
Distributed QR Factorization
Based on Randomized Algorithms

Hana Straková1, Wilfried N. Gansterer1,?, and Thomas Zemen2

1 University of Vienna, Austria,
Research Group Theory and Applications of Algorithms

Hana.Strakova@univie.ac.at, Wilfried.Gansterer@univie.ac.at
2 Forschungszentrum Telekommunication Wien, Austria

Thomas.Zemen@ftw.at

Abstract. Most parallel algorithms for matrix computations assume a
static network with reliable communication and thus use fixed commu-
nication schedules. However, in situations where computer systems may
change dynamically, in particular, when they have unreliable compo-
nents, algorithms with randomized communication schedule may be an
interesting alternative.
We investigate randomized algorithms based on gossiping for the dis-
tributed computation of the QR factorization. The analyses of numerical
accuracy showed that known numerical properties of classical sequential
and parallel QR decomposition algorithms are preserved. Moreover, we
illustrate that the randomized approaches are well suited for distributed
systems with arbitrary topology and potentially unreliable communica-
tion, where approaches with fixed communication schedules have major
drawbacks. The communication overhead compared to the optimal par-
allel QR decomposition algorithm (CAQR) is analyzed. The randomized
algorithms have a much higher potential for trading off numerical accu-
racy against performance because their accuracy is proportional to the
amount of communication invested.

Keywords: distributed vs. parallel QR factorization; decentralized QR
factorization; evaluation of distributed algorithms; gossip algorithms;
push-sum algorithm; randomized communication schedule; fault-tolerance

1 Introduction

We consider the distributed computation of the QR factorization over a loosely
coupled distributed system where existing approaches with fixed communica-
tion schedule have major drawbacks. We develop and analyze a randomized dis-
tributed QR decomposition based on the push-sum algorithm. Since the nodes
proceed in an asynchronous and decentralized way, our approach is more flexi-
ble than existing parallel QR decomposition algorithms and capable of handling
unreliable links as well as potential dynamic changes of the network. The main

? corresponding author

gansterer
Schreibmaschinentext
Preprint, will appear in the proceedings of PPAM 2011 (http://ppam.pl)and will be available at www.springerlink.comCopyright by Springer Verlag

2 Hana Straková, Wilfried N. Gansterer, and Thomas Zemen

goal of this paper is a comprehensive comparison of this new randomized QR
decomposition approach with the existing parallel algorithms.

In this paper, we use the term parallel for algorithms developed primarily for
tightly coupled parallel computers (comprising shared-memory systems, multi-
core architectures, tightly coupled distributed memory systems, etc.) which are
characterized by a static topology and reliable, relatively fast, (usually) wired
communication. For such target platforms algorithms with fixed communication
schedules are suitable. In contrast, we use the term distributed for algorithms
designed for loosely coupled decentralized distributed systems. These target plat-
forms are characterized by potentially dynamically changing topology, relatively
slow and costly communication, and/or by unreliable components (e.g., commu-
nication links). This includes, but is not limited to wireless networks, peer to peer
(P2P) networks, mobile ad hoc networks, etc. Most existing parallel algorithms
have major drawbacks on such systems and thus are not applicable.

Motivation and Approach. Motivating problems arise, for example, in de-
centralized network analysis (cf. [12]) or in cooperative transceiver design in
telecommunications (cf. [8]). In the latter case the objective of a method called
distributed sphere decoding is to exploit cooperation of receiving node with other
receivers in the decoding of a signal sent by a group of transmitters [14]. A
distributed QR factorization of a distributed channel matrix, which describes
the quality of communication channels between nodes, is needed for solving a
maximum likelihood problem.

A theoretical alternative to existing parallel algorithms for the context con-
sidered would be a “fusion center” approach. The fusion center first collects the
entire matrix, computes the QR factorization locally, and then returns the re-
sult to the other nodes. However, this leads to an unfair distribution of energy
consumption among the cooperating nodes and may be infeasible due to mem-
ory constraints (if no single node can store the entire matrix). It has also been
shown that in many situations in-network computation leads to considerable
advantages over centralized approach [17, 15] (e.g., in terms of energy savings).

Consequently, we pursue a randomized decentralized QR factorization algo-
rithm based on gossiping . Gossip-based (or epidemic) algorithms are character-
ized by asynchronous randomized information exchange, usually only within the
local neighborhood of each node. They do not assume static or reliable networks,
do not require any specialized routing and do not have a single point of failure.
Thus, they can cope with link failures or more general dynamic network changes,
and consequently achieve high fault tolerance. Due to their ideally completely de-
centralized structure, gossip-based algorithms tend to scale well with the number
of nodes. Moreover, gossip-based algorithms allow for trading off time-to-solution
against communication cost (and thus energy consumption) or fault tolerance
by gradually adapting the intensity and regularity of communication with other
nodes. Especially the latter property is very attractive when parallel algorithms
are not applicable and fusion center approaches are too expensive, or where not
only the highest achievable accuracy, but also intermediate approximate results

Distributed QR Factorization Based on Randomized Algorithms 3

are of interest. Existing parallel algorithms produce the full result at the full
accuracy achievable for the input data only when they terminate regularly.

Related Work. Parallel algorithms for computing QR factorizations on shared
memory, distributed memory or on multicore architectures have been stud-
ied extensively. State-of-the-art software libraries such as ScaLapack [3] use
blocked algorithms for implementing parallel QR factorization. The latest devel-
opments are tiled QR factorization [5], communication-avoiding QR factorization
(CAQR) [6], and the combination of the two approaches [16].

Much less work exists in the literature on distributed algorithms. Although
wireless networks are mentioned as target environment in [1], the assumptions
used are those typical for parallel algorithms: all data initially centralized at a
single node, specific roles assigned to individual nodes (distributing node, anni-
hilating node, etc.) and the communication schedule is fixed. Relevant for our
approach are randomized algorithms, such as the push-sum algorithm [11], uti-
lized for matrix computations. Simple gossip-based algorithms are used due to
their attractive properties in many in-network computations (e.g, in distributed
signal processing [7]), but to the best of our knowledge, only a few gossip-
based matrix algorithms have been investigated. A gossip-based decentralized
algorithm for spectral analysis was discussed in [12], and a distributed QR fac-
torization based on push-sum has been used in distributed sphere decoding in [8].
So far, no analysis of numerical behavior or communication cost of a randomized
distributed QR factorization is available. Moreover, no comparison to existing
parallel approaches is available.

Contributions. We extend existing work in the following algorithmic aspects:
We use modified Gram-Schmidt orthogonalization (mGS) as the basis for our new
algorithm, which we call dmGS , whereas the algorithm used in [8] implements
the less stable classical Gram-Schmidt orthogonalization (cGS). Moreover, the
algorithm used in [8] assumes that after each push-sum algorithm one of the local
estimates is broadcasted to all the other nodes, whereas our approach proceeds
with the local estimate in each node (which is more realistic in practice).

We for the first time provide a full quantitative evaluation of a distributed
QR decomposition algorithm in terms of numerical accuracy, reliability, oper-
ation count, memory requirements, and communication cost (partly based on
theoretical analyses and partly based on simulations) as well as a quantitative
comparison with state-of-the-art parallel QR decomposition algorithms. We also
consider more general data distributions over random topologies of the underly-
ing distributed system ([8] considered only square matrices over fully connected
networks), investigate the effects of communication link failures, and we adapted
termination criteria from the literature in order to be able to investigate the
trade-off between numerical accuracy and performance or communication cost.

Synopsis. In Section 2, the QR factorization and the push-sum algorithm are
reviewed. In Section 3, our new algorithm (dmGS) is presented. In Section 4,
numerical simulations and theoretical analyses are summarized. Section 5 con-
cludes the paper.

4 Hana Straková, Wilfried N. Gansterer, and Thomas Zemen

2 Methodology

Algorithms for QR Factorization. We are interested in computing the thin
(reduced) QR factorization A = QR (where A ∈ Cn×m, n ≥ m, Q ∈ Cn×m
has orthogonal columns, R ∈ Cm×m is upper triangular) by classical (cGS) and
modified (mGS) Gram-Schmidt orthogonalization (for mGS see Algorithm 1).

Both Gram-Schmidt orthogonalization processes require 2nm2 flops for com-
puting the QR factorization of an n × m matrix [10]. Denoting the machine
precision with εmach and the condition number of the matrix A with κ2(A), the
matrix Q produced by mGS satisfies ‖I−QHQ‖2 ≈ εmachκ2(A) [10], whereas for
a square matrix A of size n× n cGS produces Q for which only ‖I −QHQ‖2 ≤
c(n)εmach[κ2(A)]n−1 with a modest constant c(n) holds [13].

The Push-Sum Algorithm. As mentioned in Section 1, the information ex-
change in gossiping protocols is randomized and asynchronous, and nodes iter-
atively update their local information according to information received from
other nodes. The network topology can be arbitrary, dynamically changing and
does not need to be known in individual nodes. The push-sum algorithm [11] is a
gossip algorithm for approximating the sum or the average of values distributed
over a network with N nodes. If x(k) denotes a value stored in node k, the
goal of the algorithm is to compute in each node k an estimate sk =

∑
j x(j)

(or ak =
∑
j x(j)/N). The accuracy of the estimates depends on the number of

asynchronous iterations of the push-sum algorithm.
An important question is when to terminate the push-sum algorithm. In [11],

an asymptotic number of iterations needed in the push-sum algorithm for reach-
ing a certain error τ with some probability is derived (the notation is adapted
to our context): For a network with N nodes, there is a number of iterations
i0 = O(logN + log 1

τ + log 1
δ), such that for all numbers of iterations i ≥ i0 with

probability of at least 1− δ the estimate of the average satisfies in every node k

1

|∑N
j=1 x(j)|

∣∣∣∣∣∣ s
(i)
k

w(i)(k)
− 1

N

N∑
j=1

x(j)

∣∣∣∣∣∣ ≤ τ
∑N
j=1 |x(j)|

|∑N
j=1 x(j)|

. (1)

where x(k) is a value stored in node k, w(i)(k) is a weight used in node k in

iteration i, and s
(i)
k is an estimate of the sum

∑N
j=1 x(j) in node k in iteration

i. In [8] the push-sum algorithm is terminated after a fixed number of iterations
determined by the authors based on simulations. In [12] a blockwise extension of
the push-sum algorithm is proposed and a stopping criterion with an accuracy
parameter τ is suggested. We adapt this termination criterion to the scalar push-
sum and use it in our simulations.

3 Distributed QR Factorization (dmGS)

In Algorithm 1 the distributed modified Gram-Schmidt orthogonalization dmGS
is presented and compared to mGS. The notation used in the algorithm is ex-
plained in Section 2. We can see, that mGS and dmGS are very similar. The

Distributed QR Factorization Based on Randomized Algorithms 5

Algorithm 1 Modified Gram-Schmidt orthogonalization (mGS) and distributed QR
factorization (dmGS)

Input: A ∈ Cn×m, n ≥ m (matrix A distributed row-wise over N nodes;
if n > N , each node k stores rk consecutive rows of A)
Output: Q ∈ Cn×m, R ∈ Cm×m (matrix Q distributed row-wise,
matrix R distributed column-wise over nodes)

1: for i = 1 to m do
2: x(k) = A(k, i)2

3:
4: s =

∑n
k=1x(k)

5: R(i, i) =
√
s

6: Q(:, i) = A(:, i)/R(i, i)
7:
8: for j = i + 1 to m do
9: x(k) = Q(k, i)A(k, j)

10:
11: R(i, j) =

∑n
k=1x(k)

12: A(:, j) = A(:, j)−Q(:, i)R(i, j)
13:
14: end for
15: end for

1: for i = 1 to m do (in node k)
2: x(k) = A(k, i)2

3: [x(k) =
∑rk

t=1 A(kt, i)
2]

4: sk = push-sum(x)
5: Rk(i, i) =

√
sk

6: Q(k, i) = A(k, i)/Rk(i, i)
7: if k 6= i delete Rk(i, i)
8: for j = i + 1 to m do
9: x(k) = Q(k, i)A(k, j)

10: [x(k) =
∑rk

t=1 Q(kt, i)A(kt, j)]
11: Rk(i, j) = push-sum(x)
12: A(k, j) = A(k, j)−Q(k, i)Rk(i, j)
13: if k 6= j delete Rk(i, j)
14: end for
15: end for

only difference is that the sums in the mGS needed for computing a 2-norm
(Line 4) and a dot product (Line 11) are replaced by the push-sum algorithm.
dmGS assumes as input a matrix A ∈ Cn×m, n ≥ m distributed row-wise over N
nodes. In the special case n = N , each node contains one row of the input matrix
A ∈ Cn×m, n ≥ m and the push-sum computes the sum of corresponding column
elements stored in nodes. In the most common case n > N , each node k contains
rk = O(n/N) rows of the input matrix A. In this case, before each push-sum
the corresponding column elements stored in one node are locally preprocessed
(Lines 3 and 10) and then summed up by the push-sum algorithm. Except of the
push-sum algorithms utilized for computing in all nodes k the local estimates Rk
of the elements of the matrix R (Lines 4 and 11), the nodes do not communicate
and can execute the computations locally. dmGS, as described in Algorithm 1,
stores one column of matrix R in corresponding nodes. However, if the lines 7
and 13 are skipped, the nodes keep the computed estimates of the elements of
the matrix R and thus store the full matrix R. This of course results in higher
local memory requirements.

4 Evaluation of dmGS

In this section, we first investigate the numerical accuracy of dmGS and ana-
lyze the influence of the link failures and of the diameter of the network on its

6 Hana Straková, Wilfried N. Gansterer, and Thomas Zemen

dmGS
dcGS

N

‖I
−
Q

H
Q
‖ 2

1009080706050403020100

10−7

10−8

10−9

d=1
d=2
d=3
d=4

iterations per PSA

‖A
−
Q
R
‖ 2

450400350300250200150100500

100

10−2

10−4

10−6

10−8

10−10

10−12

10−14

10−16

Fig. 1. Comparison of the distributed QR factorization (left) based on the classical
(dcGS) resp. modified (dmGS) Gram-Schmidt method in terms of orthogonality mea-
sure and influence of random network topologies (right) with different diameter d on
convergence speed of dmGS.

convergence. Then we compare dmGS to state-of-the-art parallel algorithms in
terms of operation count, local memory requirements, and communication cost.

We present simulation results for dmGS applied to a random matrix A ∈
Cn×m distributed over N nodes. Simulations are partly based on Matlab and
partly on ns-3. In the Matlab simulations, the nodes choose their communication
partners uniformly from the entire network, whereas the ns-3 simulations are
based on a predetermined random network topology with a given diameter.

In Fig. 1 (left) distributed QR factorization based on cGS (dcGS) is compared
to our algorithm dmGS in terms of orthogonality of Q measured as ‖I−QHQ‖2
for varying number of nodes N , when applied to A ∈ Cn×n, n = N . We can
observe the expected difference in terms of orthogonality of Q (the factorization
errors were basically identical), which illustrates that the distributed algorithm
preserves the numerical properties of the sequential and parallel cases. In the
experiments the overall factorization error and orthogonality was of the same
order of magnitude as the accuracy parameter τ = 10−9 used for terminating
the algorithm (see Section 2).

4.1 Reliability and Scalability

In this section we investigate the influence of link failures and random topologies
on the behavior of dmGS. In Fig. 1 (right) we can see the behavior of dmGS for
arbitrary networks with different diameters d. Although the increasing diameter
causes slower convergence, all simulations converge to the full accuracy.

Simulations showed that loss of messages due to link failures does not in-
fluence the factorization error. However, it causes loss of orthogonality of the
computed matrix Q. To achieve satisfactory orthogonality of Q we have to ei-
ther avoid losing messages or recover from the loss. The simplest strategy is to
resend each message several times to ensure a high probability that it will be
delivered. The exact number how many times was each message sent in our ex-
periments was chosen such that the combined probability of not delivering the
message for all repeated sending attempts is smaller than 10−12. Fig. 2 (left)

Distributed QR Factorization Based on Randomized Algorithms 7

Fig. 2. Comparison of the influence of various failure rates on the orthogonality of Q
for sending each message once and several times (left) and scalability of dmGS with
increasing number of rows n for matrix A ∈ Rn×25 (right).

shows the influence of the link failures on the orthogonality of the matrix Q for
various failure rates with and without resending each message. In [9] we discuss
approaches for recovering from message and data loss in more detail.

If n > N , nodes have to store more than one row. Consequently, for fixed
N , dmGS scales very well with increasing n. As shown in Fig. 2 (right), storing
several rows in one node even increases the accuracy, since more computation
is done locally in nodes. Note that increasing number of rows per node does
not affect the communication cost. Increasing the number of columns m is more
difficult, because it causes quadratical increase of communication cost. However,
a new version of dmGS which improves the scalability for growing m is currently
under development.

4.2 Theoretical Analyses and Comparison with Parallel Algorithms

In the following, dmGS is compared with state-of-the-art parallel algorithms for
QR factorization when applied to a rectangular matrix n ×m distributed over
N nodes (or P processors). In particular, we compare dmGS with parallel mGS
and with parallel CAQR (which is optimal in terms of communication cost up to
polylogarithmic factors) [6] along the critical path. For dmGS, the terms along
the critical path are equal to the cost per node. We have to emphasize that
this comparison has to be interpreted carefully, since these different types of
algorithms are designed for very different target systems and are based on very
different assumptions on properties of the target hardware and on the initial
data distribution (see Section 1).

To simplify the analysis, we assume that push-sum algorithm proceeds in
synchronous iterations and that in each iteration every node sends exactly one
message. Note that this synchronization is not required in practice and that our
simulations do not rely on this assumption. Push-sum needs O(logN) iterations
to converge to a fixed accuracy τ for networks where each node can communicate
with any other node [11], which we use in our analyses. Similar convergence rate
was also shown for more general topologies [4].

8 Hana Straková, Wilfried N. Gansterer, and Thomas Zemen

Operation count. dmGS calls m(m + 1)/2 push-sum algorithms and before
each push-sum, a local summation of rk = O(n/N) elements must be performed
in node k. In summary, dmGS performs O(m2 logN + m2n/N) flops. Accord-
ing to [6], parallel mGS performs 2nm2/P flops and parallel CAQR performs
2m3/3 + 2m2n/P flops along the critical path. Consequently, asymptotically
parallel mGS has the lowest flop count of the three methods and the count of
dmGS is a little lower than the one of parallel CAQR (for fixed P = N).

Local Memory Requirements. In dmGS each node k needs to store rk =
O(n/N) rows of matrix A, rk rows of matrix Q and on m of the nodes one column
of matrix R, each of them of length m. This leads to local memory requirements
of Θ(rkm) = Θ(nm/N). During the push-sum algorithm each node needs a
constant number of words of local memory. The local memory requirements for
parallel CAQR are Θ(nm/P) [6]. This shows that asymptotically CAQR and
dmGS have the same local memory requirements.

Communication Cost. We investigate three communication cost metrics: the
number of messages and the number of words sent along the critical path as well
as the average message size. The total number Ct of messages sent during dmGS
is given as Ct = S · I ·M , where S is the number of push-sum algorithms, I is
the number of iterations per push-sum and M is the number of messages sent
during one iteration of the push-sum algorithm. dmGS calls S = m(m + 1)/2
push-sum algorithms (cf. Algorithm 1) and as described above, I = O(logN) for
a fixed final accuracy. As conclusion, the number C of messages sent per node
in dmGS is C = O(m2 log(N)) and that the total number Ct of messages sent is
Ct = O(Nm2 log(N)). The total number of words sent during dmGS equals the
total number of messages Ct multiplied by their size, which in dmGS is constant
(two words). Thus the number of words sent is asymptotically the same as the
number of messages sent. For the special case of a square n×n matrix distributed
over n = N nodes, we get C = O(N2 log(N)) and Ct = O(N3 log(N)).

Comparison with State-of-the-Art Parallel Algorithms. According to [6], parallel
mGS sends 2m log(P) messages and m2 log(P)/2 words (leading terms) when
factorizing a rectangular n×m matrix over P processors. Consequently, the av-
erage message size m/4 increases linearly with increasing m. Parallel CAQR
sends 1/4 ·

√
mP/n · log2(nP/m) · log(P

√
nP/m) messages and

√
nm3/P ·

logP − 1/4 ·
√
m5/nP · log(mP/n) words along the critical path [6]. For the

special case of a square n × n matrix, CAQR needs 3
√
P log3(P)/8 messages

and 3n2 log(P)/(4
√
P) words. Consequently, the average message size in paral-

lel CAQR for a square matrix is 2n2/(P log2(P)).
For the special case n = m = N = P , which is relevant in the application

problems mentioned in Section 1, we find that dmGS asymptotically sends the
same number of words along the critical path as parallel mGS and a factor

√
N

more than parallel CAQR. When comparing the total number of messages sent
along the critical path, there is a bigger difference. This is due to the fact that in
dmGS the message size is constant, whereas in the parallel algorithms it grows
with N , which reduces the number of messages sent. Asymptotically, parallel

Distributed QR Factorization Based on Randomized Algorithms 9

mGS sends a factor N fewer messages along the critical path than dmGS. The
communication-optimal CAQR algorithm sends even a factor N

√
N/ log2(N)

fewer messages than dmGS. This shows that dmGS would not be competitive
in terms of communication cost when executed on standard target systems for
parallel algorithms, because the communication overhead to be paid for reliable
execution becomes quite large for large N .

5 Conclusions

We introduced dmGS, a gossip-based algorithm for distributed computation of
the QR factorization of a general rectangular matrix distributed over a loosely
coupled decentralized distributed system with unreliable communication. Prob-
lems of this type arise, for example, in distributed sphere decoding in telecom-
munications or in decentralized network analysis.

We evaluated dmGS in terms of the factorization error and orthogonality of
the computed matrix Q. In terms of numerical accuracy, it preserves known prop-
erties of existing sequential and parallel QR factorization algorithms. However,
dmGS is designed for completely different target platforms and its decentralized
structure makes it more flexible and robust. In particular, we illustrated that
although unreliable communication introduces overhead and an increase of the
network diameter slows down convergence, dmGS still produces correct results.

In order to complete the picture, a quantitative comparison of dmGS with
the state-of-the-art parallel algorithms in terms of operation count, local mem-
ory requirements and communication cost has been given. It shows that there is
a communication overhead to be paid in dmGS over existing parallel algorithms
for robust execution on dynamic and decentralized target platforms with unreli-
able communication. However, we currently work on an algorithmic improvement
of dmGS which reduces the communication overhead. Moreover, dmGS has the
additional benefit that its computational and communication cost are propor-
tional to the target accuracy, i. e., it is possible to compute an approximative
QR factorization at proportionally reduced cost.

Ongoing and Future Work. More detailed analyses and simulations of the influ-
ence of the network topology on the behavior of dmGS will be performed. We will
also investigate energy efficiency aspects and the influence of dynamic networks
(for example, mobile nodes) on the behavior of the algorithm. The investigation
of the utilization of broadcast gossiping methods [2] is another important next
task. We are also developing code suitable for runtime performance model with
ScaLAPACK and PLASMA routines. Beyond that, other ideas for further re-
ducing the communication cost in distributed QR factorization algorithms will
be investigated.

Acknowledgments. This work has been supported by the Austrian Science Fund
(FWF) under contracts S10608 and S10607 (NFN SISE). The Telecommunica-
tions Research Center Vienna (FTW) is supported by the Austrian Government
and the City of Vienna within the competence center program COMET.

10 Hana Straková, Wilfried N. Gansterer, and Thomas Zemen

References

1. Abdelhak, S., Chaudhuri, R.S., Gurram, C.S., Ghosh, S., Bayoumi, M.: Energy-
aware distributed QR decomposition on wireless sensor nodes. The Computer Jour-
nal 54(3), 373–391 (2011)

2. Aysal, T., Yildiz, M., Sarwate, A., Scaglione, A.: Broadcast gossip algorithms for
consensus. IEEE Trans. Signal Processing 57(7), 2748 –2761 (2009)

3. Blackford, L., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Don-
garra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley,
R.C.: ScaLAPACK Users’ Guide. SIAM, Philadelphia, PA, USA (1997)

4. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms.
IEEE Trans. Information Theory 52(6), 2508 – 2530 (2006)

5. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: Parallel tiled QR factorization
for multicore architectures. In: Proceedings of the 7th International Conference on
Parallel Processing and Applied Mathematics. pp. 639–648. Springer-Verlag (2008)

6. Demmel, J., Grigori, L., Hoemmen, M.F., Langou, J.: Communication-optimal
parallel and sequential QR and LU factorizations. Tech. rep., no. UCB/EECS-
2008-89, EECS Department, University of California, Berkeley (2008)

7. Dimakis, A., Kar, S., Moura, J., Rabbat, M., Scaglione, A.: Gossip algorithms for
distributed signal processing. Proceedings of the IEEE 98(11), 1847 –1864 (2010)

8. Dumard, C., Riegler, E.: Distributed sphere decoding. In: International Conference
on Telecommunications ICT ’09. pp. 172–177 (2009)

9. Gansterer, W.N., Niederbrucker, G., Strakova, H., Schulze Grotthoff, S.: Scalable
and fault tolerant orthogonalization based on randomized aggregation. to appear
in Journal of Computational Science

10. Golub, G.H., Van Loan, C.F.: Matrix Computations. The Johns Hopkins University
Press, 3rd edn. (1996)

11. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate in-
formation. In: FOCS ’03: Proceedings of the 44th Annual IEEE Symposium on
Foundations of Computer Science. pp. 482–491. IEEE Computer Society (2003)

12. Kempe, D., McSherry, F.: A decentralized algorithm for spectral analysis. Journal
of Computer and System Sciences 74(1), 70 – 83 (2008)

13. Kielbasinski, A., Schwetlick, H.: Numeryczna algebra liniowa. (In Polish). Second
edition. Wydawnictwo Naukowo-Techniczne, Warszawa (1994)

14. Ozgur, A., Leveque, O., Tse, D.: Hierarchical cooperation achieves optimal capacity
scaling in ad hoc networks. IEEE Transactions on information theory 53(10), 3549–
3572 (2007)

15. Rabbat, M., Nowak, R.: Distributed optimization in sensor networks. In: Third
International Symposium on Information Processing in Sensor Networks. pp. 20 –
27 (2004)

16. Song, F., Ltaief, H., Hadri, B., Dongarra, J.: Scalable tile communication-avoiding
QR factorization on multicore cluster systems. In: International Conference for
High Performance Computing, Networking, Storage and Analysis. pp. 1–11 (2010)

17. Yu, Y., Krishnamachari, B., Prasanna, V.: Energy-latency tradeoffs for data gath-
ering in wireless sensor networks. In: INFOCOM 2004. Twenty-third Annual Joint
Conference of the IEEE Computer and Communications Societies. vol. 1 (2004)

