + [j -0cos(j( + ±)] Uyj (3 - 8)
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The kinetic coenergy, T*, of the system is the sum of kinetic coenergy terms

arising from each component beam member,

T =y E 2mj Vj * Vjdyj (3-9)
j=o

where mj = pjAj is the mass per unit length of the j'th beam, and torsional effects

of the beam have been ignored. Assuming small motions Eq.'s (3-3) and (3-8) may

be inserted into Eq. (3-9) giving

T = o 0 2dyo + E {2 0 [7 - 27jyj + 2±7Li7jsin(j + p)] dyj
2 J0o j i 2y

+ _ [1L3 + L) L2 /Ltsin(5j + I)] } (3-10)

where higher order terms (greater than 2nd order) have been neglected and terms

not containing j(yj,t) were evaluated through the bounds of the integral.

The total potential strain energy of the system, V, is determined based on the

assumption that no shear strains are present, i.e. all structural members are modeled

as Bernoulli-Euler beams. The total potential is given as

j= L2 Jo /Ab EbjyEj dAbjdyj + 2 A Ebjifj dAfjdyj (3- 11)

where bj and ej are the axial strains of the beam and film layers, respectively, of

the j'th component due to bending. Abj and Afj represent the cross-sectional areas

of the beam and film layers of the j'th element; Ebj and Efj are the Young's Moduli

pertaining to each element. Assuming small transverse displacements, the normal

strains for the beam and film sublayers of the j'th component become

217j
Ebj = -xj a- (3 - 12)say-

and

efj = -X-y~4- % Eo (3 - 13)

where xj is the distance in the uxj direction from the neutral axis to an arbitrary

point within the beam/film composite. An initial prescribed prestrain, ,o, has been

23
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added to the elastic strain of the film to account for strain induced through the

piezoelectric effect. Combining Eq.'s (3-12) and (3-13) with Eq. (3-11) gives

V--I -j ) dAbdyj ± [2 Eb+ ) dAfjdyj 

J=O [ Joo J

(3- 14)

The area moment of inertia of the j'th beam about its neutral axis is given by

Ibj = fA xdAbj (3 - 15)
bj

and similarly the area moment of inertia for the film layer is

= f| xzjdAf, (3 - 16)

The total moment induced on the j'th structural element due to the film, Mfj, is

M fj= f EfjeoxdAfj (3 - 17)
Af]

Eq. (3-14) may be combined with Eq.'s (3-15), (3-16), and (3-17) and reduced,

giving the following expression for the strain energy of the system:

V= {(J [(El,) (Y2 ) -)2M7j yj2 dyj + Efie2dAfidyj
j=0 2 j y2

(3 - 18)

where (El)j = (EI)bj + (El)f.

The expressions for T* (Eq. (3-10)) and V (Eq. (3-18)) are used in conjunc-

tion with Hamilton's Principle to arrive at the equations of motion for the system.

Hamilton's Principle (Lagrange's Equation) is stated as

jt2 (T- 6V + --j(j)di = 0 (3- 19)

where --j are nonconservative forces not represented in the expression for V. In this

system it is assumed that arbitrary forces, fj(i), and arbitrary moments, gj(t), act

on each element in the structure at the boundary point yj = L. When applying the
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calculus of variations to the potential strain energy term it is essential to realize that

both 6ti and 6t2 are equal to zero. The prescribed strain, co, is constant and can

not be varied. The equations of motion are found by varying T' - V and integrating

the result by parts in both spa. e and time until the independent variational variables

are no longer in differential form. When integrating by parts the geometric boundary

constraints at yj = 0 must be obeyed; namely, i7j(O,t) = 0j(O,t) = 0 for all j=

1, ..., n. The following system of governing equations are derived (j = 1, ..., n):

Beam 0: moio + (El)o A14 = AM2 (3-20)

O4j + mjOL sin(,~fBeam j: mjj + (EI)j a t - mjy j + mjL sin + ) (3-21)

The system is subject to the following natural boundary conditions at y = L:

E1 { + ---.sin(*Jj + ,) - m.o mjj.in(*j + )dyi +(EI),o = M + fo(T) (3 - 22)

and

- mj L3 m. 
L 2,(omjL3 j sin(Oj+ + - miyjijdyi+ (El)o -g3

( f + Y? = Mfo +so(t) (3-23)

The equations of motion also include two natural boundary constraints at yj = L

(i-= 1,...,n):

(El)j = Mfj + gj(f) (3- 24)

and

03rj aMfj
(El)ayj yj +fj() (3-25)

Oyj3 Oyj

The equations of motion have been derived based on the assumptions of small

motions and the absence of shear strains. Eq.'s (3-21) through (3-25) may be

nondimensionalized according to the following new set of variables for j=1,...,n:

J- L

yj _ yj
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tj = KjF i mjL4-

MfjL
j ; (EI)j

The system equations in

Equations of Motion:

82 wo
beam :

at2

02wj

beam j : t

nondimensional form are written as

4Wo a2 Mo
+ Oy4 = a 2 (3-26)

04 w__~ 22Wo a21~j+ O4 - Ya2 + sin( + sin(+ ) at)82 (tj)= aM

(3-27)

Natural Boundary Conditions at Yo = 1:

n 1 ~~~2,. s
2 slll\~j - ,innj + V~)-~.- 2w~·r _dv + e2eao m2i'etj -etJ z'-' n(j+ ) sd~j +-tf= it+fo(to)j=Z J JOj=j i i 

,,2w
8

2
W %2 '-Yd+ + = AO + go(to)
wi YjdY - 4 i,(Oj + ) or.2- ' J 2Jyati i 0·1· · ·- 1·

Natural Boundary Conditions at Yj = 1 (j = ,..., n):

93wj = Ij
Y3 ? a-j + fj(tj)

,9j ayJ

02wj
aV 2 = IVlj + gj(tj)

a

3.2 Smart Structures Control Strategy

In this section the smart structures control strategy is derived based on Lya-

punov's second method [23]. Distributed actuator and sensor governing equations

are combined with the Lyapunov functional time derivative to arrive at a smart

and

n

j=l

(3 .- 28)

,t ,/o'I O, -
3 t 

(3 - 29)

and

(3 - 30)

(3 - 31)
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component control law which guarantees the controllability of the global system. It

is assumed that the (undamped) generalized structure does not contain any unsta-

ble modes. The (nondimensionalized) Lyapunov energy functional pertaining to the

generalized structure is given as

1
2 2 ( )

F2 1 [( (Yw + (8 dYo

2 lo 0 ( 8YR )-j [Y) + + , (Y*jj +,,i( ti,) dYj .(3-32)

This functional is valid for small motions only: terms greater than second order

have been neglected in order to be consistent with the assumptions made in deriving

the equations of motion. The first and second terms in the first integral represent

the potential strain and kinetic energies of the base beam, respectively. The first

and second terms in the second integral represent the potential strain and kinetic

energies of the j'th element. Differentiating the functional with respect to time gives

an expression for the power in the system:

F=J_ 0 [ a yi.YOO+ -,,to -"_ dYo

' ]+ E { Yj + sin(+jt +)(l - + sn(j + t) (1) t)]
_ 0 a

+ "Y:j 2wj 5 dYj . (3-33)
+ i

The equations of motion (Eq.'s (3-26) and (3-27)) can be substituted into the

above expression to replace the kinetic energy time derivative terms:

o 82w. o + - 4 dY

+j - --Y*::(*% " . y-4-y- dY+ E X Yj + sin(-i + ) =;Ua X aa
j= J J '

(3-34)
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Differentiating both integrals by parts twice gives

F = 101 o MO+ 3 MdYj
aw o O 03Wo Y| ° 02Wo 02W YO=1

ato 8Y, aY3 ,V o,=o0 aYoat ay2 o0

+ F ant Yjat + sin(]j + r) [1, tj) aw=[· atj atj ayj[anj ayYO (
OYJ

2
1 J Y=0

-j atj OtjWi mi] J . (3-35)
NA2 , dtj 02w.1 Yy=i

Finally Eq. (3-35) may be combined with the natural boundary constraints of the

system (Eq.'s (3-28)-(3-31)) to give the result

n 1 
3

w _ [ 2W. 0
2

w. 1
3

w 

F = / 0 wj MjdYj +fcn t J - ,tJ(, ,tj)(tj), 'j(tj)

j=o " tJ j=O 
(3 - 36)

Eq. (3-36) shows that regardless of the energetic interactions between compo-

nents in the large structure the moment induced by the film only appears in the

spatial integral term. Recall that the (nondimensionalized) piezoelectrically induced

moment is proportional to the (nondimensionalized) film voltage and varies in both

space and time:

Mj = VojA(Yj)p(tj) (3 - 37)

where Voj is the gain of the control signal for the j'th component. Combining Eq. (3-

37) with Eq. (3-36) and ignoring the boundary terms since they are independent of

Mj gives

VojPj(tj)] ay2tA(Yj)dYj (3 - 38)
j=o 10 0YJt

Tne film sensor governing equation for the j'th component fiows directly from

Eq. (2-23):

()j= -| o y2 (Yjtj) j(Yj) dYj . (3 - 39)
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In order to extract energy from the global system each structural component is au-

tonomouJly controlled according to the following control law for the j'th component:

pj(t) =d ('f). (3--40)

Applying Eq. (3-40) by differentiating Eq. (3-39) and substituting the result into

Eq. (3-38) gives

l = E[Voj t 1 0wj A(Yj)dYj (3 - 41)O~o aw12 qn~,)~i,. (3 - 41)
j=O

Eq. (3-41) shows that if each smart component is independently controlled ac-

cording to the control law stated in Eq. (3-40) then the multi-component structure

can not be destabilized since energy is always removed from the global system. Be-

cause the negative definiteness of Eq. (3-41) the system is certain to be stabilizable,

although the character and effectiveness of the global control strategy will ultimately

be determined by the choice of spatial distributions and actuator orientations. It

is important to note that at worst a poor choice in transducer shapes will render

certain modes uncontrollable but will not provide excitation to these modes. It has

been assumed that all eigenvalues of the undamped structure are nonpositive. The

result also implies that for systems of even greater complexity the same control law

will still provide global stability. For instance, a system where an arbitrary num-

ber of additional beams were rigidly joined to the free end of the n'th component

(n #/ 0) of the current structure will lead to a new set of boundary terms at Yn = 1

to replace the fn(tn) and gn(tn) forcing functions. These terms will be similar to

the natural boundary constraints that exist at Yo = 1 of the current system. New

coupling terms will appear in the equations of motion that will also appear as kinetic

energy terms in the Lyapunov functional: these terms will vanish in the final result

through the substitution of the equations of motion into the Lyapunov functional

time derivative.

3.3 Smart Component Spatial Distributions

By choosing different PVF2 electrode spatial distributions for the component

members, it becomes possible to implement a controller that can control all modes
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of a structure simultaneously or provide vibrational attenuation to a selected modal

subset. In order to develop a methodology for choosing an effective combination

of spatial distributions and actuator orientations, it is first necessary to approach a

specific example system. Consider the simple structure shown in Fig 3-2, in which

two smart components are rigidly joined at a common boundary and clamped at

opposing ends. It is assumed that both components are characterized by the identical

geometric and material constants. The specific constraints described in section 2.3

regarding the geometry and polarity of each component necessarily apply to this

example system. The Lyapunov functional for the structure can be written as the

superposition of functionals corresponding to each functional member:

fo {2w1Z

I-d 0Y2)
a(al2 dY + 1 (0a2a2)

2 O(w2 2dY

Taking the time derivative of the above expression yields

dF o 2w, 0 w1\ awl dY
ayf2I1 ay1 -t &2

dt -1\ y2 j\ 2y \ tJ \ at
f {eW2 903 W2 + aw2 ) 02 w2 dY
Jol2)y2 J yat) at at2 JJ

Eq. (3-43) is reduced by applying the equation of motion (Eq. (2-1,

nate the transverse linear acceleration terms, integrating by parts, and

boundary constraints. The resulting expression for ddF becomes
a{,

dF

dt
J o (aOw V1 dY + 93w l)V2dY

-1 Oa2Yat \Yaat

(3-43)

4)) to elimi-

applying the

(3 - 44)

which is a restatement of the generalized expression (Eq. (3-36)) for this particular

system. If the control input is restated according to Eq. (2-21) then

dF = VolP1() a23 at AldY + Vo2P2(t)fo (a 2at) A2dYdt -
2Yo (3 - 45)

which is similar to Eq. (3-38).

Eq. (3-45) is suited for exploring various choices in smart component actuator

shapes and global geometries. As a first case, consider the application of two smart

1
F=

2
(3 - 42)
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X

t

Y = -1 Y = 0 Y =1

Figure 3-2. Simple structure in which two smart components are rigidly joined at a

common boundary and clamped at opposing ends.

structural components in which the candidate actuator (and sensor) electrode shape

is a uniform distribution described by Eq. (2-26) and shown in Fig. 2-3. There are

two possible global geometries, schematically depicted in Fig.'s 3-3 and 3-4. In

Fig. 3-3 both smart components would be arranged so that their PVF2 actuator

layers are directly adjacent to each other. In Fig 3-4 both PVF 2 layers would be on

opposing sides of the neutral axis of the composite structure. If the geometry shown

in Fig. 3-3 is implemented and the polarity constraints are obeyed, then enforcing

clamped boundary constraints allows Eq. (3-45) to be reduced to

dF 0
2

w1 0
2

w2

dF = Voipl(t)ay- (O t) - Vo2P2(t) ((,t) . (3 - 46)

Obeying the control law (Eq. (3-40)) yields

2w,
p1 (t) = t(0 t) (3 - 47)

and

P2(t) = + o2 t (O, t) .(3 - 48)

If the constitutive constants Qo and Cf are the same for both smart components

then p1 (t) = -p 2 (t) since w1(0,t) = w2 (0,t). Therefore if the control amplitudes

Y
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Vol and Vo2 are equal to unity then the functional time derivative reduces to

dF ra 2 w 2
dF = 2 [ 1 (0, t) (3 - 49)
dt aYOt

Eq. (3-49) is negative for all even-order modes and zero for all odd-order modes

since odd modes are characterized by vanishing angular velocity at Y = 0. The

geometry in Fig. 3-3 therefore provides controllability to even modes only.

If the geometry in Fig. 3-4 is implemented then p2(t) pl(t) where p(t) is

given by Eq. (3-47). Eq. (3-45) becomes

dF 92w1 a2w 2
dt = Volp1(t)oYat (0,t) + Vo2 2(t)y(0,t) (3 - 50)

which for this geometry reduces to

dF 2 2
d[ = -2 Yat 'ct)] * (3 - 51)

This distribution, like the distribution in Fig. 3-3, allows for point moment control

at the midspan, which will provide controllability for all even-order modes since all

even modes exhibit a non-zero slope at the center. Odd order modes of the structure

are not controllable using either geometry since they are characterized by vanishing

slope at the midspan. It is important to realize that it makes no difference on which

side of the structure the actuators are situated relative to each other: as long as the

polarity constraints (section 2.3) and the control law (Eq. (3-40)) are obeyed then

energy will be actively dissipated for the even modes regardless of which of the two

configurations are chosen.

It is possible to control all modes of the structure using smart structural com-

ponents in which the film distribution is the linearly-varying film shape described by

Eq. (2-27). The geometric configuration shown in Fig. 3-5 was chosen in which the

component actuator (and sensor) distributions are linearly varying. Implementing

the control law (Eq. (3-40)) for each smart component yields

wt , t) (3 - 52)
P (t) 5t (It) (3 - 52)

32



CHAPTER 3. THEORETICAL ANALYSIS OF SMART STRUCTURES
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Figure 3-3. Choice for

the global system.
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A1(Y) Y)

h(Y + 1)- h(Y)
Beam 1

-h(Y) + h(Y - 1)
Beam 2

Y=O

Figure 3-4. Choice of smart component film layer spatial geometries for control of

the global system
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and

P2(t) - - t) -__-(0, t). (3 - 53)

Odd-order modes are characterized by zero slope at the midpoint while even modes

are characterized by vanishing linear displacement at the center. Thus for odd

modes,

pl(t) = -P 2 (t) = - aW (0, t) (3 - 54)

where the constitutive geometric and piezoelectric parameters for both components

are assumed to be identical. For even modes pl(t) = 0 and p2 (t) is given by

P2(t) = - w2 (0, t) . (3 - 55)
OYdt

The Lyapunov functional time derivative is found by applying the spatial actuator

configuration to Eq. (3-45):

dF awl a t) + Vo2P2( t) [a2 ) a2(0t)] (3 56)

Tt = VoLPY t- (0't ) - ada at

Assuming that the control gains Vol1 and Vo2 are unity then for odd modes Eq.'s (3-

54) and (3-56) may be combined to give

dFt = -2 at(0,t) (3 - 57)

and for even modes Eq.'s (3-55) and (3-56) may be combined to give

dF _ [Ow2 12

dt = [Y- t ( )] * (3 - 58)

The two preceding equations demonstrate that the linearly-varying electrode dis-

tribution actively removes energy from all modes of the system ; however, twice

as much energy is dissipated for odd-modes relative to even modes. This example

shows that different spatial geometries can be chosen in which the control authority

of certain modes or modal subsets is weighted more than others.

In this specific example it has been shown that in order to provide controllability

to all modes of the system it is necessary to implement a distribution where both
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Figure 3-5. Choice for smart component film layer spatial geometries for control of

the global system.
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A(Y)

1

0 Y

Figure 3-6. "Universal" distribution, which gives rise to both point forces and point

moments at each boundary.

moments and forces are generated at the common junction between the component

members. The boundary constraints of complex multi-component structures gen-

erally will not be known a priori. Therefore control of complex smart structures

-often necessitates choosing distributions where both control moments and forces

are generated at all structural junctions. In many cases the uniform and/or linearly

varying distributions will suffice and possibly provide the most effective control for

a given system. For simplicity it is often preferable to choose a single PVF 2 film

shape to be used for every component member. The "universal" distribution shown

in Fig. 3-6 is applicable in most cases as a viable choice in film shape to provide

damping to the large structure. The distribution is essentially a combination be-

tween the linearly-varying and uniform distributions presented earlier. The universal

distribution has the attribute of providing both force and moment actuation at both

boundaries. The universal distribution will therefore preserve the characteristic of

providing active damping to all modes of most structural configurations.

In general if one has knowledge of the modeshapes of a superstructure then

an arrangement of PVF 2 transducer shapes can be chosen to control all modes of

that structure. Consider the "Y-structure" shown in Fig. 3-7 (this structure was
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constructed in the laboratory and is discussed in section 5.2). This system consists

of two smart components which are rigidly joined to the free end of a cantilevered

third component. The system obeys the equations of motion given in Eq.'s (3-26)

through (3-31) for the case of n = 2 (recall the base beam is assigned "beam

0"*). Dynamic analysis shows that all modes of this system are characterized by

non-zero slope at every point Yj = 1, for all j = 0,1,2. Therefore point force

boundary control is not required and a simple strategy for providing active damping

to all structural modes is to use three smart components with uniformly distributed

PVF2 transducers ( Fig. 2-3). In this way control moments are provided at all

Yj = 1. In the experimental analysis section this strategy is demonstrated to be

effective in providing active damping to the first four modes of the structure.

'In this chapter the base beam has been assigned "beam 0", while in the sections 5.2 and 6.1

the base beam of the Y-structure will be assigned "beam 1". I apologize for the confusion.
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5 g tip mass 5 g tip maJs

pleziglass
wedge

beam 3 beam 2

beam 1

Figure 3-7. A three component system which demonstrates the utility of using

uniformly distributed PVF2 transducer layers for vibration control. All three smart

components are fastened to a plexiglass wedge as -hown.
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3.4 Design Guidelines for the Application of Smart Components

The results of presented thus far are summarized in this section in the form of a

set of design guidelines for applying smart structural components to large structures.

1) Each smart structural component must be designed so that (a) the po-

larity vector of both actuator and sensor layers point toward the neutral

axis of the beam member, (b) both actuator and sensor electric field dis-

tributions are identical in shape and in orientation on the structure, and

(c) the time derivative of the sensor output is used as the control signal

for the actuator.

2) The electric fields of the PVF2 transducers may be spatially varied to

control all modes of a structure simultaneously or to control a desired

subset of modes. Varying the electric field is accomplished through shap-

ing the electrode deposition layer or by allowing the thickness of the film

layer to vary spatially.

3) Uniform distributions are effective for many structural geometries. It

may be preferable to use uniformly distributed film layers because they

are simple to construct.

4) Discontinuites in the amplitude of the PVF2 actuator electrode layer

result in point moments and discontinuities in slope result in point forces.

The magnitude of the amplitude and slope discontinuities dictates the

weighting of the boundary control action produced by film actuators.

In many instances the location of the discontinuities may be varied to

implement a control function that will weight certain modes more heavily

than others.

5) Discontinuites in the amplitude of the PVF2 sensor electrode layer result

in point angular displacement measurements and discontinuities in slope

result in point linear displacement measurements.
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6) If the dynamic behavior of a multi-component structure is completely

unknown then the "universal" distribution can be applied, which has the

characteristic of producing forces and moments at all boundary points. In

most instances this distribution will succeed in providing active damping

to all structural modes.



Chapter 4

Experimental Verification of Distributed Sensor Model

4.1 Spatially Uniform Sensor on a Cantilever Beam

In this chapter the governing distributed sensor relation is verified experimen-

tally for both uniform and linearly varying film shapes. Radiative cross-coupling

effects are addressed, which arise when both distributed sensors and actuators are

located on the same strucutral component. Verification of the distributed actua-

tor theory presented in section 2.2 is not included here but is provided in several

references [1,6,8,21,22].

The sensor model (Eq. (2-23)) was verified for a spatially uniform distribution

applied to a cantilever beam. The beam parameters are provided in Table 4-1.

The experimental configuration is shown in Fig. 4-1. A 35 gram Endevco 7302B

angular accelerometer was mounted on the tip. The shielded accelerometer leads

were extended above the beam and clamped in order to minimize their effect on the

beam vibrations. Uniaxially polarized PVF2 film (28um thickness) was bonded to

the steel beam using Eccobond 45LV, a low viscosity epoxy. The average thickness

of the adhesive layer was measured and found to be ~ 12/tm. The PVF 2 sensor

electrode was constructed by soldering a lead wire to a thin copper tab, and was

adhered to the electroplated film surface with conductive epoxy. An Electro 3030S20

magnetic coil was used as an actuator to excite the beam/film composite structure.

The magnetic actuator has the advantage that it is small and non-invasive. However,

the coil can not tolerate large voltages and therefore can not induce large forces.

The sensor model (Eq. (2-23)) predicts that a spatially uniform film distribution

on a cantilever beam will sense angular tip displacement, (1t) To verify this,y\l'. T vify this
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POWER | SIGNAL + MAGNETIC

SUPPLY SOURCE - COIL

M~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~At /~ *A

Figure 4-1. Experimental configuration for the uniform sensor analysis.

result, the beam composite was excited with the magnetic coil through a sinusoidal

sweep from 15 to 60 Hz, and a Zonic 6800 structural analyzer was used to correlate

the accelerometer and film sensor signals. Because the film behaves as an electrical

capacitor with a large input impedance, the isolation amplifier shown in Fig. 4-2 was

used to precondition the film output.

A spatially uniform sensor obeys Eq. (2-28). With the clamped boundary con-

dition at Y = 0 and with the dynamics of the isolation amplifier circuit included in

the model, Eq. (2-28) becomes

Vf(s) = o (RbCfs + I (1, s) (4- 1)

where the tip angular displacement has been transformed into the frequency domain,

s is the Laplace operator, Rb s the resistance associated with the isolation amplifier

circuit (see Fig. 4-2), and Cf is the film capacitance. The angular accelerometer

obeys the equation,
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OUT

Figure 4-2. Operational amplifier buffer circuit.

Va(s) = Gas2 a-(1, s) (4- 2)

where Va is the accelerometer output voltage and Ga is the accelerometer gain.

Combining the two preceding equations gives

Gas (RbCfs + 1 (4-3)
Vf Qo Rb

which is the analytical governing equation for this experimental analysis.

The necessary parameters are given in Table 4-1. The values for the piezoelectric

constants, k31 and g31 are average values supplied by the film manufacturer [161.

The film capacitance and resistance were measured in the laboratory. The angular

accelerometer was calibrated and adjusted so that its sensitivity was 1.67 mV/ rad
sec2

The distance from the neutral axis to the film surface, D, was calculated from

Eq. (2-2), and its value is approximately . The thickness of the epoxy layer was

ignored since its thickness is much less than that of the beam. The charge constant

was then calculated from the values of the appropriate constants supplied in the

table, and was founu to be 1.61x10 - 7 Coulombs.

The structure was excited through a continuous sinusoidal sweep from 15 to

60 Hz. The first two vibrational modes were found to occur at 2.2 Hz and 33.75

Hz. The analysis was limited to this frequency range because at low frequencies

and at frequencies greater than 60 Hz the magnetic actuator was unable to induce

sufficient angular acceleration, resulting in poor coherence and therefore unreliable
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parameter Beam PVF2 Other

Modulus, E, N m: 210x10 2.0xlO g

Length, L, m 0.140 0.140

Thickness, h, mm hb = .381 hf = .028

Width, bo, mm 12.7 12.7

Density,p, kgm - 3 7800 1800

Film Capacitance,Cf, nF 5.03

Film Resistance, MQ > 7000

g31 , X 2 216x10-3

Coupling Factor,k31 r 12%

Buffer Resistance, Rb 80MR

Accelerometer Gain,Ga 1.67mV/ d

Dist. from n. axis,D,q/m 190.64

Q0 , Coulombs 1.61x10- 7

Table 4-1. Uniform Sensor Analysis Experimental Parameters

data. Fig. 4-3 shows the data from the continuous sweep experiment. The figure

shows both magnitude and phase relationships between the accelerometer and the

film sensor. The model predicts that both sensors should produce signals which

are always in phase (except near 0 Hz, from Eq. (4-3)). In Fig. 4-3 the actual

data is shown as a solid line. The dashed lines are analytical results for which

the electromechanical coupling factor, k31 , is 12%, while the hash-marked lines are

theoretical results for which k31 z 7%. The 12% value for k31 given in Table 4-1

is an upper bound provided by the manufacturer which suggests perfect adhesion

of the film to the bonded surface. This is an idealization which is unacceptable

in actual practice. Technical data on PVF2 film shows that the coupling factor

typically will be less than 12% in the frequency bandwidth of this analysis 1161.

The results shown in Fig. 4-3 validate Eq. (2-23) through this frequency range

for this structural configuration. The analysis range was limited due to the inability

of the magnetic actuator to provide sufficient excitation at frequencies outside of

bandwidth vi' the experiment. Results which follow will support the model for other

configurations and broader frequency ranges.
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UNIFORM SENSOR DISTRIBUTION
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Figure 4-3. Uniform sensor distribution results, 15 to 60 Hz data.
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4.2 Linearly-varying Sensor on a Cantilever Beam

The sensor model was tested for a linearly-varying distribution (Eq. (2-27)) ap-

plied to a cantilever beam. A gram Entran EGA-125 linear accelerometer was

mounted on the tip. The accelerometer leads were extended above the structure

and clamped to minimize their effect on the beam vibrations. The experimental

configuration and procedure was identical to the configuration described in the pre-

ceding section.

A sideview of the linearly-varying sensor/beam composite is depicted in Figure 4-

4. Instead of spatially varying the electrode on the film surface, it was deemed

permissible to cut the uniformly plated film into the desired spatial configuration

and adhere it to the beam. The stiffness and thickness of the PVF2 layer are

both much less than that of the steel beam, and therefore it was assumed that

the strain relation given in Eq. (2-1) is still valid. The experimental results which

follow support this argument. However, if the thickness and modulus of elasticity of

the film layer are of the same order of magnitude as the corresponding component

material parameters then the strain distribution on the non-uniform film layer will

be significantly altered. In that case, cutting the film would no longer be permissible

and the non-uniform distribution would have to be accomplished by spatially varying

the electrode plating.

Because the tip mass was small (½ gram),the magnetic actuator proved to be

more effective in inducing flexural vibrations than in the uniform sensor analysis.

However, a cantilever beam produces small linear tip displacements (but large an-

gular displacements) at even modes. A linearly-varying distribution on a cantilever

beam senses transverse tip displacement only (from Eq. (2-31)),

Vf(s) = Q (w(1, s)) (4 - 4)

The accelerometer output, Va, is giver by

Va(s) = Gas2w(, s) (4 - 5)

Representing Eq. (4-4) in the frequency domain with the buffer circuitry included,
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and combining the result with Eq. (4-5) gives the governing equation for this exper-

imcntal analysis:

V, GaL RbCfs + 1 ) (46)

Vf Qo Rb

The relevant parameters are found in Table 4-2. The structure was excited

through a continuous sinusoidal sweep from 6 to 120 Hz for fifty averages. The first

three modes were found to occur at 17.81 Hz, 67.5 Hz, and 115.3 Hz, respectively.

Figure 4-5 shows the experimental results. Theoretical curves are drawn for k31 =

12% (dashed lines) and k31 = 6% (hash-marked lines). As is evident from the

figure, there is no coherence for a band of frequencies in the vicinity of the second

mode. Even modes of a cantilever beam are characterized by large angular tip

displacements but minimal transverse tip displacements and accelerations. Because

there is little translational tip motion at these frequencies, neither the film sensor

nor the accelerometer adequately senses its respective parameter.

The frequency bandwidth of both experimental analyses presented thus far has

been limited due to the poor ability of the discrete sensors to observe motion at

certain frequencies because of their location on the structure, and similarly the

inability of the magnetic actuator to provide sufficient excitation throughout the en-

tire analysis range. In the next section, linearly-varying PVF2 sensors and actuators

are incorporated in the same structure, producing results which verify the sensor

governing equation (Eq. (2-23)) for the first three modes.

4.3 Radiative Cross-coupling Between PVF 2 Sensors and Actuators

In this section the radiative cross-coupling phenomenon, an effect which occurs

when structual elements contain both sensor and actuator film distributions, is inves-

tigated. The sensor governing equation (Eq. (2-23)) was tested for a linearly-varying

distribution (Eq. (2-27)) on a cantilever beam using the identical experimental con-

figuration and procedure described in section 4.2. However, rather than a magnetic

coil a linearly-varying film distribution was used as the actuation element. A signal

source generated a continuous sinusoidal sweep from 7 to 120 Hz. The source out-

put was then amplified and a 200 Volt RMS signal was applied across the actuator
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CLAMP LINEAR ACCELEROMETER

SENSOR ELECTRODE PVF2 FILM LAYER STEEL BEAM 5 GRAM MASS

GROUND PLANE

Figure 4-4. Linearly-varying sensor applied to a cantilever beam, side view.
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Figure 4-5. Linearly-varying sensor distribution results.
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parameter Beam PVF2

Modulus,E,N · m210x10 J 2.0x10

Length, L,m 0.140 0.140

Thickness, h, mm hb = .508 hf = .028

Width, bo, mm 12.7 12.7

Density,p, kgm- 3 7800 1800

Film Capacitance,Cf, nF 2.08

Film Resistance,Mf2 > 7000

g31, -' 216x10-3

Coupling Factor,k31 - 12%

Buffer Resistance, Rb

Accelerometer Gain,Ga

Dist. from n. axis, D,m

Qo, Coulombs

Other

80 Mf

37.1 mV/ m
sec

254

2.15x10 - 7

Table 4-2. Linearly-varying Sensor Analysis Parameters

film, inducing a strain in the film and thereby exciting the structure. A gram

linear accelerometer was mounted near the free boundary, the accelerometer and

film sensor outputs were measured using the Zonic 6800 spectrum analyzer, and the

data was compared to the theoretical result (Eq. (4-6)). All relevant parameters are

included in Table 4-2.

The results of the experimental procedure are given in Figure 4-6. Theoretical

curves for k31 = 12% and for k31 = 6% are indicated on the figure as dashed

lines and hash marks, respectively. The figure shows that the implementation of

both sensor and actuator spatial film distributions on the same composite structure

results in a radiative "cross-coupling" effect, in which large excitation signals on

the actuator film propagate onto the sensor film. If a 200 V RMS square wave

is applied across the actuator film, a square wave signal is observed on the sensor

film. At off-modal frequencies the sensor film produces small structurally-induced

voltages which are dominated by cross-coupled noise. At frequencies which are

characte;ied by large tip displacements (near the first and third structural modes),

the structurally-induced component of the sensor film signal is significantly greater

than the radiative noise component. In Fig 4-6 the data follows the theoretical curve
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PHASE (deg)

MAGNITUDE (dB)

II 1

CROSS-COUPLING

Figure 4-6. Experimental results for linearly-varying sensor experiment using PVF2

as an actuator. Results indicate a radiative cross-coupling phenomenon between

sensor and actuator film layers.

in the vicinity of the first and third modes (11.25 Hz and 94.22 Hz, respectively).

At off-modal frequencies and at frequencies near the second mode ( 55 Hz)

the radiative noise is high, resulting in poor coherence and unreliable data. If the

radiative noise dominates the sensor output, then a large phase shift is observed.

An effective way to reduce the cross-coupling phenomenon is through the imple-

mentation of a simple decoupling circuit. The decoupling circuit shown in Fig. 4-7

was incorporated into the experimental configuration as indicated in Fig. 4-8. The

experimental results are shown in Fig.'s 4-9 and 4-10. Fig. 4-10 shows that at 51.6

Hz the tip displacement is minimal, the accelerometer signal is reduced dramatically,

and the distributed (displacement) film sensor signal falls into the noise floor. The

analog circuitry is unable to reject the radiative noise caused by the large actuator

signal when the signal-to-noise ratio falls below -75 dB. At 66.5 Hz, significant tip
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COUPLED
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Figure 4-7. Differential circuit to reduce cross-coupling effect.

motion allows the film sensor to function effectively, but at higher frequencies small

tip displacements again lead to coupling between the sensor signal and the actuator

film input.
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LAYER

Figure 4-8. Experimental configuration with cross-coupling rejection circuit included.
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DECOUPLED SENSOR OUTPUT

PHASE (deg)
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Figure 4-9. Experimental results with rejection circuitry included.
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PVF2 FILM
POWER SPECTRUM
MAGNITUDE (dB)

ACCELEROMETER
POWER SPECTRUM
MAGNITUDE (dB)

Figure 4-10.

sensor (top)
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Chapter 5

Experimental Verification of Control Methodologies

5.1 Experimental Verification of Smart Component Control Law

In this section the smart component control law (Eq. (2-24)) is experimentally

validated. Uniformly distributed sensor and actuator film layers are applied to a

cantilever beam, resulting in a beam/film composite structure which contains all of

the fundamental elements of an active vibration control system. The control law and

set of geometric constraints presented in section 2.3 are enforced for the structure

and controllability is demonstrated for the first two vibrational modes.

Fig. 5-1 shows the configuration of the experimental procedure. The stainless

steel beam with uniform PVF2 transducers epoxied to each surface was excited with

an Electro 3030S20 magnetic coil. An Entran EGA-125 linear accelerometer was

mounted at the tip of the structure for the first mode analysis, and near the midspan

of the structure for second mode testing. A Zonic 6800 spectral analyzer was used

to measure the transfer function between acceleration and beam excitation. A 5

gram tip mass was incorporated into the test structure. For the first mode analysis

the accelerometer was mounted near the tip of the beam, and for second mode

testing the accelerometer was fixed to a point along the midspan of the structure.

All pertinent experimental parameters are contained in Table 4-2.

The first modal frequency of the test structure was approximately 5 Hz. The

structure was excited by a swept sine from 3.75 to 6.0 Hz using a sweep rate of

0.05 .z The sweep rate and narrow band analysis range was chosen so that several

sweeps would occur within the discrete time averaging interval, to insure reliable

and repeatable results. A voltage proportional to the time derivative of the sensor
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PVF
SENS

3
R

LAYER

Figure 5-1. Experimental configuration for control analysis.

signal was applied across the actuator film to provide active damping. The actuator

film in this configuration develops a uniform bending moment within the structure,

as discussed by Bailey and Burke [6,81. The experimental configuration allows the

transfer function between acceleration and actuator excitation to be measured inde-

pendent of the active damper elements. The damping coefficient, , was calculated

from Eq. (5-1) 19,201 where wa and wb are the peak frequencies in the real part of

the transfer function:

2

=l Y [ /2+1a < Wb (5-1)

Fig. 5-2 shows the magnitude of the transfer function between tip acceleration

and input excitation from the magnetic actuator for the first mode. In the figure,

the solid line represents the transfer function as a function of frequency for the

uncontrolled case, and the dotted line represents the frequency response of the

actively controlled bam. The maximum voltage applied across the actuator film

was 350 V peak-to-peak for the first mode. Fig. 5-3 shows the results for the second

vibrational mode, which occurs at - 48 Hz. For second mode analysis, the test

structure was excited through a continuous sinusoidal sweep from 46 to 52 Hz at
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FIRST MODE CONTROL ANALYSIS

PHASt: oegj

Va

VIN

MAGNITUDE (dB)

Va|
VIN

--4

3.75 5.00 6.00

Hz

Figure 5-2. Transfer function between acceleration and actuator signal for the first

mode. Solid line is the uncontrolled response, dashed line is the actively damped

response.

a rate of .05 Hz/sec. Because differentiation is an inherently noisy process, it was

not possible to apply a feedback voltage greater than 184 V peak-to-peak across

the actuator film for second mode control, because noise in the feedback signal

would drive the system unstable. In both figures it is seen that the damped natural

frequency is higher than the undamped resonant frequency, which is most likely the

result of a phase error in the bandpass filter. The control algorithm requires a -90 °

phase shift between the film sensor outp.t and the feedback signal to the actuator:

in the actual experiment the phase shifts for the first and second modes were -99.2 °

and -100.8 ° , respectively.

The numerical results for both the first and second modes are tabulated in Ta-
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SECOND MODE CONTROL ANALYSIS

1.2 E-1

MAGNITUDE

Va

VIN

2.OE-2

0
50 52

Hz

Figure 5-3. Transfer function between acceleration and actuator signal for the second
mode. Solid line is the uncontrolled response, dashed line is the actively damped

response. The y-axis is linearly scaled.
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parameter First Mode Second Mode
uncontrolled controlled uncontrolled controlled

Wa 4.94 Hz 4.98 Hz 47.20 Hz 47.22 Hz

Wb 5.01 Hz 5.395 Hz 48.53 Hz 49.824 Hz

C 0.0069 0.0399 0.0139 0.0268
feedback 350 V 184 V

d. factor, R 5.728 1.928

Table 5-1. Experimental Results for Component Control Analysis

ble 5-1. The damping factor, R, indicates the ratio between the controlled and

uncontrolled damping coefficients. The results indicate that PVF2 sensors and ac-

tuators may be integrated into a lightly damped beam component to provide active

structural damping. However, the results show that the radiative cross-coupling

phenomenon hampers the effectiveness of the PVF2 sensor-actuator damper. The

radiative cross-coupling effect produces noise on the sensor film, and differentiating

the sensor signal to provide the control parameter augments the noise problem. In

practical application, it may be advantageous to use multiplexing techniques between

the sensor and actuator rather than to implement differential amplifier circuitry. The

quality of the noise reduction techniques will generally dictate the effectiveness of

the controller.

5.2 Experimental Verification of Smart Structures Concept

In this section the generalized smart structure control law (Eq. (3-40)) is val-

idated through the experimental analysis of the "Y-structure" shown in Fig. 3-7.

The structure is constructed from three beam members, each of which has uniform

layers of uniaxially polarized PVF2 film epoxied to both faces. Parameters for each

beam member are nearly identical and are provided in Table 5-2. Tip masses (4

grams) are fixed to the free ends of the structure as shown in the figure. The base

beam is rigidly clamped to a ground fixture. Each film layer is 28[m in thickness

and is adhered to a component surface using Eccobond 45LV, a low viscosity epoxy.

The average thickness of the epoxy layers was measured and found to be 9m.

Every PVF 2 layer ;s oriented such that each positively biased film surface is an outer
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surface. The beam layers are steel and 0.015 inches (0.381pzm) in thickness. Based

on the experimental results presented in section 4.3, the steel layers are used as a

ground plane to reduce cross-coupling between the actuator and sensor film layers.

Electrodes constructed by soldering lead wires to thin copper tabs are adhered to the

electroplated, positively-biased outer film surfaces with conductive epoxy. Stranded

40 gage lead wires are used because they are extremely compliant and therefore

preserve the lightly damped character of the passive system.

The three smart beam components are rigidly attached at a common boundary as

shown in Fig. 5-4. The two outer beams are each bent at 45 degree angles and spot

welded onto the base beam. An isosceles shaped plexiglass wedge, one inch thick

along the hypotenuse, is inserted between the two outer beams as shown. The wedge

is adhered to the two outboard members with Permabond 910, a cyanoacrylate

adhesive. The plexiglass wedge serves to enforce a zero slope boundary condition for

the outer beams and to provide additional rigidity to the joint without significantly

increasing the mass of the structure.

A schematic of the experimental setup is shown in Fig. 5-5. An Electro 30305S20

magnetic coil was used to drive the system. As indicated in the figure, each smart

beam component is independently controlled according to the control law given

in Eq. (3-40). Based on the previous experimental results found in section 4.3,

the film sensor output was passed through a buffer and a decoupling circuit in

order to reduce cross-coupling noise between sensor and actuator transducers on

the same beam member. A bandpass filter was used as the the controller in order

to differentiate the sensor signal across a bandwidth spanning the first four modes.

The first four modes all occur at frequencies less than 40 Hz. A bandpass filter with

the following transfer function was chosen:

Vout s
Vi = 10 0 (s +3000)2 (5- 2)

The buffer, differential decoupling, and bandpass filter electronics are shown in

Fig. 5-6.

Frequency response data corresponding to the second, third, and fourth struc-

tural modes were obtained by exciting the structure through a sinusoidal sweep in a

narrow bandwidth of frequencies in the vicinity of each mode, and then measuring
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actuator 
sensor 2

beam

sensor 2

actuator 2

F4:- beam 2

spot welds

beam 1

actuator 1

sensor 1

Figure 5-4. Geometry of the common boundary where the three smart components

are joined. Beams 2 and 3 are spot-welded to beam 1. All three members are

epoxied to the pleiglass wedge.
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SENSOR 1
VIN

5 g TIP MASS

ACTUATOR 3

SENSOR 3

ACTUATOR 2

SENSOR 2

PLEXIGLASS
WEDGE

TO SPECTRUM ANALYZER
(SENSOR 1 FILTERED OUTPUT)

Figure 5-5. Experimental setup for the Y-structure control experiment.
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COUPLED
SENSOR

IUPI P 1OK

Vs

TO KEPCO

AMPLIFIER

Figure 5-6. Analog compensation circuit used to implement the control law for each

smart component.
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the transfer function between a selected film sensor output and the noise input to

the coil. The sweep rate for each test was carefully selected in order to insure that

several sweeps would be generated for every sampling period while maintaining a

sweep that would be slow enough to guarantee repeatable results. The magnetic

actuator signal was limited to insure small motions. The frequency response data

were measured for both the open and closed loop system using a Zonic 6800 modal

analyzer. To obtain damping coefficients the Zonic modal capability was used: the

Zonic analyzer determines the coefficients by characterizing each mode as a spring-

mass subsystem with a linear viscous damper element.

It was not possible to obtain reliable frequency response data for the first mode

for two reasons: the signal generator was not capable of initializing the sweep at a

sufficiently low frequency (< 1Hz), and the generator could not perform a sweep at a

rate slow enough to insure accurate results. The damping coefficients for this mode

were therefore obtained through a transient response analysis. The modeshape of

the first bending mode is shown in Fig. 5-7. The modeshape was determined using

the NASTRAN finite element program (section 6.1). The resonant frequency of the

first mode of the (undamped) system was found to be 1.380 Hz. The structure

was excited at this frequency with the drive coil until a steady state was reached.

The signal to the drive coil was then turned off and the uncontrolled structure was

allowed to free-decay. The output of the film sensor situated on the base beam was

measured using the Zonic 6800 analyzer. The procedure was then repeated but the

control loops for each smart component were closed. The open and closed loop

transient response data is given in Fig. 5-8.

The damping coefficient, C, for both controlled and uncontrolled system response

to excitation at the first mode was determined using the logarithmic decrement

method (Ref. [21], pp. 126-128) and is included in Table 5-3. Because the passive

damping for the first mode is high, the PVF2 active layers are not able to increase

the damping for this mode by a large amount. In the actively controlled case

the feedback amplifier gains were adjusted to provide the maximum voltage to

each actuator (400 V peak-to-peak is an upper bound). Since the relative motions

in beams 2 and 3 were small, the maximum control signal inputs to actuators 2

and 3 were less than 75 V peak-to-peak (the gains could not be increased further
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Figure 5-7. Modeshape for the first bending mode of the Y-structure.
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Figure 5-8. Transient response data for the first mode.
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without saturating the op-amps). Performance was inhibited since most of the active

damping was achieved through the active control of beam 1 alone.

The modeshape corresponding to the second bending mode is shown in Fig. 5-9,

and was determined using a finite element model simulation (section 6.1). The

resonant frequency of the second mode was found to be 7.60 Hz. The mode is

characterized by large angular displacements at the free ends of beams 2 and 3.

Beam 1 is not displaced. Frequency response data for this mode was obtained by

exciting the structure with the magnetic coil through a sinusoidal sweep spanning a

frequency range of 6.8 to 8.2 Hz. A sweep rate of .01 Hz/sec was chosen, allowing

for nearly four sweeps to occur within one averaging period. The uncontrolled and

controlled transfer functions between the beam 2 film sensor and the input signal

to the magnetic driving coil are given in Fig. 5-10. The data was obtained over a

sampling interval of 50 averages. The damping coefficients for the controlled and

uncontrolled system are found in Table 5-3. The controller feedback gains were

adjusted to provide 400 V peak-to-peak to the actuators on beams 2 and 3 at

the resonant frequency. Since there is no relative motion in beam 1, adjusting the

feedback gain in the control loop for beam 1 was ineffectual. The second mode

is more lightly damped than the first mode, and thus the results shown in Fig. 5-

10 clearly demonstrate the effectiveness of the smart structure control strategy.

Damping is increased by a factor of 28.8 for this mode using the linearly-proportional

rate feedback control law.

The modeshape corresponding to the third structural mode is shown in Fig. 5-

11. The third mode was found to occur at 9.09 Hz. Because of the close proximity

of the resonant frequency of the third mode to that of the second mode, frequency

response data was accumulated for a frequency range spanning both the second

and third modes to validate the assertion that the smart structure control strategy

can simultaneously provide active damping to multiple modes of a structure. The

magnetic coil was used to excite the structure through a sinusoidal sweep from 7 to

10 Hz. A linear sweep rate of u.01 Hz/sec was again chosen. The controller gains

were again set to provide a 400 V peak-to-peak signal to the actuators on beams 2

and 3 at the resonant frequency of second mode, and to provide a 400 V peak-to-

peak signal to the actuator layer on beam 1 at the resonant frequency of the third
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0.

Figure 5-9. Modeshape for the second bending mode of the Y-structure.

mode. At the third mode resonant frequency the control signals into the beam 2

and beam 3 actuators were measured and found to be approximately 285 V peak-

to-peak. It was not possible to increase the gains in the feedback loop for these

two components without running the risk of damaging the film actuators due to

excessive voltages. A transfer function between the sensor film on the second beam

and the input signal to the magnetic actuator coil was obtained for the uncontrolled

and controlled cases: the results are given Fig. 5-12. Data was accumulated over

a sampling interval of 50 averages. The damping coefficients are given in Table 5-

3. The results indicate that the smart component control strategy is effective in

providing vibration control to both the second and third modes simultaneously.

The fourth structural mode was found to occur at 36.91 Hz. The modeshape

for the fourth mode is given in Fig. 5-13. The drive coil was used to excite the

structure from 35 to 40 Hz. A sweep rate of .05 Hz/sec was chosen. Transfer

functions between the beam 2 film sensor and the excitation noise were obtained

for the controlled and uncontrolled responses and are presented in Fig. 5-14. The

results are included in Table 5-3.

In Fig.'s 5-10, 5-12, and 5-14 it is observed that the damped modal frequencies

tend to exceed the undamped modal frequencies. The effect becomes more apparent
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Figure 5-10. Transfer function between the film sensor on beam 2 and the signal
input to the magnetic driving coil for the second mode. Solid line is the uncontrolled
response, dashed line is the actively damped response.
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C

Figure 5-11. Modeshape for the third bending mode of the Y-structure.

as the modal frequencies increase. The phenomena occurs due to the fact that the

phase of the bandpass filter (Eq. (5-2)), intially 900 at 0 Hz, tends to decrease

with increasing frequency. The phase is nearly constant over the frequency range

spanning the first three modes, although at the fourth mode the compensator phase

has deviated by nearly 150. The damped natural frequency of the fourth mode is

therefore appreciably greater than the undamped natural frequency. The damped

natural frequency of the fourth mode is seen to diminish as the center frequency of

the bandpass filter is increased.

The experimental results indicate that the smart structures concept is most

effective in controlling vibrations in structural modes characterized by low damping

and high strain energy states. In this particular structure the strain energy state of

the first mode is less than all other modes considered in the experimental analysis.

In the first mode the base beam experiences some strain whereas the outboard

beams (beams 2 and 3 in Fig. 3-7) remain nearly rigid. The outboard beams exhibit

large strains at the second mode. The strain energy and structural damping of the

second mode is significantly greater than all other modes, and implementation of

the smart structure control law increased the damping coefficient for the second

mode by a factor of 29. The damping coefficient of mode 3 was increased by a
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Figure 5-12. Transfer function between the film sensor on beam 2 and the signal
input to the magnetic driving coil for the second and third modes. Solid line is the
uncontrolled response, dashed line is the actively damped response.
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Figure 5-13. Modeshape for the fourth bending mode of the Y-structure.

factor of 7.3. Damping for the first and fourth modes were improved by factors of 2

and 5, respectively. The results verify that the smart structures concept is effective

in providing vibration control to lightly damped multi-component structures.
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Figure 5-14. Transfer function between the film sensor on beam 2 and the signal
input to the magnetic driving coil for the fourth mode. Solid line is the uncontrolled
response, dashed line is the actively damped response.
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parameter Beam

Modulus,E,N · m - 2 210x109

Length, L, m 0.140

Thickness, h,mm hb = .381

Width, bo, mm 12.7

Density,p, kgm- 3 7800

Film Capacitance,C, nF

Film Resistance,MR2

g31, t
d31, 
Coupling Factor,k31

Qo, Coulombs

PVF 2

2.0x10 9

0.140

if = .028

12.7

1800

5.03

> 7000

216x10-3

23x10- 12

12%

1.61x10-'

Table 5-2. Structural parameters for smart components used in the control experi-

ment.

parameter First Mode Second Mode Third Mode Fourth Mode

wn 1.380 Hz 7.600 Hz 9.092 Hz 36.91 Hz

C (uncontrolled) 0.01220 0.00146 0.00230 0.00181

( (controlled) 0.03435 0.04234 0.01667 0.00869

Vmax, act. 1 ±200V 0 V ±200V ±200V

Vmax, act. 2 ±38V ±200V ±142V ±172V
Vmax, act. 3 ±38V + 200V ±t142V ±172V

Table 5-3. Smart Structure Control Analysis Results.
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Chapter 6

Computer Simulation of Smart Structures Experiment

6.1 Finite Element Model

The smart structure control experiment described in section 5.2 was simulated

digitally. The simulation was accomplished using the MSC-NASTRAN finite element

program in conjunction with CTRL-C, which is a computer-aided workbench for

control system design and analysis developed by Systems Control Technology, Inc.

In this chapter the digital model is described with the intent of outlining a viable

method for generating computer simulations of smart structures.

In developing the NASTRAN finite element model for the "Y-Structure", it was

assumed that each of the three component beams had material properties given

in Table 5-2. However the material effects of the PVF2 and epoxy layers were

not included in the finite element analysis since their stiffness and mass properties

are negligible relative to he steel inner layer. The three components were defined

such that beam 1 is the beam length which extends from the clamped base to the

plexiglass wedge (190 cm), while beams 2 and 3 extend from the hypotenuse of

the wedge to the tip masses (refer to Fig.'s 3-7 and 5-4). Each beam component

was subdivided into eleven elements. The common boundary joining the three beam

components, shown in Fig. 5-4, was modeled as follows: the beam segments adjacent

to the plexiglass wedge were modeled as rigid and massless regions 1.4 cm in length;

the regions of beams 2 and 3 directly adjacent to beam 1 (and spot welded to beam

1) were modeled as two separate beam elements (1.9 cm long) which are rigidly

fastened to beam 1 at their end points only. The mass properties of these two

elements are found in Table 5-2. The tip masses were measured and found to be 4
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grams. The case control and bulk data deck entries for the NASTRAN simulation

are included in Appendix A.

The fundamental frequencies and modeshapes of the first ten modes were de-

termined using NASTRAN. The modeshapes of the first four modes are illustrated

respectively in Fig.'s 5-7, 5-9, 5-11, and 5-13 (see Sect. 5.2). The modal frequencies

are presented and compared to the experimentally obtained values in Table 6-1. The

first mode frequency estimate from the finite element program is somewhat higher

than the experimental result, possibly due to the damping effect of the electrode

wires which were necessarily connected to the PVF2 layers. The correlation of the

NASTRAN simulation to the experimental results validates the simplifying assump-

tions made in the finite element mode;. A complete listing of NASTRAN results is

found in Appendix A.

6.2 Simulation of the Control Law Using CTRL-C

The smart structure control strategy was simulated digitally with the aid of the

CTRL-C control analysis package. Only the first four modes were considered in the

simulation. To emulate the film actuators and sensors, a discrete, co-located sensor

and actuator pair was incorporated into the model at each of the five locations

indicated in Fig. 6-1. Each sensor measures angular displacement and each actuator

induces torque. Since uniformly distributed PVF2 sensors measure the difference

between angular displacement at the film boundaries (Eq. (2-28)), the three film

sensors were simulated by determining the difference between the appropriate point

sensors included in the model. Uniformly distributed actuators produce moments

that act in equal and opposite directions at the film layer boundaries (Eq. (2-39)).

The sensor and actuator pairs were coupled with the NASTRAN results for the first

four modes to arrive at the following state-space representation for the system:

dt x ] = - n -2( ][ x] (6-1)

= [c x] (6-2)
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or

d x
d = Ax + Bu (6-3)
dt

y = Cx' (6-4)

where and x are the modal displacement and velocity vectors, respectively, of the

first four modes; w, is a diagonal matrix whose elements correspond to the modal

natural frequencies; -2 Cwn is a diagonal matrix whose elements are the modal

damping coefficients; B1 is the actuator gain matrix; [C] is the sensor gain matrix;

u is a vector whose five elements are the actuator inputs; ' is an eight element

vector whose first five elements are the discrete sensor outputs, and whose final

three elements are the film sensor outputs (determined from the appropriate linear

combinations of the discrete sensor outputs). The film sensor gains were determined

from the experimental parameters given in Table 5-2: a value of 32rd was used

for each sensor. The actuator gains were determined from "m" in Eq. (2-10),

returning a value of 1.11 1 0 -7 N- . The damping coefficients were extracted from

the (uncontrolled) results found in Table 5-3.

In the experimental procedure described in Section 5.2, each film sensor was

compensated according to the transfer function given in Eq. (5-2), amplified by

a factor of 100, and fed back into the actuator located on the same structural

component. The three component control laws may be represented in state space

form:

dW
= FvW+ G (6-5)

dt
u = H + +uo (6-6)

where

F =

-6000 -9.106 0 0 0 0

1 0 0 0 0 0

0 0 -6000 -9.106 0 0

0 0 1 0 0 0

0 0 0 0 -6000 -9.106

0 0 0 0 1 0

(6-7)
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H =

'0 0 0 0 0 1 0 0 ,

... . 0 00

:00. .O (6-8).000

..... 000
-104 0 0 0 0 0 

104 :

0 . -104 

104 .

' 0 -104 
104 

(6-9)

and u is the disturbance noise vector. The state-space control law representation

may be combined with the system equations (Eq.'s (6-3) and (6-4)), resulting in

the following representation for the closed loop system:

dt [ [ GC F BH][ [ + [ ]Uo (6-10)

[= rC o][ w (6-11)

The frequency response data presented in the experimental results section are

transfer functions between the film sensors and a disturbance force acting on the

structure at point 3 in Fig. 6-1. Transfer functions between the PVF 2 sensors

(Y6, Y7, Y8) and the input disturbance at point 3 (uo3) were determined using CTRL-

C for both the uncontrolled and controlled cases. The results are shown in Fig.'s 6-2

through 6-5. Because of the symmetry of the structure, results for the film sensor

on beam 3 (see Fig. 3-7) are identical to the results for film sensor 2. The solid

lines represent the uncontrolled responses, while the dashed lines are the actively

controlled responses. The results from the simulation agree closely with the mea-

sured system response. Simulated results suggest that the control algorithm will be

less effective at first mode than at higher modes, which is in accordance with the
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actual system behavior. However, the simulation also suggests that the fourth mode

attenuation should be greater than what the experimental results indicate.

The method described in this chapter for developing a computer simulation for

smart structures is applicable to a broad class of systems. These systems include

structures in which all smart components utilize transducer electrode distributions

that may be represented by discrete changes in amplitude and slope. The distributed

function of these electrode distributions must be representable as the summation

of discrete transducers for the approach to apply. If the distributed actuators and

sensors are neither uniform nor linearly varying (e.g. let A(Y) = (Y2 -2Y +1)[h(Y)-

h(Y - 1)1), then the spatial distribution functions must be discretized. Once the

distributed action of the transducers has been modeled as the combined action of

point sensors and actuators, then the finite element model may be transformed into

state-space and combined with the control law as accomplished in this section.
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Figure 6-1. Location of discrete sensor and actuator pairs in the digital model.
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Figure 6-2.

film sensor 

Bode plots relating the magnitude of the transfer function between the

beam and the input excitation.
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Figure 6-3. Bode plots relating the phase angle of the transfer function between the

film sensor on the base beam and input excitation.
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Figure 6-4.

film sensor

Bode plots relating the magnitude of the transfer function between the
on beam 2 and input excitation.
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Figure 6-5. Bode plots relating the phase angle of the transfer function between the

film sensor on beam 2 and input excitation.
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Experiment

1.380 Hz

7.600 Hz

9.092 Hz

36.91 Hz

mode Frq simtro
Freq.

NASTRAN

1.387 Hz

7.594 Hz

9.037 Hz

39.32 Hz

71.13 Hz

71.15 Hz

137.8 Hz

192.9 Hz

220.7 Hz

295.9 Hz

Table 6-1. Modal Frequency Estimates

-

__
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mode

1

2

3

4

5

6

7

8

9

10

Estimate error

0.51%

0B.08%~

0.58%
9.79%1



Chapter 7

Conclusions and Recommendations

To facilitate the development of a distributed parameter vibration control strategy

for flexible structures, a theoretical model for spatially distributed sensors on a flex-

ible beam was derived without the necessity of modelling the beam in terms of its

component vibrational modes. The model predicts that uniform amplitude discon-

tinuities in the spatial distribution result in the sensing of angular displacements,

and that uniform slope discontinuities result in the sensing of linear displacements.

Both uniform and linearly-varying sensor distributions were studied in order to gain

insight into a design methodology for applying film sensors to arbitrary beam config-

urations. These distributions provide an understanding of film sensors which appeals

to one's intuition rather than to mathematical obfuscation. The model shows that

the spatial deposition of PVF2 film on the beam surface may be shaped so as to

function similar to point sensors or to produce a signal in which certain vibrational

modes of the structure are weighted more than others.

A vibration control strategy for large multi-component structures has been pre-

sented in which the structural components are actively damped beam members.

Each component element is smart in the sense that each obeys a component con-

trol law that is autonomous of all other structural members. Distributed sensor

and actuator layers are embedded into each structural component. The control law

for each smart component is based on the second method of Lyapunov, and does

not necessitate truncating the distributed-parameter model into a finite number 

modes. A control methodology was derived for a generalized system consisting of

an arbitrary number of flexible Bernoulli-Euler beams rigidly fixed to a base beam at

a common junction. The theoretical analysis shows that regardless of the energetic
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coupling between the component members, energy is guaranteed to be actively re-

moved from the the global system if the smart component control law is enforced

for each structural element. It is assumed that all eigenvalues of the undamped

system are nonpositive. Certain constraints must be met regarding the polarity and

spatial orientation of the PVF2 active elements in order to insure closed-loop sta-

bility. The PVF 2 distributions may be spatially varied in order to weight the control

authority in favor of certain vibrational modes, or to actively damp vibrations in all

modes simultaneously. A universal distribution is presented which has the potential

of providing active damping to all modes of many multi-component structures if

incorporated into every smart component of that structure.

The sensor model was verified through experimentation for spatially uniform and

linearly-varying PVF2 film distributions on a cantilever beam. Testing was restricted

to frequencies spanning the first three modes of the test structure due to limitations

in the point actuator involved in the analysis. In further experimentation, PVF2

sensors and actuators were incorporated into the same structural component. Ra-

diative noise problems developed when large voltages were applied to the actuator

film, which were effectively eliminated with decoupling circuitry. Finally, PVF2 sen-

sors and actuators were applied to a cantilever beam as the active components of

a vibration isolation system, and controllability for the smart structure was demon-

strated for the first two structural modes.

The smart structures control concept was validated both experimentally and

through digital simulations. A three component smart structure was constructed in

the laboratory. A uniform, co-located PVF2 sensor and actuator pair was incorpo-

rated into each component. The component control law derived in the theoretical

analysis was enforced for each structural element. Transient and frequency response

data were obtained for the first four vibrational modes. The experimental results for

these modes show that the control strategy is highly effective in controlling several

modes simultaneously. A computational method for the digital modeling of smart

structures is presented. The method uses the MSC-NAS RAN finite element pro-

gram in conjunction with CTRL-C, a control system design and analysis tool. A

simulation was performed for the experimental structure and the results were com-

pared to the experimental data. The simulations closely agree with the observed
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system response characteristics.

In specific applications it may be advantageous to use distributed sensors rather

than point sensors. Because distributed sensors function as spatial integrators, it is

contended that these sensors are less sensitive to placement errors than their dis-

crete counterparts. Non-uniform sensor distributions may be implemented to sense

a single mode in specific cases or to weight certain modes more than others. In the

context of continuous systems, active dampers have been traditionally based on the

implementation of a finite number of discrete sensors and actuators. Since the com-

ponent elements in theory possess an infinite number of degrees of freedom, these

control schemes truncate the system model to a finite number of modes. Difficulties

which often arise in determining the number of modes required to accurately model

the structure and in reconciling the location of the discrete sensors and actuators

are avoided through the implementation of distributed elements.

Results from both the smart structure experiment (i.e. the "Y-structure" ex-

periment) and the digital simulation indicate that the greatest degree of control

authority is obtained for structural modes which are characterized by high strain en-

ergies. Often the lowest order modes are less controllable than higher order modes

using the smart structure control strategy: an investigation into the use of this

control strategy in conjunction with higher authority actuators may be warranted.

Furthermore the control law under study in this paper is a linear control law, and

potentially may be optimized in a manner such as that presented in Ref. [6 to

improve controller effectiveness.
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Appendix A

NASTRAN Simulation Data

NASTRAN EXECUTIVE CONTROL DECK ECHO

ID RPLEXP,FEM

SOL 3

TIME 5
CHKPNT YES

CEND

ECHO OF FIRST CARD IN CHECKPOINT DICTIONARY TO BE PUNCHED 
OUT FOR THIS PROBLEM

RESTART RPLEXP ,FEM , 2/22/88, 46059,

SMART STRUCTURES

FINITE ELEMENT MODEL

MODIFIED MEMBER LENGTHS

CASE CONTROL DECK ECHO
CARD

COUNT

1
2.,

3
4
5
6
7

TITLE = SMART STRUCTURES

SUBTITLE = FINITE ELEMENT MODEL

LABEL
=

MODIFIED MEMBER LENGTHS
SPC = 100
DISP = ALL
METHOD = 100
BEGIN BULK

INPUT BULK DATA CARD COUNT = 44
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APPENDIX A. NASTRAN SIMULATION DATA

FEBRUARY 22, 1988 MSC/NASTRANSMART STRUCTURES

FINITE ELEMENT MODEL

MODIFIED MEMBER LENGTHS

SORTED BULK

* 1..
BAROR

CBAR 1

CBAR 2

CBAR 3

CBAR 4

CBAR 5

CBAR 6

CBAR 7

CBAR 8

CBAR 9

CBAR 10

CBAR 12

CBAR 13

CBAR 14

CBAR 15

CBAR 16

CBAR 17

CBAR 18

CBAR 19

CBAR 20

CBAR 21

CBAR 32

CBAR 33

CBAR 34

CBAR 35

CBAR 36

CBAR 37

CBAR 38

CBAR 39

CBAR 40

CBAR 41

CBAR 51

CBAR 52

CON12 101
COf12 201
CON12 301

CORD2R 1

++0000011.0
CORD2R 2

++000003-1.0

EIGR 100

+EIG MASS

GRID 1

GRID 2
GRID 3

GRID .4
GRID 5

GRID 6

GRID 7

GRID 8

100

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

100
100
11
22
42

1.19
0
1.19
MGIV

1 2

2 3

3 4

4 5

5 6

6 7

7 8

8 9

9 10

10 11
12 13

13 14

14 15

15 16

16 17

17 18

18 19

19 20

20 21

21 22

32 33

33 34

34 35

35 36

36 37

37 38

38 39

39 40

40 41

41 42

10 11
10 11

.000

.004

.004

0.0
O.
0.0
0.

0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

DATA ECHO

5 .. 6 ..
0. 0.

7 .. 8 .. 9 .. 210
1.

0.19 0.0 0.0 0.19 1.0 +000001
+000002

0.19 0.0 0.0 0.19 1.0 +000003
+000004

10 +EIG

0.0

.019

.038

.057

.076

.095

.114

.133

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

345
345
345
345
345
345
345
345

90

CARD
COUNT

1-
2-

3-

5-
6-

7-

8-

9-

10-
11-
12-

13-

14-

15-

16-

17-

18-

19-

20-

21-

22-

23-

24-

25-

26-

27-

28-

29-

30-

31-

32-

33-
34-

35-

36-

37-

36-

39-

40-

41-

42-
43-

44-

45-

46-

47-

48-

49-

50-

1 2
.

J _
-



NASTRAN SIMULATION DATA 91

FEBRUARY 22, 1988 MSC/NASTRANSMART STRUCTURES

FINITE ELEMENT MODEL

MODIFIED MEMBER LENGTHS

SORTED BULK DATA ECHO
CARD

COUNT
51-

'52-

53-

54-

55-

56-

57-

58-

59-

60-

61-

62-

63-

64-

65-

66-

67-

68-

69-

70-

71-

72-

73-

74-

75-

76-

77-

78-

79-

80-

81-

82-

1 .. 2.. 3.. 4 .. 5
GRID 9 0.0 .152

GRID 10 0.0 .171

GRID 11 0.0 .19

GRID 12 1 0.014 0.0

GRID 13 1 .0285 0.0

GRID 14 1 .043 0.0

GRID 15 1 .0575 0.0

GRID 16 1 .072 0.0

GRID 17 1 .0865 0.0

GRID 18 1 .101 0.0

GRID 19 1 .1155 0.0

GRID 20 1 .13 0.0

GRID 21 1 .1445 0.0

GRID 22 1 .159 0.0

GRID 32 2 0.014 0.0

GRID 33 2 .0285 0.0

GRID 34 2 .043 0.0

GRID 35 2 .0575 0.0

GRID 36 2 .072 0.0

GRID 37 2 .0865 0.0

GRiJ 38 2 .101 0.0

GRID 39 2 .1155 0.0

GRID 40 2 .13 0.0

GRID 41 2 .1445 0.0

GRID 42 2 .159 0.0

MATI 100 210.0E9 .33

PARAM GRDPNT 0

PBAR *100 100

*+0000055.85325E-14

RBAR 11 11

RBAR 31 11

SPCL 100 126

ENDDATA

12

32

1

L Q ln
0.0

0.0
0.0
0.0
0.00.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7800.0

7800.0

4.8387E-6

123456

123456

345

345

345

345

345

345

345

345

345

345

345

345

345

345

345

345

345

345

345

345

345

345

345

345

345

6.50362E-11

126

126

+000005

+000006

TOTAL COUNT= 83

APPENDIX A.
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APPENDIX A. NASTRAN SIMULATION DATA

SMART STRUCTURES
FINITE ELEHENT MODEL

MODIFIED nEtBER LENGTHS

HOOE EXTRACTION
NO. ORDER

1 3
2 5
3 .2
4 1
5 4
6 7
7 6
8 8
9 10

10 9
11 11
12 13
13 12
14 14
15 15
16 17
17 16
18 18
19 22
20 19
21 20
22 21
23 25
24 23
25 24
26 28
27 26
28 30
29 27
30 31
31 32
32 29
33 34
34 33
35 35
36 37
37 36
38 39
39 40
40 38
41 42
42 43
43 41
44 45
45 46
46 47
47 44
48 51
49 54
50 48

EIGENVALUE

7.600008E401
2.276832E+03
3.224250E2 03
6.105747E204
1.997656E205
1.999027E 05
7.491211E+05
1.469500E+06
1.922258E206
3.457016E+06
5.635135E*06
e.148278E+n6
1.012527E207
1.564692E+07
2.271782E07
2.346395E+07
3.515312E.07
4.387005E+07
S.360584E,07
6.336672E407
8.010682E207
9.329670E+07
1.039480E208
1.126432E208
1.431337Eo08
1.755108E+08
2.257558E*08
2.578685E.08
3.118390E 08
3.247119E+08
3.402314E+08
4.892713E208
3.021573E+09
4.414308E.09
1.0765842E10
1.982500E+10
2.339081E+10
3.717874E+10
5.542448E+10
6.139612E210
7.653032EO10
1.084929E+ll
1.174350E211
1.250573E .11
1.678419E+11
1.826681E+11
1.871036E11
2.181684E+11
2.429880E+11
2.639959E+11

REAL E I 
RADIANS

8. 717802Ee00
4. 771616E.01
5.678249E.01
2.470981E+02
4.469514E *02
4.471047E+02
8. 655178E .02
1. 212229E+03
1.386455E 03
1.859305E 03
2.373844E03
2.854519E*03
3.182023E.03
3. 955619E+03
4. 766320E+03
4.843961E+03
5.929008E203
6. 623445E 03
7.321602E.03
7. 960320E.03
8.950242E03
9.659023E+03
1.019549E+04
1.061335E.04
1.196385E.04
1.324805E+04
1.502517E204
1.605829E+04
1. 765896E 04
1.801977E04
1.844536E.04
2.211948E.04
5.4968e4E.04
6. 644025E404
1. 037586E2 05
1.408013E+05
1.529406E05
1.928179E205
2.354241E205
2.477824E 05
2.766411E205
3.293826E*05
3.426879E405
3.536344E 05
4.096851E205
4. 273969E.05
4.325548E*05
4. 670851E+05
4.929381E*05
5.138053E*05

FEBRUARY 22, 1986 IISC/NASTRAN 12/ 7/84

NVA LUE S
CYCLES

1.387481E.00
7.594262E+00
9.037213E+00
3.932687E201
7.113452E.01
7.115892E201
1.377514E202
1.929323E*02
2.206612Ee02
2.959175E+02
3.778008E*02
4.543108Ee02
5.064346E+02
6.295564E+02
7.558833E+02
7.709402E+02
9.436309E+02
1.054154E03
1.165269E+03
1.266924E203
1.424475E*03
1.537281E+03
1.622663E+03
1.689167E+03
1.904105E+03
2.108492E203
2.391330E 03
2.555755E+03
2.810511E.03
2.867935E+03
2.935671E.03
3.520424E+03
8.748559E+03
1.057429E+04
1.651369E+04
2.240922E+04
2.434125E+04
3.068792E204
3.746890E*04
3.943579E.04
4.402880E+04
5.242286E04
5.454048E+04
5.620267E 04
6.520341E.04
6.802231E2+04
6.884319E*04
7.433887E+04
7.845350E 04
8.177462E+04

GENERALIZED
tIASS

1.000000.OO00
1. 000000OE*00
9.999999E-01
1. 000000OE00
9.999999E-01
1.OOOOOOE00
1.00000OOE00
9.999999E-01
9.999999E-01
9.999999E-01
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

GENERALIZED
STIFFtlESS

7.600008E.01
2.276832E*03
3.224250E+03
6.105747E+04
1.997655E+05
1.999027E+05
7.491211E05
..469499E+06

1.922257Ee06
3 .457015E206
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
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SHART STRUCTURES
FINITE ELEMENT MODEL

HODOIFIED HEMBER LEtIGTHS
EIGENVALUE 7.600008E*01

CYCLES · 1.387481E+00 REAL E I GENVECTOR

FEBRUARY 22, 1988 MSC/NASTRAN 12/ 7/84

NO . 1

TYPE Ti
G 0.0
G -4.469667E-02
G -1.749812E-01
G -3.851473E-01
G -6.694937E-01
G -1.022332E*00
G -1.437995E00
G -1.910845E+00
G -2.435290E*00
G -3.005796E.00
G -3.603979E*00
G -3.918863E00
G -4.248104E.00
G -4.583028E+00
G -4.922854E.00
G -5.266835E.00
G -5.614256E+00
G -5.964431E00
G -6.316720E+00
G -6.670524E*00
G -7.025287E.00
G -7.380509E+00
G -3.918863E+00
G -4.248104E+00
G -4.583028E.00
G -4.922854E*00
G -5.266835E+00
G -5.614256E+00
G -5.964431E00
G -6.316720E.00
G -6.670524E.00
G -7.025287E+00
G -7.380509E.00

93

R2POINT ID.

2
3
4

6
7

9
10
11
12
13
14
15
16
17
18
19
20
21
22
32
33
34
35
36
37
38
39
40
41
42

T2
0.0
1.688533E-15
3.377114E-15
5.065789E-15
6.754603E-15
8.443611E-15
1.013286E-14
1.182239E-14
1.351228E-14
1.520252E-14
1.576619E-14
3.148864E-01
6.441264E-01
9.790493E-01
1.318876E+00
1.662858E 00
2.010279E*00
2.360453E *00
2.712743E 00
3.066546E*00
3.421309E 00
3.776532E.00

-3.148864E-01
-6.441264E-01
-9.790493E-01
-1.318876E *00
-1.662858E*00
-2.010279E+00
-2.360453E+00
-2.712743E+00
-3.066546E00
-3.421309E+00
-3.776532E *00

O.cG
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

T3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
C.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

R1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

R3
0.0
4.654839E+00
9.00926?7E00
1.306346E*01
1.681786E*01
2.027332E*01
2.343118E*01
2.629344E01
2.886276E 01
3.114261E01
3.180833E101
3.180833E01
3.240141E*01
3.291728E01
3.335860E01
3.372829E+01
3.402969E*01
3.426648E+01
3.444263E.01
3.456255E01
3.463091E.01
3.465282E01
3.100833E01
3.240141E01
3.291728E01
3.335860E01
3.372829E*01
3.402969E.01
3.426648E01
3.444263E*01
3.456255E01
3.463091E.01
3.465282E01
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SMART STRUCTURES FEBRUARY 22p 1988 SC/NASTRAN 12/ 7/84
FINITE ELEHENr HODEL

HODIFIED tElBER LENGTIIS
EIGENVALUE 2.276832E+03

CYCLES 7.594262E*00 R E A L E I E N V E C T O R N O. 2

POINT ID. TYPE Ti T2 T3 R1 R2 R3
1 G 0.0 0.0 0.0 0.0 0.0 0.0
2 G 9.538654E-12 3.548510E-06 0.0 0.0 0.0 -9.451067E-10
3 G 3.367492E-11 7.097021E-06 0.0 0.0 0.0 -1.536668E-09
4 G 6.569956E-11 1.064553E-05 0.0 0.0 0.0 -1.775732E-09
5 G 9.893579E-11 1.419404E-05 0.0 0.0 0.0 -1.664754E-09
6 G 1.267679E-10 1.774254E-05 0.0 0.0 0.0 -1.207629E-09
7 G 1.426668E-10 2.129105E-05 0.0 0.0 0.0 -4.096263E-10
8 G 1.402159E-10 2.483955E-05 0.0 0.0 0.0 7.227769E-10
9 G 1.131273E-10 2.838807E-05 0.0 0.0 0.0 2.182655E-09

10 6 5.523990E-11 3.193656E-05 0.0 0.0 0.0 3.963862E-09
11 6 -2.655000E-11 3.31194DE-05 0.0 0.0 0.0 4.663004E-09
12 G -7.271116E-11 3.311945E-05 0.0 0.0 0.0 4.663004E-09
13 G -1.030678E-01 1.031008E-01 0.0 0.0 0.0 1.972221E*01
14 6 -3.965873E-01 3.966196E-01 0.0 0.0 0.0 3.715067E01
15 G -8.570682E-01 8.571022E-01 0.0 0.0 0.0 5.229283E.01
16 G -1.461156E+00 1.461191E00 0.0 0.0 0.0 6.516766E,01
17 G -2.185773E*00 2.185807E.00 0.0 0.0 0.0 7.581015E01
18 G -3.008283E.00 3.008317E.00 0.0 0.0 0.0 8.427515E01
19 G -3.906752E,00 3.906786E00 0.0 0.0 0.0 9.064102E+01
20 G -4.860163E+00 4.860197EO00 0.0 0.0 0.0 9.501195E0O
21 6 -5.848708E.00 5.848742E00 0.0 0.0 0.0 9.752002E01
22 G -6.854102E.03 6.854136E00 0.0 0.0 0.0 9.832668Et01
32 G -7.271116E-11 3.311936E-05 0.0 0.0 0.0 4.663004E-09
33 G 1.030678E-01 1.031008E-01 0.0 0.0 0.0 -1.972221F*01
34 G 3.965873E-01 3.966196E-01 0.0 0.0 0.0 -3.715067Et01
35 G 8.570682E-01 8.571022E-01 0.0 0.0 0.0 -5.229283E201
36 G 1.461156E+00 1.461191E00 0.0 0.0 0.0 -6.516766Et01
37 G 2.185773E+00 2.185807E+00 0.0 0.0 0.0 -7.581015E401
38 6 3.008283E200 3.008317E200 0.0 0.0 0.0 -8.427515Et01
39 G 3.906752E*00 3.906786E*00 0.0 0.0 0.0 -9.06410ZE+01
40 G 4.860163E00 4.860197E00 0.0 0.0 0.0 -9.501195E+01
41 G 5.848708EE00 5.848742Et00 0.0 0.0 0.0 -9.752002E,01
42 6 6.854102E+00 6.854136E.00 0.0 0.0 0.0 -9.832668E01



APPENDIX A. NASTRAN SIMULATION DATA

SMART STRUCTURES
FI1ITE ELEHENT MOOEL

MODIFIED MEMBER LENGTHS
EIGENVALUE · 3.224250E.03

CYCLES * 9.037213E*00

FEBRUARY 22. 1988 HSC/NASTRAH 12/ 7/84

REAL E I G E N VECTOR HO. 3

TYPE T1
G 0.0

.G -2.806323E-01
G -1.024562E00
G -2.085269E+00
G -3.317624E*00
G -4.579226E00
G -5.731959E200
G -6.643593E*00
G -7. 189239E+00
G -7.252503E*00
G -6.934610E,00
G -6.712523E*00
o -6.418859E*00
o -6.004984E*00
G -5.482445EE00
O -4.863890E,00
G -4.162837E+00
G -3.393425E*00
G -2.570072E+00
G -1.707174EE00
G -8.187346E-01
G 8.203381E-02
G -6.712523E*00
G -6.418859E,00
O -6.004984E00
G -5.482445E*00
o -4.863890E400
G -4.162837E.00
G -3.393425E200
G -2.570072E+00
G -1.707174E 00
G -8.187346E-01
G 8.203381E-02

T2
0.0
1.255611E-1
2.511215E-15
3. 766817E-15
5.022428E-15
6.278042E-15
7.533653E-1S
8. 789298E-15
1. 004496E-14
1.130064E-14
1.171916E-14

-2.220899E-01
-5. 157552E-01
-9. 296326E-O1
-1.452175E.00
-2.070734Et00
-2.771789E,00
-3.541203E*00
-4.364557E200
-5. 227457E200
-6.115898E00
-7.016668Et00

2. 220899E-01
5.157552E-01
9.296326E-01
1.452175E,00
2.070734E00
2. 771789E 00
3.541203E*00
4.364557E.00
5.227457E 00
6.115898E200
7.016668E +00

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

T3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

R1 R2 R3
0.0 0.0
0.0 2.825040E01
0.0 4.877132E.01
0.0 6.160706E01
0.0 6.686317E.01
0.0 6.472316E+01
0.0 5.545511E0Ol
0.0 3.940909E01
0.0 1.700529E.01
0.0 -1.128661E01l
0.0 -2.243446E01
0.0 -2.243446E*01
0.0 -3.468155EJ01
0.0 -4.586253E01
0.0 -5.586028El01
0.0 -6.457762E*01
0.0 -7.194180E.01
0.0 -7.790810E.01
0.0 -8.246330E*01
0.0 -8.562811E,01
0.0 -8.745923E*01
0.0 -8.805077E01
0.0 -2.243446E+01
0.0 -3.468155E*01
0.0 -4.586253E+01
0.0 -5.5860286E01
0.0 -6.457762E*01
0.0 -7.194180E.01
0.0 -7.790810E,01
0.0 -8.246330E201
0.0 -8.562811E01
0.0 -8.745923E+01
0.0 -8.805077E+01

95

POINT 10.
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
32
33
34
35
36
37
38
39
40
41
42



APPENDIX A. NASTRAN SIMULATION DATA

StURT STRUCTURES
FINITE ELEHENT ODEL

HODIFIED EHBER LENGTHS
EIGEtVALUE 6.105747E04

CYCLES 3.932687E201

POINT ID. TYPE Ti
1 G 0.0
Z G 9.796127E-01
3 G 3.328663E.00
4 G 6.189985E.00
S G 8.789824E.00
6 G 1.050460E*01
7 G 1.092187E201
8 G 9.880572E.CO
9 G 7.480537E00

10 G 4.057470E,00
11 G 2.365457E-01
12 G -1.757791E,00
13 G -3.686821E200
14 G -5.232958E00
15 G -6.257291E*00
16 G -6.664&50E,00
17 G -6.411439El00
18 G -5.509968E00
19 6 -4.025350E+00
20 G -2.068650E200
21 G 2.153648E-01
22 G 2.664299Ee00
32 G -1.757791E200
33 G -3.686821E.00
34 G -5.232958E,00
35 G -6.257291E,00
36 G -6.664550E,00
37 G -6.411439E+00
38 G -5.509968E.00
39 G -4.025350E*00
40 G -2.068650E*00
41 G 2.153648E-01
42 G 2.664299£,00

FEBRUARY 22. 1988 HSC/HASTRAN 12/ 7/84

REAL E E N V E C T OR

T2
0.0
2.255172E-15
4.510335E-15
6.765527E-1S
9.020769E-15
1.127607E-14
1.353140E-i4
1.578682E-14
1.804227E-14
2.029778E-14
2.104961E-14
1.994348E*00
3.923377E.00
5.469512E200
6.493850E.00
6.90111ZE+00
6.648003E 00
5S.746532E200
4.261915E+00
2.305217E.00
2.120334E-02

-2.427731E+00
-1.994348E+00
-3.923377E.00
-5.469512E200
-6.493850E+00
-6.901112E+00
-6. 648003E 00
-5.746532E*00
-4.261915E*00
-2.305217E+00
-2.120334E-02
2.427731E*00

T3
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0

NO . 4

RI R2 R3
0.0 0.0
0.0 -9.530429Et01
0.0 -1.443613E+02
0.0 -1.499410E.02
0.0 -1.181635E*02
0.0 -5.865996E*01
0.0 1.616428E.01
0.0 9.253313E201
0.0 1.570717E202
0.0 1.986176E02
0.0 2.014596E+02
0.0 2.014596E*02
0.0 1.720186E*02
0.0 1.272837E202
0.0 7.095561E*01
0.0 7.773496E.00
0.0 -5.694511E01
0.0 -1.178194E202
0.0 -1.699366E+02
0.0 -2.093470E202
0.0 -2.334920E202
0.0 -2.415273E*02
0.0 2.014596E.02
0.0 1.720186E.02
0.0 1.272837E02
0.0 7.095561E+01
0.0 7.773496E,00
0.0 -5.694511E201
0.0 -1.178194E+02
0.0 -1.699366E*02
0.0 -2.093470E*02
0.0 -2.334920E202
0.0 -2.415273E+02
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APPENDIX A. NASTRAN SIMULATION DATA

SHURT STRUCTURES
FINITE ELEHENT IOEL

MODIFIED EMBER LEHGTHn
EIGENJVALUE 1.997656E05S

CYCLES 7.113452ER01

TYPE Ti
G 0.0
G -2.280203EE00
G -7.21611E*00
G -1.215313E201
G -1.501350SE01
G -1.466329E.01
G -1.112588E+l0
G -5.55433SE,00
G 3.602991E-02
G 3.186172E200
G 3.331555E2O0
G 2.858B8E*00
G 1.92550E+00
G 3.978151E-01
G -1.285915E.00
G -2.723250E.00
G -3.590420OE 0
G -3.680069E.00
G -2.923865E00
G -1.394605E#00
G 7.139394E-01
G 3.127665E.00
G 2.858588E*00
G 1.925250E.00
G 3.978151E-01
G -1.285914E*00
G -2.723250E*00
G -3.59C420E*00
G -3.68C069E#00
G -2.923865E.00
G -1.394605E00
G 7.139394E-01
G 3.127665E.00

FEBRUARY 22, 1988 HSC/NASTRAN 12/ 7/84

REAL E E N VECTOR

TZ
0.0
5.384843E-13
1.076967E-12
1. 615446E-12
2. 153922E-12
2.692391E-12
3. 230855E-12
3.769309E-12
4.307753E-12
4.846185E-12
5.025654E-12
4.729698E-01
1.406394Eo00
2. 933908E00
4.617722E*00
6.055131E 00
6.922366Et00
7.012076E00
6.255929E.00
4. 726720E#00
2.618221E00
2. 045368E-01

-4.729698E-01
-1.406394E200
-2. 933908E,00
-4.617721E,00
-6.055131E+00
-6. 922366E200
-7.012076E*00
-6. 255929E*00
-4.726720E+00
-2. 618221E00
-2.045368E-01

NO. 5

T3 RI R2 R3
0.0 0.0 0.0 0.0
0.0 0.0 0.0 2.145598E202
0.0 0.0 0.0 2.811465E202
0.0 0.0 0.0 2.197365SE02
0.0 0.0 0.0 7.107446E201
0.0 0.0 0.0 -1.076928E202
0.0 0.0 0.0 -2.541379E202
0.0 0.0 0.0 -3.140112E.02
0.0 0.0 0.0 -2.522249E*02
0.0 0.0 0.0 -5.717047E*01
0.0 0.0 0.0 4.777716E.01
0.0 0.0 0.0 4.777716E01
0.0 0.0 0.0 1.271774E02
0.0 0.0 0.0 1.635488E*02
0.0 0.0 0.0 1.582252E#02
0.0 0.0 0.0 1.167864E.02
0.0 0.0 0.0 4.893887E.01
0.0 0.0 0.0 -3.256285E,01
0.0 0.0 0.0 -1.137005E,02
0.0 0.0 0.0 -1.8133552E02
0.0 0.0 0.0 -2.253516E.02
0.0 0.0 0.0 -2.404435Et02
0.0 0.0 0.0 4.777716E01
0.0 0.0 0.0 1.271774E*02
0.0 0.0 0.0 1.635488E*02
0.0 0.0 0.0 1.582252E02
0.0 0.0 0.0 1.167864E,02
0.0 0.0 0.0 4.893887E,01
0.0 0.0 0.0 -3.256285E*01
0.0 0.0 0.0 -1.137005E*02
0.0 0.0 0.0 -1.813355E202
0.0 0.0 0.0 -2.253516Et02
0.0 0.0 0.0 -2.404435E202
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POIit ID.
1
2
3
4
5
6
7
8
9

10
11
12
23
14
15
16
17
18
19
20
21
22
32
33
34
35
36
37
38
39
40
41
42
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