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ABSTRACT 

pC+ + is an object-parallel extension to the C++ programming language. This paper 

describes the current language definition and illustrates the programming style. Exam­

ples of parallel linear algebra operations are presented and a fast Poisson solver is 

described in complete detail. © 1994 John Wiley & Sons, Inc. 

1 INTRODUCTION 

This paper provides an overview of pC+ +, an ob­

ject-parallel programming language for both 

shared and distributed memory parallel systems. 

Traditional data-parallel systems are defined in 

terms of the parallel action of primative operators 

on the elements of array data structures. Object­

parallelism extends this basic model of data-par­

allel execution to the domain of object-oriented 

software by allowing the concurrent application of 

arbitrary functions to the elements of arbitrary 

distributed, aggregate data structures. 

Because C++ is a de facto standard for a grow­

ing community of application designers, we have 

chosen to base the system around that language. 

More specifically, the target audience for pC + + 
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are programmers who have chosen C + + over For­

tran for reasons of software engineering, that is, 

the construction of applications with complex, dy­

namic data structures not easily expressed in For­

tran 77, or the need for an object-oriented frame­

work not representable in Fortran 90. In this 

situation, we believe pC+ + is ideal when perfor­

mance is a premium and parallelism is the solu­

tion, so long as the result is portable. 

Additional design objectives include: 

1. pC + + should have few departures from 

standard C++ syntax. The only new lan­

guage constructs are the collection class and 

vector expressions. 

2. A multithreaded, single program, multiple 

data (SPMD) programming style should be 

available when needed. In addition to a 

data-parallelism model, a programmer can 

view part of the program as a single thread 

of control that invokes parallel operators on 

aggregates of data. At the same time, these 

parallel operators can be viewed as interact­

ing threads of computation that have ex­

plicit knowledge of data locality. 

3. There should be no "shared-address­

space" requirement for the runtime model. 

7 
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However, there needs to be a shared name 

space for distributed collections. This al­

lows any execution thread to reference and 

access any element of any collection. 
4. Parallel programs written in pC + + should 

be portable across all scalable parallel sys­

tems. The High Performance Fortran Fo­

rum (HPFF) has now defined a standard for 

data-parallel programs that can be com­

piled across a variety of architectures. We 

have used much of the HPFF Fortran as a 

model for mapping data and computation 

to Yiassively Parallel Processing (~1PP) sys­

tems in pC+ +. 

5. The pC++ compiler should make extensive 

use of optimization techniques that have 

been developed for transforming programs 

to run efficiently on parallel systems. 

6. pC + + programs should make use of li­

braries of high quality, scalable, parallel al­

gorithms. We expect that more than half of 

our effort will be devoted to building new 

libraries and integrating existing ones into 

the system. 

pC + + is derived from an earlier experiment by 

Lee [1]. In its original form, pC++ proved that it 

was possible to build a language that provided real 

portability of object-parallel programs across a 

variety of shared-address-space parallel systems. 

A major challenge for pC + + is to show that a 

shared address space is not essential for good per­

formance. 

2 COLLECTIONS 

pC + + is based on a simple extension to C++ that 

provides parallelism via distributed aggregates [L 

2]. Distributed aggregates are structured sets of 

objects distributed over processors of a parallel 

system. Data structures such as vectors, arrays, 

matrices, grids, trees, dags, or any other large, ap­

plication-specific aggregate can be described in 

pC + + as a collection class type. In a manner sim­

ilar to C++ templates, collections are parameter­

ized by the data type of the elements that make up 

the collection. Consequently, it is possible to de­

scribe structures such as a "distributed vector of 

*We regret the potential confusion between the HPFF For­

tran template concept and the C++ keyword template. To 

avoid any potential problem we will not use examples involving 

C++ templates in this paper. 

real" or "distributed vector of quaternion" with­

out modification to the concept of distributed vec­

tor. Indeed, collections of collections of objects 

can be defined such as a "tree of grids of finite­

elements.'' 

Parallel operations on a collection can be gen­

erated either by the concurrent application of a 

method of the collection elements to the entire ag­

gregate or by the application of a parallel operator 

associated with the collection itself. This form of 

parallelism is derived from data parallelism and 

we call it object-parallelism. 

The wav in which elements of a collection are 

distributed over processors is determined by a 

two-step mechanism similar to HPFF Fortran. In 

the first step, collection elements are mapped to 

template objects. A template defines a "logical co­

ordinate system" for arranging the distributed ele­

ments in a given computation in relation to each 

other.* The mapping of collection elements to a 

template is specified by an alignment object. In 

the second step, the template is mapped to pro­

cessors bv a mechanism called distribution. 

For example, suppose we want to create a ma­

trix, A, and two vectors, X andY, of complex num­

bers and want to distribute them over processors 

of a parallel machine. Given a C++ class for com­

plex numbers, Complex, we can build distributed 

matrix and vector collections by using the pC + + 

library collection classes DistributedMatrix and 

DistributedVector as follows: 

DistributedMatrix(Complex) A( ... ); 

DistributedVector(Complex) X( ... ); 

DistributedVector(Complex) Y( ... ); 

The declaration of a collection is specified by a 

collection type name followed by a type name of 

the element objects enclosed in angle brackets. 

The arguments for the three constructors define 

these collections in terms of alignments and tern­

plate objects. 

2.1 Templates, Alignments, and 
Processors 

Templates can be viewed as abstract coordinate 

systems that allow us to align different collections 

with respect to each other. If two elements from 

two different collections are mapped to the same 

template point, they will be allocated in the same 

processor memory. Consequently, if there is data 

communication between two collections, it is best 



to align them so that costly interprocessor com­

munication is minimized. 

Unlike HPFF Fortran, templates in pC+ + are 

first class objects. t A template is characterized by 

its number of dimensions, the size in each dimen­

sion, and the distribution by which the template is 

mapped to processors. Current distributions al­

lowed in pC++ include BLOCK, CYCLIC, and 

WHOLE. 

To map a two-dimensional matrix A to a set of 

processors, define a two-dimensional template 

and align the matrix with the template and then 

map the template to the processors. Suppose we 

have a 7 X 7 template and the matrix is of a size of 

5 X 5, and suppose the template will be distrib­

uted over the processors by mapping an entire row 

of the template to an individual processor and the 

ith row is mapped to processor i mod P on a P 

processor machine, this mapping scheme corre­

sponds to a CYCLIC distribution in the template 

row dimension and WHOLE distribution in the 

template column dimension, pC + + has a special 

library class called Processors, which is imple­

mentation dependent. In the current implementa­

tions, it represents the set of all processors avail­

able to the program at runtime. The template and 

distribution can be defined as follows. 

Processors P; 

Template myTemplate(7, 7, &P, CYCLIC, 

WHOLE); 

The alignment of the matrix to the template is 

constructed by the declaration 

Align myAlign(5, 5 1 1 [ALIGN( 

dummy [i] [j], myTemplate [i] [j])] 1 1
); 

DistributedMatrix(Complex) 
A(&myTemplate, &myAlign); 

Notice that the alignment object myAlign defines a 

two-dimensional domain of a size 5 X 5 and a 

mapping function. The mapping function is de­

scribed in terms of a text string that corresponds 

to the HPFF Fortran alignment directive. It de­

fines a mapping from the domain to a template 

using dummy domain and dummy index names. 

t Because templates are first class objects they can be cre­

ated at runtime or passed as a parameter to a function. This is 

very convenient for creating collections at runtime, i.e., when 

creating a new collection the template and align objects can be 

taken from another collection with which the new collection is 

to be aligned. 
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We may now align the vectors to the same tem­

plate. The choice of the alignment is best deter­

mined by the way the collections are used. For 

example, suppose we wish to invoke the library 

function for matrix vector multiply as follows. 

Y = A*X; 

Although the meaning and computational behav­

ior of this expression is independent of alignment 

and distribution, we would achieve best perfor­

mance if we aligned X along with the first row of 

the matrix A and Y with the first column. (This is 

because the matrix vector algorithm, which is de­

scribed in more detail later, broadcasts the oper­

and vector along the columns of the array and 

then performs a reduction along rows.) The decla­

rations take the form 

Align XAlign (5, I I [ALIGN ( X [i]' 
myTemplate [OJ [i])] 1 1

); 

Align YAlign(5, I I [ALIGN( Y[i]' 
myTemplate [i] [OJ)] 1 1

); 

DistributedVector(Complex) 
X(&myTemplate, &XAlign); 

DistributedVector(Complex) 
Y(&myTemplate, &YAlign); 

The alignment and the template form a two-stage 

mapping, as illustrated in Figure 1. The array is 

mapped into the template by the alignment object 

and the template definition defines the mapping 

to the processor set. 

Because all of the standard matrix-vector oper­

ators are overloaded with their mathematical 

meanings, this permits expressions like 

y 

y 
A*X; 
y +X; 

even though X andY are not aligned together. We 

emphasize that the meaning of the computation is 

independent of the alignment and distribution; 

the correct data movements will be generated so 

that the result will be the same. 

2.2 The Structure of a Collection 

Collections are a special type of class with the fol­

lowing syntax. 

Collection NameOfCollectionType: 
Kernel{ 
private: 
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} ; 

II private data fields 

II and method functions) 

protected: 

II protected data fields 

II and method functions) 

public: 

II other public data fields 

II and method functions) 

MethodOfElement: 

II data and functions that 

II are added to each element 

1. Collections are derived from a special ma­

chine-dependent root class called Kernel. 

The kernel class uses the template and 

alignment objects of a collection to ini­

tialize the collection and allocate the ap­

propriate element objects on each memory 

module. The kernel also provides a global 

name space based on an integer enumera­

tion of the elements of each collection. 

In other words the kernel numbers each ele­

ment of the collection and this number 

can be used by any element to identify and 

access any other element. The important el­

ement access functions provided by the ker­

nel will be described in greater detail later. 

2. A collection has private, protected and 

public data, and member function fields ex­

actly as any other class. However, unlike a 

standard class, when a collection ob­

ject is allocated a copy of the basic col­

lection structure is allocated in the local 

memory of each processor. Consequently, 

the data fields are not shared in the same 

way that element object indices are shared. 

The method functions in a collection are 

••••• 
••••• 
••••• 

my Align 

• •••• 0 0 

••••• 000000 
• •••• ~ ••••oo 

A(myTemplate, my Align) 0 0 0 0 0 0 0 

myTemplate(7,7,&P,Cyclic, Whole) 

I• • • • •I 
Y(myTemplatc, Y Align); 

FIGURE 1 Alignment and template. 

invoked in SPMD mode, i.e., they execute in 

an independent thread on each processor. 

This is explained in more detail later. 

3. Because the type of the collection ele­

ment is not specified when the collection 

is defined, the special keyword Element 

Type is used whenever it is necessary to re­

fer to the type of the element. 

4. A collection also has a set of data field 

and member functions that are copied into 

each element as protected fields. These are 

labeled in the collection as J'fethod­

OjElement fields. The purpose of Method­

OfElement fields is to allow each element 

to "inherit" properties of the collection 

and to define operators that act on the ele­

ments with knowledge of the global struc­

ture of collection. Fields or method 

functions within the MethodOfElement 

section that are defined as virtual are as­

sumed to be overridden bv a definition 

within the element class. 

2.3 Control Flow and Parallelism 

A collection is a set of elements that are ob­

jects from some C++ class. The primary form of 

parallelism in pC + + is the application of a collec­

tion MethodOfElement function or an element 

class method to each element of the collection. 

In other words, let C be a collection class 

and E is a standard C++ class. If c is declared to 

be of class C (E), that is, cis a collection that has 

elements of class E, and/() is a MethodOfEle­

ment function of C or a method function of E. 
then the object parallel expression 

means 

c. f () ; 

for all e in c do 

e. f () ; 

The alignment and template distribution func­

tions partition the collection and map a subset 

of elements to each processor. This subset is 

called the local collection. If sufficient processor 

resources exist, all of these element function invo­

cations in c. f () can happen in parallel. If there 

are fewer processors than elements, then each 

processor will sequentially apply the method func­

tion to the subset of element in its local collection. 



Note that iff () returns a value of type T when 

applied to an element, the expression c. f () will 

return a value of type C(T). Likewise. if x is a 

public field of E of typeS, the expression c. xis of 

type C( S). 

Because all collections are derived from the 

kernel class, they all inherit an indexing function 

and a subset operator. The expression c ( i) re­

turns a pointer to the ith element if it is in the local 

collection of the processor evaluating the expres­

sion, or it returns a pointer to a buffer that con­

tains a copy of the ith element if it is not local. The 

expression 

c [a: b: s] . f () ; 

means concurrently apply f () to e, E c for i in the 

range [a, b] with step size s. 

As with C++, all pC+ +programs begin execu­

tion with a single control thread at main () . \Vhen 

a collection function is encountered, the control 

thread forks a separate thread on to each proces­

sor. These processor threads must be synchro­

nized before returning from the collection 

function where the main control thread continues. 

For element class functions and Method­

OfElement functions this svnchronization is au­

tomatic. However, for public, private, and 

protected functions of the collection, the 

Collection LinearSet: public Kernel{ 

int size; 

public: 

LinearSet(Template *T, Align *A) 
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processor threads are said to be executing in asyn­

chronous SPMD mode. This means 

1. All variables visible within the scope of the 

function are private to the processor thread 

2. The programmer is responsible for the syn­

chronization between processor threads at 

the end of the function. 

In the next subsection we first give a simple exam­

ple to illustrate all of the points described above. 

The sections that follow explore different aspects 

of pC + + in more detail. 

2.4 Hello World 

To demonstrate the basic extensions to C++ pro­

vided by pC + + we consider a simple example 

consisting of a set of elements that each print a 

simple "Hello \Vorld" message to the standard 

output stream. We will build a simple linear set 

collection with one constructor method and a pri­

vate field size. Our linear set will add a field to 

each element called myindex and add a special 

function to the element class sayHello (),which 

will print the value of myindex and call a work 

routine doWork () from the element. The defini­

tion of the collection is given below. 

Kernel(T, A, sizeof(ElementType)) { 

} ; 

} ; 

int i; 

size = T->dimlsize; 

for (i = 0; i < size; i++) 

if (this->Is_Local (i)) (*this) (i) ->myindex 

Barrier(); 

MethodOfElement: 

int myindex; 

virtual void doWork( void ) ; 

void sayHello () { 

printf ("Hello World from %d/n", my index); 

doWork (); 

} ; 

i· 
' 

We may use any C++ class as the element type of the collection so long as doWork (),which is 

declared as virtual in the collection definition, is present. For example, 
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class MyElement{ 

public: 

float x, y; 

MyElement(float xinit) { 

x=xinit; 

} ; 

void doWork () { 

y = x*x; 

} ; 

MyElement & operator =(MyElement & Rhs); 

MyElement & bar(int i); 

} ; 

A main program that will create a co 11 ect ion of this type and do a parallel invocation of each of the 

sayHello function is given below. 

#include "kernel.h" 

#include "distarray.h" 

#define SETSIZE 5 

main() { 

Processors P; 

Template myTmplate(SETSIZE, &P, BLOCK); 

Align myAlign(SETSIZE, "[ALIGN( domain[i], myTmplate[i])]" ); 

LinearSet(MyElement) G(&myTemplate, &myAlign, 4.0); 

G. sayHello () ; 

} 

The result of this computation will be five 

''Hello World from .. '' messages and each element 

object will set its y variable to 4.0. 

To see how this works, we describe the behavior 

line by line. main () starts a single, logical thread 

of control. initializing the template and alignment 

objects. 

The constructor for the LinearSet is then 

called. The first task of the constructor is to call 

the kernel constructor to initialize the co 11 ec­

tion. I\ote that the constructor was invoked in 

the main program with the additional argument, 

4.0. Additional constructor arguments are passed 

to the element constructor, which in this case has 

one parameter, a float. The constructor initializes 

the size field on each processor's local copy of the 

collection structure with the value extracted 

from the template. It then initializes the myindex 

field in each element of the collection. 

LinearSet(Template *T, Align *A) 

} ; 

Kernel(T, A, sizeof(ElementType)) { 

int i; 

size = T->dimlsize; 

for (i = 0; i < size; i++) 

if (this->Is_Local(i)) 

(*this) (i)->myindex 

Barrier() ; 

i· , 

To do this, two special Kernel functions are 

needed: Is_Local (index) and Barrier(). As 

soon as the main control thread enters a public 

function from a collection the execution model 

changes: each processor now operates on its own 

local portion of the collection in SP"YID mode. The 

user may view this as if the original control thread 

had split into a number of independent threads, 

one per processor. These processor threads must 



always be synchronized at the end of the collec­

tion function before the return to the main control 

thread. The Is_Local (index) predicate returns 

true if the named element is in the local memorv 

associated with this thread of the computation. 

Another idea borrowed from HPFF Fortran is 

the "owner computes" rule. pC++ requires that 

only the "owner," i.e., the local processor thread. 

of an element may modify fields or invoke func­

tions that modifv the element's state. 

The function (*this) ( i) returns a pointer to 

the local element with global name i. If the ele­

ment accessed by (*this) ( i) is not local the 

function returns a pointer to a buffer containing a 

copy of the ith element.:j: 

The Barrier() function causes each thread 

to wait until all others reach this point in the pro­

gram. On return from the collection construc­

tor operation we return to the single main thread 

of execution. 

The final line of the program is 

G. sayHello () ; 

This invokes sayHello () in object parallel 

mode on all elements of G. The function is applied 

to each element in an unspecified order. Opera­

tionally, each processor invokes the function se­

quentially on that portion of the collection that is 

local. 

In addition to printing the "hello from . . . " 

message, each element function also calls do­

Work() , which modifies the field y in each ele­

ment. Each parallel operation is implicitly barrier 

synchronized, i.e., all processors wait until "say­

Hello" has been invoked for all elements of G. 

Exploring this example collection a bit further. 

we note that because the member values x and .Y 

in the element class MyElement, of the collection 

G, are public, one can write 

G.x = G.x + G.y 

This is a parallel addition for each element of the 

collection. Furthermore, we have also over­

loaded the plus ( +) operator within the element,. 

so the expression G + G defines a new collec­

tion of the same type. Also the function barre-

~: Potential race conditions can occur at this point. One 

processor may be modifyin!( a local element while another pro­

cessor is reading a copy that mav be out of date. It is up to the 

programmer to make sure that this does not cause problems. 
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turns a reference to an object of class MyEle­

ment. Consequently, the expression 

(G. bar() +G) .sayHello() 

is valid. In these cases of implicit collections, the 

distribution and alignment are inherited from the 

leftmost collection in each subexpression. 

2.5 Building Abstract Collections 

Library collections are designed to be applied to 

many different types of elements. For example. 

matrix multiplication can be written without refer­

ring explicitly to the type of the element. This is 

accomplished in pC++ by using the Element­

Type keyword as a place holder for a class that 

can be supplied later. However, it is often the case 

that a MethodOfElement function defined within 

a collection must refer to some property of the 

element in order to complete its task. The keyword 

virtual is used to indicate methods of the ele­

ment that collection requires. Consider the 

pC++ library collection class '·Distributed 

Block Vector." This collection is used for 

blocked vector operations and it is usually used 

with an element that is vector type object. The 

idea behind these classes is to be able to exploit 

well-tuned sequential class libraries for matrix 

vector computation. Many of these are becoming 

available in both the public domain and commer­

cial sources. A blocked vector is a segment of a 

large vector that resides on a processor. By sup­

plying a well-tuned Vector class at the element 

type, very good performance can be obtained. 

Distributing and blocking a vector do not 

change its functionality. For example, the opera­

tor sub () is a blocked vector subtraction and. 

when called as 

DistBlkVector(Vector) A,B,C; 

C.sub(A,B) 

it does the vector operation C = A - B. Because 

sub operates on collections it musL in turn, invoke 

a function that knows how to do a subtraction of 

elements. In the library, sub() is defined as 

Collection DistBlkVector: 

DistributedArray{ 

float dotProduct( 

DistBlkVector(ElementType)l; 

double dotprodtemp; 
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MethodOfElement: 

int indexl; 

} ; 

void sub ( 

DistBlkVector(ElementType) &argl, 

DistBlkVector(ElementType) &arg2) 

{ 

this->elementSub(*(argl(indexl)), 

*(arg2(indexl))); 

} ; 

virtual void elementSub( 

ElementType &argl, 

ElementType &arg2); 

void LocalDotProduct( 

Vector(ElementType) &arg) { 

ThisCollection->dotprodtemp += 
this->elementDot(*argl(indexl)); 

} ; 

virtual void elementDot( 

ElementType &arg) ; 

The sub () function applies the element sub­

traction function e 1 em en t Sub ( ) to copies of the 

corresponding elements in the argument collec­

tions. elementsub (), a virtual Element­

Type member function, does the actual ele­

mentwise subtraction. Consequently, any class 

that is provided as the element type of a Dist­

BlkVector collection must provide this 

function. 

virtual can also be used in a class that is 

the basic element of a collection to refer to the 

element field declared in the collection. How­

ever, we do not encourage this practice. 

3 THE KERNEL CLASS 

Before proceeding further with examples of the 

language it is essential to take a brief look at the 

functions provided by the kernel class. 

The role of the kernel is to provide a global 

name space for the collection elements and a 

method for managing parallelism and co 11 ec­

tion element accesses. The kernel methods are 

the following: 

int Install_Collection(Template *T, 

Align *A, int sizeelem) ; 

Int Is_Local(int index); 

int Is_Local(int, int); 

int *Get_Element(int); 

int *Get_Element(int , int); 

int *Get_ElementPart(int index, 

int startof, int size); 

int *Get_ElementPart(int indexl, 

int index2,int startof, int size); 

int *Get_CopyElem(int index); 

int *Get_CopyElem(int , int ) ; 

The Install_Collection () takes a tem­

plate and an alignment class to create the col­

lection. For each collection in the program, 

there is a special data structure that is created and 

stored on each processor of the system. This "lo­

cal collection" object contains all the elements 

that are assigned to the processor by the initial 

alignment and template distribution. In addition, 

the local collection object contains a table that 

describes how nonlocal elements may be ac­

cessed. This table is verv similar to the distributed 

manager used in shared virtual memory systems 

[3, 4]. Every element has a manager processor 

that is responsible for keeping track of where an 

element resides and every processor knows who 

the manager of each element is. The owner of an 

element is the processor that has that element in 

its local collection. 

The Get_Element (i) method returns the ith 

collection element. If the element is local then 

a reference to the element is returned. Otherwise a 

buffer, owned by the collection, is loaded with 

a copy of the remote element. The protocol con­

sists of two requests: 

1. Ask the manager of the element which pro­

cessor currently owns the element. 

2. Load a copy of the element from the proces­

sor that owns the element. 

The reason for this two-stage manager-owner 

scheme is to simplify dynamic collections and to 

provide a simple mechanism for load balancing. 

Our initial experiments on the CM -5 have shown 

that the added latency introduced by this scheme 

is very small [ 5]. 

Get_ElementPart () and GeLCopyElem () 

are similar. The former returns part of the ele­

ments and the latter allocates a new buffer to keep 



a copy of the element. However, there is no coher­

ence for element copies and, at this time, no 

methods for updating a remote element is pro­

vided. However, this has not been ruled out for the 

future. 

The current kernel is implemented on the 

NCSA CM5 using the CMAM communication 

package [6], the Intel Paragon using NX. 

4 COLLECTION FUNCTION 
SPMD EXECUTION 

The greatest potential hazard for programmers 

using pC+ + lies in managing the interface be­

tween the single control thread of the main pro­

gram and the "multithreaded SPMD" functions 

of the collections. In particular, if a public co 1-

lection function returns a value, care must be 

taken to ensure each thread returns the same 

value! For example, consider the case of a stan­

dard parallel reduction like the dot product. 

DistBlkVector(Vector) X, Y; 

float alpha; 

alpha= X.dotproduct(Y); 

If dotproduct () is called from the main control 

thread then each processor thread will compute a 

value for the function. Because the result is as­

signed to a single scalar, the operation is not well 

defined unless all of the results are identical. This 

problem is easy to understand if one considers the 

runtime behavior on a distributed memory multi­

computer. The main control thread is run concur­

rently on each processor. All global variables and 

the stack are duplicated on each processor. (It is 

the job of the compiler to make sure that any 

problems with a concurrent execution of the "se­

quential code", such as II 0, are properly han­

dled.) 

To solve the problem of making sure the collec­

tion member functions all return a consistent 

value, the library provides a family of special re­

duction functions. Consider the case of the dot­

product () function. 

double DistBlkVector: :dotproduct( 

DistBlkVector(ElementType) & arg) 

{ 

dotprodtemp = 0.0; 

this->LocalDotProduct(arg); 
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return( sumReduction(dotprodtemp)); 

} 

To execute X. dotproduct (Y) each processor 

thread first sets the variable dotprodtemp in the 

corresponding local collection to zero. Then data 

parallel action ofLocalDotProduct (arg) com­

putes the element level dot products. This compu­

tation is a simple sequential iteration on each pro­

cessor thread that accumulates the values into the 

dotprodtemp variable of the collection: 

ThisCollection->dotprodtemp += 

this->elementDot(*argl(indexl)); 

The pointer ThisCollection is inherited from 

the DistributedArray and it provides a way for 

each element to identify the collection to which it 

belongs. The sumReduction function computes 

and returns the total of the arguments on each 

processor thread. 

The reader may object to the fact that we have 

left the burden of synchronizing thread and re­

turning consistent values to scalar functions up to 

the programmer. The alternative is to use a lan­

guage extension that requires each collection 

function to use a special form of the return state­

ment. Experience with applications should tell us 

which is the correct path. 

Other functions that can be used to synchro­

nize and assure consistent returned values are 

multReduction, andReduction and orRe­

duction. Functions like broadcastBuffer can 

be used to transmit a block of data from one pro­

cessor thread to all the others. 

5 THE COLLECTION LIBRARY 

The collection library for pC++ is designed to 

provide a set of primitive algebraic structures that 

may be used in scientific and engineering compu­

tations. Organized as a class hierarchy, the 

collection class tree is rooted with the kernel 

(Fig. 2). There are two basic types of collections: 

dynamic and static. Within the category of static 

structures, we have all the standard array, matrix, 

and grid classes. These are described in detail be­

low. The other category includes collection types 

like trees, unstructured meshes, dynamic lists, 

and distributed queues. This latter category is still 

far from complete in design and will be a subject 

of intense research over the next few years. 
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Kernel I 

DisUnstrucMesh 

DistributedTree 

FIGURE 2 The collection hierarchy. 

There are two aspects to the problem of design­

ing a parallel library for a language like pC + +. 

First, one needs a basic set of element classes for 

numerical computation that are well tuned to the 

individual processors of each parallel system. Sec­

ond, one must have a set of collection definitions 

and the associated parallel operators that are both 

scalable and easy for the user to extend. In addi­

tion, these collections must be easy to integrate 

with other C++ numerical packages, like the 

LaPack+ + system being designed at Oak Ridge 

and Tennessee. Consequently, one can expect the 

definitions shown below will change as these other 

packages come available. 

5.1 The Distributed Array 

The DistributedArray class provides essential op­

erators for manipulating arrays of objects. Distrib­

uted arrays can be of arbitrary dimension and the 

element class type is restricted only by the na­

ture of the application. Ylore accurately, distrib­

uted arrays have a number of special global oper­

ators. These can only be used if the underlying 

element has the required properties. For example, 

it is not possible to find the maximum value of a 

one-dimensional array of elements if the elements 

do not have a total order based on the >, =. < 
operators. 

The Distributed.Array operators al,;o in­

clude a generalization of the Fortran 90 array sec­

tion operators. By this we mean that if A is a Dis­

tributed.Array of dimension k .. the expression 

refers to the subdomain of the array specified in 

the ith dimension by the lower-bound. upper­

bound, stride triplet ( : ui : si. 

As with Fortran 90. a subarrav can be used 

wherever a full array can be used. For example. if 

M i.s defined by 

Distributed.Array( ... ) *M; 

M =new DistributedArray(&A, &T); 

where the alignment A gives the dimension of J1 to 

be 2. then if 

(*M) .sin(x) 

means apply the element function sin () to all the 

elements of the collection. then 

M[1: 100:2, 1:100: 2]. sin(x) 

means apply sin() to the odd indexed lattice 

points in M. Similarly .. one can use M[i : m : k, s : 

t : r] in any expression where one can use *Jd. 

The core distributed arrav functions include: 

1. ElemenType *operator() (int 

i, ... ) returns a pointer to either the (ith 

· · ·) element if it is local to the executing 

processor, or a pointer to a buffer contain­

ing a copy of the (ith · · ·) element if it is 

nonlocal. 

2. DistributedArray(ElementType) 

&saxpy (a, x, y) does pointwise scalar 

element a times array x plus array y as­

signed to this array. Other standard BLAS­

t vector operators are supported. 

3. void Shift (int dim, int dis­

tance) parallel shifts an array by the given 

distance in the given direction (with end 

around wrap). 

4. void Broadcast() broadcasts the value 

in location (0, 0, .. ) to the entire array. 



5. void BroadcastDim (int I) broadcasts 

the values along dimension I where I = 1, 2, 

6. void Reduce() does a parallel reduction 

of the array leaving the result in location (0, 

0, .. ). 

7. void ReduceDim (int I) does a reduc­

tion along dimension I where I = 1, 2, . . 

and leaves the result in the orthogonal hy­

perplane containing (0, 0, . . . ). 

All operations that require element "arith­

metic" assume that the base element class has 

operators for basic arithmetic and some cast oper­

ators that will allow a real number to be case in to 

the element type. 

As mentioned previously, if the operators like 

+, =, -, *, I, etc. are defined for the array ele­

ment type then the collection level operations are 

also well defined. 

5.1.1 The Matrix Collection Classes 

Many applications use arrays to represent matri­

ces, tensors, and vectors. To simplify program­

ming, we have defined two types of distributed 

matrix and vector collections. 

The DistributedMatrix and DistributedVector 

classes are derived from the DistributedAr­
ray collection class. Their functionality 

provides access to well-tested and tuned parallel 

linear algebra operations. More specifically, these 

collections provide BLAS-3 level operators for 

distributed arrays that represent matrices and 

vectors. For example: for DistributedMatrix 
we have 

1. DistributedMatrix &operator 
*(Distributed Matrix&) ~ves the 

matrix product rather than the pointwise 

array product. 

2. DistributedVector &operator 
*(Distributed Vector &) is the ma­

trix vector product. 

3. DistributedVector &transProd­
(Distributed Vector &) is the matrix 

vector product using the transpose of this 

matrix. 

A larger project to build a distributed LAP ACK 

project is underway. This work will be based on 

adapting the SCALAPACK library being devel­

oped as part of a consortium involving Berkeley, 
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Illinois, Oak Ridge, and Tennessee. In addition we 

will work with the Illinois Splib project. 

5.1.2 Blocked Matrices and Vectors 

A blocked distributed matrix DisBlkMatrix IS 

much like a DistBlkVector. The kev idea is the 

observation that many matrix computations on 

parallel machines partition a large matrix into an 

array of submatricies, where each submatrix is lo­

cated on one processor. Many matrix algebra op­

erations for large matrices can be decomposed 

into operations on smaller matrices, where the ele­

ments of the smaller matrix are submatrices of the 

original. For example, given a class Matrix with 

all the standard properties of algebraic matrices 

overloaded, we can create a q X q distributed ma­

trix of matrices, each of size p X p. The operation 

Processor P(q*q); 
Template T(q, q, &P, Block, Block); 
Align A(q, q, "[ALIGN( domain[i1 [j1, 

T [i1 [j 1) 1 II ) ; 

DistributedMatrix( Matrix ) 
M (&T, &A, p, p); 

DistributedMatrix( Matrix ) 
N (&T, &A, p, p); 

M = M*N; 

is mathematically equivalent to standard matrix 

multiplication on objects declared as: 

Processor P(q*q); 
Template T(p*q, p*q, &P, Block, 

Block); 
Align A(p*q, p*q, "[ALIGN( 

domain [ i 1 [j 1 , T [ i 1 [j 1) 1 " ) ; 
DistributedMatrix( float )m(&T, &A); 
DistributedMatrix( float )n(&T, &A); 
m = m*n; 

In the first case there is one element per processor 

and it is a p X p matrix. In the second case there is 

a p X p submatrix assigned to each processor. 

The advantage of the first scheme is that the basic 

matrix element operation can come from a library 

well tuned for the individual processor whereas in 

the second case it is up to the compiler to auto­

matically block the resulting code in an efficient 

manner. (A research project is in progress to make 

the transformation from the second form to the 

first automatically.) 

The only disadvantage of the matrix-of-matri-
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ces solution is that access to an individual element 

can be more difficult. To fetch the (i,j) element of 

the matrix m one uses m (i, j). To fetch the same 

value from J1 requires 

M(ilp, jlp) (i%p, j%p); 

To simplify this task of translating the index 

and subarrav notation from the mathematical 

level to the matrix-of-matrix references. we have 

introduced the collection DistBlkMatrix. 

The matrix corresponding to .\1 would be written 

as 

Processor P(q*q); 

Template T(q, q, &P, Block, Block); 

Align A(q, q, "[ALIGN( domain[i] [j], 

T [ i] [j l) l II ) ; 

n = p*q; II the size of the matrix 

DistBlkMatrix( Matrix ) 

M (&T, &A, n, n); 

In this case a reference to the value of an individ­

ual element is given by M. get ( i, j) or 

M. put ( i, j , value) . Columns can be accessed 

with the function M. col ( int i). which returns a 

DistBlkVector that is defined in terms of 

DistributedVector(Vector) 

for some uniprocessor vector class. Rows and 

diagonals can be accessed similarly . .Ylultiplica­

tion of DistBlkMatrix(Matrix) by Dist­

BlkVector (Vector) works as expected so long 

as the Matrix*Vector element operations are 

well defined. 

Another reason for using a matrix-of-matrices 

structure is for distributing sparse matrices or 

block structured matrices. For example. if one has 

a class Sparsd1atrix that works with the 

class Vector, then the collection 

DistBlkMatrix(SparseMatrix) S( .... ); 

DistBlkVector(Vector) X( .. ), Y( ... ); 

Y = S*X; 

can be a handy way to construct a collection 

that has the global structure of a sparse matrix but 

still allows simple algebraic operators to be ap­

plied at the source level. For example .. this is used 

in the pC + + implementation of the l'\AS sparse 

CG benchmark [7]. 

Along these lines, other useful collections for 

sparse structured matrices would be 

DistBandedMatrix(TridiagonalMatrix ). 

These will eventually be added to our library. 

6 PARALLEL TRIDIAGONAL SYSTEMS 
AND A FAST POISSON SOLVER 

In this section we describe the construction of a 

simple parallel algorithm for solving tridiagonal 

systems of equations and then show how it can be 

applied to solving the Poisson equation. 

6.1 Tridiagonal Solvers 

A standard parallel algorithm for solving diago­

nally dominanL tridiagonal systems of linear 

equations is cyclic reduction. This method uses 

Gaussian elimination without pivoting. The algo­

rithm orders the elimination steps with the odd 

elements first. followed bv the elements that are 

not multiples of 4, followed by the elements that 

are not multiples of 8, etc. At each stage all the 

eliminations can be done in parallel provided that 

the updates are done correctly [8]. 
One way to program this in pC+ + is to build a 

special subcollection of the DistributedVec­

tor to represent the tridiagonal system of equa­

tions. For simplicity we shall assume the matrix is 

symmetric and all diagonal elements are identical 

and all offdiagonal elements are equal. (These as­

sumptions are sufficient for the PDE example that 

follows). Although the tridiagonal matrix can be 

described by two numbers, the diagonal and the 

offdiagonaL the elimination process will destroy 

this property. Consequently. we will need two vec­

tors of coefficients, one for the diagonal. a. and 

one for the offdiagonals, b. Also to simplify the 

boundary conditions in our program. we will as­

sume n = 2k for some k and the vector length is 

n + 1 and the problem size is n - 1. Our solution 

vector will be in the range of indices from 1 to n -

1 and it will be initialized with the right-hand side 

values. 

In the collection structure below. we ha\·e 

placed the coefficient values directly in the ele­

ment, and we have defined one parallel function 

c~yclicReduction, which takes pointers to the two 

matrix coefficients. The method of element func­

tions we need are a wav to set the local coefficient 



values at the start of the algorithm, a function to 

do the forward elimination phase of the elimina­

tion, and a method to do the "backsolve" phase. 

Collection DistributedTridiagonal: 

public DistributedVector{ 
public: 

void cyclicReduction( 
ElementType *diagonal, 
ElementType *offdiagonal) ; 

MethodOfElement: 

} 

ElementType *a; 
ElementType *b; 

virtual ElementType(ElementType*); 
void setCoeff( 

ElementType *diagonal, 
ElementType *offdiagonal) { 

a new ElementType(diagonal); 
b =new ElementType(offdiagonal); 
} 

void backSolve(int s); 
void forwardElimination(int s); 

Note that the setCoeff () function requires a 

special constructor that takes a pointer to an Ele­
mentType object and allocates a new copy of the 

objected referenced. This is because the for­
wardElimination () function modifies the val­

ues of *a and *b. Because the collection does 

not know about types of constructors that are 

available for the ElementType it must assume 

the existence of one. 

The cyclic reduction function, shown below, di­

vides th~ process into log(n) parallel stages of for­

ward elimination followed by log(n) parallel stages 

of the backsolve procedure. 

void DistributedTridiagonal:: 
CyclicReduction( 

int s; 

ElementType *diagonal, 
ElementType *offdiagonal) { 

int n = this->dim1size-1; 
this->setCoeff(diagonal, 

offdiagonal); 

for(s = 1; s < n/2; s = s*2) { 
(*this) [2*s: n-1: 2*s]. 

forwardElimation(n, s); 

} 

for(s n/2; s >= 1; s = s/2){ 
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(*this) [s: n-1: 2*s]. backSolve (s); 
} 

} 

The forward elimination is an element function 

that accesses neighbor elements s position in both 

directions. Mathematically, it is equivalent to the 

eliminating X-s and xi+s from the middle equation 

ln 

bXi-2s+ aX;-s+ bX; = this;- 8 

bX-s+ aX;+ bXi+s = this; 

bX;+ aX;+s+ bX;+2s = this;+s 

Translating this to pC + +, we have 

void DistributedTridiagonal:: 

} 

forwardElimation(int n, int s){ 

int k; 
ElementType *v1,*v2; 
ElementType c; 

if (S == 0) { 

if (index == 0 II 
*this 

return; 
} 

index == n) 

(ElementType) 0; 

v1 (ElementType *) ThisCollection 
->Get_CopyElem(index1 -s); 

v2 (ElementType *) ThisCollection 
->Get_CopyElem(index1 +s); 

c = (*b) I (*a); 
*a= *a -c*2*(*b); 
*b = -c* (*b); 

*this+= -c*(*v1 + *v2); 

if (!ThisCollection 
->Is_Local(index1 -s)) 

delete v1; 
if (!ThisCnllection 

->Is_Local(index1 +s)) 
delete v2; 

The backsolve step is equivalent to solving for 

xi in 

bX;- 8 + aX; + bX;+s = this; 

X;- 8 = this;- 8 

xi+s = this;+s 

and assigning the result to this;. 
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void DistributedTridiagonal:: 

backSolve(int s) { 

} 

int k; 

ElementType *vl,*v2; 

vl (ElementType *) ThisCollection 

->Get_CopyElem(indexl -s); 

v2 (ElementType *) ThisCollection 

*this 

->Get_CopyElem(indexl +s); 

(*this- (*b)*( *vl + *v2 )) 

I (*a); 

if (!ThisCollection 

->Is_Local(indexl -s)) 

delete vl; 

if (!ThisCollection 

->Is_Local(indexl +s)) 

delete v2; 

It should be noted that, in general, this is not a 

very efficient algorithm because of the large cost of 

copying data from one processor to another. 

A more interesting tridiagonal solver would be a 

blocked scheme where each element represents a 

set of rows of the system rather than a single row. 

Numerous techniques exist for this case, but we 

do not explore them here. 

6.2 A Fast Poisson Solver 

Consider the problem of solving the Poisson equa­

tion on a square domain in two dimensions based 

on a "5-point", uniform grid, finite difference 

scheme. In other words, we seek the solution to 

the linear system 

4U;,J- ui-1.J -ui+1,J -ui.J-1 -ui,J+1 =F;.J 

with), i in [1 · · · n- 1], given n = 2k with bound­

ary conditions 

Uo,; = U;,o = U;,n = Un,i 

for i in [ 0 · · · n] . 

The algorithm we will use was first described in 

terms of parallel computation by Sameh et al. [9] 

and consists of factoring the five-point stencil, fi­

nite difference operator by first applying a sin 

transform to each column of the data. These 

transforms can all be applied in parallel. The 

result is a decoupled system of tridiagonal equa-

tions. Each tridiagonal equation involves only the 

data in one row of the grid. After solving this sys­

tem of n - 1 equations, a final sin transform along 

each column completes the solution [8]. 
The easiest way to do this is to view the array U 

as a distributed vector of column vectors, 

DistributedVector( Vector ) U( ..... ); 

The first and last steps of the parallel algorithm 

require a sine transform operation on each 

column in parallel. Our Vector class has such 

a function and it can be applied as follows 

U.sinTransform(wr,wi,p, &temp) 

where wr and wi are special arrays of size /og(n) 

by n that must be initialized to hold the primitive 

nth roots of unity, p is a "bit reversal" permuta­

tion, and temp is a temporary vector that is passed 

by the user so that the sin transform does not need 

to spend time allocating and deallocating the 

needed storage. 

The middle stage of the solution process re­

quires the solution to n systems of tridiagonal 

equations where the right-hand side data are 

given by the rows of the distributed array. In the 

example above, we illustrated the solution of a 

single distributed system of tridiagonal equation 

using a collection of the form 

DistributedTridiagonal(Element) 

T( ... ); 

where Element was a class that represented 

one component of the solution. All we required of 

Element was that the standard numerical opera­

tors ( +, -, *, I, =) were well defined and that 

there was a zero assignment ( = (Element) 

0) . Consequently, the class Element could also 

be Vector and, in this case the function, cyclicRe­

duction is solving a vector of tridiagonal equations 

in parallel. 

The main program for the fast Poisson solver 

now takes the form shown below. 

float *wr[LOGMAXVECSIZE]; 

float *wi[LOGMAXVECSIZE]; 

int p[MAXVECSIZE]; 

main() { 

Template 

Align 

Temp(NBPROC,&P,BLOCK); 

A (GRIDSIZE, II [ALIGN (F [i], 

T li])] "); 



} 

DistributedTridiagonal(Vector) 

U(&Temp,&A,MAXVECSIZE); 

initialize (&U) ; 

n = MAXVECSIZE; 
II initialize coeff arrays wr, wi 

II and p for FFTs 

log2n = mylog2(n); 

initw(n/2,log2n-l,wr,wi,p); 

poisson_solve(n,wr,wi,p, &U); 

The Poisson solve function, shown below, need 

only initialize the coefficient arrays for the tri­

diagonal system. These coefficients correspond to 

the eigenvalues of tridiagonal system [ -1, 4, -1], 

which is one slice of the finite difference operator. 

Hence, it is easy to compute that the coefficients 

for kth equation are 

ak = 4 - 2 * cos ( :k) 

void poisson_solve(int n, float **wr, 

float **wi, int *p, 

DistributedTridiagonal(Vector) *U) 

{ 

} 

int k; 

Vector a (n) ; 

Vectoc b (n) ; 

Vector temp (n) : 

for(k = 1; k < n; k++) { 

a[k] 4.0 -2.0* (float) cos( 

b [k] = -1. 0; 

} 

(double) pi*k/n); 

U->sinTransform(wr,wi,p, &temp); 

U->cyclicReduction(&a,&b); 

U->sinTransform(wr,wi,p, &temp); 

7 CONCLUSIONS 

This paper presents the basic of an object-parallel 

programming language pC + + . The focus has 

been on a complete discussion of the language 

extensions and the associated semantics as well 

an introduction to the standard library of linear 

algebra collection classes. 
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We have not cited any performance results 

here. These are described in other papers [5, 10-

12] and new results for various benchmarks will 

be available soon. The compiler currently runs on 

any standard scalar unix system as well as the 

Thinking Machines CYI-5. A version for the Intel 

Paragon is also available. A group led by Jenq 

Kuen Lee at NTHU in Tiwan has ported a version 

of pC + + to the N -Cube. pC + + is now available 

by anonymous ftp from ftp.cica.indiana.edu. 

Complete sources for the examples in this paper 

and the entire system can be found in directory 

pub/sage. 

The compiler takes the form of a C++ restruc­

turer. This means the input language is pC++ 

and the output is standard C++ in the form 

needed to run on multicomputer systems. The 

Kernel class contains most of the machine-spe­

cific details, so building new ports of the system is 

very easy. The compiler is written using the 

Sage++ compiler toolkit [13] which will also be 

distributed. 

We expect that pC++ will evolve. The current 

version does not allow collections of collections 

and there is no support for heterogenous, net­

worked parallel systems. Because we feel that both 

are essential for future applications, we will move 

in that direction. This may take the form of mak­

ing pC + + a superset of the CC + + dialect pro­

posed by Chandy and Kesselman at Cal Tech. 
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