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Abstract

■ According to the principle of reactivation, memory retrieval
evokes patterns of brain activity that resemble those instantiated
when an event was first experienced. Intuitively, one would ex-
pect neural reactivation to contribute to recollection (i.e., the
vivid impression of reliving past events), but evidence of a direct
relationship between the subjective quality of recollection and
multiregional reactivation of item-specific neural patterns is lack-
ing. The current study assessed this relationship using fMRI to
measure brain activity as participants viewed and mentally re-
played a set of short videos. We used multivoxel pattern analysis
to train a classifier to identify individual videos based on brain ac-

tivity evoked during perception and tested how accurately the
classifier could distinguish among videos during mental replay.
Classification accuracy correlated positively with memory vivid-
ness, indicating that the specificity of multivariate brain patterns
observed during memory retrieval was related to the subjective
quality of a memory. In addition, we identified a set of brain re-
gions whose univariate activity during retrieval predicted both
memory vividness and the strength of the classifier’s prediction
irrespective of the particular video that was retrieved. Our results
establish distributed patterns of neural reactivation as a valid and
objective marker of the quality of recollection. ■

INTRODUCTION

Recollection allows people to mentally travel back in time
to relive past events. The recollective experience is per-
sonal and subjective, and thus historically, it has been dif-
ficult to capture with objective measures. However, the
recent application of multivoxel pattern analysis (MVPA;
Haxby, 2012; Mahmoudi, Takerkart, Regragui, Boussaoud,
& Brovelli, 2012; Tong & Pratte, 2012; Haynes & Rees,
2006; Norman, Polyn, Detre, & Haxby, 2006) to functional
brain imaging data provides a way of examining recollec-
tion from an objective standpoint. MVPA can quantify cor-
tical reinstatement or reactivation (Rissman & Wagner,
2012; Danker & Anderson, 2010; Rugg, Johnson, Park, &
Uncapher, 2008), the phenomenon by which stimulus-
specific patterns of brain activation elicited at perception
are reactivated during subsequent memory retrieval.
Although reactivation by itself does not guarantee the phe-
nomenological experience of recollection ( Johnson,
McDuff, Rugg, & Norman, 2009), we propose that reacti-
vation is a prerequisite for a faithful and vivid recollective
experience because it reflects the specificity with which
stimuli are represented in memory. With the current
study, we tested this proposition by examining the corre-
spondence between distributed patterns of stimulus-specific
neural reactivation and the subjective quality of the recol-
lective experience.

A few studies have reported a link between MVPA mea-
sures of cortical reinstatement and the subjective experi-
ence of recollection (Gordon, Rissman, Kiani, & Wagner,
2013; Ritchey, Wing, Labar, & Cabeza, 2013; Staresina,
Henson, Kriegeskorte, & Alink, 2012; Kuhl, Rissman,
Chun, & Wagner, 2011; Johnson et al., 2009; McDuff,
Frankel, & Norman, 2009). However, most of these stud-
ies have assessed recollection as an all-or-none phenom-
enon that is either present or absent (e.g., with a
remember/know paradigm; Tulving, 1985). For example,
Johnson et al. (2009) reported significantly greater reacti-
vation when an event is “remembered” (recollected) than
when it is “known” (recognized with a sense of familiarity
but not recollected). Although these results are compel-
ling, very few studies have assessed whether reactivation
also reflects the graded nature of conscious memory re-
trieval. Although the presence and absence of recollection
at retrieval is thought to reflect the engagement of quali-
tatively different processes (Yonelinas, Aly, Wang, & Koen,
2010; Yonelinas, 2002), recollection also results in a com-
plex range of experiences that vary in vividness and level
of detail (e.g., Rubin, Schrauf, & Greenberg, 2003). So far,
only a few reactivation studies have sampled this range of
“above-threshold” recollective experience. For example,
Leiker and Johnson (2014) have shown that the magnitude
of task-specific pattern reactivation reflects the amount
of information recollected. Johnson, Kuhl, Mitchell,
Ankudowich, and Durbin (2015) have shown that aging
influences correlations between classification accuracy
and vividness of recall across brain ROIs. Wing, Ritchey,
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and Cabeza (2015) have also shown that stimulus-specific
reactivation increases linearly as a function of the num-
ber of details recalled for consciously retrieved images.
These findings suggest that recollection and reactivation
are different facets (one subjective, one objective) of
the same underlying brain processes, but more evi-
dence is needed.

With the current study, our aim was to further ex-
plore the relationship between distributed patterns of
stimulus-specific reactivation and the graded nature of
conscious memory retrieval. We used complex audiovisual
stimuli (short videos) to elicit distributed patterns of
stimulus-specific activation and applied MVPA to capture
how these patterns were reactivated across the entire
brain during a recall task. In addition to being visually
rich, the videos contained dynamic features such as mo-
tion and a simple “storyline” as well as complex auditory
features including speech, music, and natural sounds that
elicited activation throughout the cerebral mantle. Each
video was encoded and recalled, or mentally replayed,
multiple times while participants underwent fMRI. Repe-
tition ensured that memory was strong and detailed to
sample a range of “above-threshold” recollective experi-
ence, which participants qualified using a graded vivid-
ness scale. In addition, repeated retrieval made it
possible to assess within-item fluctuations in vividness
and reactivation, that is, each video served as its own
baseline so that we could assess how well a memory
for the same stimulus was reconstructed from trial to
trial. In this manner, we controlled for the influence of
interitem factors on vividness and reactivation (e.g., dif-
ferences in memory strength, level of interest in each
item).

We hypothesized that a person’s subjective evaluation
of the quality of recollection is a kind of “readout” of the
extent to which a distributed neural trace formed during
perception is reactivated at recall. Therefore, we ex-
pected subjective vividness ratings to predict trial-specific
MVPA scores that indicated how well stimulus-specific ac-
tivity patterns were reactivated during mental replay. We
also predicted that brain regions whose activity corre-
lated with (subjective) vividness should also correlate
with the (objective) specificity of neural reactivation dur-
ing recall, indicating underlying mechanisms common to
recollection and reactivation. To test this hypothesis, we
first identified brain regions whose activity correlated
with vividness ratings across videos. Then, we identified
brain regions whose activity correlated with reactivation
specificity, using an approach that we call the local–global
analysis (LGA). With LGA, we correlated trial-specific
whole-brain (global) MVPA reactivation scores with voxel-
wise (local) levels of univariate activity during mental re-
play (see also Xue et al., 2013; Kuhl et al., 2011; Li,
Mayhew, & Kourtzi, 2009, for approaches that combine
“activation-based” and “information-based” analyses).
We identified voxels whose level of activity correlated
with reactivation across videos, which we contrasted with

voxels identified by the vividness analysis using a con-
junction mask.
Johnson and colleagues ( Johnson, Suzuki, & Rugg,

2013; Johnson & Rugg, 2007) distinguish between two
different categories of brain structures involved in recol-
lection: (1) content-sensitive structures whose activity
distinguishes among stimulus items (e.g., areas from
the ventral visual stream that support stimulus represen-
tation) and (2) structures involved in core recollective
processes that are engaged regardless of the content re-
trieved (e.g., the inferior lateral parietal cortex; Johnson
et al., 2013; Quamme,Weiss, & Norman, 2010; Hutchinson,
Uncapher, & Wagner, 2009; Vilberg & Rugg, 2007; Wagner,
Shannon, Kahn, & Buckner, 2005; but see Kuhl & Chun,
2014; Vilberg & Rugg, 2008). MVPA has been used success-
fully to identify brain structures that fall under the first cat-
egory, that is, structureswhose activity at retrieval is content
sensitive. On the other hand, only a few studies have ad-
dressed how content-general memory processes promote
the distributed reactivation of stimulus-specific patterns
during memory retrieval, and most studies have focused
on a narrow subset of brain regions. For example, hippo-
campal activation has been shown to promote the cortical
reinstatement of scene-specific (Ritchey et al., 2013) and
categorical source information (such as faces vs. scenes;
Gordon et al., 2013) and of low-level visual gratings (Bosch,
Jehee, Fernandez, & Doeller, 2014).
Here, we used LGA to assess how activity in each brain

voxel correlated with patterns of reactivation distributed
across the entire brain. We assumed that our whole-brain
MVPA reactivation measure was largely driven by activity
from content-sensitive structures. We hypothesized,
however, that regions whose univariate activity corre-
lated with vividness and whole-brain reactivation metrics
across all videos should reflect core recollective processes
engaged irrespective of stimulus content (e.g., content-
general attentional, retrieval, or control processes). In
summary, we predicted that specific neural representa-
tion and the vivid impression of reliving past events
should be fundamentally related and that both phenomena
should rely on a common set of brain regions that play a
content-general role in recollection.

METHODS

Participants

Nineteen adult participants (5 men and 14 women, 20–
33 years old, 14–18 years of education) were recruited,
tested, and paid for their participation according to a pro-
tocol approved by the Rotman Research Institute’s Re-
search Ethics Board. All participants were right-handed
and either native or fluent English speakers, with normal
hearing, normal or corrected-to-normal vision, no history
of neurological or psychiatric disease, and no other con-
traindications for MRI. Data from 14 of these participants
were reported as part of a different study on memory and
aging by St-Laurent et al. (2014).
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fMRI Task

Video Stimuli

Fifteen short video clips were gathered from online sites
(Vimeo.com and YouTube.com), edited, and exported to
an .avi format with iMovie. Four clips were used for prac-
tice, and 11 were used for the in-scan task (Figure 1).
Each video was associated with a short descriptive title
shown in conjunction with the video that served as a re-
trieval cue during mental replay trials.

Testing Procedure

Participants performed a cued recall task while undergo-
ing fMRI scanning. They viewed and recalled, or mentally
replayed, the same set of 11 short videos over seven
functional runs of 8 min each. Perception and mental re-
play trials were intermixed throughout the runs accord-
ing to a pseudorandom order that differed between
runs and participants. For a particular video, perception
and replay trials always alternated, with the restriction
that they were separated by at least two (and maximum
of eight) intervening trials. Each of the videos were
3.4-sec long (plus 0.2 sec of buffer time to load), and they
were shown and recalled 21 times each (three times per
run). All trials were cued by a short title that matched a vid-
eo (e.g., “Race Car,” “Skateboarding Dog”). During percep-
tion trials, a title was shown in teal letters (0.9 sec) in the

center of the screen, followed by the matching video
(3.6 sec) and by an ISI of 0.25–1 sec. During mental replay
trials, a title was shown in red letters (0.9 sec), followed by a
gray rectangle that covered the same portion of the screen
as the videos shown on perception trials (4.85 sec). While
the gray rectangle was on the screen, participants were in-
structed to mentally replay the video from memory as viv-
idly and with as many visual and auditory details as
possible. Participants were then given 2.75 sec to rate the
vividness of their replay on a 1–4 scale (1 = not vivid at all,
between 2 and 3 = average, and 4 = extremely vivid),
followed by an ISI of 0–0.75 sec. Immediately before scan-
ning, participants practiced the task with a separate set of
four videos immediately before scanning and during an an-
atomical scan acquired immediately before the first func-
tional run. The experimental stimulus set was shown for
the first time during the first functional run. After the scan,
participants’ memory for the content of the 11 videos was
tested with a recall and a recognition task (see St-Laurent
et al., 2014, for procedure and results).

MRI Setup and Data Acquisition

Stimuli and responses were presented and recorded using
EPrime 2.0 (Psychology Software Tools, Pittsburgh, PA). Vi-
sual stimuli were projected onto a screen behind the scan-
ner made visible to the participant through a mirror

Figure 1. (Top) In-scan cued
recall paradigm. Blue/green
titles were always followed by

the matching video, whereas
red titles were followed by a

gray rectangle. Participants
mentally replayed the video
corresponding to the title while

the rectangle was displayed on
the screen and then rated the
quality of their replay from 1 to

4. (Bottom) Title, screen-shot,
and sound track description for

the set of 11 videos viewed and
replayed by the participants
(figure from St-Laurent et al.,

2014).

St-Laurent, Abdi, and Buchsbaum 3



mounted on the head coil. Audio stimuli were delivered
from the PC running the experimental task through
electrodynamic headphones using the MR-Confon MRI-
compatible audio system. Participants were scanned with
a 3.0-T Siemens MAGNETOM Trio MRI scanner using
a 12-channel head coil system. High-resolution gradient-
echo multislice T1-weighted scans (160 slices of 1-mm
thickness, 19.2 × 25.6 cm field of view) coplanar with
the EPI scans as well as whole-brain magnetization pre-
pared rapid gradient-echo (MP-RAGE) 3-D T1-weighted
scans were first acquired for anatomical localization, follow-
ed by T2*-weighted EPIs sensitive to BOLD contrast. Im-
ages were acquired using a two-shot gradient-echo EPI
sequence (22.5 × 22.5 cm field of view with a 96 × 96 ma-
trix size, resulting in an in-plane resolution of 2.35 ×
2.35 mm for each of 26 3.5-mm axial slices with a 0.5-mm
interslice gap; repetition time=1.5 sec; echo time=27msec;
flip angle = 62°).

fMRI Data Analysis

All statistical analyses were first conducted on smoothed
and realigned functional images in native EPI space. The
MP-RAGE anatomical scan was normalized to the Mon-
treal Neurological Institute (MNI) space using nonlinear
symmetric normalization implemented in ANTS (Avants,
Epstein, Grossman, & Gee, 2008). An equivalent transfor-
mation was then applied to maps of statistical results de-
rived from functional images using ANTS to normalize
these maps for group analyses.

Univariate fMRI Analysis

Functional images were converted into NIFTI-1 format,
motion-corrected, and realigned to the first image of
the first run with AFNI’s (Cox, 1996) 3dvolreg program
and smoothed with a 4-mm FWHM Gaussian kernel.
Single-subject multiple regression modeling was carried
out separately for each functional run using the AFNI pro-
gram 3dDeconvolve. Within each run, the two conditions
(video perception and mental replay) were modeled
separately for each trial by convolving a hemodynamic re-
sponse function (SPM canonical function as implemented
in AFNI) with the onset and the duration of each exper-
imental event. For each encoding and each mental replay
trial, this procedure generated beta coefficients that were
used for training and testing an MVPA classifier on indi-
vidual perception and mental replay events (Rissman,
Gazzaley, & D’Esposito, 2004). Brain activity evoked
during the vividness judgment after mental replay was
also modeled but not analyzed. A set of five nuisance
regressors (a constant term plus linear, quadratic, and
higher order polynomial terms) was also included for
each scanning run to model low-frequency noise in the
time series data.

Pattern Classification

We trained two pattern classifiers to determine which
video from the stimulus set was recalled during mental
replay trials. The recall-trained classifier was trained via
leave-one-run-out cross-validation on mental replay trials.
The perception-trained classifier was trained on all per-
ception trials and then used to “cross-decode” (Kriegeskorte,
2011) recall trials. The type of classification we used
was shrinkage discriminant analysis (SDA version 1.3.3;
Ahdesmäki, Zuber, Gibb, & Strimmer, 2014; strimmerlab.
org/software/sda), a form of regularized linear discrim-
inant analysis that can be applied to high-dimensional data
that have more variables (voxels) than observations (trials).
With this method, the estimates of the category means
and covariances are shrunken toward zero using James–
Stein shrinkage estimators as a way to ensure the es-
timability of the inverse covariance matrix and to reduce
the mean squared error when used for out-of-sample
prediction.
At training, SDA models were derived from matrices

whose rows corresponded to observations from the train-
ing set (trial-wise beta coefficient images) and whose col-
umns corresponded to variables (brain voxels). For
recall-trained classification, these matrices included recall
trials from all functional runs except for the run that con-
tained the “test” trials, so that seven matrices were gen-
erated per analysis for each participant (each matrix
excluded data from one functional run). For perception-
trained classification, SDA models were derived from a
single matrix per participant whose rows corresponded
to perception trials from all seven functional runs. From
each matrix, SDA generated one set of voxel weights per
video from the stimulus set. To predict which video was
being recalled, the dot product between a trial’s voxel
beta coefficients and each video’s set of weights was cal-
culated, resulting in one discriminant score per trial per
video. The classifier assigned a trial to the video whose
set of weights generated the largest discriminant score,
that is, to the category that elicited the pattern of distrib-
uted activity most similar to that trial’s activity.
Classifier performance was assessed based on the per-

centage of correctly identified trials, a categorical measure.
As there were 11 videos in our set, chance level corre-
sponded to 1 of 11 or 9.09%. We also used the classifier’s
discriminant scores as a continuousmeasure of evidence in
favor of each video. Because of the relatively large number
of videos in the set (11), such a gradedmeasure of classifier
output offered more fine-grained information about the
strength of evidence in favor of each video.
To determine the “upper limit” of classification based

on brain activity at perception, we also trained and tested
a third SDA pattern classifier via leave-one-run-out cross-
validation on perception trials (i.e., the classifier was
trained and tested on independent subsets of perception
trials). Mean classification accuracy for our sample of
19 participants was 81.37% (SD = 9.03%), which is well
above chance (9.091%). Over the 21 repeated viewings,
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mean classification accuracy fluctuated between 74.24%
and 89.95%, indicating that video-specific signal was ro-
bust and consistent at perception.

Searchlight Pattern Classification

To generate a regional map indicating where item-specific
patterns of activity elicited at perception were reinstated
during mental replay, we performed a searchlight anal-
ysis over the entire brain (Kriegeskorte, Goebel, &
Bandettini, 2006). Classification accuracy was computed
for each trial based on activity from voxels restricted to
a local 6-mm-radius spherical neighborhood that sur-
rounded a central voxel. This SDA classifier was trained
on perception trials and tested on mental replay trials
(perception-trained classifier). The sphere was moved
around the entire brain, excluding voxels falling outside
a functional brain mask, to create a whole-brain map of
classification accuracy scores attributed to the voxel in
the center of each sphere. For group-level inference,
whole-brain accuracy maps were spatially normalized to
MNI space and analyzed with a voxelwise one-sample
t test. To protect against any nonspecific signal (e.g., cor-
related motion) that could spuriously aid classification,
we also computed the average classification accuracy
within a mask comprising voxels in white matter and ce-
rebrospinal fluid (CSF). To create this mask, all partici-
pants’ high-resolution MP-RAGE structural images were
segmented into gray matter, white matter, and CSF.
These segmented images were warped to MNI space
and then averaged across participants, yielding a proba-
bility map for each tissue class. Voxels in MNI space with
a CSF or white matter probability greater than .95 were
included in the mask. The average classification accuracy
within this mask was .1004, which is slightly above the
chance accuracy of .09091 (1/11 videos). We used the for-
mer value as the baseline value (expected value under the
null hypothesis) when we computed the voxelwise one-
sample t test to identify significant classification accuracy
at the group level. We report significant clusters (more
than five voxels; t(18) > 3.93, p< .001 uncorrected, which
corresponds to a whole-brain alpha < .05 corrected based
on a Monte Carlo simulation conducted with AFNI’s Alpha-
Sim) indentified by the group analysis in Table 3 and dis-
play the results in Figure 5 (bottom; t(18) > 3.20, p< .005
uncorrected). Throughout the Results section, we adopted
more conservative thresholds for coordinate tables to safe-
guard against false-positives, but we adopted a more liberal
threshold for figures because their format makes is possi-
ble to display a range of significance values.

LGA

We identified brain regions where high BOLD activity was
monotonically related to high classifier evidence, irre-
spective of the particular video that was being recalled.
For each participant, Spearman correlations were com-

puted in each voxel between activity level (trial-wise beta
coefficient) for individual recall trials and trial-specific
classifier evidence (whole-brain SDA discriminant scores
from the perception-trained classifier; see Pattern Classi-
fication). Separate correlation coefficients were comput-
ed for each video. These coefficient maps were then
averaged over videos to derive the local–global correla-
tion maps. Coefficient maps were spatially normalized
toMNI space, anda group-level analysiswas performedwith
a voxelwise one-sample t test. Significant clusters (more
than five voxels; t(18) > 3.93, p < .001 uncorrected, p <
.05 corrected with Monte Carlo simulation) are reported
in Table 1 and displayed in Figure 4 (top; t(18) > 3.20,
p< .005 uncorrected).

Vividness Regression Analysis

To estimate the relationship between univariate activity
and vividness, we computed, within each voxel, a multi-
ple regression analysis that assessed whether vividness
ratings modulated trial-by-trial fluctuations in activity level
relative to the implicit baseline. Video was modeled as a
factor of no interest to account for changes in vividness rat-
ings that were video specific. The number of repetitions
was also entered as a covariate to control for the influence
of repeated retrieval on activity levels and vividness ratings
(Figure 2, center). Thus, our model identified brain regions
whose level of activity during mental replay was modulated
by subjective vividness independently of repetition and
video. Significant clusters (more than five voxels; t(18) >
3.93, p < .001 uncorrected, p < .05 corrected with Monte
Carlo simulation) are reported in Table 2 and displayed in
Figure 4 (center; t(18) > 3.20, p < .005 uncorrected). To
determine whether regions modulated by vividness also
contributed to the specificity of memory reactivation, we
performed a conjunction analysis between the group-level
t score maps from the LGA and the vividness analysis. We
used AFNI’s 3dcalc function to create an inclusive mask of
group-level tmaps for each analysis (t(18) > 3.20, p< .005,
for each map; Figure 4, bottom). In addition, we also quan-
tified the global similarity between these twomaps by com-
puting the spatial correlation (over voxels) between the
two images.

Item and Participant Conjunction Analyses

Correlation coefficients averaged across videos reflect
the average tendency for local activity in a given voxel
to correlate with an output measure (the SDA discrimi-
nant score or vividness rating) regardless of the video re-
called. However, to ensure that an average measure was
not driven by one or two videos, we conducted group
analyses over participants (i.e., the standard random ef-
fects analysis in neuroimaging) and an analysis over
items, for both the LGA and the vividness analysis. Item
analyses are commonly used in psycholinguistics (Clark,
1973) to ensure that any effect observed in a group of
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Table 1. Brain Regions Whose Activity during Mental Replay Correlated Significantly with Perception-trained Classification

Anatomical Region Hemi BA Clu. Size t Score

MNI Coordinates

x y z

Positive Correlations

Middle occipital gyrus/cuneus R 18 87 6.95 23.5 −98.5 9.5

Inferior occipital gyrus L 17 46 6.12 −18.5 −104 −5.5

Precuneus/superior parietal lobule L 7 39 6.06 −9.5 −77.5 48.5

Precuneus/superior parietal lobule R 7 29 5.07 23.5 −68.5 45.5

Middle temporal gyrus L 37 24 8.29 −54.5 −68.5 −2.5

Precentral gyrus L 6 12 7.42 −54.5 0.5 45.5

Superior frontal gyrus L 6 11 5.58 −27.5 −5.5 69.5

SMA L 6 11 5.49 −3.5 3.5 63.5

Putamen R n/a 11 4.87 23.5 9.5 6.5

Putamen L n/a 8 4.86 −21.5 9.5 6.5

Intraparietal sulcus L 40 7 4.75 −33.5 −44.5 33.5

Caudate nucleus R n/a 7 5 17.5 0.5 18.5

Middle occipital gyrus R 19 6 4.41 41.5 −83.5 15.5

Hippocampusa R n/a 6a 4.87 20.5 −20.5 −11.5

Negative Correlations

Medial frontal gyrus R 10 369 7.45 5.5 57.5 −2.5

Angular gyrus R 39 102 9.71 47.5 −62.5 30.5

Angular gyrus L 39 39 5.59 −51.5 −56.5 30.5

Posterior cingulate cortex L 31 31 5.81 −0.5 −47.5 36.5

Inferior frontal cortex (p. orbit) L 47 31 5.92 −30.5 21.5 −17.5

Middle frontal gyrus L 8 30 6.18 −30.5 27.5 51.5

Middle temporal gyrus L 21 30 6.60 −63.5 −23.5 −14.5

Superior frontal gyrus R 8 21 6.25 23.5 36.5 54.5

Fusiform gyrus L 19 19 5.14 −27.5 −74.5 −8.5

Middle frontal gyrus R 6 18 7.55 44.5 15.5 54.5

Superior frontal gyrus R 10 14 5.02 17.5 63.5 21.5

Middle temporal gyrus R 21/22 12 5.04 59.5 −35.5 3.5

Inferior frontal gyrus (p. orbit) R 47 10 5.14 38.5 21.5 −20.5

Middle cingulate cortex R 31 9 9.10 5.5 −23.5 36.5

Anterior cingulate cortex R 24 8 4.55 2.5 30.5 −8.5

Superior temporal gyrus R 22 8 5.93 56.5 −8.5 −5.5

Middle temporal gyrus R 21 8 4.66 65.5 −17.5 −14.5

Precuneus L 7 6 5.88 −3.5 −47.5 51.5

Activations are significant at p < .001 (uncorrected; t > 3.93; cluster threshold > five voxels), which corresponds to a whole-brain alpha of <.05
based on a Monte Carlo simulation conducted with AFNI’s AlphaSim. The cluster’s Brodmann’s area (BA), its size in voxels (Clu. Size), and the
coordinates (MNI space, in millimeters) and t value of its peak voxel are provided. Hemi = hemisphere; L = left; R = right.

aHippocampal cluster size at p < .005 uncorrected, t > 3.20, α < 0.5, based on a Monte Carlo simulation conducted within a hippocampal mask
(small volume correction).
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participants generalizes across the set of items used in a
study (e.g., the particular words used in a lexical deci-
sion task), but they have also been used in neuroimag-
ing (Bedny, Aguirre, & Thompson-Schill, 2007). Here,

we employed an items-based analysis to ensure that
any observed group effect in the LGA or vividness anal-
ysis generalizes beyond the set of videos used in our
study.

Figure 2. Classifier
performance (percent correct)

is shown as a function of
stimulus repetition (left) and
vividness ratings (right); chance

level corresponds to the x axis
(1/11 or 9.1%). Mean vividness

ratings are also shown as a
function of repetition (center).
Error bars correspond to SEM.

Table 2. Brain Regions Whose Activity during Mental Replay Correlated with Vividness Ratings

Anatomical Region Hemi BA Clu. Size t Score

MNI Coordinates

x y z

Positive Correlations

Caudate nucleus R n/a 105 7.17 20.5 0.5 21.5

Putamen L n/a 77 7.45 −24.5 12.5 −2.5

Superior parietal lobule R 7 51 6.26 23.5 −65.5 54.5

Lingual gyrus R 17/18 15 5.56 17.5 −92.5 −11.5

Precentral gyrus R 6 11 4.74 53.5 −2.5 48.5

Precuneus/superior parietal lobule R 7 9 5.51 11.5 −71.5 60.5

Precentral gyrus L 6 9 5.22 −39.5 −2.5 27.5

Precuneus/superior parietal lobule L 7 6 4.29 −18.5 −71.5 54.5

Inferior temporal gyrus L 37 6 4.27 −54.5 −65.5 −8.5

Negative Correlations

Medial pFC R 32 502 7.6 5.5 45.5 0.5

Angular gyrus R 39 152 6.87 47.5 −65.5 45.5

Middle temporal gyrus R 21 105 7.28 62.5 −20.5 −8.5

Inferior frontal gyrus (p. triang.) R 45 92 8.54 44.5 30.5 −2.5

Posterior cingulate cortex L 31 64 5.57 −6.5 −47.5 30.5

Angular gyrus L 39 63 8.53 −54.5 −65.5 30.5

Insula L 13 44 6.53 −30.5 18.5 −11.5

Middle cingulate cortex R 31 31 6.8 2.5 −26.5 45.5

Middle temporal gyrus L 21 22 6.03 −54.5 −38.5 −5.5

Middle temporal gyrus R 21 11 6.78 50.5 9.5 −35.5

Anterior cingulate cortex R 24/33 7 4.69 2.5 24.5 18.5

Angular gyrus R 39 6 6.11 62.5 −53.5 18.5

Anterior cingulate cortex L 32 6 5.84 −12.5 48.5 9.5

Activations are significant at p < .001 (uncorrected; t > 3.93; cluster threshold > five voxels), which corresponds to a whole-brain alpha of <.05
based on a Monte Carlo simulation conducted with AFNI’s AlphaSim. The cluster’s Brodmann’s area (BA), its size in voxels (Clu. Size), and the
coordinates (MNI space, in millimeters) and t value of its peak voxel are provided.
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For simplicity, we used parallel approaches for the LGA
and the vividness analysis: For each participant, we com-
puted separate Spearman voxelwise correlations per
video between a voxel’s activity level (trial-wise beta co-
efficient) and either trial-specific vividness ratings or
whole-brain SDA discriminant scores. This approach
yielded 11 correlation maps per participant for the vivid-
ness analysis and 11 maps for the LGA (one map per
video). To generalize across participants, we averaged a
participant’s (vividness or LGA) correlation maps across
videos and carried out voxelwise t tests on these 19
participant-specific mean correlation maps. To generalize
across items, we averaged (vividness or LGA) correlation
maps from the same video across participants, and we
carried out voxelwise t tests on the 11 video-specific
mean correlation maps averaged over participants.

To identify signal that generalized across both videos
and participants, we generated inclusive conjunction
masks by intersecting the two (items and participants)
t test maps using AFNI’s 3dcalc function. We generated in-
clusive item + participant masks based on two differ-
ent thresholds, p < .01 (item: t(10) > 3.17, participant:
t(18) > 2.88) and p< .005 (item: t(10) > 3.59, participant:
t(18) > 3.20), with the more lenient threshold used for the
purposes of visual display. Masks based on each threshold
are superimposed in Figure 5 (LGA: top, vividness analysis:
center). We observed a great resemblance between regions
displayed in Figures 4 and 5 for the LGA and the vividness
analysis, respectively, indicating that effects picked up by
these analyses truly generalized across videos.

Vividness DISTATIS Analysis

To visualize the relationship between brain activity pat-
terns associated with memory for each video, we gener-
ated maps of representational space based on the
perception-trained classifier’s output. For each partici-
pant, SDA discriminant scores from the classifier were
normalized (z scored) within each of the 11 prediction
categories (the classifier’s prediction of how likely a trial
belonged to each video). Discriminant scores from each
of the 11 prediction categories were averaged over trials
for which the same video was retrieved, a process yield-
ing an 11 × 11 matrix of average discriminant scores. Dis-
tance matrices were created by computing the Euclidean
distance between pairs of rows from the 11 × 11 matrix,
so that pairs of retrieved videos were compared along
mean discriminant scores from the 11 prediction catego-
ries. These distance matrices were projected onto factor
maps based on a three-way generalization of classical
multidimensional scaling analysis called DISTATIS (Abdi,
Williams, Valentin, & Bennani-Dosse, 2012; Abdi, Dunlop,
& Williams, 2009; Abdi, 2007). In DISTATIS, multiple dis-
tance matrices are optimally integrated into a common
distance matrix that is then analyzed with multidimen-
sional scaling, so that distance matrices derived from
multiple individuals can be combined. Here, distance ma-

trices were decomposed into factor maps on which
videos were represented as points, and the distance be-
tween points best approximated the classifier-derived dis-
tances. Videos whose discriminant scores tended to vary
together were closer on the factor map than videos
whose discriminant scores did not covary with one an-
other. A bootstrap-based procedure (Abdi et al., 2009,
2012) was used to compute 95% confidence ellipsoid in-
tervals around each video. When confidence ellipsoids
did not intersect between pairs of videos, the two videos
were considered significantly different at p < .05. Note
again that, in this analysis, visualizations are based on
the discriminant scores that were derived by projecting
the recall trial beta images onto the perception-trained
model solution with SDA.
To visualize the influence of vividness on classifier per-

formance, we then assessed whether ratings modulated
patterns of interpoint distances on the factor maps. We
computed two distance matrices for each participant:
one based on trials rated as highly vivid (“high”) and
one based on trials that were given lower ratings
(“low”). Within participants, trials for each video were
categorized as high or low according to the following
set of rules: First, the video’s 21 trials were split into bins
based on their vividness rating (1–4). Then, the four bins
were recombined into two bins based on the solution
that minimized the difference between the numbers of
trials entered in each bin. This measure optimized the
distribution of trials while accounting for variations in
scale anchoring. If fewer than five trials were included
in a bin (e.g., video 5’s “low” bin), trials were reassigned
from the larger bin (video 5’s “high” bin) to the smaller
bin until the latter contained five trials. Some trial reas-
signment was required in 34.45% of 209 cases (19 partic-
ipants × 11 videos; one or two trials reassigned: 19.14%
of cases; three or more trials reassigned: 15.31% of
cases). The reassignment procedure reduced the influ-
ence of single trials in bins with too few trials. In the very
rare case when all of a video’s trials fell in a single rating
bin, trials were split randomly between a “high” bin and a
“low” bin (this situation only happened for a single video
for a single participant). As a result, each cell was filled in
the participant’s data matrix so that distancematrices could
be calculated. We projected the two distance matrices
based on the subsets of high and low vividness trials onto
the original DISTATIS factor map derived from all trials. We
predicted that centroids should be projected further away
from the origin for high than low vividness trials, indicating
superior separation of the high vividness images and more
distinct neural memory representations.

RESULTS

Whole-brain Pattern Classifier Performance

Both the recall-trained and perception-trained classifiers
performed significantly above chance (1/11 or 9.1%) at all
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repetitions (Figure 2, left; one-sample t tests, t(17/18)
ranging from 2.74 to 9.94, all ps < .05]. In addition, the
recall-trained classifier outperformed the perception-
trained classifier, as revealed by a two-way ANOVA with
rating and repetition entered as within-participant factors
(main effect of classifier: F(1, 15) = 94.90, p< .001). This
result was expected because the recall-trained classifier
was trained and tested on trials from the same condition:
This classifier could take advantage of all reliable video-
specific patterns present during mental replay regardless
of whether they were also present during perception.
The perception-trained classifier, however, was a more
stringent test of reactivation: It performed well only to
the extent that patterns of information present during
mental replay were also contained in the perception tri-
als. There was no significant main effect of repetition,
F(20, 300) = 0.92, p = .57, or Repetition × Classifier in-
teraction effect, F(20, 300) = 1.14, p = .305, on classifi-
cation accuracy. In three participants, classification data
weremissing for a few repetitions: An EPI runwas repeated,
which caused a shift in the repetition numbers assigned
to valid subsequent trials. Partial data from these three
participants are included in the means plotted in Figure 2
but were excluded from the ANOVA.
The distribution of vividness scores indicates that most

mental replay trials were performed successfully and given
high ratings (on average, ratings of 1, 2, 3, and 4 were
given to 1.58% [SD = 1.63%], 13.39% [SD = 12.59%],
45.36% [SD = 18.32%], and 38.75% [SD = 28.32%] of
the trials, respectively). Mean vividness ratings increased
within the first few repetitions and remained high

throughout the task (Figure 2, center). Importantly, both
the recall-trained and perception-trained classifiers’ per-
formance increased as a function of vividness ratings (Fig-
ure 2, left), as revealed by a two-way ANOVA with rating
and classifier model (perception-trained, recall-trained)
entered as within-participant factors (main effect of clas-
sifier model: F(1, 12) = 21.36, p < .001; main effect of
rating: F(3, 36) = 17.92, p < .001; linear contrast for
the rating factor: F(1, 12) = 33.11, p < .001). The qua-
dratic and cubic contrasts for ratings did not reach signif-
icance ( p ≥ .065), and neither did the Rating × Classifier
interaction: F(3, 36) = 1.50, p = .232; data from the six
participants who did not make use of all four values on
the 1–4 rating scale were excluded from the ANOVA but are
included in the means plotted in Figure 2. Our results indi-
cate that video-specific patterns of brain activity elicited
during trials perceived as subjectively more vivid were ob-
jectively more distinct—as indicated by the recall-trained
classifier’s performance—and that a significant portion of
this activity was modeled on perception—as indicated by
the perception-trained classifier’s performance.

The DISTATIS analysis based on the perception-trained
classifier’s performance provides an overall view of the
videos’ representation in “memory space.” The first dimen-
sion on the factor map (Figure 3A, x axis) explained 29% of
the total variance in the distancematrix andopposed videos
that included speech or music (e.g., a voiced-over commer-
cial, Barack Obama giving a speech; right side) to videos
that contained noise (e.g., glass breaking, a roller coaster
sound; left side). The second dimension (Figure 3A, y axis)
explained 18% of the variance and opposed videos that

Figure 3. Projection of videos onto 2-D factor maps according to distance matrices derived from perception-trained classification. (A) Solution space

based on all trials with bootstrap-derived 95% confidence ellipsoid intervals. (B) Projection of videos onto the main factor map as a function of
vividness ratings. Trials that received high (denoted “h”) and low (denoted “l”) vividness ratings are plotted for each video and are contained within

their respective convex hull (high vividness = dark gray, low vividness = pale gray). For most videos, highly vivid trials are further away from the
origin than less vivid trials, indicating that patterns of neural reactivation are more distinctive for highly vivid trials.
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included biological motion (e.g., four ballet jazz dancers, a
diver; bottom) to videos that either were more static or
included nonbiological motion (e.g., a car, an avalanche, a
building; top). The small amount of overlap between adja-
cent confidence intervals indicates that memory for most
videos elicited distinctive patterns of cortical activation.
Figure 3B shows the projections of each video onto
Figure 3A’s solution space based on distance matrices
computed from trials with high (denoted “h”) and low (de-
noted “l”) vividness ratings, respectively (the convex hull is
plotted for high and low vividness responses). For 9 of
11 videos in the stimulus set, trials low in vividness were
closer to the origin than highly vivid trials ( p= .033, by sign
test), a pattern supported by the observation that the con-
vex hull for vivid trials mostly included the convex hull for
less vivid trials. These results confirm that the relationship
between stimulus-specific neural reactivation and the vivid-
ness of recall is consistent across the stimulus set.

LGA

The LGA identified regions whose trial-by-trial fluctuation
in activity during recall correlated with perception-
trained classification irrespective of video content (Fig-
ures 4 and 5, top; Table 1). Similar sets of regions were
identified by the initial LGA for which correlations were
averaged across videos (Figure 4, Table 1) and by the ad-
ditional LGA for which intervideo effects were modeled
explicitly using a conjunction between the “item” and
“participant” contrast maps (Figure 5). Regions that cor-
related positively with classifier performance included
the fusiform gyrus, the occipital cortex, and the precu-
neus—regions known to play a role in visual imagery

and visuospatial processes—and the superior parietal
lobule—a region involved in the top–down modulation
of attention (Dosenbach, Fair, Cohen, Schlaggar, & Petersen,
2008; Corbetta & Shulman, 2002). We also observed positive
correlations within motor regions that included the lateral
premotor cortex, SMA, and dorsal striatum (putamen;
Figure 6). The contribution of these regions to specific reac-
tivation might reflect the reconstruction of sequential infor-
mation, as participants were asked to mentally replay
videos from beginning to end. Positive correlations were also
observed in the intraparietal sulcus whose activity can reflect
graded memory strength (Hutchinson et al., 2014; Cabeza
et al., 2011). At a reduced threshold adjusted for small vol-
ume correction ( p < .005, more than five voxels; t(18) >
3.20, p < .05 based on a Monte Carlo simulation conducted
within a hippocampal mask), voxels whose activity correlated
positively with classifier performance were present in the
right hippocampus (Table 1, Figure 6), a region known for
its role in recollection.
We also identified several brain regions whose activity

correlated negatively with classifier performance. Many of
these regions belonged to the default mode network
(DMN; Buckner, Andrews-Hanna, & Schacter, 2008;
Raichle et al., 2001) and included the medial pFC and
posterior cingulate cortex, the angular gyrus, and the lat-
eral temporal cortex. This finding is perhaps surprising
given evidence of the DMN’s consistent activation during
tasks of autobiographical memory retrieval (Cabeza &
St Jacques, 2007; Svoboda, McKinnon, & Levine, 2006)
and other internally oriented tasks that require visualization
(Spreng, 2012; Spreng, Stevens, Chamberlain, Gilmore,
& Schacter, 2010; Buckner & Carroll, 2007). However, a
well-established literature has consistently demonstrated

Figure 4. Local–global and vividness analyses. Regions whose activity during mental replay correlated either positively (warm colors) or negatively
(cold colors) with the perception-trained classifier’s performance (“LGA”: top) and with vividness ratings (“Vividness”: center; |t(18)| > 3.20, p <

.005). “Conjunction” (bottom): inclusive masking of brain voxels that correlated both with vividness ratings and with perception-trained classifier
performance (each contrast: |t(18)| > 3.20, p < .005); voxel values that fell within the conjunction mask were averaged between the two maps for

display purposes.
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activation within the DMN during mind wandering (e.g.,
Christoff, Gordon, Smallwood, Smith, & Schooler, 2009).
During our task, it appears that relatively greater levels of
DMN engagement were observed during trials for which
participants performed poorly, possibly because their
mind wandered off the task. A univariate contrast indicated
that DMN activity was reduced from baseline during our
mental replay task (Figure 5, bottom), indicating that our
mental replay task generally deactivated the DMN. Supe-
rior frontal cortex activity also correlated negatively with
classifier performance in our results.

Vividness Analysis

We identified brain regions whose trial-by-trial activity
during mental replay was modulated by participants’ sub-
jective vividness ratings across video (Figures 4 and 5,
center; Table 2). Similar sets of regions were identified
by the initial analysis (Figure 4) and by the additional
analysis for which both item and participant contrast
maps were combined via conjunction analysis (Figure 5).
Positive correlations with vividness were observed in the
occipital pole, lingual gyrus, precuneus and superior

Figure 5. Item + participant conjunction analyses, MVPA searchlight, and univariate contrast. (Top) Brain regions identified by the item +
participant conjunction analyses whose activity correlated either with classifier performance (“LGA”: first row) or with vividness ratings (“Vividness”:
second row). Negative correlations are in blue (dark blue: p< .005, pale blue: p< .01), and positive correlations are in red (red: p< .005, peach: p<

.01). For both analyses, the thresholds used to generate the inclusive masks were t(10) > 3.17 ( p < .01) and t(10) > 3.59 ( p < .005) for the items’
contrast and t(18) > 2.88 ( p < .01) and t(18) > 3.20 ( p < .005) for the participants’ contrast. Third row: MVPA searchlight. Content-sensitive brain
voxels whose activity was reactivated at mental replay, based on locally computed perception-trained pattern classification. Only positive values are

displayed: t(18) > 3.20, p< .005. Fourth row: univariate analysis depicting regions whose mean level of activation was either increased (warm colors)
or decreased (cold colors) in comparison with the implicit baseline during mental replay (t(18) > 3.20, p < .005).

Figure 6. Item + participant conjunction analyses in subcortical
structures. Voxels included within an inclusive item + participant

conjunction mask whose activity correlated either with classifier
performance (“LGA”: left) or with vividness ratings (“Vividness”: left). At
p < .005 (items’ contrast: t(10) > 3.59, participants’ contrast: t(18) >

3.20), activity correlated positively with classifier performance in the
right hippocampus (top left) and with both classifier performance and
vividness ratings in the bilateral striatum (bottom left and right,

respectively). A trend for a positive correlation with vividness ratings
was observed in the right hippocampus at a lowered threshold

(top right; p < .01; items’ contrast: t(10) > 3.17, participants’ contrast:
t(18) > 2.88).
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parietal lobule, dorsal striatum, premotor cortex and
SMA, intraparietal sulcus, and left ventrolateral pFC. Neg-
ative correlates included regions from the DMN such as
the medial pFC, angular gyrus, posterior cingulate cortex,
middle temporal gyrus, and dorsolateral pFC. Hippocam-
pal activity did not correlate significantly with vividness
ratings (a nonsignificant trend is shown in Figure 6), al-
though others have reported correlations between hip-
pocampal activity and subjective ratings of imagery and
detail content (Andrews-Hanna, Reidler, Sepulcre, Poulin,
& Buckner, 2010; Viard et al., 2007; Addis, Moscovitch,
Crawley, & McAndrews, 2004).

We hypothesized that whole-brain reactivation (as mea-
sured with SDA discriminant scores) and the subjective
sense of reexperiencing an event (as measured with vivid-
ness ratings) are related by a common cause and that re-
gions whose univariate activity predicts one measure
should also predict the other. The inclusive mask that con-
tained voxels identified by both the vividness analysis and
the LGA demonstrates a striking correspondence between
the two sets of findings (Figure 4, bottom). To evaluate this
correspondence formally, we calculated the Pearson corre-
lation between the respective “participants’ factor” t test
maps from the vividness analysis and the LGA. The corre-
lation, which was calculated across voxels located within
an average gray matter mask (where mean gray matter
probability over participants > .25), was .57, indicating
considerable similarity between the two images.

The multiple regression analysis conducted to identify
regions modulated by vividness ratings also assessed the
influence of repetition on activity during mental replay,
as both ratings and the number of repetitions were en-
tered as covariates. We identified two clusters where ac-
tivity increased significantly as a function of repetition;
these clusters were in the ventromedial pFC (MNI:
−0.5, 54.5, −8.5) and the left anterior temporal cortex
(MNI: −54.5, −8.5, −17.5), respectively.

Searchlight Pattern Classification

We conducted a searchlight MVPA to identify clusters of
brain voxels whose stimulus-specific activity patterns
were reactivated during mental replay. These regions
mainly included secondary sensory, motor, and associa-
tive cortices and excluded primary visual and auditory
cortices (Figure 4, bottom; Table 3). Whereas patterns
identified by the local–global and vividness analyses gen-
eralized across stimuli, the MVPA searchlight identified
content-sensitive signal that distinguished among videos
from the set; thus, some of the structures identified by
the searchlight likely underlie the representation of stim-
uli held in memory during mental replay.

A visual comparison of the LGAmap with the searchlight
map highlights how each approach provides a different
kind of window into the neural dynamics of memory re-
trieval. For example, the searchlight analysis does not re-
veal consistent reactivation in the occipital pole—in fact,

the occipital pole was deactivated from baseline in the uni-
variate contrast (Figure 5)—but the LGA indicates that in-
crease in occipital pole activity correlates with the strength
of whole-brain reactivation patterns (Figures 4 and 5;
Table 1). Important differences also emerge between the
LGA and searchlight results within structures from the
DMN. The searchlight analysis indicates that at least some
stimulus-specific reactivation was evident in canonical
DMN regions such as the posterior cingulate cortex, the an-
gular gyrus (bordering on the middle temporal gyrus), and,
to a lesser extent, the medial pFC. On the other hand, the
LGA and vividness analysis indicated that activity in these
regions correlated negatively with whole-brain reactivation
and with vividness ratings. In other words, whole-brain
classification accuracy was poorer when DMN regions
where activated, although their locally multivariate activity
patterns seemed to support stimulus representation dur-
ing mental replay. We address this apparent discrepancy
between results from the LGA, vividness, and searchlight
analyses in the Discussion.

DISCUSSION

Summary of Findings

Our results indicate a clear correspondence between
cortical reinstatement and recollection. First, both the
perception-trained and recall-trained classifiers’ accuracy
increased with vividness ratings, indicating that the reac-
tivation of video-specific activity patterns was accompa-
nied by an increase in the richness of the memory
experience. Second, we observed a substantial corre-
spondence between brain regions whose activity correlated
with vividness ratings and regions whose activity correlated
with pattern classification during mental replay. These
results reveal a common neural circuit that supports ob-
jectively measurable neural reactivation and subjectively
experienced memory recall.
Although the relationship between the graded quality of

distributed item-specific reactivation and the vividness of
recollection is intuitive, little evidence of a link between
the two phenomena can be found in the current literature.
Most existing studies have characterized recollection as a
phenomenon that is either present or absent: Pattern clas-
sification has been shown to be superior when a word is
recognized based on recollection rather than familiarity
(Johnson et al., 2009), when a picture is recognized rather
than forgotten (Ritchey et al., 2013), or when source infor-
mation (Gordon et al., 2013) and idiosyncratic details (Star-
esina et al., 2012; Kuhl et al., 2011) are remembered about
paired stimuli. Although insightful, these studies do not ad-
dress whether reactivation increases in a manner that re-
flects the graded quality of conscious memory retrieval.
Only a few recent studies have sampled a range of
“above-threshold” recollective experiences. These studies
have shown that reactivation reflects the vividness of
recall ( Johnson et al., 2015), the amount of information
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recollected about a stimulus’ features (Wing et al., 2015),
and the context in which that stimulus was encoded (Leiker
& Johnson, 2014). Together with our own observations,
these findings suggest that subjective indices of recollec-
tion and pattern reactivation are two facets of a common
underlying set of neural memory processes.
The current study relied on well-remembered, com-

plex, and multimodal stimuli that typically elicited some
amount of mental imagery—a defining feature of recol-
lection (Conway, 2009; Rubin et al., 2003; Brewer, 1986,
1995). In contrast to previous studies that have examined
how measures such as vividness ratings relate to brain ac-
tivity across items, we examined this relationship over
multiple repetitions of the same item. This procedure en-
sured that correlations between univariate brain activity
and vividness or whole-brain neural reactivation were un-
confounded with differences in content or imageability
between stimulus items. The repetition of items also
made it possible to estimate whether effects were likely

to generalize beyond stimuli from the experimental set.
With this approach, we identified content-general pro-
cesses that benefitted both cortical reinstatement and
vivid mentalization during mental replay.

Positive Correlates of Reactivation and Vividness

Several regions identified by the LGA overlapped with re-
gions whose univariate activity correlated with vividness
ratings. Activity correlated positively with vividness and
reactivation in motor regions that included the striatum
(caudate nucleus and putamen), the SMA, and the pre-
central gyrus. The involvement of motor-related regions
in our mental replay task may have reflected the sequen-
tial nature of our videos. For example, the striatum’s in-
volvement in learning and memory is well known,
although this structure is traditionally thought to play a
role in unconscious habit and stimulus–response learning

Table 3. Brain Regions Whose Activity Was Reactivated during Mental Replay, as Identified by a Searchlight MVPA

Anatomical Region Hemi BA Clu. Size t Score

MNI Coordinates

x y z

Middle temporal gyrus L 22 7090 12.7 −54.5 −53.5 18.5

Precuneus/superior parietal lobulea L 7 7090a 10.1 −9.5 −65.5 57.5

Retrosplenial cortexa L 23/30 7090a 10.1 −12.5 −62.5 18.5

Posterior cingulate cortexa R 23/31 7090a 10.1 5.5 −59.5 24.5

Retrosplenial cortexa R 29/30 7090a 10.0 2.5 −50.5 15.5

Middle temporal gyrus R 19/37 1622 11.1 47.5 −71.5 21.5

Middle temporal gyrusa R 21 1622a 8.7 62.5 −47.5 12.5

Superior temporal gyrusa R 22 1622a 9.6 50.5 −32.5 3.5

Fusiform gyrusa R 37 1622a 9.0 38.5 −35.5 −14.5

Hippocampusa R n/a 1622a 8.9 35.5 −35.5 −8.5

Angular gyrusa R 39 1622a 8.7 56.5 −50.5 24.5

Inferior frontal gyrus (p. triang.) R 45 319 7.6 50.5 42.5 6.5

Medial frontal cortex R 10/32 285 7.2 2.5 54.5 −8.5

Superior frontal cortexa L 8 285a 6.5 −0.5 54.5 36.5

Superior frontal/precentral gyrus L 6 68 5.1 −27.5 −8.5 60.5

Insula L 13 33 6.7 −39.5 0.5 3.5

Middle temporal gyrus/temporal pole R 21/38 33 5.8 50.5 −5.5 −17.5

Superior frontal cortex R 6 31 7.6 32.5 −5.5 60.5

SMA L 6 19 5.3 −0.5 −2.5 66.5

Calcarine sulcus L 17 15 5.0 −0.5 −86.5 12.5

Temporal pole R 38 10 4.5 50.5 15.5 −17.5

All activations are significant at p < .001 (uncorrected; t > 3.93; cluster threshold > five voxels), which corresponds to a whole-brain alpha of <.05
based on a Monte Carlo simulation conducted with AFNI’s AlphaSim. The cluster’s Brodmann’s area (BA) and the coordinates (MNI space, in mil-
limeters) and t value of each cluster’s peak voxel are provided.

aLocal maximum within a larger cluster.
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rather than in conscious associative learning (Packard,
2010). However, the striatum is also thought to compress
the representation of temporally ordered motor and cog-
nitive action sequences and to be involved in the perfor-
mance of learned sequences (Jin, Tecuapetla, & Costa,
2014; Yin, 2010; Schubotz & von Cramon, 2002; Graybiel,
1998). Although these forms of sequential learning are
often implicit, evidence indicates that a modulation of
striatal activity by medial prefrontal regions is observed
during the conscious retrieval of explicitly learned sequences
of action, indicating that implicit learning processes can be
controlled by conscious processes (Destrebecqz et al.,
2005). Unit-recording evidence from animals and human
lesion studies also suggest that motor sequences are repre-
sented in the SMA and pre-SMA (Halsband, Matsuzaka, &
Tanji, 1994; Tanji & Shima, 1994; Halsband, Ito, Tanji, &
Freund, 1993). In the current study, “mentally replaying”
videos required participants to form dynamic mental rep-
resentations of image sequences. Others have shown that
striatal activity at encoding is linkedwith good subsequent de-
clarative memory for video content (Ben-Yakov & Dudai,
2011). Here, our results show that recalling videos engages
a circuit of motor and premotor regions that contributes to
the vividness and specificity with which dynamic mental
representations are consciously reconstructed from long-
term memory.

The LGA also identified positive correlations between
whole-brain reactivation and univariate activity in a clus-
ter of right hippocampal voxels. The importance of
the hippocampus to recollection is well established
(Ranganath, 2010; Yonelinas et al., 2010; Moscovitch
et al., 2005), and the current results are consistent with
its role as an index of memory content that contributes to
specific reactivation during recall (Teyler & Rudy, 2007;
Teyler & DiScenna, 1986). Our results are also in line
with other reports of a relationship between hippocam-
pal activation and either task-specific (faces vs. scenes;
Gordon et al., 2013) or item-specific (visual scenes: Ritchey
et al., 2013; word–scene pairings: Staresina et al., 2012)
cortical reinstatement.

Other correlates of vividness and reactivation included
the intraparietal sulcus and the superior parietal lobule, two
structures involved in the top–down (goal-directed) modu-
lation of attention (Hutchinson et al., 2014; Ciaramelli,
Grady, & Moscovitch, 2008; Corbetta, Patel, & Shulman,
2008; Dosenbach et al., 2008; Corbetta & Shulman, 2002).
Intraparietal sulcus activity has been shown to covary with
graded item memory strength (Hutchinson et al., 2014;
Johnson et al., 2013;Wagner et al., 2005). Activity in regions
involved in visual processes, such as theprecuneus (Cavanna
& Trimble, 2006; Fletcher et al., 1995) and the occipital
pole, also correlated significantly with perception-trained
classification and with vividness ratings.

Interestingly, our searchlight MVPA indicated that
content-specific patterns were not typically reactivated in
early visual cortices but instead took place in higher order
cortical regions (see also St-Laurent et al., 2014; Buchsbaum

et al., 2012). On average, the occipital pole was deactivated
during mental replay trials (Figure 5). In other words, low-
level visual cortices were activated only during very vivid
trials for which whole-brain reactivation was highly specif-
ic. Our inability to detect pattern-specific content indicates
that occipital pole activity was generally associated with
highly vivid trials irrespective of the particular video re-
called (Pratte & Tong, 2014; Xing, Ledgeway, McGraw, &
Schluppeck, 2013; Slotnick, Thompson, & Kosslyn, 2005;
Kosslyn & Thompson, 2003). It is possible that top–down
influences were driving low-level visual cortex activity dur-
ing mental replay, using the region’s retinotopic infra-
structure as a scaffold onto which visualizations were
projected. These visualizations may or may not have been
modeled on perception. For example, it may be that men-
tal images were not projected reliably into the same reti-
notopic frame in which they were processed during direct
perception (but see Naselaris, Olman, Stansbury, Ugurbil,
&Gallant, 2015). Our results provide some evidence of the
visual cortex’s participation in the reactivation of vivid
memories, and future work should attempt to elucidate
the nature of this contribution.
We hypothesized that LGA would identify content-

general neural signal, whereas the searchlight MVPA
would identify regions supporting content-specific repre-
sentations. Although each analysis identified qualitatively
different distributed neural patterns, several brain re-
gions, for example, the superior parietal lobule, inferior
occipital gyrus, precentral gyrus, angular gyrus, and dor-
somedial pFC, were identified by both analyses (Figure 5).
Thus, some regions contained activity that covaried with
the strength of whole-brain reactivation in a content-
general manner (LGA), but these regions also contained
locally multivariate information that reliably discriminated
between videos from the stimulus set (searchlight analy-
sis). We should note, however, that interpreting patterns
of overlap in this case is complicated by the fact that the
searchlight analysis is performed over a spherical ROI
whereas the LGA is performed within single voxels, and
therefore, the two analyses are not fully commensurable.
Nevertheless, it appears that regions showing overlap in
these two analyses may contain both content-general and
content-specific signals that are separately picked out by
the two analyses. Alternatively, either the LGA or the
searchlight analyses are not pure measures of content-
general and content-specific information, and therefore,
overlap between these two analyses is driven by a com-
mon underlying cause. However, this possibility is miti-
gated by our combining of both item and participant
analyses for the LGA to ensure that univariate correla-
tions with whole-brain reactivation measures generalized
across videos.

Negative Correlates of Reactivation and Vividness

We identified a widespread set of regions where univari-
ate activity correlated negatively with both vividness and
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whole-brain reactivation. Several of these regions, which
included the medial pFC, angular gyrus, precuneus, and
lateral temporal cortex, are consistent with areas typically
observed in studies of the DMN (Buckner et al., 2008;
Raichle et al., 2001). These findings were somewhat un-
expected, as DMN regions tend to be positively activated
during certain kinds of memory recall, for example, dur-
ing tasks of autobiographical memory retrieval (Andrews-
Hanna et al., 2010; Spreng, Mar, & Kim, 2009; Buckner &
Carroll, 2007), and thus, we thought they might be re-
cruited by our mental replay task. Instead, these DMN re-
gions were significantly deactivated during mental replay
(Figure 5), and their activation was associated with poor
mental replay in both the LGA and vividness analysis.
Paradoxically, the MVPA searchlight revealed local ac-

tivity that was content sensitive and reactivated during re-
play in several of these DMN regions including the
posterior cingulate cortex, precuneus, angular gyrus,
and lateral temporal cortex. This finding echoes other re-
ports of local reactivation patterns within DMN regions
during the free recall of movie scenes (Chen, Leong, &
Hasson, 2014). Thus, our results indicate that (1) DMN
regions were deactivated during mental replay (i.e., main
effect over videos was negative) and (2) this deactivation
generically benefitted pattern classification across videos
but also (3) some DMN regions contained locally multi-
variate information that distinguished between different
videos. A few things need to be noted to reconcile these
findings. First, it is possible for MVPA to classify items or
conditions successfully based on deactivation patterns
that nevertheless contain content-sensitive information.
In our case, DMN regions may have been deactivated be-
low baseline during our task in a manner that differed
across videos and therefore was sufficient to achieve sig-
nificant local classification. Whether this video-specific
signal variation was related to content representation
per se or whether it reflected variations in the deploy-
ment of domain-general processes that consistently
varied across videos is unclear, and further work is clearly
needed to decide between these possibilities.
Second, our results may reflect the heterogeneity of

function in the inferior parietal cortex (IPL; Hutchinson
et al., 2014), a region frequently involved in recollection
as well as in other DMN areas mentioned above. For ex-
ample, it has been suggested that activity in the supra-
marginal portion of the IPL reflects an attentional state
that either favors (Quamme et al., 2010) or results from
(Cabeza, 2008) recollection. It has also been suggested
that the IPL (especially the angular gyrus) acts as an ep-
isodic buffer that supports memory representation at re-
call (Kuhl & Chun, 2014; Leiker & Johnson, 2014; Vilberg
& Rugg, 2008, 2012; but see Johnson et al., 2013; Cabeza,
Ciaramelli, & Moscovitch, 2012). In our results, univariate
activity in the dorsal portion of the angular gyrus was an-
ticorrelated with whole-brain reactivation, whereas its
ventral and anterior portions contained locally multivari-
ate video-specific signal as identified in the searchlight

analysis. The presence of content-sensitive signal in the
latter area is consistent with the view that the IPL actively
represents retrieved memories as a kind of episodic
buffer (Kuhl & Chun, 2014; Leiker & Johnson, 2014;
Vilberg & Rugg, 2009). For this interpretation to hold,
however—because of the constraints of our cross-
decoding approach—the episodic buffer must contain
similar activation patterns during perception and recall.

On the other hand, the content-general signal detected
in the vividness analysis and LGA can be reconciled with
attentional accounts of ventral parietal cortical function.
According to the attention to memory model (Cabeza
et al., 2011; Cabeza, Ciaramelli, Olson, & Moscovitch,
2008; Ciaramelli et al., 2008), when a memory is recov-
ered, attention is redirected toward the newly retrieved
memory by the ventral parietal cortex, which acts as an
attentional circuit breaker. In this scenario, recollection
is experienced in conjunction with ventral parietal activi-
ty. During our task, however, participants retrieved
strong memories that were well rehearsed, and it is likely
that search processes and retrieval fluency (e.g., how eas-
ily or spontaneously a memory could be accessed) con-
tributed minimally to trial-to-trial fluctuations in vividness
and accuracy. Instead, participants were required to re-
peatedly reconstruct and visualize a complex collection
of memory details, and it is likely that successful mental
replay benefitted heavily from top–down processes (e.g.,
concentration, active mentalization, working memory).
The interruption of top–down processes may have there-
fore interfered with the quality of recollection because at-
tention was redirected away from mental replay, possibly
because of distraction such as task-independent thought.
Thus, activation increased in the angular gyrus when
mental replay was poor. This interpretation is consistent
with evidence that DMN becomes engaged during mind-
wandering (Christoff et al., 2009): During trials with low
vividness ratings, participants may have engaged in natu-
ralistic mind-wandering, which may have engaged DMN
regions to a greater extent than our mental replay task
(Andrews-Hanna, Saxe, & Yarkoni, 2014; Spreng, 2012;
Spreng & Grady, 2010; Christoff et al., 2009; Spreng
et al., 2009; Buckner & Carroll, 2007). Because of the pe-
culiarities of our task, an entirely different activation pro-
file emerges that supports vivid mental replay and
reactivation, providing interesting insight into the neural
mechanisms of recollection.

Limitations

It must be noted that stimuli were shown multiple times
during our task, and so the memories cued by our para-
digm were “repisodic” or “generic” (Conway & Pleydell-
Pearce, 2000; Brewer, 1986; Neisser, 1981) rather than
purely episodic because of their nonspecific spatiotempo-
ral context. However, studies in which participants imag-
ine events in the future or visualize themselves in a
novel context have shown that vivid and detailed mental
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constructs that lack a specific temporal context can elicit a
sense of ecphory (aka mental time travel; Tulving, 1984,
2002; Suddendorf & Corballis, 1997; Wheeler, Stuss, &
Tulving, 1997) and do engage similar neural circuits asmem-
ory for single past episodes (Schacter et al., 2012; Kwan,
Carson, Addis, & Rosenbaum, 2010; Nyberg, Kim, Habib,
Levine, & Tulving, 2010; Spreng & Grady, 2010; Hassabis
& Maguire, 2009; Buckner & Carroll, 2007). In addition,
memory for events that take place repeatedly in a consis-
tent context shares several of the features that define epi-
sodic memory (Renoult, Davidson, Palombo, Moscovitch,
& Levine, 2012), including their level of detail and visuo-
spatial imagery content (St-Laurent, Moscovitch, Levine, &
McAndrews, 2009) and the potential to give rise to a recol-
lective experience (Brewer, 1986, 1995; but see Conway &
Pleydell-Pearce, 2000). The pattern of neural activity eli-
cited by memory for repeated events also shares many sim-
ilarities with single memory episodes, and both event types
are associated with hippocampal activation (Addis et al.,
2004; although see Holland, Addis, & Kensinger, 2011,
for some distinctions). In other words, the type of memory
assessed in the current study had several—but not all—of
episodic memory’s defining features, including the capac-
ity to evoke a subjective sense of revisiting the past in one’s
mind. Although our paradigm was adequate to capture the
neural mechanisms of the recollective experience, it was
not a pure test of episodic memory.

Conclusion

We combined multivariate and univariate analyses to iden-
tify content-general and content-specific neural mecha-
nisms that contribute to specific stimulus representation
in long-term memory. We successfully identified subsets
of brain regions that supported both the reactivation of
multimodal memory content and the vividness of the
memory experience. In doing so, we provided evidence
that whole-brain MVPA can be used as an external and ob-
jective marker of the graded quality of recollection for com-
plex episodes and more generally as an indicator of
memory specificity. This particular finding is especially rel-
evant to research protocols for which reports of recollec-
tion are difficult to collect as well as to studies conducted
in special populations whose subjective memory reports
are unreliable, such as young children and patients with
neurological conditions. Approaches that combine multi-
variate and univariate analyses can provide greater insights
into the neural dynamics of cognition than either tech-
nique used on its own, and future applications could ad-
vance our understanding of the neural circuitry that
supports a variety of mental constructs, from percepts to
spatial maps to words and concepts.
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