Distributed Particle Swarm Optimization for
Limited Time Adaptation in Autonomous Robots

Ezequiel Di Mario and Alcherio Martinoli

Abstract Evaluative techniques offer a tremendous potential folima-controller
design. However, when the optimization space is large amgénformance metric
is noisy, the time needed to properly evaluate candidaigtiesas becomes pro-
hibitively large and, as a consequence, the overall adaptptocess becomes ex-
tremely time consuming. Distributing the adaptation pssceeduces the required
time and increases robustness to failure of individual egén this paper, we ana-
lyze the role of the four algorithmic parameters that deteenthe total evaluation
time in a distributed implementation of a Particle Swarmi@pation algorithm.
For a multi-robot obstacle avoidance case study, we expi@ienulation the lower
boundaries of these parameters with the goal of reducingptaéevaluation time
so that it is feasible to implement the adaptation procesisinva limited amount
of time determined by the robots’ energy autonomy. We shat/¢lach parameter
has a different impact on the final fithess and propose sonueljues for choosing
these parameters for real robot implementations.

1 Introduction

Human design of high-performing robotic controllers is adtivial task for a num-
ber of reasons. In the first place, even the simplest of moadrots have a large
number of sensors and actuators, which implies a large nuaflw®ntrol parame-
ters to optimize. Secondly, real systems often presenbdiswities and nonlinear-
ities, making it difficult to apply well-understood lineamrttrol techniques. Finally,
when porting the designed controller to real robots therghinbe an unexpected

Ezequiel Di Mario and Alcherio Martinoli

Distributed Intelligent Systems and Algorithms LaborgtdBchool of Architecture, Civil and
Environmental Engineerindscole Polytechnique Fédérale de Lausanne.

1015 Lausanne, Switzerland

e-mail:ezequi el . di mari o@pfl.ch, alcherio.martinoli @pfl.ch.

2 Ezequiel Di Mario and Alcherio Martinoli

performance drop due to a number of factors such as impenfiscin fabrication,
changes in the environment, or modeling inaccuracies.

Machine-learning techniques are an alternative to humadegl design that can
address some of the previously mentioned challenges. Tdregutomatically syn-
thesize robotic controllers in large search spaces, copitigdiscontinuities and
nonlinearities, and find innovative solutions not foresbgrhuman designers by
working with a pool of potentially very diverse candidatéusions. Furthermore,
the learning process can be implemented fully on-boardylergpautomatic adap-
tation to the underlying hardware and environment.

However, the main drawback of working with a pool of candédsdlutions is the
amount of time needed to evaluate all candidates, whichaistantially larger than
that required to generate them. Moreover, due to severatasof uncertainty, such
as sensor noise, manufacturing tolerances, or lack ot swigrdination in multi-
robot settings, it may be necessary to re-evaluate somg@swuo gather sufficient
statistics for meaningful adaptation. Because of theseréasons, the adaptation
process is considered an expensive optimization problem.

Implementing the adaptation process in a distributed ¢ashrings two distinct
advantages. Firstly, it reduces the required evaluatioe through parallelization.
Secondly, it increases robustness by avoiding a criticeltyud failure, which is of
particular interest in real robot implementations.

Thus, the goal of this paper is to analyze how different atgoric parameters
in a distributed implementation affect the total evaluatione and resulting fitness.
We aim to reduce the total evaluation time such that it isil@é@go implement
the adaptation process within the limits of the robots’ ggeautonomy without
renouncing the benefits of a population-based learningigthgo.

2 Related Work

Particle Swarm Optimization (PSO) is a relatively new metafstic originally in-
troduced by Kennedy and Eberhart [8]. PSO is inspired by theement of flocks
of birds and schools of fish, and represents a set of candidhitons as a swarm of
particles moving in a multi-dimensional space. Particks ecall at which position
of the search space they obtained their best performancasmthe position of the
best performing particle in a pre-established neighbadhoo

Because of its simplicity and versatility, PSO has been tseal wide range
of applications such as antenna design, communicationanksyfinance, power
systems, and scheduling. Within the robotics domain, paptapics are robotic
search, path planning, and odor source localization [13].

PSO is well suited for distributed/decentralized impletaéions due to its dis-
tinct individual and social components and the use of thghimrhood concept.
Most of the work on distributed implementations has beemg$ed on benchmark
functions running on computational clusters [1, 3, 16]. kempentations with mobile
robots are mostly applied to odor source localization [9,47d robotic search [6],

Distributed PSO for Limited Time Adaptation in Autonomousti®ts 3

where, as opposed to optimizing a set of control parametethé task at hand, the
particles’ position is usually directly matched to the rt#gosition in the arena.
Thus, the search is conducted in two dimensions and with fesven only one lo-
cal extrema. For these reasons, even though robotic sesaaathallenging practical
task, it does not represent a complex optimization problem.

An example of a more challenging on-line optimization pesblis the work of
Floreano and Mondada [5], who used Genetic Algorithms tindpée the weights
of an artificial neural network controller. The task was toigate a path and avoid
obstacles with a tethered mobile robot. Even though the latipn manager and
other resource-intensive tasks were carried out on a dedicdf-board computer,
this study was still able to show the advantages of evaloatith hardware in the
loop. For example, the evolved direction of motion was a ltesuthe interplay
between the robot morphology (higher density of proximégsors facing forward)
and the environmentin which it was deployed. It is worth ngtihat the experiment
required 67 hours of total evaluation time, and it would iiegthe same time to
recreate it nowadays since the limit was not imposed by coatipmal capabilities
but rather by the wall-clock time needed to gather enougirimétion on the quality
of the candidate solutions.

Most of the research on optimization in noisy environmeassfocused on evo-
lutionary algorithms [7]. The performance of PSO under adias not been studied
so extensively. Parsopoulos and Vrahatis showed thatatdREO was able to cope
with noisy and continuously changing environments, ancheggested that noise
may help to avoid local minima [12]. Pan et al. [11] propos&E® variation based
on statistical tests to select particles, but was only adpio benchmark functions
with added gaussian noise.

Pugh et al. showed that PSO could outperform Genetic Algmiston benchmark
functions and for certain scenarios of limited-time leaghunder the presence of
noise [14, 15]. Pugh also showed that PSO can perform satisilg with low pop-
ulation sizes, a result that is of particular interest fortimebot implementations
because a smaller number of robots can be used while ledweraptimization pro-
cess robust to connectivity issues between the robots.

3 Materialsand Methods

This paper is focused on a case study of obstacle avoidaruasia behavior in
robotics. Robots navigate autonomously in a square arefiaéfin which walls
and other robots are the only obstacles. We use the same mepérformance as
Floreano and Mondada [5], which consists of three factdrsyaamalized to the
interval [0, 1] (Eq. 1).

F=V-(1-VAv)-(1-i) (1)

V is the average wheel speetly the wheel speed difference, anthe proximity
sensor activation value of the most active sensor. Eachrféctalculated at each

4 Ezequiel Di Mario and Alcherio Martinoli

time step and then averaged for the total number of time steffise evaluation
period. This function rewards robots that move quicklyntas little as possible,
and spend as little time as possible near obstacles.

We chose the obstacle avoidance task because it is scatatile humber of
robots, requires basic sensors and actuators that aralaedaih most mobile robots,
and the chosen performance metric can be fully evaluatddanitboard resources.
Thus, it can serve as a benchmark for testing distributethileg algorithms with
real robots in the same way that standard benchmark fursctienused in numerical
optimization.

Our experimental platform is the Khepera lll mobile robddjfferential wheeled
vehicle with a diameter of 12 cm. The Khepera lll is equippéthwine infra-red
sensors as well as five ultrasound sensors for short and mediuge obstacle de-
tection. Our experiments were carried out in simulatiomgs&Nebots [10], a real-
istic, physics-based, submicroscopic simulator that nsodgnamical effects such
as friction and inertia. In this context, by submicroscop&mean that it provides
a higher level of detail than usual microscopic modelshfalty reproducing intra-
robot modules (e.g., individual sensors and actuators).

The controller architecture is an artificial neural netwoflkwo units with sig-
moidal activation functions, and a single output per unitdatrol the two motors.
Each neuron has 12 input connections: the 9 infrared seressoosinection to a con-
stant bias speed, a recurrent connection from its own oldpdta lateral connection
from the other neuron’s output, resulting in 24 weight pagers in total.

The adaptation algorithm is the noise-resistant variatibRSO introduced by
Pugh et al. [15], which operates by re-evaluating persoesi positions and aggre-
gating them with the previous evaluations (in our case alee@werage performed
at each iteration of the algorithm). The movement of patich dimensionj de-
pends on three components: the velocity at the previousrgtaghted by an inertia
coefficientw, a randomized attraction to its personal bgstweighted byw,, and
a randomized attraction to the neighborhood’s bgﬁtweighted byw, (Eq. 2).
rand() is a random number drawn from a uniform distribution betw@amd 1.

Vij =W Vi j+Wp-rand() - (X —Xi,j) +Wn-rand() - (% ; — X j) (2)

The neighborhood presents a ring topology with one neigbbhagach side. Parti-
cles’ positions and velocities are initialized randomlywa uniform distribution in
the [-20, 20] interval, and their maximum velocity is alsmilied to that interval.
The robots’ pose (position and orientation in the arenadnislomized at the begin-
ning of each evaluation. At the end of each optimization the,best solution is
tested with 40 evaluations of 30 s, and the final performasties average of these
final evaluations.

The total evaluation time for PSO depends on four factorpufation size Kp),
individual candidate evaluation timg), number of iterations of the algorithriy,
and number of re-evaluations of the personal best positisnaated with each
candidate solution within the same iteratidfid), as shown in Eq. 3.

Distributed PSO for Limited Time Adaptation in Autonomousti®ts 5
ttgt = te . Np . N| . (Nre+ 1) (3)

If we assume that there is a fixed upper limit for the total esibn time, an increase
in any of the parameters would result in a proportional desgen the rest.

In a parallelized or distributed implementation, fitnessleations are distributed
amongN;q, robots, and the wall-clock timig, required to evaluate candidate solu-
tions is reduced (Eq. 4).

N
twe =te- ’VN_pb-‘ N - (Nre+ 1) (4)
rol

It is worth noting that the number of robots is not necesgéng same as the popu-
lation size. In fact, the choice of the population size dejsem the dimension of the
search space and the complexity of the task, while the clodio@mber of robots
is based on more experimental considerations (e.g., &iéieof robots, targeted
number of robots needed for a specific mission in a given enuient). Thus, a
robot may have several particles to evaluate within the ssandidate solution pool
as opposed to only one.

A full optimization of the algorithmic parameters to minireithe total evaluation
time would be a computationally very expensive problem, idute large number
of candidate configurations, the combination of continuandiscrete parameters,
the large variation between runs, and the possible existehiocal optima. Thus,
our approach is to analyze each parameter individuallyptgikito account its im-
pact on the final performance as compared to a full-time adiaptbaseline.

Our baseline set of parameters, based on the work of Pugiilet]als shown in
Table 1. This set of parameters amounts to a total evalutitienof approximately
417 hours if carried out on a single robot, what we refer taudligifne adaptation.

To complement our robotic case study and add more generaétglso perform
runs on four traditional mono and multi-modal benchmarlctions without noise:
the sphere, Rosenbrock’s, Rastrigin’s, and GriewankBneeé in Eq. 5. The base-
line parameters for the algorithm ran on benchmark funstiare also shown in

Table 1.
D
= .Zixiz
b1
fa(x) = zi[u—x?nloml—x?)ﬂ

fa(x) = 10D + _i[&? —10co$2m)]

f4(x) —1+mzlx, r!cos((5)

6 Ezequiel Di Mario and Alcherio Martinoli

Table 1 Algorithmic parameter values

Parameter Obstacle Avoidance Benchmark functions
Population sizéNp 100 100
IterationsN; 50 500
Evaluation spart 150 s -
Re-evaluation$\,e 1 0
Personal weighivp 2.0 2.0
Neighborhood weighiv, 2.0 2.0
DimensionD 24 24
Inertiaw 0.8 0.6
Vinax 20 5.12

4 Results and Discussion

The results of this paper are presented as follows: Sectibim#oduces the discus-
sion with a comparison of the fitness as a function of the ®taluation time. In
Sections 4.2 to 4.5 we analyze each of the four previouslytiowed algorithmic
parameters and propose guidelines for setting their vakiaally, in Section 4.6
we apply the proposed guidelines to reduce the total evaluéime and compare
the results with the full-time adaptation.

4.1 Parameter comparison

In the first place, we started from the total evaluation tirasdiine of 417 h and
reduced\p, N, andte individually to 5, 5, and 5 s respectively, while keeping the
other two parameters at their baseline values, plottindttreee curves in the same
graph for better comparisons. We performed 100 indeperrdestfor each set of
parameter values and with 1, 2, 4, and 8 robots. When muitigidets were con-
sidered, all of them were learning in parallel. All runs wessformed in a 1x1 m
arena unless noted otherwise. The resulting fithess candsaaual in Figure 1. In
all cases, reducing the evaluation spamas the leastimpact on the resulting fitness,
followed by Np andN;. When comparing the same total evaluation time across dif-
ferent numbers of robots, it can be noted that as the numbyebofs increases, the
arena becomes more crowded and obstacle avoidance becardes thus causing
the average fitness to decrease. Also, performances aierr(eee larger error bars
in lower right corner) and therefore there is less impact dieareasedNp or N;
(flatter profile than with 1-2 robots). The following sectsypresent a more detailed
analysis of each individual parameter.

Distributed PSO for Limited Time Adaptation in Autonomousti®ts 7

0.8

Fitness
Fitness

0.4

0 100 200 300 400 o 100 200 300 400
Total evaluation time [h] Total evaluation time [h]
0.55
0.6 0.5
055 0.45
0.5
a ? 04
2 045 2
ic i 0.35
* 04 * AN
P
0.35 03 o Ni
0.3 0.25 o te
0.25 : : : : 0.2 : : : :
0 100 200 300 400 0 100 200 300 400
Total evaluation time [h] Total evaluation time [h]

Fig. 1 Fitness as a function of total evaluation time for 1, 2, 4, 8mdbots respectively. Each
curve represents the reduction of one individual paran{ptgsulation size, number of iterations,
and evaluation span) with the others held constant.

4.2 Evaluation Span

To analyze the effect of the evaluation span, we rediigcémm 150s to 5s, with
20s steps in the higher range and 5s steps in the low rangeid\0@ runs for
each value, and plotted the mean and standard deviatiogumd-2, left.

The mean fithess remains fairly constant for 30 < 150s for all number of
robots. In fact, the difference in fitness between 150s arsli8Mot statistically
significant in all cases (Mann-Whitney U test, 5% significatevel). Forte < 30s
the fitness starts to decrease, although at different ratedifferent numbers of
robots. In particular, for 8 robots can be reduced to 10 s without a major change in
fithess, which suggests that a crowded arena may allow fotestevaluation spans
due to more frequent collisions, and thus more opportwiitidearn to avoid them.
It is interesting to note that reducing the evaluation spagscthot seem to increase
the fitness variation between runs.

The evaluation span parameter depends on the task and tinerengnt. With
the goal of trying to explain the lower limits for our task, waried the evaluation
span for several arena sizes using one robot (Figure 2) rigtthis case, the point
where performance starts to drop occurs at longer evatuagians for larger arena

8 Ezequiel Di Mario and Alcherio Martinoli

08 0.9

061 0.8

Fitness

o

D

b }Ki 3

D M o

e
Fitness

o

~N

—4A— Nr=1
—8— Nr= —8— 2.

02} N=2 | e om
—6— Nr=4 —S— 4.0m
—— Nr=8 v—80m

0 - - - 0.5 : - -
0 50 100 150 0 20 40 60
Evaluation span [s] Evaluation span [s]

Fig. 2 Left: Mean fitness for different evaluation span values aadhiper of robots in a 1x1 m
arena. Error bars represent one standard deviation. Rifgein fitness for different evaluation
span values and arena sizes

sizes (15 and 25 seconds for 4 and 8 meters respectively)uSgest this point is
related to the minimum time it takes to have at least onegiofii In fact, if the
robot moves in a straight line at a maximum speed of 0.25 nfakés 16 and 32
seconds to cross one side of an arena of 4 and 8 meters respedtherefore, the
robot speed and environment size can be used as guidelinkedse an evaluation
span. We suggest that, in general, the minimum evaluatian sipould guarantee at
least one interaction of the robot with other componente@fnvironment relevant
to the task at hand.

4.3 Re-evaluations

We then compared the performance of noise-resistant PS©stéhdard PSO to
determine if re-evaluations improve performance in limitiene scenarios. For any
given set of parameters, noise-resistant PSO takes twioguak evaluation time
as standard PSO due to the personal best re-evaluationgldnto perform a fair
comparison, if we remove re-evaluations we need to doubdéeddrthe other pa-
rameters to keep total evaluation time constant. We thugpeoed four alternatives:
re-evaluations, doubled iterations, doubled evaluatp@msand doubled population
size. We performed 100 runs for each algorithmic variant@atied the final fitness
in Figure 3.

In the single robot case, noise-resistant PSO performedfisiantly worse than
standard PSO with doubled iterations and doubled populatie. However, as the
number of robots is increased, the relative performanceiserresistant PSO im-
proves: for 2 robots there is no significant difference, asrddfand 8 robots noise-
resistant PSO significantly outperforms standard PSO watlbted iterations and
doubled population size. It is worth noting that there is igmiicant difference be-
tween doubling population size and number of iterationsafbonumber of robots,

Distributed PSO for Limited Time Adaptation in Autonomousti®ts 9

Fig. 3 Average fitness and 09 : :
standard deviation for noise- osl e cvaluation ||
resistant PSO, standard PSO 1 Doubled span
with doubled number of o7y I Doubled pop ||
iterations, standard PSO with 06t

doubled evaluation span, and 05| %

standard PSO with doubled '

population size. 04r
03

02r

0.1

2 4 8
Number of Robots

0

and that doubling the evaluation span performs signifigamtirse in all cases ex-
cept for 8 robots.

These results suggest that the decision to invest time @vaiiations depends
on the amount of uncertainty in fitness evaluations. In fastthe arena becomes
more crowded, there is more uncertainty in fitness evalnatiwhich depend both
on the performance of other robots (avoiding other robotsaiser if other robots
are also trying to avoid you) and on initial conditions sustpasition in the arena
(arobot is more likely to be trapped against a corner in a demharena).

Re-evaluations may also reduce the effect of heterogenaiti solution sharing
in multi-robot evaluations, as shared solutions are réuated at each iteration and
thus can be dropped if they do not perform as well as they had do other robots.
The final advantage of re-evaluations can be seen in the ¢alyemamic environ-
ments, where a previously found good solution may no longeswlid after a certain
amount of time. Thus, re-evaluations seem to be a good reemaation in general
for multi-robot learning scenarios.

4.4 Population Size

Both for our robotic case study and the benchmark functithes population size
was reduced from 100 to 30 in steps of 10, and from 30 to 5 irsstép, in order
to obtain more data points in what we expected to be an iritiegeegion, while
keeping all the other parameters the same as in the basakndid 100 independent
runs for each value, results are shown in Figure 4, left agdrei5.

Itis clear from figures 1 and 5 that, at least with our basedarameters, reducing
the population size is better in terms of mean fitness thanciad the number of
iterations, both for obstacle avoidance and for all benakrinctions. Now the
question that arises is how low should we set the populat@®?sWVhile there is

1 Note that in benchmark functions lower fithess values mettegerformance

10 Ezequiel Di Mario and Alcherio Martinoli

no clear consensus in PSO literature [2], there are a fewetjo@s based on the
dimensionD of the search space suchig= D or N, = 10+ 2y/D 2.

Another approach is to start with a fixed value sucliNgs= 40 and restart the
algorithm with a largeN, if early convergence is noticed. However, it is hard to
determine if a restart is needed, especially when the manxifeasible fithess is not
clear beforehand, which is often the case when learningimbehaviors.

In Figure 4, left we note a slight change in the fitness sloparatindN, =
25, but this effect is much more clear in the case of the beackifunctionsf,,
f3, and f4 (Figure 5,Np = 25 and 500 default iterations, as mentioned in Table 1,
corresponding to 12500 function evaluations).

Also, when population size becomes small, more outliereapgue to runs that
fail to converge to a satisfactory solution. This can be datethe higher standard
deviation seen in reduceéd}, as compared to reducédl with the same total evalua-
tion time (see Figure 1).

Thus, because of higher fitness, lower variance, the pdigsiioi distribute par-
ticles among robots, and the impracticality of the restastpss, we prefer to err on
the side of larger population sizes, and we suggest thesfmitpguideline:

Np = maxD, Nrop) (6)

0.8
0.6
[
0
204
Z
0.2 —&— 2rob
—6&— 4 rob
—v—8rob
0
0 20 40 60 80 100 0 10 20 30 40 50
Population size PSO iterations

Fig. 4 Left: Mean fitness for different population size values. lRigMean fitness for different
number of iterations. Error bars represent one standardti@v.

45 PSO iterations

For our robotic case study, the number of iterations wasaedifirom 50 to 5 in
steps of 5, again keeping all the other parameters the sainetlzs baseline. We

2 This last formula is used in Standard PSO 2006, an effort fimel@ PSO standard published
online in Particle Swarm Centrak t p: / / waw. parti cl eswarm i nf o.

Distributed PSO for Limited Time Adaptation in Autonomousti®ts 11

80
—&—Np
60 —B—Ni

40

20
0 Aaa £

Fitness
Fitness

1 2 3 4 5

Fitness
Fitness

50
0

Function evaluations X 104 Function evaluations x 10

Fig. 5 Fitness as a function of number of evaluations for benchrharktions f1, f2, f3, and f4.
Each curve represents the reduction of one individual pet@mn{population size and number of
iterations) with the other held constant.

did 100 independent runs for each parameter value, reseltsh@wn in Figure 4,
right. The chosen benchmark functions traditionally usgdavalues ofN;, so we
chose 500 as a baseline and reduced it to 50 in steps of 50i(gee B).

We observed a nearly linear performance drop for obstaciaxce and on
benchmark function$s and 4. For f; andf,, the behavior oN; was similar to that
of Np, but with a worse fitness overall.

Given thatN; is the easiest parameter to adjust on the fly, this parametens
suitable for trade-offs between performance and availablisming time. That is, for
a fixed available time,, we suggest using the previous guidelines to determine
the 3 other parameters and allocate all remaining tims, tasing Eq. 7, which is
derived from Eq. 4.

N = foc (7)

4.6 Limited Time Adaptation

For our limited time adaptation runs, we set a maximum tatalugation time of 8 h,
which if distributed among 8 robots results in a wall-clocké of 1 h, about one

12 Ezequiel Di Mario and Alcherio Martinoli

third of the battery autonomy of our robdtgollowing our proposed guidelines,
we usedNp = 24,te = 20 s,Nre = 1, andN; = 30, and run the adaptation process in
simulation forN;qp = {1,2,4,8} (see Figure 6).

The fitness difference between full-time and limited timeyatation is 17%,
17%, 14%, and 9% for 1, 2, 4, and 8 robots respectively. Thakees are rela-
tively low considering the evaluation time was reduced nibes 52 times. More
importantly, both limited and full-time adaptation conged to the same obstacle
avoidance strategy, regardless of the number of robotsgdizick and forth between
walls in a straight line, reversing the direction of motiaegy time an obstacle was
detected. We verified the sameness of the solution stratbgianalyzing the trajec-
tories described by the robots, focusing on the step lengttaagle distributions as
described in [4].

Fig. 6 Average fitness and 08 ‘
standard deviation for full- o7l I full-time| |
time and limited-time adapta- ' I reduced

tion. 06

05

04

Fitness

03

02

0.1

Number of Robots

5 Conclusion

We analyzed the effect of the four PSO algorithmic paransdteat determine total
evaluation time for a case study of multi-robot limited tite@rning of an obsta-
cle avoidance behavior. Each parameter was varied indepégdand based on the
resulting fitness we proposed guidelines to choose thesengders for the case of
multi-robot distributed learning. To add more generaldyour guidelines, we ran
analogous tests on benchmark functions traditionally isedumerical optimiza-
tion problems.

For the population size parameter, we suggested to usesatieadimension of
the search spade, and to use the number of robots if it is greater titato take
advantage of parallel evaluations and increased robusstiéss proposed using the
robot speed and environment size as guidelines to chooseaturaton span that

3 Our autonomy is lower than that specified by the manufactimerto additional modules such as
an active tracking turret and a Wi-Fi card.

Distributed PSO for Limited Time Adaptation in Autonomousti®ts 13

guarantees at least one interaction of the robot with otbeponents of the envi-
ronment relevant to the task at hand. Due to the inherentrtaicty in controller
evaluations when using more than one robot, we showed tfatadeations have a
positive impact in multi-robot learning scenarios. The fg@rameter, the number of
iterations, can be adjusted to fit the total evaluation tinslable.

By applying our guidelines, we were able to reduce the tatapgation time to
an amount which can be easily completed without fully déptethe batteries of
the individual robots. This resulted in a maximum quantieaperformance drop of
17% but with no observable difference in the qualitativeahedrs of the solutions.
Even though we employed the PSO algorithm, we believe tleaeWaluation time
issues and the guidelines presented in this paper are nib¢dirro PSO and are
relevant to population-based multi-robot learning in gahe

Our next step is to validate these results with real robatpalticular, we intend
to study the effect of asynchronous updates and dynamitberpood topologies
on multi-robot learning. In the future, we hope to extend analysis to tasks of
increasing complexity, requiring a higher degree of cammtion between robots.
We are also interested in exploring PSO variations and gibpulation-based al-
gorithms that can be applied to limited-time distributedrténg. Our final goal is
to devise a set of general guidelines for fast, robust atiaptaf high-performing
robotic controllers.

Acknowledgements This research was supported by the Swiss National Scienoadation
through the National Centre of Competence in Research Rsbot

References

1. Akat, S.B., Gazi, V.: Decentralized asynchronous piartsvarm optimization. In: IEEE
Swarm Intelligence Symposium (2008). DOI 10.1109/SIS&0668304

2. Bratton, D., Kennedy, J.: Defining a Standard for Partearm Optimization. In: IEEE
Swarm Intelligence Symposium, pp. 120-127 (2007)

3. Chang, J., Chu, S., Roddick, J.: A parallel particle swaptimization algorithm with com-
munication strategies. Journal of Information Science809—-818 (2005)

4. Di Mario, E., Mermoud, G., Mastrangeli, M., Martinoli, AA trajectory-based calibration
method for stochastic motion models. In: IEEE/RSJ Inteonal Conference on Intelligent
Robots and Systems, pp. 4341-4347 (2011)

5. Floreano, D., Mondada, F.: Evolution of homing navigatio a real mobile robot. IEEE
Transactions on Systems, Man, and Cybernetics, Part B:rGgties26(3), 396—407 (1996)

6. Hereford, J., Siebold, M.: Using the particle swarm optation algorithm for robotic search
applications. In: IEEE Swarm Intelligence Symposium, (-5 (2007)

7. Jin, Y., Branke, J.: Evolutionary Optimization in Un@ert EnvironmentsA Survey. |EEE
Transactions on Evolutionary Computatigf8), 303—-317 (2005)

8. Kennedy, J., Eberhart, R.: Particle swarm optimizatlonlEEE International Conference on
Neural Networks, pp. 1942 — 1948 vol.4 (1995)

9. Marques, L., Nunes, U., Almeida, A.T.: Particle swarnsdzholfactory guided search. Au-
tonomous Robot80(3), 277—-287 (2006)

10. Michel, O.: Webots: Professional Mobile Robot SimuatiAdvanced Robotic Systenél),
39-42 (2004)

14

11.

12.

13.

14.

15.

16.

17.

Ezequiel Di Mario and Alcherio Martinoli

Pan, H., Wang, L., Liu, B.: Particle swarm optimizatiam function optimization in noisy
environment. Applied Mathematics and Computati8i(2), 908-919 (2006)

Parsopoulos, K.E., Vrahatis, M.N.: Particle Swarm @j#er in Noisy and Continuously
Changing Environments. In: M.H. Hamza (ed.) Artificial Iifigence and Soft Computing,
pp. 289-294. IASTED/ACTA Press (2001)

Poli, R.: Analysis of the publications on the applicati@f particle swarm optimisation. Jour-
nal of Artificial Evolution and Application2008(2), 1-10 (2008)

Pugh, J., Martinoli, A.: Distributed scalable multbad learning using particle swarm opti-
mization. Swarm Intelligencg(3), 203-222 (2009)

Pugh, J., Zhang, Y., Martinoli, A.: Particle swarm op#ation for unsupervised robotic learn-
ing. In: IEEE Swarm Intelligence Symposium, pp. 92-99 (9005

Rada-Vilela, J., Zhang, M., Seah, W.: Random Asynchuer®SO. The 5th International
Conference on Automation, Robotics and Applications pp-225 (2011)

Turduev, M., Atas, Y.: Cooperative Chemical ConceidratMap Building Using Decen-
tralized Asynchronous Particle Swarm Optimization Basedr&h by Mobile Robots. In:
IEEE/RSJ International Conference on Intelligent Robats&ystems, pp. 4175-4180 (2010)

