
Distributed Process Groups in the V Kernel

DAVID R. CHERITON

Stanford University

and

WILLY ZWAENEPOEL

Rice University

The V kernel supports an abstraction of processes, with operations for interprocess communication,
process management, and memory management. This abstraction is used as a software base for
constructing distributed systems. As a distributed kernel, the V kernel makes intermachine bound-
aries largely transparent.

In this environment of many cooperating processes on different machines, there are many logical
groups of processes. Examples include the group of tile servers, a group of processes executing a
particular job, and a group of processes executing a distributed parallel computation.

In this paper we describe the extension of the V kernel to support process groups. Operations on
groups include group interprocess communication, which provides an application-level abstraction of
network multicast. Aspects of the implementation and performance, and initial experience with
applications are discussed.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systems; D.4.4 [Operating Systems]: Communications Management; D.4.7 [Operating Sys-

tems]: Organization and Design

General Terms: Algorithm, Design, Measurement, Performance

Additional Key Words and Phrases: Distributed system, interprocess communication, job control,
kernel, parallel computation, process group, servers

1. INTRODUCTION

The V kernel [ll] provides an abstraction of processes, with operations for
interprocess communication UPC), process management, and memory manage-
ment. This abstraction is used as a software base for constructing distributed

This work was sponsored in part by the Defense Advanced Research Projects Agency under contract
N00039-83-K-0431 and National Science Foundation Grant DCR-83-52048.
This paper was nominated for publication in TOCS by the Program Committee for the ACM

SIGCOMM ‘84 Symposium: Communications Architectures and Protocols. The committee was
headed by Professor Gregor Bochmann. I would like to thank SIGCOMM and the referees who
reviewed the paper in a timely way so that the full paper could appear in TOCS with an abstract in
the symposium proceedings.-Editor
Authors’ addresses: David R. Cheriton, Computer Science Department, EECS Department, Stanford
University, Stanford, CA 94305; Willy Zwaenepoel, Computer Science Department, Rice University,
Houston TX 77001.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1985 ACM 0734-2071/85/0500-0077 $00.75

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985, Pages 77-107.

78 9 D. R. Cheriton and W. Zwaenepoel

Fig. 1. Request to a group of file servers.

Input

_----- --

output

Fig. 2. Suspending a group of processes.

systems. As a distributed kernel, the V kernel makes intermachine boundaries
largely transparent. In this environment of many cooperating processes, it is
useful to be able to view some set of processes as a single logical entity, a process
group, and perform operations on this entity.

As one example, a distributed system may have multiple servers providing file
service. To locate a given file, a client process may need to communicate with
the group of file servers to determine which one has the file, as illustrated in
Figure 1.

Another example arises in executing a pipeline of filter programs. The user
may wish to suspend, resume, or terminate the group of processes executing this
pipeline, as depicted in Figure 2. This is an example of job control, controlling a
set of programs in execution. Finally, in a distributed computation, process
groups and group operations can be used for intraprogram communication and
control. That is, when one logical program is executed as multiple processes

(possibly executing across several processors), the set of processes executing the
program can be viewed as a group. Group operations can then be used for intra-
program communication and control, as suggested in Figure 3.

In general, group operations cannot be implemented satisfactorily using mul-
tiple single-process operations for three major reasons. First, the identity of all
the processes in a group may not be known to the invoker of the operation(s).
For example, in a query to locate a file, the client may not know the addresses of

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

Distributed Process Groups in the V Kernel 79

distributed program

Fig. 3. Group communication in a distributed program.

all the file servers. With a well-known group identifier for the file server group
and operations to communicate with a group, the client’s query is straightforward.
Second, using multiple single-process operations is less efficient than using group
operations. For example, in Section 5 we describe a multiplayer distributed game
in which group IPC operations are used for the real-time update of the replicated
game state. In this case, group IPC operations are particularly efficient because
the implementation makes use of the hardware broadcast and multicast facilities
available on many local network and bus technologies, such as, for instance, the
Ethernet [20]. This significantly reduces the number of network packets when
the process group is large. Group interprocess communication operations provide
an application-level abstraction of network multicast, thereby allowing applica-
tions to capitalize on the broadcast nature of the underlying network without
developing their own network-specific facilities. Finally, multiple single-process
operations do not provide the concurrency that is possible and desirable with
group operations. For example, in a parallel distributed computation, one would
like to transmit information to all the members of the group at the same time
rather than serially.

In this paper we describe the extention of the V kernel to support process
groups and group operations. We argue that this design provides a powerful
facility for applications yet allows a relatively simple and efficient extension to
the kernel. In Section 2 we describe V process groups and group operations. In
Section 3 some aspects of the implementation, including some measurements of
its space requirements in the kernel are discussed. Some performance measure- .

ments are presented in Section 4, and some initial applications of process groups
are described in Section 5. In Section 6 we present the issues associated with
process groups and group communication, and the rationale for the V kernel
process group support. In Section 7 we relate our design to other work on
multicast and group communication. We close with conclusions and problems
for future study.

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

80 l D. FL Cheriton and W. Zwaenepoel

2. V PROCESS GROUPS

A V process group is a set of one or more processes, possibly on different

machines. All processes in a group are equal; there are no distinguished members.
A process group is identified by a group identifier, or group-id. Group identifiers
are identical in syntax and similar in semantics to process identifiers. In V, each
process is identified by a 32-bit process identifier or pid that is unique within a V
domain. A V domain is a set of machines running the V kernel that implement
a single system abstraction (typically spanning a collection of machines connected
by a local area network). A group-id is a 32-bit identifier that uniquely identifies
a group within a V domain.

A number of new kernel operations have been introduced to manage process
groups. Additionally, most of the V kernel operations that take a process identifier
as a parameter have been extended to perform the corresponding group operation,
when given a group identifier as a parameter.

2.1 Group Management Operations

Processes can create, join, and leave groups using the following operations.
A new group is dynamically created by

group-id = CreateGroup(initialPid, type)

which returns a unique group identifier, with the process designated by
initial~id becoming the first member of the new group. The type parameter
specifies a group as global or local, and as restricted or unrestricted. A global group
can have members on any host in a V domain, whereas the members of a local
group must reside on the same host as the initial member process. A restricted
group restricts membership to processes with the same user number (or author-
ization). A restricted group represents one principal, in the security sense of the
word. An unrestricted group allows any process to join.

A group-id is considered deallocated and the corresponding group is considered
nonexistent when the last member leaves the group. There is also a range of
(statically allocated) reserved group-ids, disjoint from those allocated by Cre -
ategroup. The use of these reserved group-ids is similar to the well-known
sockets in PUP [8] and other protocol families. The operation

JoinGroup(group-id, pid)

makes the process with process idpid a member of the group with group identifier
group-id. A process may belong to more than one group. The operation

LeaveGroup(group-id, pid)

removes the process with process id pid from the group with group identifier
group-id. The operation

QueryGroup(group-id, pid)

returns OK if the process specified by pid would be allowed to join the group
specified by group-id. The return value also allows the caller to distinguish
whether the process is already a member of this group, the group does not exist,
or the process would not be allowed to join. QueryGroup also returns the number
of processes in the group, which is only exact if no packets are lost (and no

ACM Transactionson ComputerSystems,Vol. 3,No.2,May1985.

Distributed Process Groups in the V Kernel 81

Client - Send
blocked

Server
blocked

*

Receive - Reply +

Time b
‘+ message transaction 4

1.46 ms locally

3.1 ms remotely

Fig. 4. Send-receive-rely message transaction.

processes join or leave the group during the execution of QueryGroup). As
described later in the paper, determining the number of processes in a group,
even just approximately, is useful in many applications.

Our goal of allowing a group-id anywhere a pid can be used can be applied to
the group management operations as well. For instance,

JoinGroup(group-idl, group-id2)

adds all processes in group - id.2 in the group specified by group - id I.

2.2 Group Interprocess Communication

The basic communication model provided by the V kernel is that of processes
communicating by message transactions. A message transaction is initiated by a
client process executing Send, which transmits a request message to a server and
blocks the execution of the client until a reply message is returned. Assuming
that the server process is blocked waiting for a request message, the request
message completes execution of a Receive operation, which reads the request
message. The message transaction is completed by the server executing a Reply,

causing a reply message to be sent back to the client. This sequence of events is
illustrated in Figure 4, with the thick lines indicating blocked or suspended
execution. As indicated in Figure 4, the time for a 32-byte message transaction
is 1.46 milliseconds locally and 3.1 milliseconds between two SUN workstations
connected by a lo-megabyte Ethernet.l The V system’s IPC has been modeled
after that of Thoth [lo, 171. The interested reader is referred to references [5],
[ll], and [15] for further discussion.

Sending to a group is similar to sending to a process, except that a group-id is
specified instead of a process id. That is,

pid = Send(message, group-id)

1 Previously reported performance figures [15] were 0.77 milliseconds locally and 2.56 milliseconds

between two SUN workstations. The poorer performance figures in this paper are due primarily to

extra checking and debugging facilities added to the kernel as part of a major reorganization. We

expect the kernel performance to match the figures reported earlier once the reorganization is

completed [12).

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

82 l D. Ft. Cheriton and W. Zwaenepoel

sender 0 process

group
message

. . .

Fig. 5. Group message forwarded to group members.

sends a message to the group with group identifier group-id, which in turn
forwards the message to each member in the group, as shown in Figure 5. The
sender blocks until at least one process has received the message and sent back
a reply using Reply (or until the kernel times out the message when there are
no replies). The pid of the first process to reply is returned by send. The first
reply message overwrites the original message. Subsequent reply messages are
received by the sender calling

pid = GetReply(replyMessage, timeout)

which returns the next reply message from a group Send in replyMessage, and
the identity of the replying process in pid. If no reply messages are available
within the time-out period, GetReply returns with pid set to 0. Additional reply
messages for this transaction, if any, may be returned by further invocations of
GetReply. It is thus left to the sender to decide how many reply messages are of
interest and how long it is willing to wait for them. However, all replies for a
message transaction are discarded when the process sends again, thereby initi-
ating a new message transaction.

Both members and nonmembers of a particular group can send to that group.
If the sender is a member of the group, the sending process does not receive a
copy of its own message.* Any messages from a group that are queued for a
process but not yet read are discarded if the process leaves the group by calling
LeaveGroup.

Receive returns the next message, whether a group message or addressed to
this specific process, returning the process identifier of the sender in both cases.
By using the returned process identifier with Reply and Forward3 the receiver
can forward or reply to a message without knowing whether the message is the
part of a group message transaction or not. However, the receiver can determine
whether the message was sent to a group and, if so, to which group by checking
the forwarder identifier associated with the message. If a group message, the

* This restriction avoids the deadlock problem of the sender blocking waiting for a reply from itself.

3 Forward passes the request message to another receiver as though it was sent by the original

sender to that other receiver.

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

Distributed Process Groups in the V Kernel l 83

blocked

Time
I b

,-message transaction U

Fig. 6. Example of a group message transaction.

forwarder identifier is the group-id to which the message was sent. The operation

pid = ReceiveSpecific(msg, group-id)

suspends the invoking process until a message is received that was sent to the
specified process group. The process identifier of the sender is returned in pid.
Receive~pecif ic returns 0 if the process group does not exist and can in fact
be used to wait for a particular group of processes to terminate.

For completeness, one can also specify a group-id to Reply and Forward. In
this case, the operation applies to all messages that were sent to the receiver by
sending to the specified group-id. In particular,

Reply(msg, group-id)

replies to every message that is awaiting reply from the invoker, having been
sent originally to the specified group-id.

We have also been experimenting with a real-time Send. The sender does not
block because no reply is allowed. Also, the message is sent as an unreliable (best
efforts) datagram. In fact, the message is only received if the receiver(s) are ready
to receive the message immediately when it arrives. Real-time send operations
also work uniformly for both sending to a single process as well as to a group.

A typical group message transaction is illustrated in Figure 6. In this case, the
sender sends a message to a group of three processes, A, B, and C. Two of the
receivers, A and B, reply to the message in a timely fashion. The reply from A
unblocks the sender, completing the execution of Send. The reply from B is
received using GetReply. The third reply message (from C) is discarded by the
kernel once the sender initiates a new message transaction, by calling Send for
the second time. Note that a message transaction in this case is terminated by a
new Send, not the reply as previously for one-to-one messages. Thus it is less
meaningful to talk about the elapsed time for a message transaction. However,
the time for the sender to receive the first reply is the same as the times cited for
a one-to-one message transaction. It is the delivery of the additional replies that
introduces further overhead.

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

84 ’ D. R. Cheriton and W. Zwaenepoel

I logical host 0 local process identifier
I

group-id-bit

logical host group 1 specific group identifier
I

Fig. 7. Process identifiers and group identifiers.

2.3 Other Group Operations

Other V kernel operations that take a process id as a parameter have been
extended to take a group-id as well. For example,

DestroyProcess(group-id)

destroys all processes in the group specified by group-id (subject to the usual
permission requirements). Similarly,

ForceException(group-id)

causes all processes in the group to be suspended under the control of the V
exception-handling mechanism (and possibly resumed later).

In summary, support for process groups has required adding the four group
management operations plus GetReply to the kernel interface as well as extend-
ing the semantics of a number of the existing kernel operations to their group
form. The principle of allowing a group identifier as a parameter in place of a
process identifier wherever the latter occurs leads to some extended semantics
that are sensible yet of limited utility. For example, one can imagine using the
group Reply operation in a distributed computation to reply to a set of helper
processes, providing them all with the same information at the same time.
However, we do not expect group Reply operations to be frequently used.

3. IMPLEMENTATION

The distributed V kernel executes as multiple instantiations of the same kernel
code, one per participating machine. The different instantiations communicate
through a low-overhead interkernel protocol to provide a single-kernel image
[Xi]. The V kernel has been implemented on SUN workstations [3] connected
by a lo-megabyte Ethernet [20] or a 3-megabyte Ethernet [26]. In this section
we describe the interesting aspects of the process group implementation in the V
kernel.4

3.1 Group Identifiers and Group Membership Records

A group-id is a 32-bit identifier, similar to a process identifier except that the
group-id bit is set to 1 rather than to 0, as illustrated in Figure 7. The group-id
bit allows the kernel (and discerning processes) to efficiently distinguish between
group identifiers and process identifiers. It also ensures that the group and

’ The implementation described here is independent of the SUN workstation architecture, and except

as noted, independent of the use of the Ethernet.

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

Distributed Process Groups in the V Kernel l 85

static group bit

group-id-bit
f

local group bit

logical host group 1
I

unrestricted group bit

Fig. 8. Group identifier subfields.

process identifier name spaces are disjoint. Bits within the lower order Is-bit
word of the group identifier are used to identify whether the group is a static
group, that is, it has a statically allocated group identifier, and whether the group
is local or global, and restricted or unrestricted, as shown in Figure 8.

A group identifier encodes in its high-order bits the logical host group for this
group, the set of hosts on which members of this process group reside. The low-
order bits indicate the specific group within this logical host group. Similarly, a
process identifier encodes in its high-order bits its logical host, identifying the
host on which it executes. When the group-id has the local group bit on, the
logical host group subfield is interpreted as a logical host identifier, the same
subfield as in a process identifier.

Each instantiation of the kernel maintains a hash table accessed by group
identifier recording the group membership of all processes local to this kernel.
For each group membership of a local process pid, there is a record containing
the (group-id, pid) pair. The membership information for a group is distributed
across all the hosts that have members in the group. In particular, each kernel
only maintains information about its own processes. This requires less space,
network traffic, and code complexity than replicating the group membership
information in all hosts and prevents inconsistencies between different records
of group membership. However, it does rely on an efficient mapping of a group-
id to logical host group and from a logical host group identifier to hosts within
this host group. Mapping a group-id to a logical host group is trivial because the
host group identifier is encoded in the group-id. Mapping a logical host group
identifier to host within this group is network dependent but uses the following
general structure.

The V kernel uses a transport-level, network-independent packet format
specified by the V interkernel protocol [15]. On transmission, an interkernel
packet is embedded in a network-level or internetwork-level datagram. The
datagram is assumed to specify host-level addressing as well as provide error
detection on the packet during transmission. At the internal kernel interface to
network-specific code, the kernel passes an interkernel packet to the network
driver. The network driver translates the process-level addressing in the inter-
kernel packet into host level addresses, which it places in the network-level
header, as illustrated in Figure 9. Rather than insist that the kernel know the
addresses of all logical hosts, the kernel only maintains a cache of recently used
logical hosts. If a logical host mapping is not known, the kernel uses the host
group address corresponding to all V kernel hosts. This corresponds to broad-
casting to all V kernel hosts within the V domain of machines.

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

88 l D. R. Cheriton and W. Zwaenepoel

Interkernel Packet I

v

I I hostaddr I I Interkernel Packet pFq

Packet Header (Inter)network Packet

Fig. 9. Interkernel packet in a network packet.

logical host group
1

Fixed multicast range logical host group

Fig. 10. Group-id to Ethernet multicast address mapping.

For group messages, the kernel extracts the logical host group from the group-
id associated with the message and addresses the packet to the datagram address
corresponding to this host group. For the lo-megabyte Ethernet, the logical host
group is mapped to a multicast address by prepending a fixed high-order address
portion to the logical host group identifier, as illustrated in Figure 10. This
procedure maps group identifiers to one of 215 preassigned Ethernet multicast
addresses used by the V kernel. In this way, the kernel can determine the
multicast address corresponding to a group efficiently from the group identifier.
Moreover, the network interface can reject all packets addressed to logical host
groups of which the kernel is not a member.

Group operations are implemented in the two ways. The group IPC operations
are implemented directly as low-level extensions of the corresponding single-
process IPC operations. The other operations are implemented using the group
IPC operations.

3.2 Group IPC Operations

The primary extension for groups is to the message sending mechanism. A Send

to a group identifier is recognized in the kernel by testing for the group-id bit. If
the group-id bit is 1, the kernel checks for local group members and delivers the
message to each one of them. It then transmits a message packet addressed to
the logical host group corresponding to this group. The kernel executing on each
of the hosts in this host group is then responsible for delivering a copy to each
of its local member processes.

The packet is retransmitted for some maximum number of times until the first
reply message is received. Reply-pending packets are returned when a group
member has received the message but not replied yet, as for single-process
message transactions. The first reply unblocks the sending process; subsequent
replies are queued, provided that they arrive before the beginning of the next
message transaction. The reply queue is used by GetReply to return additional
reply messages, and emptied by send at the start of the next message transaction.
The current message transaction is indicated by a message transaction number
stored in the process descriptor.

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

Distributed Process Groups in the V Kernel 87

When the kernel receives a packet addressed to a group, it delivers the message
to each local member in the group, as indicated by the local group membership
table. The copies of the group message are buffered in the same buffer records
that are used to buffer remote one-to-one messages.

The remote message buffers are discarded after a time interval if the sender
starts a new message transaction before the message has been replied to. This
prevents a receiver from processing a message associated with an arbitrarily old
message transaction, although it does not prevent a receiver from processing a
message associated with a terminated message transaction. It is simply too
expensive to garbage collect all outstanding copies of a message from a previous
group Send when a new message transaction is started.

ReceiveSpecif ic is implemented by checking for messages that were sent to
the specified group-id, as in the single-process case. It also periodically transmits
a query packet to check that there are members in the group and expects to
receive confirmation, timing out otherwise. In this way, the mechanism for
ReceiveSpecif ic on a group is a simple extention of that for a single process.
Note that ReceiveSpecific(msg, group-id) only receives a message sent to
the specified group-id, not a message sent by a process in this group to the
receiving process. The latter semantics are less useful and more difficult to
implement because they require local knowledge of remote group membership.

Reply and Forward with group-id are similarly simple to implement: They
simply reply to or forward each process that is awaiting reply from the receiver
as a result of sending to the specified group id. In this vein, they are simply
repeated applications for the single-process operations and offer little perform-
ance benefit.

3.3 Other Group Operations

The kernel process management, group management, and memory management
operations are implemented by a server process internal to the kernel, called the
kernel server, allowing these operations to be invoked using the standard IPC
facilities. For example, LeaveGroup, as invoked by the application, is actually a
small stub routine that sends a message to the local kernel server requesting this
operation. There is a kernel server process in each instantiation of the kernel in
a V domain. All kernels servers belong to the kernel server group.

To implement a group operation that requires actions on multiple hosts, the
request is sent to the kernel server group, rather than to an individual kernel
server. For example, DestroyProcess (group-id) results in a message being
sent to the kernel server group. Each kernel server destroys the local processes
in the specified group, assuming that the requestor has the required permission.
It does this by invoking the single-process destroy routine on each local process
in the group. Similarly, QueryGroup sends to the kernel server group to get all
the information on the specified group.

The semantics of these group operations are complicated by the fact that a
group operation can be partially successful. For instance, Des t royProcess on a
group may destroy some but not all processes because the requestor has no
permission on a few of the processes in the group. Generally, these operations
indicate failure if they detect a failure; that is, success is having no failures, not
just some successes.

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

88 ’ D. R. Cheriton and W. Zwaenepoel

Each one of these stub routines must handle the unreliable nature of the group
interprocess communication. For example, it is possible that not all kernel servers

in the kernel server group receive a destroy process request, and so not all
processes in the group are destroyed as a result of a single group send. To handle
this, the DestroyProcess routine uses QueryGroup to determine whether there
remain any group members after sending the destroy request. If so, it reissues
the destroy request. Of course, if a reply from a kernel server indicates no
permission or any other reason for failure, Des troyProces s returns the reason
for failure.

The kernel servers use a standard procedure in responding to group requests.
If a group request refers to a process, group, or other object that it has no
knowledge of, it discards its reply; othewise, it replies as usual. For example, in
response to a QueryGroup request, only kernel servers with local members in
that group respond. This reduces the number of reply messages that a client
must deal with to those with useful information. It also means that querying a
nonexistent group results in a significant delay (just under 1 second) before the
kernel times out the message and indicates that no responses were received. Thus
with Destroy~rocess as described above, the time to check that all processes
in the group have been destroyed considerably increases the time for this
operation. In general, the most efficient means to the (reliability) semantics for
each operation seems specific to the operation and to the group semantics we
deem most useful for the operation. The issue of efficiency and reliability with
group operations is discussed further later in the paper.

JoinGroup is implemented by sending a message to the kernel server group.
If none of the kernel servers object to the request or at least one returns approval,
it is considered successful and the join takes place. QueryGroup is implemented
by collecting replies from all the kernel servers. Each reply specifies the number
of processes local to the replying kernel server that belong to the specified group.
CreateGroup is implemented purely as a standard library routine, using
JoinGroup to join a randomly generated group-id as the group’s first member
and QueryGroup to determine that it is in fact the first member. Otherwise,
LeaveGroup is executed to remove the process and a new group identifier is
regenerated.

Joining groups and creating new groups require distributed agreement [23]
among the instantiations of the kernel to decide whether joining is allowed or
whether a group-id is unique. Our current implementation is not complete in the
sense that it does not handle faulty behavior among the cooperating hosts. In
particular, if a kernel server fails to reply to the join or create request, or if the
message or its reply are not received, the operation is performed incorrectly.
However, the use of group IPC to check with all the kernel server processes
provides a simple implementation for achieving agreement that works well in
practice. In particular, the group Send packet is retransmitted several times until
either a kernel server responds positively or negatively or it is fairly certain that
the process is allowed to join the group (or the group is new). A consequence of
using several retransmissions is that joining an existing group typically takes
slightly over 3 milliseconds, while joining a nonexistent group or creating a new
group takes 0.75 second, our current time-out period including retransmissions.

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

Distributed Process Groups in the V Kernel 89

3.4 Portability

We endeavor to make both the design and the implementation of the V interpro-
cess communication reasonably portable to other networks besides the lo-
megabyte Ethernet. The concern for network portability includes the group IPC
extension. V Group interprocess communication is implemented on the basis of
a facility to communicate with groups of hosts or host groups. Logically, a process
group defines a host group as the set of hosts executing processes in the given
process group.

The host group abstraction divides the portability discussion into the consid-
eration of two issues: the requirements that host groups must satisfy to serve as
a base for the implementation of V group IPC, and the problem of implementing
host group support that satisfies these requirements on different networks and
internetworks.

3.4.1 Host Group Requirements. The V kernel group IPC requires the host
group facilities to satisfy the following requirements:

(1) Domain Host Group. For each V domain, there must be a host group to which
all V kernel hosts in that domain belong.

(2) Addressing. A single packet address should suffice to address a packet to a
host group. A host group address should be similar to a single host address.
Ideally, it should be possible to encode the host group address in the group
identifier.

(3) Reliability. Transmission to members of a host group need not be totally
reliable. However, a small number of retransmissions must ensure (with very
high probability) that each host in the group receives at least one copy of the
transmission. There is no logical problem (only performance loss) with a
machine receiving multiple copies of a packet or receiving packets not
addressed to it.

We also assume there are statically allocated (well-known) host group addresses,
such as the domain host group, or some means of allocating and registering group
addresses to simulate well-known host group addresses.

The minimal requirement is satisfied by having one domain host group that
meets these addressing and reliability constraints. The ideal is the provision of
many host groups with both statically and dynamically allocated host group
addresses.

For a secure communication network, either encryption should be available or
it must be possible for the network to prevent an unauthorized host from joining
a host group. Of course, the host must not be able to receive packets not addressed
to it, including packets addressed to groups of which it is not a member.
Alternatively, the network and all copies of V kernel could be assumed to be
secure, in which case protection is imposed collectively by the V kernel.

A host group implementation failing to meet these basic requirements would
require modifications for the V kernel above the network module level. While
these requirements are specific to the V kernel, we argue that they are reasonable
requirements for other systems of similar functionality. The requirement of a
domain host group ensures that all cooperating hosts can be reached as a group

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

90 ’ D. R. Cheriton and W. Zwaenepoel

so that agreement can be obtained on allocation of new group identifiers,
membership in groups, and the like. It also provides for the “worst-case” process
group, in which there is a group member on every cooperating host. The
addressing requirement eliminates the need for a sending host to know all the
members of a group in order to send to the group. Otherwise, each host would
have to maintain a list of member hosts for each group, and in particular, a list
of all V hosts for the domain group. This would impose additional code complexity
and execution cost in the kernel. The reliability requirement simply precludes
one or more host members from systematically failing to receive group messages.

Without this, retransmission is not guaranteed to ensure delivery even when all
receiving hosts are functioning.

3.4.2 Implementation of Host Groups on Different Networks. There are two
major aspects to the implementation of host groups:

(1) allocation of host group identifiers;
(2) delivery of packets addressed to host groups to all hosts in the group.

The addressing requirement for host groups implies that some portion of the
space of host addresses must be reserved for host group addresses. We briefly
consider these issues in broadcast networks and store-and-forward networks and
internetworks below.

In a broadcast network, each host receives every packet at the data-link level
and the network interface, and higher level software discards packets not wanted
by the host using a series of so-called packet filters. Thus to implement host
groups on a broadcast network requires a range of host addresses that can be
used as host group addresses and modification to the packet-filtering mechanism
to allow a host to receive packets addressed to specified host groups as well as to
its own host address. This is basically the lo-megabyte Ethernet design [20]. The
experimental 3-megabyte design is a degenerate case with a single-host group
address corresponding to all hosts, thus providing the domain host group. A
single domain host group (or broadcast address) is feasible in low-to-moderate
speed local networks with infrequent use of group communication. Additional
filtering is then implemented in software. However, at high speeds the processing
cost of receiving and discarding unwanted packets becomes considerable.

For store-and-forward networks, and by extension for datagram internetworks,
host group addressing can be similar. That is, a subrange of host addresses is
reserved, or in an internetwork, a subrange of network numbers is reserved.
However, the delivery mechanism of the network needs to be extended to be able
to deliver a single packet to multiple hosts. Several techniques for efficient
delivery of broadcast and multicast packets in a store-and-forward network have
been studied by others [19, 321 and provide realistic solutions to host group
delivery. The major practical problem with implementing this scheme in an
existing network seems to be the limited space for extra code and tables in a
typical switching node or gateway.

A subtle portability problem arises with the allocation of group identifiers
because they each include a logical host group identifier. Currently, a dynamically
allocated group identifier is selected at random, resulting in a random selection
of logical host group identifier. On a different network, with a higher cost per

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

Distributed Process Groups in the V Kernel l 91

logical host group (such as a point-to-point network), there may be greater
benefit choosing logical host groups more carefully. There is a trade-off between
the number of host groups and redundant messages. At one extreme, there is one
process group per logical host group, and network hosts only receive packets sent
specifically to them or to a logical host group to which they belong. Thus no
processor time is lost discarding packets not intended for the host,5 but more
space may be required to record all the logical host groups. At the other extreme,
all process groups use the same logical host group, minimizing the number of
host groups but causing every host to receive all messages sent to a group,
independent of whether it has processes in that group or not. This is basically
the implementation strategy that we use on our 3-megabyte Ethernet. On a store-
and-forward network, this would result in many redundant packets.

3.5 Implementation Summary

We have implemented the group management, group interprocess communication
and a few of the other operations (including DestroyProcess). This code has
added about 3 kilobytes of code to the kernel as well as requiring an additional
12 bytes in every process descriptor for the reply queue. (The total size of the
kernel is now 52 kilobytes when configured to support a maximum of 64 proc-
esses.) We have yet to remove all the mechanism rendered redundant by the
addition of the group support. For example, the mechanism that allocates a
logical host number during kernel initialization originally used a special broadcast
mechanism to check for a collision with an existing logical host number. This
procedure is being changed to use a group Send to the kernel server group,
thereby eliminating some special-purpose code in favor of the more general group
IPC mechanism. Similarly, a simple name-mapping mechanism provided by the
kernel now uses group IPC rather than its old special-purpose broadcast mech-
anism.

The addition of group IPC imposes a time cost on the speed of one-to-one
interprocess communication in flushing the reply queue and checking for the
group-id bit during the execution of Send. This overhead adds about 17 micro-
seconds to the local message transaction time, an increase of 2.2 percent.

Overall, the implementation is fairly compact, has had minimal impact on the
performance of the more common one-to-one IPC, and has eliminated the need
for some rather awkward mechanisms within the kernel, as mentioned above.

4. PERFORMANCE MEASUREMENTS

The group IPC operations are the most performance critical of the group
operations both because they occur directly in the most performance-sensitive
uses and because they are used to implement the other group operations. We
have done some preliminary performance measurements of the group IPC. The
elapsed time for a group send is dependent on a number of factors, including the
number of members in the group, the number of members that reply to a message,
the time the sender is willing to wait for replies, and whether some of the

’ Note that few Ethernet interfaces allow the processor to select exactly the multicast addresses that
it wishes to receive.

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1965.

92 l D. R. Cheriton and W. Zwaenepoel

Table I. Elapsed Time (milliseconds) with Packet Loss

Group Transactions with Packet Loss:

Number of replies

Members 1 2 3 4

1 3.36 - - -

2 4.46 5.86 (3.8) - -

3 4.61 5.47 (1.9) 18.50 (30.0) -

4 4.78 5.12 (0.1) 14.32 (18.0) 24.34 (45.0)

members are local or not. The elapsed time is also dependent on the speed of the
processor and speed of the network interface. For our measurements, we use lo-
megahertz 68010-based SUN workstations connected to a lo-megabyte Ethernet
by an Ethernet interface with two receive buffers. This configuration is similar
to the one used for our earlier measurements of one-to-one IPC performance
[ll]. When used as the sending machine in a group message transaction, this
machine configuration suffered from severe packet loss for three or more members
in a group. Packet loss occurs because both receiver buffers in the Ethernet
interface are full when another packet is sent on the network, so that the
interface ignores this packet. We also report measurements on an 8-megahertz
68000-based SUN workstation with a lo-megabyte Ethernet interface with heavy
buffering. This configuration does not suffer from packet loss (at least in our
measurements). Unfortunately, this Ethernet interface is significantly slower in
host-to-interface operations, thus (in combination with a slower processor) giving
much poorer performance.

The measurements were made by performing N times a group Send and
receiving a number of replies, and dividing the elapsed time by N to get a
reasonably accurate elapsed time for a single operation. Table I gives the time
for a group message transaction as a function of number of remote group members
and number of replies received for the first machine configuration. Note that all
remote group members reply; the number of replies indicated in the table is the
number of replies that the sender attempts to receive. The figures in parentheses
indicate the percentages of reply messages that are lost of those that we try to
receive. For example, with four group members and receiving three replies, out
of 10,000 group Send operations, only 24,398 replies are received, whereas we
should have received 30,000 with no packet 10~s.~ A lost reply packet inflates the
elapsed time by the time lost waiting for a reply packet to appear, 20 milliseconds
in these measurements.

The first observation is that packet loss becomes significant with three or
more group members. For example, with three group members, only 70 percent
of the expected replies were received. This behavior is understandable given that
each group member in this experiment is replying immediately. Thus reply
packets are being returned to the sending machine as a series of back-to-back

6 This does not indicate the number of packets actually lost because, for example, if one reply packet

was lost with four group members and the sender waiting for three replies, the lost packet would not

be noticed.

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

Distributed Process Groups in the V Kernel l 93

Table II. Elapsed Time (milliseconds) without Packet Loss

Group Transactions without Packet Loss:

Number of replies

Members 1 2 3 4 5

1 8.87 - - - -

2 12.23 13.10 - - -

3 16.26 16.27 17.27 - -
4 20.25 20.30 20.31 21.57 -

5 24.28 24.32 24.42 24.45 25.92

packets. With only two receive buffers, the sending machine cannot process the
incoming packets fast enough to avoid dropping packets. (The packet loss with
only two group members is explained by other random broadcast and multicast
traffic on the network during the experiments.) Thus the figures for three- and
four-group members are irrelevant in indicating elapsed time. Until we have
Ethernet interfaces with more receive buffers, we have modified the kernel to

introduce a random delay when replying to a group Send, thereby reducing the
packet loss problem but increasing the elapsed time.

Comparing a group send with one reply to a one-to-one message transaction,
with one group member, the elapsed time is approximately 260 microseconds
greater for a group Send. This is accounted for by the time to check for local
group members and a slightly more complicated delivery mechanism in the
receiving kernel. Otherwise, the mechanism is the same.

The cost of a group Send increases with more members in the group. Consid-
ering the difference between one and two group members, it appears to cost 1.1
milliseconds to receive a reply packet, queue the reply, and discard the reply on
the next message transaction. The cost for each additional group member appears
to be lower for three- and four-group members. However, the measured cost in
these cases is reduced due to loss of reply packets. It may also be reduced by
reply packets arriving after the next message transaction has started, in which
case the old replies are discarded immediately.

To explore the performance without packet loss, we use an interface with a
much larger Ethernet receive buffer pool. These measurements are given in
Table II. Because the machines used for the measurements in Table I and
Table II run at very different speeds, we do not draw any comparisons between
the two tables.

In Table II, it is clear that without packet loss, each additional group member
imposes an extra cost for processing its reply packet, whether or not it is read by
the sending process (using GetReply). In fact, the cost of reading all K replies is
only slightly higher than reading only one and discarding the remaining K - 1.
We use this measurement later to support the provision for reading multiple
replies (see Section 6). One should note that the elapsed times for group message
transactions, as presented in Tables I and II, include the cost of receiving all
replies, regardless of whether they are read by the sender or not. In practice, if
not all replies are read, the cost of discarding replies is incurred concurrently or
subsequently at the interrupt level or as part of the next Send operation.

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

,
94 l D. R. Cheriton and W. Zwaenepoel

I
pipe

I
disk file

server aroua server aroua I
time kernel

server group server group I/O servers group

I All servers group I

Fig. 11. Server group hierarchy.

The cost of other group operations is basically the cost of the group message
transaction with the kernel servers, the cost of the kernel servers (in parallel)
performing the operation, and the cost of ensuring the necessary (reliable)
semantics on the operation. As mentioned earlier, the latter can easily dominate
the cost.

In general, these measurements indicate that V group IPC is practical to use
in applications in which a communication overhead of lo-30 milliseconds is
acceptable (depending on the size of group and machine speed, etc.) Related to
this, the number of Ethernet receive buffers is a critical factor in determining
the number of reply packets that are lost and therefore in the cost.of many of
these operations.

5. APPLICATIONS

We identify three major uses of process groups, namely server groups, job control,
and parallel computation. In this section, we describe some specific uses of
process groups in each of these generic categories.

5.1 Server Groups

The V system servers have been organized into groups according to the service
that they provide. Logically, there is a hierarchy of server groups in our system
starting with the group of all server processes. Subgroups of this universal server
group include the group of all servers supporting the I/O protocol [13], which in
turn contains as a subgroup the group of all disk-based file servers. A subset of
the V server hierarchy is depicted in Figure 11. The server groups include kernel
servers, file servers, pipe servers, time servers, and team servers.7 Group hierar-
chies are implemented by processes belonging to multiple groups. There is no
explicit support provided or (seemingly) needed for group hierarchies.

As described earlier, the kernel server group allows the kernel to make use of
the group mechanism to implement the non-IPC group operations.

The team server group is used to locate unloaded workstations as part of a
distributed global scheduling mechanism. In this use, a request message is sent
to the team server group specifying a lower (and upper) bound on memory and
processor availability (plus possibly other requirements). Only team servers on
machines satisfying these constraints respond.

We have just begun experimenting with server groups for decentralized name
mapping. That is, rather than going through a central name-mapping facility,

The team servers manage the execution of programs, consisting in V of teams of processes.

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

Distributed Process Groups in the V Kernel 95

the name and its associated request message are sent to the appropriate server
group for the request, and those servers that recognize the name respond. This
is one area where unrestricted groups are of use because, with the uniform service
protocols used in V [13, 141, the group of servers that might be involved in
handling a particular request does not necessarily correspond to a single user or
a single principal in the security sense of the word.

Another potential server application arises with distributed two-phase commit
of atomic transactions [24]. The transaction coordinator uses a group message
to issue a “prepare-to-commit” command to the group of all transaction servers.
Each transaction server then responds with a reply message indicating whether
it is prepared to commit or not. Finally, the transaction coordinator issues a
“commit” or an “abort” command, again using a group message to all transaction
servers. We note that in the “prepare-to-commit” phase, the group message from
the coordinator to the transaction servers must be delivered in a reliable fashion
to all transaction servers, and a reply from each transaction server is necessary.
In contrast, the final commit message does not need that degree of reliability,
because transaction servers can be expected to check back with the transaction
coordinator if they do not receive the final message in due time.’

5.2 Job Control

We are currently modifying our command interpreter to use process groups for
job control. All processes executing a single job, for instance, a pipeline of filter
programs, belong to the same process group. The command interpreter can
suspend, resume, or terminate the job by invoking the corresponding operations
on this group. It can also wait for the job to terminate by executing a
Receives pe c i f i c on the associated group-id. Note that there is no requirement
that all processes in a job execute on the same host although the provision of
local groups allows one to take advantage of this special case when it arises.

5.3 Distributed Parallel Programs

The group IPC facility is being used by distributed programs that run in parallel
on several workstations.

Real-time group communication (see Section 2) is used in a version of Amaze
[4], a multiplayer game program that runs on a set of networked personal
workstations running the V kernel.g In Amaze, the database describing the state
of the game is replicated across all the participating workstations. Updates to
the state are sent periodically to the group of “game manager” processes, one per
player, which incorporate the update into their respective copies of the game
state database. Update messages are designed so that if a message is lost, a
subsequent update message subsumes the data of the lost message. In fact, each

*This mechanism assumes that a transaction is suspended until the transaction server learns from

the coordinator whether the transaction was aborted or finally committed. In particular, if the

coordinator fails after the “prepare-to-commit” message and before the server receives the final

commit message, the transaction commits or aborts only after the transaction coordinator recovers

and makes the final decision known.
’ The original version of Amaze used one-to-one IPC. The version using group IPC generates less
load on the network but does not behave any differently from a user’s perspective.

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

96 l D. R. Cheriton and W. Zwaenepoel

workstation extrapolates the game state forward according to its current copy of
the state, with update messages indicating changes to the first derivative of the
state plus correct information. The interested reader is referred to the Amaze
report [4] for further details. The V kernel group IPC facility allows Amaze to
be implemented independently of the underlying network technology or machine
and executed in parallel with other applications running on a workstation. Thus,
while Amaze is similar to games like Maze Wars on the Xerox Alto computers,
it does not require direct and exclusive access to the Ethernet interface and it
does not contain any network-specific code.

Another application of group IPC arises with a checkers playing program that
runs multiple move evaluator assistants on multiple machines, implementing a
parallel cu-/3 search. In this program, group IPC is used to exchange search
information between searcher processes, thereby reducing and focusing the search
effort. Similar use can be made of group IPC in implementing, for example, the
traveling salesman problem. Here the current best path is communicated to all
parallel searchers, reducing the exploration of inferior routes. We are also
developing a concurrently executing rule-based system in which group IPC is
used to communicate the subgoals that have been resolved, again to avoid
redundant computation.

In general, in distributed computations that do not use shared memory, group
IPC appears to be a valuable mechanism for querying the progress of the other
processes taking part in the computation, as well as for notifying other processes
of new insights gained. Because we recognize the trade-off between redundant
computation and communication overhead in distributed computation, we look
to group interprocess communication as a promising mechanism for reducing the
cost of “global communication” in distributed programs.

6. DESIGN ISSUES

In extending the V kernel to support process groups, we recognize the following: .

-Group operations should be a natural extension of the single-process opera-
tions, wherever possible.

-Group operations should be efficient (especially on broadcast networks.)
-Group operations should support a wide range of applications with minimal

additional complexity added to the kernel.

The first point was addressed by making group identification compatible with
process identification and allowing a group identifier to be used (almost) any-
where that a process identifier can be used. This approach has the benefit of
simplifying the code that uses the group facilities, simplifying the V kernel
interface, and avoiding redundant code in the kernel itself. The second two points
lead to careful consideration of issues in reliability, performance, and security,
as described below.

6.1 Reliability

We define reliable group communication to mean that at least one member of the
group receives and replies to the message (or else a failure indication is returned).
This definition of reliable transport, as an extension of the transport-level

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

Distributed Process Groups in the V Kernel 97

delivery provided by the one-to-one IPC, results in a minimal cost implementa-
tion in the kernel. It is also the minimum facility required for successful query
and reliable notification. However, some applications require more reliable com-
munication than this and should be able to implement it using the provided
group mechanism. We define a group facility to be k-reliable if either at least k
members of the group are guaranteed to have had the operation performed on
them or else a failure is signaled to the sender. We use all-reliable to designate
guaranteed operation on all members of the group. In this terminology, the V
kernel implements l-reliable (and O-reliable) operations directly and provides
facilities for applications to implement k-reliable and all-reliable operations.

This design has several advantages over providing all-reliable group operations
directly in the kernel. First, an application can implement the level of reliability
of group operations that it requires and does not have to pay for reliability that
it does not require. For example, all-reliable group communication is not needed
by, and is too expensive for, many applications, including distributed games,
service queries, and advisory notifications. Second, an application can use appli-
cation-specific knowledge to implement the required degree of reliability more
efficiently than the kernel can, without the benefit of that knowledge. For
example, the query operation may need replies from some percentage of the
servers in a group but not necessarily all. The client can reasonably know the
percentage and the time that is reasonable to wait for these replies to return.
Finally, our design allows a simpler kernel. For example, all-reliable group
communication requires that either the receivers ensure that they receive each
message using a stable message logging facility [9], or, more conventionally, the
sender know the exact membership of the group and get positive acknowledg-
ments from each member of the group. In the latter case, the use of statically
allocated group-ids to locate services would be significantly restricted if the
kernel must know the group membership in advance. Moreover, maintaining
group membership information in the kernel and handling retransmissions
efficiently would significantly complicate the kernel code and data structures.

Note that O-reliable communication is provided because it is easy to implement
and because it provides the required nonblocking semantics and efficiency for
real-time applications. This is true for both the one-to-one and group real-time
send operations. Examples include distributed game programs, distributed mon-
itoring, and real-time group communication in general.

Implementing all-reliable group operations in general entails providing all-
reliable group communication. There are two basic approaches that an application
can take to implementing reliable group communication, depending on whether
one places the onus on the receiver or the sender for reliable delivery.

Putting the onus on the receiver for reliable delivery leads to what we call
publishing.” It is so named because it mimics real world publishing. That is,
information to be sent to a group, the subscribers, is filtered through the publisher,
which collates and numbers the information before issuing it to the subscribers.
A subscriber noticing a missing issue by a gap in the issue numbers or a new
issue not being received in the expected time interval requests the back issue

lo This is unrelated to the use of the term by Powel and Presotto [28].

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

98 l D. R. Cheriton and W. Zwaenepoel

from the publisher. Thus, instead of automatic retransmission until the receiver
acknowledges the message, the receiver must request retransmission if it is
required.

As a slight variant of this scheme, a message can be sent to a logging process
that, by arrangement, is the only replying process, thus ensuring reliable delivery
to the log. Then, subscribers request back issues from the log. This allows
multiple contributors sending directly to the group but complicates the allocation
of serial numbers.

The basic technique of publishing, requiring the receiver to ensure reliable
delivery, makes it difficult to guarantee timely delivery of messages at a reason-
able cost. A receiver can only discover that it has missed a message by receiving
a subsequent message or by periodically checking with the publisher or logging
process for missed messages. With infrequent published messages, either the
receiver must incur the overhead of checking frequently with the publisher or
logging process or else one must accept that lost messages may not be discovered
for some time.

Publishing is useful for notifications but does not help with queries, where the
main problem is getting all (or sufficiently many) replies back to the sender.
Queries necessitate the second approach, in which the onus is put on the sender
to implement reliability. Here, the sender resends the message to the group until
it receives replies from all members in the group. When using our IPC primitives,
this requires that the requested operation be idempotent because each resending
of the group message appears to the receivers as a new message transaction. Thus
several receivers may receive the message multiple times. We are considering
providing a Resend operation to allow a client to retransmit as part of the same
message transaction and use the existing duplicate detection and filtering mech-
anism in the kernel. While simple to implement, this introduces further timing
dependencies at the application level because message transaction records are
discarded after a certain time period of inactivity.

As an optimization, a sender can resend to the individual processes from which
it failed to receive a reply, assuming that the sender knows the membership of
the group. This reduces the load on other receivers in the group. It also avoids
the problem that a group resend has of generating the same flurry of reply packets
that caused the original reply packets to be dropped, possibly leading to a
systematic error. Finally, it allows the client to exploit the positive acknowledg-
ment and retransmission for reliable delivery (or determination of failure) of the
one-to-one IPC.

The provision of multiple replies is an essential feature of our group operations
for implementing all-reliable operations when the onus is on the sender for
reliable delivery, as described above. The use of multiple replies is also important
for operations with K-reliable communication. In particular, providing multiple
replies allows an application to choose the number of responses that it requires
to a query. For example, a query to locate available file servers requires multiple
replies being returned, one from each file server. Even in just trying to locate a
single file server, one reply may not be sufficient in the presence of a faulty file
server that responds quickly to queries but fails on other operations.

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

Distributed Process Groups in the V Kernel l 99

Multiple replies can also be used as acknowledgements to notifications. For
example, suppose that at least k processes in a group must receive a notification
message to match the reliability constraints of a particular application.

The alternative design is to provide only one reply in a group message
transaction. While this approach would simplify the kernel interface and the
implementation of group IPC, it is overly restrictive and does not result in any
significant performance improvement over allowing multiple replies. This is
easily seen by comparing the l-reply column to the other columns in Table II.
This cost arises because there is no efficient way for the group of distributed
processes to ensure that exactly one process generates a reply message. Thus the
kernel receiving the replies must incur the overhead of receiving, recognizing,
and discarding the second and subsequent reply packets even when only one
reply is desired. It thus incurs most of the processing cost of a multiple-reply
mechanism in any case.” Finally, the O-reply model is provided but is not heavily
used because at least one reply is required in most of our applications.

The multiple-reply model is not without disadvantages. The introduction of
Ge tReply significantly complicates the kernel interface. There is a timing
dependency in requesting the second and subsequent reply messages using
GetReply. A new reply might arrive immediately after GetReply times out

waiting for a reply message. The application must therefore estimate the time
for replies to be returned, or at least the time it is willing to wait for additional
replies and supply this time as a parameter to GetReply. (Because this is
application and service dependent, the kernel cannot determine the time-out
parameters.) Thus the application programmer is required to consider some of
the issues that are normally handled by the transport level.

In summary, there are several possible choices for the semantics of reliable
group communication and a variety of means of implementing the chosen
semantics. Our design attempts to provide a simple efficient abstraction that is
adequate for many applications, can be used by other applications to implement
stronger semantics, and does not incur an unacceptable cost in implementing
unneeded reliability. Providing multiple replies is an essential aspect of the
design for a general-purpose group IPC mechanism even though this feature
complicates the kernel interface and implementation.”

6.2 Performance

The two important measures of performance for group communication are
elapsed time and processor time. Measurements of elapsed time for group IPC
were presented in Section 4. Again, non-IPC group operations are less perform-
ance critical and have a cost dependent primarily on the group communication
costs, and so we only consider group IPC operations. This section focuses on the

'I Note that Table I is misleading in this respect, for it would seem from this table that there is a

significant cost in receiving multiple replies. In fact, the extra cost appearing in this table is almost

exclusively the result of dropped packets and associated timeouts.

‘* In fact, our original design provided only single replies for simplicity of implementation until the

considerations presented above forced us to reevaluate the design.

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

100 ’ D. R. Cheriton and W. Zwaenepoel

cost of reliable group communication in terms of processor time and how this
cost is affected by the retransmission strategy.

Processor time is important because it tends to dominate the cost of local
network-based IPC [15] and because, when group IPC is used in a distributed
computation, the total processor time consumed may be more indicative of the
effect of group IPC on the (parallel) distributed computation than purely its
elapsed time. For example, the total processor time consumed by a group Send

may be more than the elapsed time because of the many concurrently executing
processors involved.

To deal with processor time, we define a packet event as the transmission or
reception of a packet. For simplicity, we assume that the processor cost of a
packet event is basically the same, independent of whether it represents a
transmission or reception,‘” and we ignore the effect of different lengths of
packets. With the V kernel running on a SUN workstation connected to a lo-
megabyte Ethernet with an efficient network interface, a packet event costs 0.4
to 1.10 milliseconds of processor time, the variance depending in part on the size
of the packet.

Let N be the number of members in the group, excluding the sender. We
assume that all members of the group and the sender are on separate machines.
We also assume in our analysis that only machines running group members
receive packets addressed to the group. Finally, we assume that the sending
machine can address a packet such that it is received with high probability by all
the machines running processes in the group, and no others.

6.2.1 Cost of Group IPC Assuming No Packet Loss. The basic cost of group
communication, assuming no packet loss and using replies, is 3N + 1 packet
events: one at the sender to send a multicast packet, Non the receiving machines
to each receive this packet, Non the receiving machines to transmit a reply, and
N on the sending machine to receive the N replies. In contrast, simulating this
with one-to-one IPC would take 4N packet events, with 2N packet events
occurring on the sending machine.

These figures suggest two simple observations. First, the major performance
benefit of group IPC (on a broadcast network) is in reducing the number of
packet events on the sending machine by N - 1. This not only reduces the
processor cost but also reduces the elapsed time and increases the concurrency
in communication. For example, with the V kernel, the elapsed time using
unreliable group IPC with N = 10 is roughly 3.31 milliseconds versus 32 millisec-
onds using one-to-one IPC for reaching all ten processes individually. Second,
the cost of transmitting a multicast packet is quite high in terms of packet events
generated, namely N + 1, and so retransmitting a multicast packet should be
done only when necessary.14

I3 That is, the cost of fabricating the packet, transferring it to the network interface and handling
the completion interrupt is comparable to the cost of a packet-received interrupt, transferring the

packet from the interface and interpretation of the packet data.
“In reality, the cost of retransmission may be higher than that expressed here because many

machines receive all multicast packets and not just packets with particular multicast addresses.

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

Distributed Process Groups in the V Kernel 101

6.2.2 Cost of Group IPC with Packet Loss. The cost of handling packet loss is
dependent on how it is handled. If retransmissions are handled by one-to-one
(unicast) transmissions, the processor cost in packet events C,,, is given by

c,, = 3N + 1 - 3L, - L, + 4(L, + LA,

where L, is the number of receivers not receiving the multicast packet and L, is
the number of reply packets lost. (This assumes for simplicity that no retrans-
missions are required for the one-to-one IPC portion.) Thus the cost is basically
3N packet events plus four packet events for each process whose reply is not
received to the group Send. As we have observed, packet loss can be expected in
replies to a multicast packet if the group has a large membership or the sender’s
network interface has limited buffering because the multiple replies can generate
numerous closely spaced packets addressed to the sending host.

An alternative retransmission scheme is to retransmit the multicast packet.
The packet event cost is then roughly

C,, = 3N + 1 + R(3N),

where R is the number of retransmissions. This calculation is actually high by
the number of packet events missed due to packet loss. For example, if the replies
from two processes are lost due to (say) network interface buffer space (and
limited host processor speed in emptying the buffers), it would cost 6N packet
events, assuming a single retransmission enabled reception of all replies. This
assumption i.s optimistic because a retransmission is going to generate (more or
less) the same set of reply packets that caused two of the original reply packets
to be dropped.

This contrasts with 3N + 7 packet events using one-to-one retransmission.
Thus, if a nontrivial group is involved (N > 2), the one-to-one retransmission is
less expensive in processor time. In fact, using N one-to-one IPC message
transactions to simulate a group send costs roughly 4N + 4R packet events, and
so this is cheaper for nontrivial values of N as well.

In general, multicasting of retransmissions appears warranted only when
elapsed time for a reliable group send is more important than total processor
time consumed and loss of multiple replies is not a problem. The right choice
between one-to-one retransmission and multicast retransmission (or whether
retransmission is necessary at all) given these costs is application specific.

6.3 Security

The V kernel is not a security kernel, and so we have not implemented extensive
security measures for group operations. However, we have considered some of
the security issues in the design, both as a basis for design choices in the V kernel
as well as to identify the issues involved in extending this design to a more secure
environment. The security of non-IPC operations relies on the security of group
communication plus the protection mechanisms implemented as part of each
specific operation. Therefore we focus exclusively on security issues for group
communication.

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

102 l D. R. Cheriton and W. Zwaenepoel

There are three main security issues that arise with groups:

-who may send to a group;
-who may determine or need to know the membership of a group;
-who may join a group (and therefore may reply to messages addressed to a

group).

Group IPC shares with one-to-one IPC the issue of security of messages in
transit.

6.3.1 Who May Send to a Group. An open group is one in which processes
outside the group may send to the group. The V kernel implements open groups
for several reasons. (The main alternative is to provide closed groups in which
only members of the group may send to the group.) First, the current V kernel
implementation allows a process to send to any other, and expects the receiver
of messages to deal with unauthorized messages.” Thus restricting which proc-
esses can send to a group in the V kernel would not change which processes could
send to individual processes. Second, most of the messages to a server group
originate from clients and thus from processes outside the group. Since server
groups are a common use of the V group IPC, it is necessary to provide open
groups. Finally, open groups are easier to implement in the V kernel, and we
suspect in other systems as well.

In general, we believe that the control over who can send to a group should
match the control over who can send to an individual process or port. The V
kernel imposes no such controls in either case. In systems such as DEMOS [2]
or Accent [29], which provide communication security controls, it would be
appropriate to carry those controls over to group interprocess communication.

6.3.2 Who May Determine the Membership of a Group. The use of a group-id
to identify a group gives no indication of which processes belong to the group.
Thus a process can send to a group without knowing which processes are members
of the group. This is an advantage over the explicit list approach if the member-
ship of the group is considered sensitive.

The other side of the issue is whether a process can determine the membership
of the group. A process could discover membership information by looking at the
identity of the processes that reply to a group message. To handle this case, we
allow an anonymous reply to a group message, whereby the value returned by
Send (normally the process id of the replying process) is the group-id to which
the message was sent. Using this mechanism, a process can receive, forward, or
reply to a group message and remain anonymous to the sender. However, the
QueryGroup operation currently allows one to confirm whether or not a given
process is in a group. In some circumstances, this might be regarded as a security
violation.

6.3.3 Who May Join a Group. Control on group membership is a significant
security issue. Note that with the conventional V kernel message semantics, only

l5 Note that because reply messages are tied to send operations, most applications do not receive

messages in this sense. That is, reply messages can only come from the process to which the message

was sent.

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

Distributed Process Groups in the V Kernel l 103

the receivers of a message may reply to it. Using these messages semantics,
control over who may reply to a message is exercised by controlling who may join
a group. If any unauthorized process is allowed to join a group, it may both
receive and respond to messages in such a way as to disrupt the operation of the
system. For example, suppose that an intruder joined the distributed computation
and proceeded to reply to group messages with misleading information. It could
cause the program to behave incorrectly as well as possibly violate the security
of the system by handling secure program data. Similarly, a process might join
one of the standard system server groups and respond erroneously.

In the V kernel, a process is allowed to join a restricted group if it is associated
with the same user number as the other members of the group (or there are not
yet any members in the group). Thus a restricted group represents a single
principal in the security sense. An alternative approach might be called the self-
regulating group. This would require that membership be approved by the current
members of the group. A request to join a group would produce a message to the
current group and require a response from application-level code. Group members
would respond, indicating whether the new member is accepted or not. A variety
of policies could be implemented by the group members. This mechanism appears
quite easy to implement as an extension of our current design. However, we have
not encountered a need for this more flexible level of group membership control.
In fact, it is rare that a process discriminates between other processes other than
on the basis of their associated user number.

Unrestricted groups place no restrictions on membership (except that a local
unrestricted group can only have local processes as members). Unrestricted
groups are primarily intended for use with queries in which security is not a
problem, or the security problem can be solved at the sending end. For instance,
one might query a server group to see which servers have an object with a
particular name. The requesting process can then use the process identifiers and
the associated user numbers of the replying processes as criteria for filtering out
unwanted replies. In general, in a distributed system such as V, where a variety
of servers extend the object and name space, it is useful to have unrestricted
groups to allow maximum participation of servers and apply filtering on the
replies at the client end.

6.3.4 Encryption of Group Messages. Encrypted group messages can be provided
using a mechanism similar to that described by Birrell[6], provided that a process
group is regarded as representing one principal. Such a group would have its own
secret key, presumably in addition to the private (secret) key of each process in
the group. Messages sent to the group would be encrypted with a conversation
key as with one-to-one communication and the request for authentication and
secure reply would follow similarly. The authentication server could be charged
with generating secret keys for new groups and authorizing processes to join
groups (by giving them the group’s secret key). By using a public key encryption
system, there would be a public key for each group, with the “secret” decrypt key
known to all the members of the group.

In summary, group IPC raises some additional security issues. We argue that
sending to a group should be controlled by the same mechanism controlling
sending to an individual process. Control of group membership is important to

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

104 l D. R. Cheriton and W. Zwaenepoel

avoid unauthorized participation in a group and is provided in V with restricted
groups. If the membership of the group is considered to be sensitive, group
members can return anonymous replies to group messages. Finally, existing
encrypting techniques appear to carry over directly to prevent unauthorized
readers and forgers of messages.

6.4 Local Groups

Local groups are provided as an optimization for the circumstances in which all
the processes in a group are local to one host. For example, a single job often
executes on a single host. Similarly, a parallel computation running on a multi-
processor machine would execute on what constitutes a single logical host. With
a local group, one can avoid transmitting multicast packets to communicate with
the group. If the sender is local to the host of the local group, no network traffic
is required. If the sender is not local to the same host, a directed or unicast
packet is sent to the host of the local group. Other than that, the kernel
mechanisms for dealing with local groups are identical to those used for global
groups: The kernel simply performs the requested operation repeatedly on each
member of the local group. Thus the implementation of local groups primarily
requires checking group-ids for the “local” bit and routing the packets and
messages accordingly.

7. RELATED WORK

V Process groups bear some similarity to UNIX process groups [30], which are
designed primarily for job control. However, a UNIX process can only belong to

one process group, process group operations are limited to suspending, resuming,
interrupting, and terminating the process group, and a process group is limited
to a single UNIX host. There have also been many papers describing group
communication mechanisms, several of which have appeared simultaneously with
our original design proposal [161. For example, Frank et al. [21] describe an
extension of XNS to support multicast with considerable emphasis on routing.
Cocanet [31] proposes a multicast extension to UNIX, aimed primarily at
supporting distributed databases. Also, several language extensions to support
multicast have been proposed [22, 251.

The use of process group facilities is similar to that described for the broadcast
and multicast capabilities of local networks [71. Similar uses and techniques were
developed in Project Universe [33] using a satellite broadcast channel.

In addition, several recent papers [l, 9, 271 consider reliable broadcast proto-
cols. Our example of reliable group communication using a logging process is a
simplified version of the reliable broadcast protocol described by Chang and
Maxemchuck [9]. These protocols can be implemented using our group IPC, but
are only needed when the application requires additional reliability over that
provided by the V kernel.

Most other work in the field focuses on the provision of broadcast and multicast
at the data link and network levels. In particular, the Ethernet broadcast network
requires only multicast addressing and filtering in the hosts to provide multicast
delivery [26]. Implementing broadcast and multicast on point-to-point networks
or internetworks has been covered by a number of authors, including Dalal and
Metcalfe [191, Wall [32], and Boggs[7]. All this work addresses the efficient

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

Distributed Process Groups in the V Kernel l 105

multicast delivery of packets to hosts, and thereby provides the necessary
underlying mechanism for host groups and, therefore, for our process group
facilities.

8. CONCLUDING REMARKS

We have described an extension of the V kernel to support process groups. This
facility has been implemented in the V kernel and is in use by several server
groups, application programs as well as the kernel itself. On the basis of our
experience with this implementation and the initial applications, we conclude
that the design allows a relatively simple, efficient implementation that is useful
in distributed operating systems and distributed programs. In particular, we have
described the use of V group IPC by several server groups, as well as by two
distributed programs.

In the overall discussion, we have tried to explore issues of group communica-
tion in general, independent of the V IPC design. It appears reasonable to extend
other message systems to support group operations in a fashion similar to V. It
is less clear whether remote procedure call mechanisms are amenable to group
communication without seriously straining normal procedure call semantics.

Despite the success of V process groups, there are a number of unresolved
issues in the way groups extend the semantics of interprocess communication.
First, the use of strict request-response interaction in the basic V IPC allows
one to view a message as transferring control to the receiver and the reply
message as returning control, similar to the behavior of a remote procedure call.
This transfer of control is used by the receiver to access the sender’s address
space and to schedule the continued execution of the sender. The control aspect
is significantly complicated by group IPC because a receiver may receive a (group)
message after another receiver has replied to the sender. In this case, the second
receiver has no control over the sender. Thus the message behaves more like that
in conventional message systems in which it represents a transfer of data but
not control.

The multiple, replicated messages generated by a group Send operation lead to
further semantic issues. In particular, a process can receive the message associ-
ated with a particular (group) message transaction after that message transaction
has been terminated by the sending process. For instance, the sender may have
got a reply from another member of the group to which it sent and then performed
another Send operation. Note that the “age” of such an old message is bounded
by a time-out mechanism on queued messages. In this situation, the reply
generated by the receiver will be discarded because of its old transaction identifier,
and so this situation is not a problem in practice. However, in spite of these
issues we have raised, the message transaction model is efficient for the one-to-
one case and provides automatic discarding of “old” replies with the group IPC.
In general, our practical experience with V IPC extended to group communication
is very encouraging.

The group IPC has raised a practical problem with our current workstation
network interfaces, namely, packet loss. As described in Section 4, most of our
workstations have Ethernet interferes with only two receive buffers. Since a

group Send operation often generates many closely spaced reply packets, a
significant number of the reply packets are lost. We are looking to upgrade our

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

106 l D. R. Cheriton and W. Zwaenepoel

workstations to Ethernet interfaces with more buffering, the obvious and seem-
ingly only solution to this problem.

Our ongoing work is focusing on using process groups in several ways, including
distributed name mapping using server groups, distributed virtual memory,
parallel distributed computation, and replicated message transactions for robust
operation (similar to Cooper’s replicated procedure calls [18]). In general, our
experience to date suggests that process group support should be considered a
standard facility to be provided in distributed operating systems. Its use at the
applications level will increase with the availability of this facility and the
development of robust and sophisticated distributed programs.

ACKNOWLEDGMENTS

The V kernel and the V distributed system that uses it were developed by the
Distributed Systems Group at Stanford. A number of other members of this
group contributed to the refinement of these ideas, the use of the group IPC, and
the improvement of the paper. We are particularly grateful to Michael Stumm,

Tim Mann, Eric Berglund, Lance Bert, Marvin Theimer, and Ross Finlayson,
as well as Stella Atkins of the University of British Columbia. We are also
grateful to the referees for their helpful comments and suggestions.

REFERENCES

1. AWERBUCH, B., AND EVEN, S. Efficient and reliable broadcast is achievable in an eventually
connected network. In Proceedings of the 3rd Annual ACM Symposium on Principles of Distributed

Computing (Vancouver, B.C., Aug. 27-29). ACM, New York, 1984, pp 278-281.
2. BASKETT, F., HOWARD, J. H., AND MONTAGUE, J. T. Task communication in DEMOS. In

Proceedings of the 6th ACM Symposium on Operating System Principles (West Lafayette, Ind.,
Nov. 16-18). ACM, New York, 1977, pp. 23-31. Also published in Oper. Syst. Rev. 11, 5 (1977).

3. BECHTOLSHEIM, A., BASKEIT, F., AND PRAIT, V. The SUN workstation architecture. Tech.
Rep. 229, Computer Systems Laboratory, Stanford University, Mar. 1982.

4. BERGLUND, E. J., AND CHERITON, D. R. Amaze: A distributed multi-player game program using
the distributed V kernel. In Proceedings of the 4th International Conference on Distributed

Systems (San Francisco, Calif., May 14-18). IEEE, New York, 1984, pp. 248-255.
5. BERGLUND, E. J., BROOKS, K. P., CHERITON, D. R., KAELBLING, D. R., LANTZ, K. A., MANN,

T. P., NACLER, R. J., NOWICKI, W. I., THEIMER, M. M., AND ZWAENEPOEL, W. V-System
Reference Manual. Computer Science Dept. Stanford University, Jan. 1985.

6. BIRRELL, A. D. Secure communication using remote procedure calls. ACM Trans. Comput. Syst.

3, 1 (Feb. 1985) 1-15.
7. BOGGS, D. R. Internet broadcasting. Ph.D. dissertation, Electrical Engineering Dept., Stanford

University, Oct. 1983. Also Tech. Rep. CSL-83-3, Xerox PARC, Palo Alto, Calif.
8. Boccs, D. R., SHOCH, J. F., TAFT, E. A., AND METCALFE, R. M. PUP: An internetwork

architecture. IEEE Trans. Commun. COM-28, 4 (Apr. 1980), 612-624.
9. CHANG, J. M., AND MAXEMCHUCK, N. F. Reliable broadcast protocols. ACM Trans. Comput.

Syst. 2, 3 (Aug. 1984), 251-273.
10. CHERITON, D. R. The Thoth System: Multi-Process Structuring and Portability. Elsevier/North-

Holland, New York, 1982.
11. CHERITON, D. R. The V kernel: A software base for distributed systems.” IEEE Software I, 2

(1984), 19-43.
12. CHERITON, D. R. An experiment in register-based interprocess communication for fast message-

passing. Oper. Syst. Reu. 18, 4 (Oct. 1984), 12-19.
13. CHERITON, D. R. A uniform I/O interface and protocol for distributed systems. ACM Trans.

Comput. Syst. (1985), submitted for publication.

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

Distributed Process Groups in the V Kernel l 107

14. CHERITON, D. R., AND MANN, T. P. Uniform access to distributed name interpretation. In
Proceedings of the 4th International Conference on Distributed Systems (San Francisco, Calif.,
May 14-18). IEEE New York, 1984, pp. 290-297.

15. CHERITON, D. R., AND ZWAENEPOEL, W. The distributed V kernel and its performance for
diskless workstations. In Proceedings of the 9th ACM Symposium on Operating System Principles.

(Bretton Woods, N.H., Oct. 10-13). ACM, New York, 1983, pp. 129-139.
16. CHERITON, D. R., AND ZWAENEPOEL, W. One-to-many interprocess communication in the V-

System. In Proceedings of the ACM SZGCOMM ‘84 Symposium on Communications Architectures

and Protocols (Montreal, Quebec; June 6-8). ACM, New York, p. 64.
17. CHERITON, D. R., MALCOLM, M. A., MELEN, L. S., AND SAGER, G. R. Thoth, a portable real-

time operating system. Commun. ACM 22, 2 (Feb. 1979), 105-115.
18. COOPER, E. C. Replicated procedure call. In Proceedings of the 3rd Annual ACM Symposium

on Principles of Distributed Computing (Vancouver, B.C., Aug. 27-29). ACM, New York, 1984,
pp. 220-232.

19. DALAL, Y. K., AND METCALFE, R. M. Reverse path forwarding of broadcast packets. Commun.

ACM 21, 12 (Dec. 1978), 1040-1048.
20. DIGITAL EQUIPMENT CORPORATION, INTEL CORPORATION, AND XEROX CORPORATION. The

Ethernet: A local area network-Data link layer and physical layer specifications, Version 2.0.
21. FRANK, A., WITTIE, L., AND BERNSTEIN, A. Group communication in NetComputers. In

Proceedings of the 4th International Conference on Distributed Computing Systems (San Francisco,
Calif., May 14-18). IEEE, New York, 1984, pp. 326-335.

22. GEHANI, N. H. Broadcasting sequential processes (BSP). IEEE Trans. Softw. Eng. SE-IO, 4

(July 1984), 343-351.
23. LAMPORT, L., SHOSTAK, R., AND PEASE, M. The Byzantine generals problem. ACM Trans.

Prog. Lang. Syst. 4, 3 (July 1982), 382-401.
24. LAMPSON, B. W. Atomic transactions. In Distributed Systems: Architecture and Implementation,

B. W. Lampson, Ed. Lecture Notes in Computer Science, Springer-Verlag, New York, 1981.
25. LEBLANC, T. J., AND COOK, R. P. Broadcast communication in StarMod. In Proceedings of the

4th International Conference on Distributed Computing Systems (San Francisco, Calif., May 14-
18). IEEE, New York, 1984, pp. 319-325.

26. METCALFE, R. M., AND Boccs, D. R. Ethernet: Distributed packet switching for local computer
networks. Commun. ACM 19, 7 (July 1976), 395-404.

27. MOCKAPETRIS, P. V. Analysis of reliable multicast algorithms for local networks. In Proceedings

of the 8th Data Communications Symposium (North Falmouth, Mass., Oct. 3-6). ACM, New
York, 1983, pp. 150-157.

28. POWELL, M. L., AND PRESO~~O, D. L. Publishing: A reliable broadcast communication mech-
anism. In Proceedings of the 9th ACM Symposium on Operating Systems Principles (Bretton
Woods, N.H., Oct. 10-13). ACM, New York, 1983, pp. 100-109. Also published in Oper. Syst.

Rev. 17, 5 (Oct. 1983).
29. RASHID, R., AND ROBERTSON, G. Accent: A communication oriented network operating system

kernel. In Proceedings of the 8th ACM Symposium on Operating Systems Principles (Dec. 14-16,
Pacific Grove, CA) ACM, New York, 1981, pp. 64-75.

30. RITCHIE, D. M., AND THOMPSON, K. The UNIX Time-Sharing System. Commun. ACM 17, 7

(July 1974), 365-375.
31. ROWE, L. A., AND BIRMAN, K. P. A local network based on the UNIX operating system. IEEE

Trans. Softw. Eng. SE-8, 2 (Mar. 1982), 137-146.
32. WALL, D. W. Mechanisms for broadcast and selective broadcast. Ph.D. dissertation, Electrical

Engineering Dept., Stanford University, June, 1980.
33. WATERS, A. G., ADAMS, C. J., LESLIE, I. M., AND NEEDHAM, R. M. The use of broadcast

techniques on the UNIVERSE network. In Proceedings of ACM SZGCOMM ‘84 Symposium on

Communications Architectures and Protocols, (Montreal, Quebec, June 6-8). ACM, New York,
1984, pp. 52-57.

Received February 1984; revised January 1985; accepted January 1985.

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

