
Distributed Particle Swarm Optimization for
Limited Time Adaptation in Autonomous Robots

Ezequiel Di Mario and Alcherio Martinoli

Abstract Evaluative techniques offer a tremendous potential for on-line controller
design. However, when the optimization space is large and the performance metric
is noisy, the time needed to properly evaluate candidate solutions becomes pro-
hibitively large and, as a consequence, the overall adaptation process becomes ex-
tremely time consuming. Distributing the adaptation process reduces the required
time and increases robustness to failure of individual agents. In this paper, we ana-
lyze the role of the four algorithmic parameters that determine the total evaluation
time in a distributed implementation of a Particle Swarm Optimization algorithm.
For a multi-robot obstacle avoidance case study, we explorein simulation the lower
boundaries of these parameters with the goal of reducing thetotal evaluation time
so that it is feasible to implement the adaptation process within a limited amount
of time determined by the robots’ energy autonomy. We show that each parameter
has a different impact on the final fitness and propose some guidelines for choosing
these parameters for real robot implementations.

1 Introduction

Human design of high-performing robotic controllers is nota trivial task for a num-
ber of reasons. In the first place, even the simplest of modernrobots have a large
number of sensors and actuators, which implies a large number of control parame-
ters to optimize. Secondly, real systems often present discontinuities and nonlinear-
ities, making it difficult to apply well-understood linear control techniques. Finally,
when porting the designed controller to real robots there might be an unexpected

Ezequiel Di Mario and Alcherio Martinoli
Distributed Intelligent Systems and Algorithms Laboratory, School of Architecture, Civil and
Environmental Engineering,́Ecole Polytechnique Fédérale de Lausanne.
1015 Lausanne, Switzerland
e-mail:ezequiel.dimario@epfl.ch, alcherio.martinoli@epfl.ch.

1



2 Ezequiel Di Mario and Alcherio Martinoli

performance drop due to a number of factors such as imperfections in fabrication,
changes in the environment, or modeling inaccuracies.

Machine-learning techniques are an alternative to human-guided design that can
address some of the previously mentioned challenges. They can automatically syn-
thesize robotic controllers in large search spaces, copingwith discontinuities and
nonlinearities, and find innovative solutions not foreseenby human designers by
working with a pool of potentially very diverse candidate solutions. Furthermore,
the learning process can be implemented fully on-board, enabling automatic adap-
tation to the underlying hardware and environment.

However, the main drawback of working with a pool of candidate solutions is the
amount of time needed to evaluate all candidates, which is substantially larger than
that required to generate them. Moreover, due to several sources of uncertainty, such
as sensor noise, manufacturing tolerances, or lack of strict coordination in multi-
robot settings, it may be necessary to re-evaluate some solutions to gather sufficient
statistics for meaningful adaptation. Because of these tworeasons, the adaptation
process is considered an expensive optimization problem.

Implementing the adaptation process in a distributed fashion brings two distinct
advantages. Firstly, it reduces the required evaluation time through parallelization.
Secondly, it increases robustness by avoiding a critical point of failure, which is of
particular interest in real robot implementations.

Thus, the goal of this paper is to analyze how different algorithmic parameters
in a distributed implementation affect the total evaluation time and resulting fitness.
We aim to reduce the total evaluation time such that it is feasible to implement
the adaptation process within the limits of the robots’ energy autonomy without
renouncing the benefits of a population-based learning algorithm.

2 Related Work

Particle Swarm Optimization (PSO) is a relatively new metaheuristic originally in-
troduced by Kennedy and Eberhart [8]. PSO is inspired by the movement of flocks
of birds and schools of fish, and represents a set of candidatesolutions as a swarm of
particles moving in a multi-dimensional space. Particles can recall at which position
of the search space they obtained their best performance andalso the position of the
best performing particle in a pre-established neighborhood.

Because of its simplicity and versatility, PSO has been usedin a wide range
of applications such as antenna design, communication networks, finance, power
systems, and scheduling. Within the robotics domain, popular topics are robotic
search, path planning, and odor source localization [13].

PSO is well suited for distributed/decentralized implementations due to its dis-
tinct individual and social components and the use of the neighborhood concept.
Most of the work on distributed implementations has been focused on benchmark
functions running on computational clusters [1,3,16]. Implementations with mobile
robots are mostly applied to odor source localization [9,17], and robotic search [6],



Distributed PSO for Limited Time Adaptation in Autonomous Robots 3

where, as opposed to optimizing a set of control parameters for the task at hand, the
particles’ position is usually directly matched to the robots’ position in the arena.
Thus, the search is conducted in two dimensions and with few or even only one lo-
cal extrema. For these reasons, even though robotic search is a challenging practical
task, it does not represent a complex optimization problem.

An example of a more challenging on-line optimization problem is the work of
Floreano and Mondada [5], who used Genetic Algorithms to optimize the weights
of an artificial neural network controller. The task was to navigate a path and avoid
obstacles with a tethered mobile robot. Even though the population manager and
other resource-intensive tasks were carried out on a dedicated off-board computer,
this study was still able to show the advantages of evaluation with hardware in the
loop. For example, the evolved direction of motion was a result of the interplay
between the robot morphology (higher density of proximity sensors facing forward)
and the environment in which it was deployed. It is worth noting that the experiment
required 67 hours of total evaluation time, and it would require the same time to
recreate it nowadays since the limit was not imposed by computational capabilities
but rather by the wall-clock time needed to gather enough information on the quality
of the candidate solutions.

Most of the research on optimization in noisy environments has focused on evo-
lutionary algorithms [7]. The performance of PSO under noise has not been studied
so extensively. Parsopoulos and Vrahatis showed that standard PSO was able to cope
with noisy and continuously changing environments, and even suggested that noise
may help to avoid local minima [12]. Pan et al. [11] proposed aPSO variation based
on statistical tests to select particles, but was only applied to benchmark functions
with added gaussian noise.

Pugh et al. showed that PSO could outperform Genetic Algorithms on benchmark
functions and for certain scenarios of limited-time learning under the presence of
noise [14,15]. Pugh also showed that PSO can perform satisfactorily with low pop-
ulation sizes, a result that is of particular interest for multi-robot implementations
because a smaller number of robots can be used while leaving the optimization pro-
cess robust to connectivity issues between the robots.

3 Materials and Methods

This paper is focused on a case study of obstacle avoidance, abasic behavior in
robotics. Robots navigate autonomously in a square arena of1 m2 in which walls
and other robots are the only obstacles. We use the same metric of performance as
Floreano and Mondada [5], which consists of three factors, all normalized to the
interval [0, 1] (Eq. 1).

F =V · (1−
√

∆v) · (1− i) (1)

V is the average wheel speed,∆v the wheel speed difference, andi the proximity
sensor activation value of the most active sensor. Each factor is calculated at each



4 Ezequiel Di Mario and Alcherio Martinoli

time step and then averaged for the total number of time stepsin the evaluation
period. This function rewards robots that move quickly, turn as little as possible,
and spend as little time as possible near obstacles.

We chose the obstacle avoidance task because it is scalable in the number of
robots, requires basic sensors and actuators that are available in most mobile robots,
and the chosen performance metric can be fully evaluated with on-board resources.
Thus, it can serve as a benchmark for testing distributed learning algorithms with
real robots in the same way that standard benchmark functions are used in numerical
optimization.

Our experimental platform is the Khepera III mobile robot, adifferential wheeled
vehicle with a diameter of 12 cm. The Khepera III is equipped with nine infra-red
sensors as well as five ultrasound sensors for short and medium range obstacle de-
tection. Our experiments were carried out in simulation using Webots [10], a real-
istic, physics-based, submicroscopic simulator that models dynamical effects such
as friction and inertia. In this context, by submicroscopicwe mean that it provides
a higher level of detail than usual microscopic models, faithfully reproducing intra-
robot modules (e.g., individual sensors and actuators).

The controller architecture is an artificial neural networkof two units with sig-
moidal activation functions, and a single output per unit tocontrol the two motors.
Each neuron has 12 input connections: the 9 infrared sensors, a connection to a con-
stant bias speed, a recurrent connection from its own output, and a lateral connection
from the other neuron’s output, resulting in 24 weight parameters in total.

The adaptation algorithm is the noise-resistant variationof PSO introduced by
Pugh et al. [15], which operates by re-evaluating personal best positions and aggre-
gating them with the previous evaluations (in our case a regular average performed
at each iteration of the algorithm). The movement of particle i in dimensionj de-
pends on three components: the velocity at the previous stepweighted by an inertia
coefficientw, a randomized attraction to its personal bestx∗i, j weighted bywp, and
a randomized attraction to the neighborhood’s bestx∗i′, j weighted bywn (Eq. 2).
rand() is a random number drawn from a uniform distribution between0 and 1.

vi, j = w · vi, j +wp · rand() · (x∗i, j − xi, j)+wn · rand() · (x∗i′, j − xi, j) (2)

The neighborhood presents a ring topology with one neighboron each side. Parti-
cles’ positions and velocities are initialized randomly with a uniform distribution in
the [-20, 20] interval, and their maximum velocity is also limited to that interval.
The robots’ pose (position and orientation in the arena) is randomized at the begin-
ning of each evaluation. At the end of each optimization run,the best solution is
tested with 40 evaluations of 30 s, and the final performance is the average of these
final evaluations.

The total evaluation time for PSO depends on four factors: population size (Np),
individual candidate evaluation time (te), number of iterations of the algorithm (Ni),
and number of re-evaluations of the personal best position associated with each
candidate solution within the same iteration (Nre), as shown in Eq. 3.



Distributed PSO for Limited Time Adaptation in Autonomous Robots 5

ttot = te ·Np ·Ni · (Nre +1) (3)

If we assume that there is a fixed upper limit for the total evaluation time, an increase
in any of the parameters would result in a proportional decrease in the rest.

In a parallelized or distributed implementation, fitness evaluations are distributed
amongNrob robots, and the wall-clock timetwc required to evaluate candidate solu-
tions is reduced (Eq. 4).

twc = te ·
⌈

Np

Nrob

⌉

·Ni · (Nre +1) (4)

It is worth noting that the number of robots is not necessarily the same as the popu-
lation size. In fact, the choice of the population size depends on the dimension of the
search space and the complexity of the task, while the choiceof number of robots
is based on more experimental considerations (e.g., availability of robots, targeted
number of robots needed for a specific mission in a given environment). Thus, a
robot may have several particles to evaluate within the samecandidate solution pool
as opposed to only one.

A full optimization of the algorithmic parameters to minimize the total evaluation
time would be a computationally very expensive problem, dueto the large number
of candidate configurations, the combination of continuousand discrete parameters,
the large variation between runs, and the possible existence of local optima. Thus,
our approach is to analyze each parameter individually, taking into account its im-
pact on the final performance as compared to a full-time adaptation baseline.

Our baseline set of parameters, based on the work of Pugh et al[14], is shown in
Table 1. This set of parameters amounts to a total evaluationtime of approximately
417 hours if carried out on a single robot, what we refer to as full-time adaptation.

To complement our robotic case study and add more generality, we also perform
runs on four traditional mono and multi-modal benchmark functions without noise:
the sphere, Rosenbrock’s, Rastrigin’s, and Griewank’s, defined in Eq. 5. The base-
line parameters for the algorithm ran on benchmark functions are also shown in
Table 1.

f1(x) =
D

∑
i=1

x2
i

f2(x) =
D−1

∑
i=1

[(1− x2
i )+100(xi+1− x2

i )
2]

f3(x) = 10D+
D

∑
i=1

[x2
i −10cos(2πxi)]

f4(x) = 1+
1

4000

D

∑
i=1

x2
i −

D

∏
i=1

cos(
xi√

i
) (5)



6 Ezequiel Di Mario and Alcherio Martinoli

Table 1 Algorithmic parameter values

Parameter Obstacle Avoidance Benchmark functions

Population sizeNp 100 100
IterationsNi 50 500
Evaluation spante 150 s -
Re-evaluationsNre 1 0
Personal weightwp 2.0 2.0
Neighborhood weightwn 2.0 2.0
DimensionD 24 24
Inertiaw 0.8 0.6
Vmax 20 5.12

4 Results and Discussion

The results of this paper are presented as follows: Section 4.1 introduces the discus-
sion with a comparison of the fitness as a function of the totalevaluation time. In
Sections 4.2 to 4.5 we analyze each of the four previously mentioned algorithmic
parameters and propose guidelines for setting their values. Finally, in Section 4.6
we apply the proposed guidelines to reduce the total evaluation time and compare
the results with the full-time adaptation.

4.1 Parameter comparison

In the first place, we started from the total evaluation time baseline of 417 h and
reducedNp, Ni, andte individually to 5, 5, and 5 s respectively, while keeping the
other two parameters at their baseline values, plotting thethree curves in the same
graph for better comparisons. We performed 100 independentruns for each set of
parameter values and with 1, 2, 4, and 8 robots. When multiplerobots were con-
sidered, all of them were learning in parallel. All runs wereperformed in a 1x1 m
arena unless noted otherwise. The resulting fitness can be observed in Figure 1. In
all cases, reducing the evaluation spante has the least impact on the resulting fitness,
followed byNp andNi. When comparing the same total evaluation time across dif-
ferent numbers of robots, it can be noted that as the number ofrobots increases, the
arena becomes more crowded and obstacle avoidance becomes harder, thus causing
the average fitness to decrease. Also, performances are noisier (see larger error bars
in lower right corner) and therefore there is less impact of adecreasedNp or Ni

(flatter profile than with 1-2 robots). The following sections present a more detailed
analysis of each individual parameter.



Distributed PSO for Limited Time Adaptation in Autonomous Robots 7

0 100 200 300 400
0.4

0.5

0.6

0.7

0.8

Total evaluation time [h]

F
itn

es
s

 

 

Np
Ni
te

0 100 200 300 400
0.3

0.4

0.5

0.6

0.7

Total evaluation time [h]

F
itn

es
s

 

 

Np
Ni
te

0 100 200 300 400
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Total evaluation time [h]

F
itn

es
s

 

 

Np
Ni
te

0 100 200 300 400
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Total evaluation time [h]

F
itn

es
s

 

 

Np
Ni
te

Fig. 1 Fitness as a function of total evaluation time for 1, 2, 4, and8 robots respectively. Each
curve represents the reduction of one individual parameter(population size, number of iterations,
and evaluation span) with the others held constant.

4.2 Evaluation Span

To analyze the effect of the evaluation span, we reducedte from 150s to 5s, with
20s steps in the higher range and 5s steps in the low range. We did 100 runs for
each value, and plotted the mean and standard deviation in Figure 2, left.

The mean fitness remains fairly constant for 30s< te < 150s for all number of
robots. In fact, the difference in fitness between 150s and 30s is not statistically
significant in all cases (Mann-Whitney U test, 5% significance level). Forte < 30s
the fitness starts to decrease, although at different rates for different numbers of
robots. In particular, for 8 robotste can be reduced to 10 s without a major change in
fitness, which suggests that a crowded arena may allow for shorter evaluation spans
due to more frequent collisions, and thus more opportunities to learn to avoid them.
It is interesting to note that reducing the evaluation span does not seem to increase
the fitness variation between runs.

The evaluation span parameter depends on the task and the environment. With
the goal of trying to explain the lower limits for our task, wevaried the evaluation
span for several arena sizes using one robot (Figure 2, right). In this case, the point
where performance starts to drop occurs at longer evaluation spans for larger arena



8 Ezequiel Di Mario and Alcherio Martinoli

0 50 100 150
0

0.2

0.4

0.6

0.8

Evaluation span [s]

F
it

n
e

ss

 

 

Nr=1

Nr=2

Nr=4

Nr=8

0 20 40 60
0.5

0.6

0.7

0.8

0.9

Evaluation span [s]

F
it

n
e

ss

 

 

1.0m

2.0m

4.0m

8.0m

Fig. 2 Left: Mean fitness for different evaluation span values and number of robots in a 1x1 m
arena. Error bars represent one standard deviation. Right:Mean fitness for different evaluation
span values and arena sizes

sizes (15 and 25 seconds for 4 and 8 meters respectively). We suspect this point is
related to the minimum time it takes to have at least one collision. In fact, if the
robot moves in a straight line at a maximum speed of 0.25 m/s, it takes 16 and 32
seconds to cross one side of an arena of 4 and 8 meters respectively. Therefore, the
robot speed and environment size can be used as guidelines tochoose an evaluation
span. We suggest that, in general, the minimum evaluation span should guarantee at
least one interaction of the robot with other components of the environment relevant
to the task at hand.

4.3 Re-evaluations

We then compared the performance of noise-resistant PSO with standard PSO to
determine if re-evaluations improve performance in limited time scenarios. For any
given set of parameters, noise-resistant PSO takes twice asmuch evaluation time
as standard PSO due to the personal best re-evaluations. In order to perform a fair
comparison, if we remove re-evaluations we need to double one of the other pa-
rameters to keep total evaluation time constant. We thus compared four alternatives:
re-evaluations, doubled iterations, doubled evaluation span, and doubled population
size. We performed 100 runs for each algorithmic variant andplotted the final fitness
in Figure 3.

In the single robot case, noise-resistant PSO performed significantly worse than
standard PSO with doubled iterations and doubled population size. However, as the
number of robots is increased, the relative performance of noise-resistant PSO im-
proves: for 2 robots there is no significant difference, and for 4 and 8 robots noise-
resistant PSO significantly outperforms standard PSO with doubled iterations and
doubled population size. It is worth noting that there is no significant difference be-
tween doubling population size and number of iterations forall number of robots,



Distributed PSO for Limited Time Adaptation in Autonomous Robots 9

Fig. 3 Average fitness and
standard deviation for noise-
resistant PSO, standard PSO
with doubled number of
iterations, standard PSO with
doubled evaluation span, and
standard PSO with doubled
population size.

1 2 4 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Robots

 

 

Re−evaluation

Doubled its

Doubled span

Doubled pop

and that doubling the evaluation span performs significantly worse in all cases ex-
cept for 8 robots.

These results suggest that the decision to invest time in re-evaluations depends
on the amount of uncertainty in fitness evaluations. In fact,as the arena becomes
more crowded, there is more uncertainty in fitness evaluations, which depend both
on the performance of other robots (avoiding other robots iseasier if other robots
are also trying to avoid you) and on initial conditions such as position in the arena
(a robot is more likely to be trapped against a corner in a crowded arena).

Re-evaluations may also reduce the effect of heterogeneities on solution sharing
in multi-robot evaluations, as shared solutions are re-evaluated at each iteration and
thus can be dropped if they do not perform as well as they had done on other robots.
The final advantage of re-evaluations can be seen in the case of dynamic environ-
ments, where a previously found good solution may no longer be valid after a certain
amount of time. Thus, re-evaluations seem to be a good recommendation in general
for multi-robot learning scenarios.

4.4 Population Size

Both for our robotic case study and the benchmark functions,the population size
was reduced from 100 to 30 in steps of 10, and from 30 to 5 in steps of 5, in order
to obtain more data points in what we expected to be an interesting region, while
keeping all the other parameters the same as in the baseline.We did 100 independent
runs for each value, results are shown in Figure 4, left and Figure 5.

It is clear from figures 1 and 5 that, at least with our baselineparameters, reducing
the population size is better in terms of mean fitness than reducing the number of
iterations, both for obstacle avoidance and for all benchmark functions1. Now the
question that arises is how low should we set the population size? While there is

1 Note that in benchmark functions lower fitness values mean better performance



10 Ezequiel Di Mario and Alcherio Martinoli

no clear consensus in PSO literature [2], there are a few guidelines based on the
dimensionD of the search space such asNp = D or Np = 10+2

√
D 2.

Another approach is to start with a fixed value such asNp = 40 and restart the
algorithm with a largerNp if early convergence is noticed. However, it is hard to
determine if a restart is needed, especially when the maximum feasible fitness is not
clear beforehand, which is often the case when learning robotic behaviors.

In Figure 4, left we note a slight change in the fitness slope ataroundNp =
25, but this effect is much more clear in the case of the benchmark functionsf2,
f3, and f4 (Figure 5,Np = 25 and 500 default iterations, as mentioned in Table 1,
corresponding to 12500 function evaluations).

Also, when population size becomes small, more outliers appear due to runs that
fail to converge to a satisfactory solution. This can be noted in the higher standard
deviation seen in reducedNp as compared to reducedNi with the same total evalua-
tion time (see Figure 1).

Thus, because of higher fitness, lower variance, the possibility to distribute par-
ticles among robots, and the impracticality of the restart process, we prefer to err on
the side of larger population sizes, and we suggest the following guideline:

Np = max(D,Nrob) (6)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

Population size

F
itn

es
s

 

 

1 rob
2 rob
4 rob
8 rob

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

PSO iterations

F
itn

es
s

 

 

1 rob
2 rob
4 rob
8 rob

Fig. 4 Left: Mean fitness for different population size values. Right: Mean fitness for different
number of iterations. Error bars represent one standard deviation.

4.5 PSO iterations

For our robotic case study, the number of iterations was reduced from 50 to 5 in
steps of 5, again keeping all the other parameters the same asin the baseline. We

2 This last formula is used in Standard PSO 2006, an effort to define a PSO standard published
online in Particle Swarm Centralhttp://www.particleswarm.info.



Distributed PSO for Limited Time Adaptation in Autonomous Robots 11

0 1 2 3 4 5

x 10
4

−20

0

20

40

60

80

Function evaluations

F
itn

es
s

 

 
Np
Ni

0 1 2 3 4 5

x 10
4

−2

0

2

4

6

8
x 10

4

Function evaluations

F
itn

es
s

 

 
Np
Ni

0 1 2 3 4 5

x 10
4

50

100

150

200

250

300

Function evaluations

F
itn

es
s

 

 
Np
Ni

0 1 2 3 4 5

x 10
4

0

0.2

0.4

0.6

0.8

1

Function evaluations

F
itn

es
s

 

 
Np
Ni

Fig. 5 Fitness as a function of number of evaluations for benchmarkfunctions f1, f2, f3, and f4.
Each curve represents the reduction of one individual parameter (population size and number of
iterations) with the other held constant.

did 100 independent runs for each parameter value, results are shown in Figure 4,
right. The chosen benchmark functions traditionally use larger values ofNi, so we
chose 500 as a baseline and reduced it to 50 in steps of 50 (see Figure 5).

We observed a nearly linear performance drop for obstacle avoidance and on
benchmark functionsf3 and f4. For f1 and f2, the behavior ofNi was similar to that
of Np, but with a worse fitness overall.

Given thatNi is the easiest parameter to adjust on the fly, this parameter seems
suitable for trade-offs between performance and availablelearning time. That is, for
a fixed available timetwc, we suggest using the previous guidelines to determine
the 3 other parameters and allocate all remaining time toNi using Eq. 7, which is
derived from Eq. 4.

Ni =
twc

te ·
⌈

Np
Nrob

⌉

· (Nre +1)
(7)

4.6 Limited Time Adaptation

For our limited time adaptation runs, we set a maximum total evaluation time of 8 h,
which if distributed among 8 robots results in a wall-clock time of 1 h, about one



12 Ezequiel Di Mario and Alcherio Martinoli

third of the battery autonomy of our robots3. Following our proposed guidelines,
we usedNp = 24,te = 20 s,Nre = 1, andNi = 30, and run the adaptation process in
simulation forNrob = {1,2,4,8} (see Figure 6).

The fitness difference between full-time and limited time adaptation is 17%,
17%, 14%, and 9% for 1, 2, 4, and 8 robots respectively. These values are rela-
tively low considering the evaluation time was reduced morethan 52 times. More
importantly, both limited and full-time adaptation converged to the same obstacle
avoidance strategy, regardless of the number of robots: going back and forth between
walls in a straight line, reversing the direction of motion every time an obstacle was
detected. We verified the sameness of the solution strategies by analyzing the trajec-
tories described by the robots, focusing on the step length and angle distributions as
described in [4].

Fig. 6 Average fitness and
standard deviation for full-
time and limited-time adapta-
tion.

1 2 4 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Robots

F
it

n
e

ss

 

 

full−time

reduced

5 Conclusion

We analyzed the effect of the four PSO algorithmic parameters that determine total
evaluation time for a case study of multi-robot limited timelearning of an obsta-
cle avoidance behavior. Each parameter was varied independently, and based on the
resulting fitness we proposed guidelines to choose these parameters for the case of
multi-robot distributed learning. To add more generality to our guidelines, we ran
analogous tests on benchmark functions traditionally usedfor numerical optimiza-
tion problems.

For the population size parameter, we suggested to use at least the dimension of
the search spaceD, and to use the number of robots if it is greater thanD to take
advantage of parallel evaluations and increased robustness. We proposed using the
robot speed and environment size as guidelines to choose an evaluation span that

3 Our autonomy is lower than that specified by the manufacturerdue to additional modules such as
an active tracking turret and a Wi-Fi card.



Distributed PSO for Limited Time Adaptation in Autonomous Robots 13

guarantees at least one interaction of the robot with other components of the envi-
ronment relevant to the task at hand. Due to the inherent uncertainty in controller
evaluations when using more than one robot, we showed that re-evaluations have a
positive impact in multi-robot learning scenarios. The last parameter, the number of
iterations, can be adjusted to fit the total evaluation time available.

By applying our guidelines, we were able to reduce the total adaptation time to
an amount which can be easily completed without fully depleting the batteries of
the individual robots. This resulted in a maximum quantitative performance drop of
17% but with no observable difference in the qualitative behaviors of the solutions.
Even though we employed the PSO algorithm, we believe that the evaluation time
issues and the guidelines presented in this paper are not limited to PSO and are
relevant to population-based multi-robot learning in general.

Our next step is to validate these results with real robots. In particular, we intend
to study the effect of asynchronous updates and dynamic neighborhood topologies
on multi-robot learning. In the future, we hope to extend ouranalysis to tasks of
increasing complexity, requiring a higher degree of coordination between robots.
We are also interested in exploring PSO variations and otherpopulation-based al-
gorithms that can be applied to limited-time distributed learning. Our final goal is
to devise a set of general guidelines for fast, robust adaptation of high-performing
robotic controllers.

Acknowledgements This research was supported by the Swiss National Science Foundation
through the National Centre of Competence in Research Robotics.

References

1. Akat, S.B., Gazi, V.: Decentralized asynchronous particle swarm optimization. In: IEEE
Swarm Intelligence Symposium (2008). DOI 10.1109/SIS.2008.4668304

2. Bratton, D., Kennedy, J.: Defining a Standard for ParticleSwarm Optimization. In: IEEE
Swarm Intelligence Symposium, pp. 120–127 (2007)

3. Chang, J., Chu, S., Roddick, J.: A parallel particle swarmoptimization algorithm with com-
munication strategies. Journal of Information Science pp.809–818 (2005)

4. Di Mario, E., Mermoud, G., Mastrangeli, M., Martinoli, A.: A trajectory-based calibration
method for stochastic motion models. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 4341–4347 (2011)

5. Floreano, D., Mondada, F.: Evolution of homing navigation in a real mobile robot. IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics26(3), 396–407 (1996)

6. Hereford, J., Siebold, M.: Using the particle swarm optimization algorithm for robotic search
applications. In: IEEE Swarm Intelligence Symposium, pp. 53–59 (2007)

7. Jin, Y., Branke, J.: Evolutionary Optimization in Uncertain EnvironmentsA Survey. IEEE
Transactions on Evolutionary Computation9(3), 303–317 (2005)

8. Kennedy, J., Eberhart, R.: Particle swarm optimization.In: IEEE International Conference on
Neural Networks, pp. 1942 – 1948 vol.4 (1995)

9. Marques, L., Nunes, U., Almeida, A.T.: Particle swarm-based olfactory guided search. Au-
tonomous Robots20(3), 277–287 (2006)

10. Michel, O.: Webots: Professional Mobile Robot Simulation. Advanced Robotic Systems1(1),
39–42 (2004)



14 Ezequiel Di Mario and Alcherio Martinoli

11. Pan, H., Wang, L., Liu, B.: Particle swarm optimization for function optimization in noisy
environment. Applied Mathematics and Computation181(2), 908–919 (2006)

12. Parsopoulos, K.E., Vrahatis, M.N.: Particle Swarm Optimizer in Noisy and Continuously
Changing Environments. In: M.H. Hamza (ed.) Artificial Intelligence and Soft Computing,
pp. 289–294. IASTED/ACTA Press (2001)

13. Poli, R.: Analysis of the publications on the applications of particle swarm optimisation. Jour-
nal of Artificial Evolution and Applications2008(2), 1–10 (2008)

14. Pugh, J., Martinoli, A.: Distributed scalable multi-robot learning using particle swarm opti-
mization. Swarm Intelligence3(3), 203–222 (2009)

15. Pugh, J., Zhang, Y., Martinoli, A.: Particle swarm optimization for unsupervised robotic learn-
ing. In: IEEE Swarm Intelligence Symposium, pp. 92–99 (2005)

16. Rada-Vilela, J., Zhang, M., Seah, W.: Random Asynchronous PSO. The 5th International
Conference on Automation, Robotics and Applications pp. 220–225 (2011)

17. Turduev, M., Atas, Y.: Cooperative Chemical Concentration Map Building Using Decen-
tralized Asynchronous Particle Swarm Optimization Based Search by Mobile Robots. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4175–4180 (2010)


