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INTRODUCTION 

Many algorithms to process queries in dif- 
ferent distributed database systems have 
been proposed and implemented. In this 
paper, we restrict our attention to those 
strategies on relational databases [Codd 
1970, 1972; Date 1977; Ullman 1980]. In 
spite of the restriction, there are numerous 
algorithms on the subject [Apers et al. 1983; 
Baldissera et al. 1979; Bernstein and Chiu 
1981; Bernstein et al. 1981; Black and Luk 
1982; Chang 1982a, 1982b; Cheung 1981; 
Chiu 1980; Chiu and Ho 1980; Epstein et 
al. 1978; Goodman et al. 1979; Gouda and 
Dayal 1981; Hevner 1980; Hevner and Yao 
1979; Jarke and Koch 1983; Jarke and 
Schmit 1982; Kambayashi et al. 1982; 
Kerchberg et al. 1980; Kim 1982; Reiner 
1982; Williams et al. 1981; Wong 1977, 
1981; Yu and Ozsoyoglu 1979; Yu et al. 

1982a, 1983, 1984a, 1984b], but they are not 
designed for the same environment. For 
example, the algorithm in Gouda and Dayal 
[1981] is suitable for a local network, the 
algorithm in Kerchberg et al. [1980] is de- 
signed for a star network, and most of the 
other algorithms are designed for long haul 
networks. Also, some environments have 
no fragmented relations, whereas in others 
some relations may be fragmented. In some 
situations, a query is embedded in a pro- 
gram and is likely to be executed repeatedly 
and therefore requires an extremely effi- 
cient strategy to process the query, even if 
the compilation cost is high. In other situ- 
ations, the queries are submitted by users 
on an ad hoc basis, and thus a reasonably 
efficient strategy produced by a fast algo- 
rithm is needed. Because of this diversity, 
it is unlikely that  a particular algorithm is 
suitable for all environments. In fact, no 

Author's present address: C. C. Chang, Department of Computer Science, Iowa State University, Ames, 
Iowa 50010. 
Permission to copy without fee all or part of this material is granted provided that the copies are not made or 
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its 
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To 
copy otherwise, or to republish, requires a fee and/or specific permission. 
© 1984 ACM 0360-0300/84/1200-0399 $00.75 

Computing Surveys, Vol. 16, No. 4, December 1984 



C. T. Yu and C. C. Chang 

CONTENTS 

INTRODUCTION 

I. OPERATIONS AND COST MEASURES 

2. ESTIMATION 

3. THREE PHASES 

4 TREE QUERIES VERSUS CYCLIC 

QUERIES 

4.1 Charactermtics 

4.2 Tree Query Recognmon Algorithm 
4.3 Transforming a Cyclic Query 

into a Tree Query 
5. OPTIMAL STRATEGY 

FOR SIMPLE QUERIES 
6. OPTIMAL STRATEGY 

FOR TREE QUERIES 
7. HEURISTICS ALGORITHMS 

BASED ON SEMIJOINS 
7.1 The SDD- 1 Query-Processing Algorithm 

and Its Enhancements 
7.2 The General Algorithm 

in Apers et al [1983] 
7.3 Better Semljom Sequence 

8. ALGORITHMS BASED ON JOINS 
8.1 Enumeratwe Algorithms 
8.2 Nonenumerative Algorithms 

9. FRAGMENT PROCESSING 
10. THE TRANSFORMATION APPROACH 
11. CONCLUSION 
ACKNOWLEDGMENTS 
REFERENCES 

A 

v 

large-scale experiments have been per- 
formed to demonstrate the superiority of 
one algorithm over all other algorithms in 
a given environment. 

Our intention is to present some of the 
important ideas that have been proposed 
for processing queries in distributed rela- 
tional systems. The ideas involve the fol- 
lowing: the necessity for and the assump- 
tions used in estimating the sizes of 
temporary relations that are created during 
the processing of a distributed query; the 
use of semijoins to reduce intersite com- 
munication cost; the separation of an al- 
gorithm based on semijoins into three 
phases-- the copy identification phase, the 
reduction phase, and the assembly phase; 
the characterization of queries solvable by 
semijoins; the transformation of cyclic 
queries into tree queries; the optimal pro- 
cessing of certain restricted types of quer- 
ies, enhancements of semijoin strategies in 

the reduction phase, and the identification 
of relations that  need not participate in 
joins in the assembly phase; and the han- 
dling of fragments. These ideas are ex- 
plored in the sections below. 

No attempt is made to cover all proposed 
algorithms. Brief descriptions of some 
query-processing algorithms can be found 
in Reiner [1982]. Other issues in distrib- 
uted databases can be found in Adiba et al. 
[1977], Rothnie and Goodman [1977a, 
1977b], and Rothnie et al. [1980]. 

1. OPERATIONS AND COST MEASURES 

In this paper a relational database [Codd 
1970, 1972; Date 1977; Ullman 1980] with 
relations distributed in different sites is 
assumed. A relation is a two-dimensional 
table and is denoted by R[X], where X is 
the schema of relation R and represents the 
names of columns. The relational data ma- 
nipulation operations used in this paper are 
projection, selection, join, and semijoin 
[Bernstein and Chiu 1981]. They are de- 
scribed as follows: 

Projection. The projection of relation R 
on a set of attributes T is denoted by R. T 
or R(T) ,  where R is a relation with schema 
X, and T is a subset of X. It is obtained by 
discarding all columns of R that are not in 
T, and eliminating duplicated rows, if nec- 
essary. 

Selection. The selection of those tuples 
whose A-attribute values equal to a speci- 
fied constant in relation R is denoted by 
(R.A --- the specified constant), where A is 
an element of X. 

It is obtained by choosing all rows of R 
whose A-attribute values are equal to the 
specified constant. One or more select 
clauses on the same relation may be used 
in selection. Operators other than " - "  (e.g., 
_ and ~) are allowed. 

Join. The join of relation R1 with rela- 
tion R2 on attribute A is denoted by (R1.A 
-- R2.A), where R1 and R2 are the joining 
relations. Let X and Y be the schema of R1 
and R2, respectively. The attribute A, which 
is an element of X and Y, is the joining 
attribute of R1 and R2. 

The join is obtained by concatenating 
each row of R1 with each row of R2 when- 
ever the A-attribute values of the two rows 
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Figure 1. To answer a query, (a) X units of data are transferred from 
site I to site 2 and Y units of data are transferred from site 2 to site 3. 
(b) X units of data from site 1 and Z units of data from site 2 are 
transferred in parallel to site 3. 
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are equal. Since the equality operat ion re- 
sults in two identical columns, one column 
may be eliminated. One commonly used 
join operat ion is the natural join, where two 
rows from the joining relations are con- 
catenated whenever  the corresponding val- 
ues under  all common at t r ibutes  of the 
two relations are equal. We use (R1 = R2) 
to denote the natural  join of relations R1 
and R2. 

Semijoin [Bernstein and Chiu 1981; 
Berns te in  and Goodman 1979; Yu and Oz- 
soyoglu 1979]. The  semijoin from relation 
R2 to relation R~ on at t r ibute  A is denoted 
by R2 - -  A --* R1, where R2 is the sending 
relation, R~ is the reduced relation, and A is 
the joining attr ibute.  Sometimes we use 
R2 --* R1 to represent  R2 - -  A --* R~ if there  
is no need to identify the at tr ibute.  I t  can 
be obtained by joining R1 and R2 on attrib- 
ute A, then  projecting the resulting rela- 
t ion on the schema of  R~. Semijoins are 
also useful in database machines (see, e.g., 
Babb [1979]). 

If  no relat ion is fragmented,  then  in the 
performance of projections and selections, 
a local processing cost only is involved. 
However,  when joins and semijoins are ex- 
ecuted, communicat ion costs between dif- 
ferent  sites may be incurred in addition to 
the local processing cost. For  example, if R~ 
and R2 are in different  sites, R1 must  be 
sent to the site containing R2, or R2 must  
be sent  to the site of R~ before the operat ion 
can take place. 

Local processing costs usually are evalu- 
ated in terms of  the number  of disk accesses 

and CPU processing time, while commu- 
nicat ion costs are expressed in terms of the 
total  amount  of  data  t ransmit ted.  For  geo- 
graphically dispersed computer  networks, 
communicat ion cost is normally the domi- 
nan t  consideration,  bu t  local processing 
cost is of  greater significance for local net- 
works. In this paper,  we are mostly con- 
cerned with geographically dispersed com- 
puter  networks.  

We assume tha t  the cost of  t ransferr ing 
an amount  of  data, say X, from one site to 
ano ther  site is Co + cl * X, where co is the 
s tar t-up cost of init iating t ransmission and 
cl is a propor t ional i ty  constant .  The  cost 
for answering a query can be expressed in 
terms of the total cost measure or the re- 
sponse time measure. T h e  total  cost mea- 
sure [Hevner  and Yao 1979] is the sum of 
the costs of  t ransferr ing data. In Figure la,  
where X units  of  data  necessary to answer 
a query is t ransfer red  from site 1 to site 2 
and Y units  of data  from site 2 to site 3, 
the total  cost is (Co + cl * X)  + (Co + cl * Y) 
= 2Co + cl(X + Y). The  response t ime 
measure [Hevner  and Yao 1979] is the t ime 
from the init iat ion of the query to the t ime 
when the answer is produced. In Figure lb,  
where X units  of  data  f rom site 1 and Z 
units  of  data  f rom site 2 are t ransfer red  in 
parallel to site 3 to answer the query, the 
response t ime cost is the maximum of  Co + 
cl * X and Co + c~ * Z. In this paper, we are 
mostly concerned with the total  cost mea- 
sure only. 

Since the amount  of data  t ransfer red  af- 
fects the cost of a strategy, a t tempts  have 
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Figure 2. Illustrating semijoms. 
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been proposed to reduce it. A promis- 
ing approach is to make use of semijoins 
[Bernstein and Chiu 1981; Hevner and Yao 
1979]. For example, the semijoin from re- 
lation R2[B, C] to relation RI[A, B] on 
attribute B (R2 - -  B ~ R1) can be obtained 
by projecting R2 on attribute B, then joining 
the result of the projection with R1, rather 
than computing the join and then the pro- 
jection. We can easily see that R2 - -  B 
R1 is never bigger than R1, and is usually 
much smaller in size. In Figure 2a, the 
attribute values {b3, b4} of R1 do not ap- 
pear in R2. Thus the corresponding tuples 
{(a2, b3), (a2, b4), (a3, b3)} are elimi- 
nated from R1. The semijoin from R2 to R~ 
consists of the retained tuples {(al, bl), 
(a2, bl)}. 

Suppose that  R~ and R2 as given in Figure 
2 are at different computer sites, and the 
join of R~ and R2 is desired at the site 
containing R1. Suppose that each value in 

each of the attributes A, B, and C has unit 
width. To obtain a join of R1 and R2 at the 
site containing R1, one method is that we 
send R2 to R1, then take the join at the site 
containing R1. This method has a commu- 
nication cost of Co + c117(1 + 1)] = Co + 
14Cl. The second method consists of send- 
ing the B-attribute values of R1, that  is, 
{bl, b3, b4} to the site containing R2. Then 
all those tuples of R2 whose B-attribute 
values do not appear in {hi, b3, b4} are 
eliminated; that is, R1 - -  B --. R2 is com- 
puted. This operation yields {(bl, Cl)}. The 
reduced R2 is then sent back to the site 
containing R1 to join with R1. In this ex- 
ample, the sending of R1 projected on B 
costs Co + c1(3). The sending of the reduced 
R2 costs Co + Cl(1 + 1). Thus the second 
method is better than the first if 2Co + 5c~ 
< Co + 14Cl. This use of semijoin is justified 
in situations of small Co. On the other hand, 
if the number of B-attribute values in corn- 
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mon between R~ and R2 is large, as in Figure 
2b, the use of semijoin may not be profita- 
ble. Clearly, it is desirable to estimate the 
number of attribute values in common be- 
tween two relations before deciding to ex- 
ecute certain semijoins. 

2. ESTIMATION 

It can be inferred from the previous section 
that the performance of a distributed 
query-processing algorithm depends to a 
significant extent on the estimation algo- 
rithm used to evaluate the expected sizes 
of some intermediate relations. The choice 
of a reasonable estimation algorithm is 
therefore extremely important, as is de- 
scribed below. 

Suppose that relations R1 and R2 are 
single-attribute relations, and, further, that 
the values of the common attribute, say A, 
are uniformly and independently distrib- 
uted on the relations. The desired esti- 
mation is the size of R2 - -  A --. R~, that is, 
[ R 2  - -  A --* R1 [ * w, where I X I denotes the 
cardinality of X and w is the average width 
of a tuple in R~. 

Letting p .  be the probability that a value 
in attribute A appears in R,, i -- 1, 2, then 
p~ is called the selectivity of R, on attribute 
A. Since the values in the two relations are 
independently distributed, the probability 
that a value appears in both relations is 
P~a *p2a. Thus the expected number of dis- 
tinct values in common between the two 
relations is I A [ * Pl a * P2a, where [ A [ is the 
cardinality of the domain of the attribute 
A. The size of the reduced R~ can be esti- 
mated to be I A I *p~a*p2~* w. This can be 
rewritten as I R~I *P2a * W. 

In a different scenario, R2 is the same as 
above but  R~ is a relation with two attri- 
butes A and B. After the semijoin, R2 - -  A 
--* R1, the cardinality of R1 can be estimated 
as [R1 [ *P2a, where [R~ [ is the number of 
tuples of R~ before the semijoin was per- 
formed. The estimation problem of the car- 
dinality of R~ projected on the B-attribute 
after the semijoin can be demonstrated in 
the following ball-color problem: "There are 
n balls with m different colors. Find the 
expected number of colors if t balls are 
randomly selected from the n balls." The 
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correspondences are as follows: n balls are 
the number of tuples of R1 before the 
semijoin, m colors are the number of dis- 
tinct values of R1 projected on the B-attrib- 
ute before the semijoin, and the t selected 
balls correspond to the number of tuples of 
R1 after the semijoin. The expected number 
of colors of the t selected balls is 

g(m, n, t) 

= m . [ 1 - [ I ( n { ( m - 1 ) ~ - ) + - i + l ) ]  
,.1 n - - : -  1 " 

This solution is the same as the solution 
given by Yao [1977] in the block-access 
problem. It should be pointed out that, 
although t is a parameter given in the ball- 
color problem, the number of tuples of R1 
after the semijoin needs to be estimated. 
Some inaccuracy in the estimation can be 
expected. The formula, if evaluated in the 
present form, is computationally expensive 
and may cause overflow or underflow for 
large values of t. The following function 
given in Goodman et al. [1979] and Bern- 
stein et al. [1981] is an approximation to 
the formula described above: 

m if t>__ 2m, 

( t + m )  if 2 m -  t -  ( 2 )  
3 

t if ( 2 )  > t. 

A semijoin strategy can be viewed as a 

directed graph, where the vertices are the 

relations and a directed edge from Ri to Rj; 
that is, R, --. Rj denotes the semijoin from 

R, to Rj. The semijoins that are executed 

first are those involving nodes with in- 

degree -- 0. For example, in the semijoin 

strategy R, ---> R~ ~ Rk,  R, has in-degree -- 
0 and the semijoin R, --* R~ is executed first. 
After the execution of the semijoin, the 
reduced Rj, denoted by R~,, is produced. 
The strategy becomes R~, --* Rh. R~, has 
in-degree - 0, implying that the semijoin 
R~, --* Rh will be executed next. Clearly, 
directed cycles will not appear in a valid 
semijoin strategy; otherwise, the semijoin 
strategy does not terminate. 
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Now, suppose that  R1 and R2 are the same 
as above, and R3 is a single-attribute rela- 
tion with attribute B. After R1 is reduced 
by R2 and R3 using the semijoins R2 - -  
A --* R1 <---B - -  R3, the number of tuples of 
the resulting R1 can be estimated as 
P2a *P3b * ] R1 ], where Pzb is the selectivity 
of R3 under attribute B. Thus the size of R1 
can be estimated as p2a*p3b* [ R1 [ * w, 
where w is the average width of a tuple in 
R1. Moreover, the expected number of dis- 
tinct A values and the expected number of 
distinct B values in R1 can be estimated by 
using the block-access formula as described 
above. 

We are given three relations R1, R2, and 
R3, each having the attribute values A and 
B. In the following strategies, R1 - -  B --. 
R~ - -  A --* R3 and R2 - -  A --* R1 - -  B --~ 
R3, R3 is reduced by the same set of rela- 
tions on the same attributes. In the first 
case, the number of distinct A-values of R2 
after executing the semijoin R1 - -  B --, R2 
is estimated to be g(p2~[AI, JR21, 
[ R2 } plb). Thus the number of tuples of R3 
can be estimated to be [ R3 [ *g(p~] A [, 
I R2 [, [ R2 [ p~b)/[ A [. In the latter case, the 
number of tuples of R~ can be estimated to 
be JR3[ *g([B [Plb, [R~ [, JR1 Ip2~)/[B[. 
Since the two expressions are in general 
not equal, the reduced relations R3 are dif- 
ferent in size for the two strategies after 
the execution of the semijoins. Thus esti- 
mating the size of a relation in a semijoin 
strategy necessitates recognizing the h/s- 
tory of the operations. Such estimation al- 
gorithms are given by Bernstein et al. 
[1981], Luk and Black [1981], and Yu et al. 
[1983]. The above estimation techniques 
may be extended to apply to multiattribute 
semijoins. 

Consider the semijoin R~ ~ AB ---> R2, 
where both R~ and R2 contain attributes A 
and B and AB denotes the composite at- 
tribute A and B. Le t t ingp~  be the selectiv- 
ity of R, under AB, i = 1 or 2, define it as 
[ R,(A, B) [/([ A [ * I B [), where [ R,(A, B) [ 
is the number of tuples in the projection of 
R~ on AB. Then the number of tuples in the 
resulting R2 can be evaluated as p ~ [  R2 [, 
and the expected number of distinct values 
of R2 under A can be estimated via the ball- 
color problem with n = [ R2(A, B) I, t = the 

size of R2(A, B)  after the semijoin -~ 
p~[ R2(A, B) I, and m -- [ R2(A ) I. 

We have mentioned that if R, and Rj are 
at different sites, R, - -  A --* Rj can be 
computed by sending Ri(A)  from the site 
containing Ri to the site containing Rj. 
Other methods for computing the semijoin 
have been developed [Kambayashi 1981, 
1982; Krishnamurthy and Morgan 1984; 
Sacco 1984; Wah and Lien 1984; Yu et al. 
1982b]. For example, if [R,(A) I <: [A[ - 
[ R,(A ) [, it is cheaper to send the comple- 
ment, A - RI(A ). Another way is to send a 
bit vector indicating the presence or ab- 
sence of the attribute values. These data 
compression techniques help to reduce data 
transfer. 

3. THREE PHASES 

We shall concern ourselves with strategies 
of semijoins in Sections 3-7 of this paper. 
The queries under consideration are of the 
form {target component [ qualification 
component}, where the qualification com- 
ponent identifies the tuples of the relations 
satisfying the query and is of the form AND 
(R,.Ak = Rj .Al); that is, it is the conjunction 
of equality clauses where the R's stand for 
the relations and the A's for the attributes. 
The target component specifies the attri- 
butes of certain relations to be outputted 
to the user and is of the form (Rt.A, . . . .  , 
Rg.An) as in the following example: 
{(R1.A1, R3.Az) I (R1.A1 = R2.A1) AND 
(R1.A2 = R3.A2)}. For each tuple of R1, each 
tuple of R2, and each tuple of R3 satisfying 
(R1.A1 = R2.A1) AND (R1.A2 -- R3.A2), the 
tuple of R1 and the tuple of R3 are projected 
onto attributes A1 and A3, respectively, to 
be presented to the user. 

If a clause of the form (R~.Ah - constant) 
appears in the qualification of the query, 
this clause can be processed at the local site 
containing Ri and therefore can be elimi- 
nated. If the qualification of a query is a 
disjunction of equality clauses, then each 
clause can be treated as the qualification of 
a suhquery. After evaluating the sub- 
queries, the results are merged to provide 
the answer to the original query. We shall 
restrict ourselves to the type of queries 
mentioned above. 
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Query: {(R1.A1,R3.A3)I(R1.AI= R 2.A1)AND(R1.A2 = R3.A2) } 

site $3 

she S1 site S2 

Figure 3. Three relations distributed on three sites. 
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The processing of distributed queries can 
be separated into three phases: the copy 
identification phase, the reduction phase, 
and the assembly phase. In the copy identi- 
fication phase, one or more copies of every 
relation appearing in the qualification of 
the query are identified and will be used to 
process the query. Since a distributed 
database system may contain duplicate 
copies of some relations, the identification 
of appropriate copies of the relations in 
order to minimize the cost of transmission 
may not be an easy process. 

The following query will serve as an ex- 
ample: {(R1.A,, R3.A3) [ (R1.A1 = R2.A,) 
AND (RI.A2 - R3.A2)}, with the three re- 
lations R,, R2, and R3 distributed in the 
three sites $1, $2, and $3, as shown in 
Figure 3. One way of approaching the prob- 
lem would be to select the copy of R, from 
$2, the copy of R2 from S~, and the copy of 
R3 from $3, but this operation would likely 
incur high transmission cost, because two 
of the three relations have to be sent to the 
site containing the other relation. Another 
method would be to have the copies of the 
relations R2 and R3 in site $3 and the copy 
of the relation R1 in $2. In this case, since 
R2 and R3 do not have a common joining 
attribute, either R1 is sent to site $3 or R2 
and R3 are sent to $2. Still another ap- 
proach would be to have copies of R, and 
R2 at site S, and the copy of R3 at site $3. 
This last choice is the best of the three, 
because (1) R, and R2 projected on A, can 
be merged together without communication 
cost to produce a relation that  is not larger 
than the original relation R1, and (2) it is 

then sufficient either to transfer the 
merged relation from $1 to $3 or to transfer 
R3 from $3 to $1. 

Suppose that  a query references n rela- 
tions. If relation R, has Xi copies, 1 _ i _ 
n, then a straightforward enumerative al- 
gorithm to choose one copy for each rela- 
tion takes time O(l] , - lx,) .  This is expo- 
nential in time. It turns out [Yu et al. 
1982b] that  finding one copy among several 
possibilities of each relation referenced by 
a given query so that  the cost of answering 
the query is minimized is a NP-hard prob- 
lem (in the number of sites having at least 
one copy of a relatio~ referenced by the 
query). This situation holds true even when 
restricted to the simple queries (all relations 
have one and exactly the same attribute) in 
a fully connected network (i.e., each site can 
communicate directly with every other 
site). 

In the reduction phase, semijoins are usu- 
ally used to eliminate tuples of the relations 
that  do not satisfy the qualification of the 
query. For example, for the query cited 
earlier with the best choice of the copies of 
the relations, one could perform semijoin 
R2 - -  A1 ~ R1 to eliminate some tuples of 
R1 without incurring communication cost. 
If the result of the semijoin were to be RI,, 
other semijoins could then be performed 
R1, - -  A2 --> R3 to reduce R3, or semijoin 
R3 - -  A2 --> R1, to further reduce R~,. 

In the assembly phase, relations in the 
qualification component of the query are 
sent to one site to produce the output re- 
quired by the user. For example, in the 
above query, R1, (which is the result of 
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Query ffi {(R1.A1,R2.A2I[IR1.AIffi R2.A41 

AND (RI. A2 • R3. AS) AND(R1. AI= R4.AS}} 

R1.A1 R2.A4 R1.A1 
x x 

R2.A1 
x 

x R4.A5 x R4.A1 

Rt.A2 R3.A5 R1. A2 R3.A2 
X X X X 

(a) (b) 

Figure 4. Representing a query by its join-graph: (a) join-graph; (b) join- 
graph with attributes renamed. 

semijoin R2 - -  A1 --* R1) can be sent to $3 
to be merged with R3 to produce the output. 

We should like to point out that the 
separation of the query-processing strategy 
into the three phases may not yield the 
least transmission cost; rather, it tends to 
simplify the concepts involved. 

A reasonable strategy for choosing the 
copies of the relations is to find the mini- 
mum number of sites containing chosen 
copies of the relations. Unfortunately, that 
is also a NP-complete problem [Yu et al. 
1982b]. However, since the number of re- 
lations referenced by a query and the num- 
ber of sites containing those relations is 
usually small, finding the number of sites 
by enumeration does not require much 
time. The reduction phase and the assem- 
bly phase will be described in more detail 
in the subsequent sections. 

4. TREE QUERIES VERSUS CYCLIC 
QUERIES 

4.1 Characteristics 

Only certain types of queries can be solved 
using semijoins. More precisely, a relation 
appearing in the qualification of a query is 
said to be fully reduced if all tuples not 
satisfying the qualification of the query 

have been eliminated. It is clear that  if the 
joins of all the relations in the qualification 
are taken, and the resulting relation is then 
projected back onto the attributes of the 
original relations, then the projected rela- 
tions will then be fully reduced, because 
any tuple of each projected relation not 
satisfying the qualification would have 
been eliminated by the joins. If semijoins 
are used to reduce relations, less commu- 
nication cost may be incurred. However, 
depending on the type of query, the rela- 
tions appearing in the query may not be 
fully reduced. As a result, communication 
cost in assemblying the relations can still 
be high. A precise characterization of the 
type of queries whose referenced relations 
can be fully reduced by semijoins is there- 
fore desirable. The characterization is fa- 
cilitated by defining a join-graph and a 
query-graph [Bernstein and Chiu 1981]. 

The vertices of a join-graph are described 
as {Ri.AjIR, is a relation, A~ is an attribute, 
and R,.A~ appears in a clause of the quali- 
fication}. The edges of the graph represent 
the equality clauses. As shown in Figure 4a, 
each R,.A~ is a vertex, and an equality 
clause of the form (R,.A~ ffi Rh.A1) is rep- 
resented by an edge between R,.Aj and 
Rk.AI. Since equality is a transitive opera- 
tor, (R~.Aj = Rk.A1) AND (Rh.A1 = Re.Am) 
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R2.A1 R4 

Figure 5. An example of join-graph and query-graph. 

• 407 

imply (R,.Aj = Rt.A, ,) .  If two or more at- 
tributes of a relation are transitively re- 
lated, it is sufficient to retain one of them, 
since the other can be eliminated by local 
processing. 

We can thus rename all attributes that 
are transitively related to be the same at- 
tribute. In Figure 4b, A1, A4, and As in one 
component of the join-graph are all re- 
named to be A1, while A2 and A5 in another 
component are renamed to be A2. In other 
words, all vertices in a connected compo- 
nent refer to the same joining attribute, 
and the connected component can be 
uniquely identified by the attribute. If R,.Ah 
and Rj.Ah are in the same connected com- 
ponent identified by attribute Ak, then 
clearly R= - -  Ak ----> Rj and Rj - -  Ak --~ R, are 
possible semijoins. On the other hand, 
R,.Ah ---, Rj .At ,  for t ~ k, is not a possible 
semijoin because ( R ,  Ak -- Rj .At) is neither 
stated nor implied by the qualification. In 
this manner all possible semijoins of the 
qualification are of the form R, - -  Ak "-> Rj 

or Rj - -  Ak --* R, for some attribute Ah, after 
the renaming of the attributes. 

The vertices of the query-graph are the 
relations appearing in the qualification. An 
edge (R,  Rj) with label Ak exists in the 
query-graph if (Rz.Ak = R~.Ak) is a clause 
in the qualification. If (R,.At -- Rj .At) also 
appears in the join-graph, the label of the 
edge in the query-graph is {Ah, At}; that is, 
the label is to include all attribute names 
that participate in the clauses involving the 
relations R, and Rj. For example, Figure 5 
illustrates a join-graph and its correspond- 
ing query-graph. 

If a query-graph is a tree in the graph- 
theoretical sense, then it can be shown 
[Bernstein and Chiu 1981] that a sequence 
of semijoins can fully reduce all the rela- 
tions. The sequence suggested by Bernstein 

and Chiu [1981] is rather simple. A relation 
is chosen arbitrarily in the query-graph as 
the root of the tree, for example, R. Then 
the leaves of the tree are well defined. For 
example, in Figure 6 the leaves are R2, Rs, 
R6, and R4. The process of fully reducing 
all relations consists of two phases: (1) 
"leaves to root," which fully reduces the 
root relation, and (2) "root to leaves," which 
fully reduces the other relations after car- 
rying out Phase 1. 

The "leaves to root" phase consists of 
taking semijoins from each relation to its 
parent, starting from the leaves and ending 
at the root. Semijoins from relations to 
their common parent all should be taken 
before any operation of the parent with its 
immediate ancestor is taken. For example, 
in Figure 6, the semijoins R5 - -  A4 ~ R3 
and Re - -  A5 --* R~ are taken before the 
semijoin R3 ~ A2A3 ---* R1 is executed. The 
clause (Rs.A4 = Rs.A4) is satisfied intui- 
tively by R8 after the semijoin R5 - -  A4 --* 
R3 is taken. Similarly, the clause (R3.A5 = 

R6.As) is satisfied by R3 after the execution 
of the semijoin R6 - -  A5 --* R3. Thus R3 
satisfies the two clauses after application 
of the two semijoins. Similar arguments 
show that at the end of the first phase, the 
root relation R1 will satisfy the clauses 
{(R5.A4 -- R3.A4), (R3.A5 ffi R~.As), . . . ,  

( R 4 . A 4  = R1.A4)}; that  is, the relation R1 is 
fully reduced. 

In the second phase ("root to leaves"), 
the fully reduced root relation, let us say R, 
is used to reduce its immediate descend- 
ants. When the semijoin from R to an im- 
mediate descendant, for example, R,, is 
taken, R, is fully reduced. This can be dem- 
onstrated by constructing a tree with R, as 
the root. The "leaves to root" phase with R, 
as root will be executed after the comple- 
tion of the "leaves to root" phase with R as 
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Query- graph 

A1 

/ 
R2 

Jam- graph 

A2 A3 

I 
R3 

/ \  
A4 A5 

/ \ 
R5 R6 

A4 

\ 
R4 

Query-graph 

R1.A2 

R1. A1 

I 
R2.A1 

R3.A2 

R4!A2 

R4.A1 

R1 A 2 ~ R 3  

A1 A1 A2 
I ~ 1  

R2 R4 

(a) 

To fully reduce R1 

(RS--A4- -R3,  R6--AS-R3, 

R2- -AlmR1,  R3--A2A3"R1, 

R4--A4~R1 ) 

Figure 6. 

To fully reduce the other relotions 
after RI is fully reduced 

(R1--AI~R2,  R1EAP- A~v--R3, 

R1--A4,--R4, R 3 - - A 4 ~ R 5 ,  

R3--A5--R6 ) 

A sequence of semijoins fully reduces the relations. 

root plus the semijoin R --> R,. In Figure 
6, the sequence of semijoins (R5 - -  A 4  ---> 

R3, R6 - -  A~ --* R3, R2 - -  A1 --* R1, R3 - -  
A2Az --* R1, R4 - -  A4 -.--> R1) (the sequence 
is the "leaves to root" phase with R1 as 
root) followed by R1 - -  A4 ~ R4 contains 
the sequence of semijoins (R5 - -  A4 ---* Ra, 
R6 - -  A5 ---> R3, R2 - -  A1 --.> RI, R3 - -  A2A3 

--* R1, R1 - -  A4 --* R4) (the sequence is the 
"leaves to root" phase with R4 as root). 
Thus R4 will be fully reduced. The process 
of using the newly fully reduced relation to 
fully reduce its immediate descendants is 
continued until all the leaves are reached; 
at this point, all relations are fully reduced. 
This process is illustrated in Figure 6. 

This discussion should make clear that  if 
the query-graph of the qualification of a 
query is a tree, the relations can be fully 

reduced by semijoins. Even if the query- 
graph of a given qualification should be 
cyclic, an equivalent qualification exists 
that  uses a tree query-graph, as is demon- 
strated in Figure 7a. The qualification is 
equivalent to that  given in Figure 7b be- 
cause (R1.A~ = R3.A2) AND (R~.A2 = 

R4.A2) is equivalent to (RI.A2 = R3.A2) 
AND (Rz.A2 = R4.A2). The latter qualifi- 
cation has a tree query-graph and therefore 
is solvable by semijoins. 

The definition of a tree query is that  the 
query graph of its qualification or an equiv- 
alent qualification is a tree. A query is a 
cyclic query if none of the query-graphs of 
equivalent qualifications is a tree. As illus- 
trated earlier, if the query is a tree query, 
the relations of a tree query can be fully 
reduced by semijoins, but semijoins may be 
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R1.A2 R3.A2 

R4!A2 

R1.A1 - -  R4.A1 

I 
R2.A1 

(a) 

Query- graph 
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Equivalent Join-graph Equivalent Query-graph 

R1 A 2 - - R 3  RI.A2 ~ R3.A2 R 2 - - A 1 - - R I - - A 2 m R 3  

I I I 
All AlgAl2 R4.A2 A A21 
R2 R4 Rt.A1 R4.A1 R4 

I 
R2.A1 

(b) 

Figure 7. An example of equivalent query-graph. 

Qualification 

(Rt.A= R2.A) AND (R1.B=R3.B) 

AND (R2.C=R3.C) 

(a) 

Join- graph 

RI.A R2.A 

R1.B R3.B 

R2.C RS.C 

(b) 

Query-graph The relations R1, R2 and R3 

cannot be fully reduced by 

semi joins 

R1 A . .  R2 

B\R3/C 

(c) 

R! R3 R2 

A B B C C A  

(d) 

Figure 8. An illustration that the relations in a query having a cyclic query- 
graph cannot be fully reduced by semijoins. 

inadequate to fully reduce a cyclic query 
[Bernstein and Chiu 1981; Bernstein and 
Goodman 1981]. This is illustrated by the 
following example. The relations R1, R2, 
and R3 are referred to by the query as given 
in Figure 8d. If the semijoin R1 - -  A --* R2 
is used, then R2 remains unchanged because 
RI.A and R2.A are identical. Similarly, the 
semijoins R2 - -  C --) R3 and R~ - -  B -* R1 
have no effect on R3 and R1, respectively. 
However, the fully reduced R1, R~, and R3 
should be the null relations, because no 
tuple of R~, of R2, and of R3 simultaneously 
satisfies the qualification. 

4.2 Tree Query Recognition Algorithm 

Section 4.1 illustrates the importance of 
recognizing qualifications that  have either 
tree query-graphs or are equivalent to other 
qualifications having tree query-graphs. It 
turns out that there is a simple algorithm 
[Graham 1979; Yu and Ozsoyoglu 1979] for 
the recognition of such queries, as follows. 
The algorithm takes a query as input, and 
it has two key steps. Initially, for each 
relation Rt, the set of attributes of the 
relation appearing in the qualification, 
J(Rt), is constructed. As described earlier, 
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each attribute A of Rt in the qualification 
denotes a relationship between Rt and the 
set of relations containing A. 

In the first step, Ri is eliminated from 
consideration, if a pair of relations R, and 
R~ exists such that J(Ri) C J(Rj). Condi- 
tion J(R,)  C J(Rj) guarantees that an 
equivalent qualification can be constructed 
by substituting each clause of the form 
Rz.X ffi Rk.X, where k ~ j, with two clauses 
(Rz.X = Rj.X) AND (R~:X = Rk.X). (This 
substitution may produce some duplicated 
clauses.) After substitution, R, appears only 
in the clause R,.X = Rj.X. It is then clear 
that in the query-graph, R, is only adjacent 
to Rj, and therefore is not part of any cycle. 
Hence the elimination of R, will not change 
the type of the query-graph. In Figure 7, 
J(R3) ffi {A2} C J(R1). The edge between R3 
and R4 is replaced by that between R1 and 
R4 (and that between R1 and R3). As a 
result, R3 is not part of any cycle and can 
be eliminated without affecting the type of 
the query. 

In the second step, if any relation is 
eliminated in Step 1, it is checked to deter- 
mine whether it causes the elimination of 
an attribute. An attribute is to be elimi- 
nated if only one relation remains contain- 
ing that attribute. (One should here recall 
that if a set of relations contains the same 
attribute, they are related by the equality 
of that attribute; thus if there is no more 
than one relation having that  attribute, no 
such relationship exists.) For example, if 
R,.A = Rj.A is the only clause involving 
attribute A, and if R, is eliminated in Step 
1, then attribute A will be eliminated in 
this step. It is clear that the elimination of 
an attribute causes the updating of the 
relation R (more precisely, J(R)) having 
that attribute originally. The algorithm is 
simply an iteration of Steps 1 and 2. If all 
relations are eliminated at the end of the 
algorithm, the original query is then a tree 
query, because the algorithm does not affect 
the type of a query (tree or cyclic) and 
a null query is clearly a tree query. If 
some relations do exist at the end of the 
algorithm, then it can be shown that the 
original query is a cyclic query [Yu and 
Ozsoyoglu 1979]. Figure 9 illustrates the 

J(RI) ffi {A1, A2} 

J(R2) = {A1} 
J(R3) = [A2} 
J(R4) = [A1, A2} 

Since J(R2) C_ J(R1), eliminate R2. 
J(R3) C J(R1), eliminate R3. 
J(R4) C J(R1), eliminate R4. 

Since A1 occurs in R1 only, eliminate A1. 
As occurs in R~ only, eliminate A2. 
R1 does not have any attribute, eliminate R~. 

All relations are eliminated. Thus, this is a tree query. 

Figure 9. Demonstrating that the query in Figure 7a 
is a tree query. 

operation of the algorithm on the query 
given in Figure 7a. 

A further characterization of cyclic quer- 

ies should illustrate the concept more 

clearly [Goodman and Shmueli 1983]. 

There are two basic forms of cyclic queries 

as shown in Figure 10. 

It is clear that the two operations used 

to determine a tree query will not eliminate 

any attribute or relation from the above 
query-graphs, and therefore Aring and 

A clique are cyclic queries. 
All other cyclic queries can be reduced to 

either an A ring or an A clique by repeated 
applications of the two operations and by 
eliminating a common set of attributes 

from each of the relations. In essence, the 
absence of Aring and Aclique implies that 

the query is a tree query. Numerous other 
characterizations of cyclic and tree queries 
are given in Beeri et al. [1981, 1983], Fagin 
et al. [1980], and Goodman and Shmueli 

[1983] relating distributed query processing 
to dependency theory, database schema de- 
sign, and graph theory; these processes are 

not covered in this paper. 

4.3 Transforming a Cyclic Query 
into a Tree Query 

Since the tree query is fully reducible, al- 
gorithms capable of transforming a cyclic 

query to a tree query are desirable [Good- 
man and Shmueli 1982b; Kambayashi and 
Yoshikawa 1983; Kambayashi et al. 1982]. 
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l 
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~2(A1, A2 . . . . .  An-l) "R3(A2, . . . ,  An) 

A~A,... A.-s 

(b) 

R~(A~-l . . . . .  An-3) 

Figure 10. (a) A ring of n-relationships; (b) A clique of n-relationships. 

Basically, there are three different trans- 
formation algorithms: (1) a relation-merg- 
ing algorithm [Goodman and Shmueli 
1982a; Kambayashi and Yoshikawa 1983], 
(2) a tuplewise decomposition algorithm, 
and (3) an attribute addition algorithm 
[Kambayashi et al. 1982]. Some details of 
the algorithms are as follows: 

(1) The relation-merging algorithm sim- 
ply joins certain relations residing in a cycle 
to eliminate the cycle. For example, given 
a cyclic query as shown in Figure 11a, the 
algorithm can join any two relations in the 
cycle. This causes the cycle to disappear. 
Figure 11b shows the query-graph resulting 
by joining R2 and R3 together. 

(2) The tuple-wise decomposition algo- 
rithm is based on the tuple-substitution 
idea of Wong and Youssefi [1976]. The 
algorithm eliminates a cycle by decompos- 
ing a cyclic query into a number of tree 
subqueries. By first arbitrarily selecting a 
relation in a cycle, it constructs a tree 
subquery for each tuple of the relation by 
substituting the attribute values of the tu- 
pie. Using the query in Figure l la ,  if rela- 
tion R3 is selected, [ R31 subqueries will be 
generated, with each subquery correspond- 
ing to a tuple of R3. Each subquery has a 
query graph as shown in Figure l lc. The 
answer of the query is then the union of all 
the answers of the subqueries. 

(3) The attribute addition algorithm 
aims at fully reducing a relation in a cyclic 

query. In Kambayashi et al. [1982], certain 
attributes of some relations involved in 
cycles are added to other relations in such 
a way that a tree query results. Semijoins 
can be then used to fully reduce any given 
relation. The algorithm takes as input a 
cyclic query and a relation to be fully re- 
duced, for example, R. It then chooses a 
spanning tree from the query-graph of the 
query with R as the root. Given the same 
example in Figure 11a, suppose that R1 is 
to be fully reduced. Figure 11d-f gives the 
three possible spanning trees (the solid 
edges in each figure) with R1 as the root. 
Since the query is cyclic, at least one edge 
is not in the spanning tree. For each edge 
not in the spanning tree (the dotted edge 
in each figure), the label of the edge is added 
to those of the edges that form a cycle with 
the edge. For example, in Figure l ld ,  R3 m 
B m R1 is the edge not in the spanning tree. 
Its label B is added to the labels of the 
edges R1 - -  A - -  R2 and R2 - -  C - -  R3 to 
form the new edges R ,  - -  A B  - -  R2 and R2 
- -  B C  - -  R3.  (At this point, R2, which 
originally does not have attribute B, is as- 
sumed to have all distinct values of B so 
that semijoins on attribute B involving R2 
will not produce null relations.) After this 
process, Figure lld becomes a tree query. 

By the "leaves to root" algorithm given in 

Bernstein and Chiu [1981], Rz can be fully 

reduced if the semijoins R3 -- BC --. R2 and 

R2 -- AB ----> R, are executed. Notice that if 
attribute addition had not been used, the 
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B\/c 

R3 
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O={R~.Okm.A=R2.A~ 
AND (R2.C= R3.C) 

AND (RI.B = R3.B)} 

(a) 

R I m A B ~ R 2 5  

where R23 = R2 natural join R3 

(b) 

R1--AmR2 

I I 
B C 

I I 
b3i cSi 

where t3 = (b3i ,c3i)  

and t3 is o tuple of R3 

(c) 

R I ~  AB- -R2  

\ I 
g BC 
\ /  

R3 
semi - joins: 

R3--BC--~R2, 

R Z - - A B - -  R1 

(d) 

R1 --AC --R2 
\ / 
Bc, /c 

R3 semi-joins: 

R2--AC~R1, 

R3--BC-'R1 

(e) 

R1 - - A - - R 2  
\ / 
AB ~ C  

\ 
N$ semi-joins. 

R2--AC - -R3 ,  

R3--AB ~R1 

(f) 

Figure 11. Transforming cyclic query into tree query. 

R l m A D - - R 2  
\ / 
B D \  /CD 

R3 

Q = {R1.EI(R1.A= R2.A)R1 - - A D - - R 2  

AND (RI.D-R2.D) 

AND (R1.B-R3.B) 

AND (R1.D-R3.D) 

AND (R2.C.RS.C) 

AND (R2.D=R3.D)} 

D CD 

after R3--BD---~R1, 

D ~ Bin R3 

(a) 

D ::~ B inR I ,R3  
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Figure 12. 
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CD 

/ query of (c) 
R3 
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Functional dependency and query graph. 
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corresponding semijoin sequence would 
have been R 3  - -  C ~ R2, R2 - -  A "* R1, 

and R1 might not have been fully reduced. 
Kambayashi and Yashikawa [1983] have 

studied the effect of functional and multi- 
valued dependencies on query processing, 
and have identified a sufficient condition 
for a relation in a cyclic query to be fully 
reduced. Given a cyclic query as shown in 
Figure 12a, D ~ B can be considered a 
functional dependency identified in R3. By 
executing a semijoin R3 - -  B D  ----> R1, the 
resulting relation Rx will preserve the func- 
tional dependency D ~ B. Thus in the 
current database, the values of attribute B 
are uniquely determined if those of attrib- 
ute D are known. Consequently, attribute 
B can be deleted, and the query-graph is 
changed to Figure 12b. Since all three re- 
lations contain attribute D, the query- 
graph is further simplified to Figure 12c, 
which is a tree. A relation in a cyclic query 
can therefore be fully reduced by semijoins 
if, "for each cycle in the query-graph, 

(1) all relations in the cycle contain the 
attribute(s) X, 

(2) an edge in the cycle is labeled X Y ,  and 
(3) a relation on the edge has the func- 

tional dependency X ~ Y." 

5. OPTIMAL STRATEGY 
FOR SIMPLE OUERIES 

In the reduction phase, the query-process- 
ing algorithms described in the previous 
section are all heuristics and may not al- 
ways yield optimal strategies. In this sec- 
tion we present an optimal algorithm for 
simple queries (all relations appearing in 
the qualification of such a query have the 
same attribute, and each relation has a 
single attribute). The discussion will pro- 
ceed under the following assumptions. Let 
the common attribute be A. Let the rela- 
tions be {R1, R 2 , . . . ,  Rn} situated at differ- 
ent sites. Let R, be the result site where the 
answer is to be produced. 

As noted in Section 2, a strategy can be 
represented by a directed graph where the 
vertices are the relations and the edges 
represent the semijoins. It is clear that a 
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strategy should have all paths directed 
toward the result site R, and that the strat- 
egy should contain the n relations, some of 
which may appear more than once. The 
cost of a strategy is the sum of the data 
transmission cost of executing the semi- 
joins represented by the edges. Since it is 
impossible to find the precise cost of a 
strategy before its execution, the usual pro- 
cedure is to minimize the expected cost. As 
an example, if a strategy is R,1 - -  A ~ R,2 
. . . .  A " *  R~m, m ffi n, R i m  ffi R, and ifp,j 
is the selectivity of relation R~j on attribute 
A, then the expected transmission cost of 
the strategy is I A I[P~I + Pi~Pi2 + . . .  + 

P, lP,2 ". .  P,m-1]. An optimal strategy is one 
having the smallest expected cost among 
the directed graphs satisfying the condi- 
tions noted above. 

Some properties are satisfied by an op- 
timal strategy for a simple query. They are 
listed as follows: 

Property 5.0. All relations should appear 
on one directed path; that is, an optimal 
strategy for a simple query is a "string" 
of directed edges of the form Rn --* R,2 --* 
R , 3  --~ . . .  --4 R , t .  

In Hevner and Yao [1979], two cases are 
considered. In the first case, the result site 
is one of the sites containing R1, R2 . . . . .  

Rn. In the other case, the site does not 
contain any of the n relations. 

If the result site does not contain any of 
the n relations, then all of the relations in 
an optimal strategy Ril ~ Ri2 "-'> " "  • ~ R , t  

are distinct; that  is, no relation appears 
more than once. This conclusion is rather 
obvious, because if a relation occurs twice 
or more, then the second and subsequent 
occurrences of the relation can be removed 
from the strategy, yielding an equivalent 
but lower cost strategy. They are equivalent 
because the last relation in both strategies 
satisfies R~.A = R2.A . . . . .  Rn.A; the 
latter strategy has a lower cost because the 
second and subsequent occurrences of the 
relation, having appeared earlier, will not 
provide extra reduction to later relations. 

Property 5.1 [Hevner and Yao 1979]. 
All relations should appear in ascending 
order of size. 
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Thus, the optimal strategy is in fact 
R1 --* R2 -*  --.  --* Rn --* R,, where JR1 [ - 
]R2I  - " "  - ] R n l .  

One can verify the result by a straight- 
forward check to see that if Ril --* Ri2 . . .  

--.  R,j_I --* R,j --~ Ri# +1 --* Rij +2 --* • • • -'* R~t 
is a strategy with [ R,j [ > [ R,j +1 [, then 
the strategy R,1 --* R,2 ~ . . .  --* R,j_I --* 
R,j+I --, R,j --* R,j+2 --* . . .  --* R ,  yields a 
lower cost. 

If the result site R, contains a relation 
R,, then the optimal strategy [Hevner 
and Yao 1979] is either R1 --* R2 --* . . .  --* 
R,-1  --~ R, --* R,+I --* " .  --* R, or R1 --* 
R2 --* • • • --* R,-1 --* Ri+l --* • • • --* R, ,  where 
the former strategy passes through the re- 
sult site twice and the latter strategy passes 
through the result site once. The lower cost 
strategy between the two strategies is taken 
as the optimal one. Optimal strategies can 
thus be easily obtained for simple queries. 

6. OPTIMAL STRATEGY 
FOR TREE QUERIES 

In this section, we provide an outline of a 
method to obtain optimal strategies to fully 
reduce a relation for tree queries with the 
restriction that  any two relations have at 
most one single common joining attribute. 
The method will be illustrated by a special 
type of tree query in which there are m 
single attribute relations, each having the 
joining attribute A; these are labeled A1, 
A 2 , . . . ,  Am with [AI[ --- [A2[  -< . . .  -< 
[Am [. There are n single attribute rela- 
tions, each having the joining attribute 
B, which are labeled B1, B2, . . . ,  B ,  with 
[Bll -< [B2[ <- . . .  - [B, [ ,  and a two- 
attribute relation I having the joining at- 
tributes A and B. We are given a query 
referring to the above m A's, n B's, and the 
I relation. OPTS(m, n, I) is an optimal 
strategy to fully reduce some relation Y in 
the query, where Y should be the last rela- 
tion in the sequence, and OPTS(m, n, 
/, X) an optimal strategy to fully reduce a 
specific relation X in the query. 

Some properties of OPTS(m, n, I) are 
given as follows [Chen and Li 1983; Yu et 
al. 1979, 1982@ 

Proper ty  6.0. Relations having a com- 
mon attribute should all appear on one 

directed path. (This is the generalized ver- 
sion of Property 5.0 for arbitrary queries.) 

E x a m p l e  6.1 

(a) A2 ~ AI ~ I ~ B2 ~ B3 

B1 

does not violate Property 6.0. 

(b) A x - - ,  A 2 - - .  I - - .  B1--* B2--* B3--* I 

is a possible optimal strategy. 

(c) A1 --* A2--* I 

/ B 3 / ~ /  

B2 B1 

cannot be an optimal strategy, because B1 
and B2 are not on the same directed path. 
This violates Property 6.0. 

(d) A1 --* I --* B1 --* B2 ~ B3 ---> I ~ A2 
/ ,  

B1 

does not violate Property 6.0. 

(e) A1---~ I---* A2--*  I - -~  B~---~ B3 
/- 

B1 

is a possible optimal strategy. 

(f) A1---~ I---~ A2---~ I---~ B2---~ B3 

BI  

violates Property 6.0 because the first 
occurrence of I and B1 are in different 
paths. [] 

Proper t y  6.1. All A's and B 's  appear ex- 
actly once, while I may appear once or 
more. 

E x a m p l e  6.2. The strategy in Example 
6.1(d) violates Property 6.1 since BI ap- 
pears twice in the strategy. [] 

Proper ty  6.2. Single-attribute relations 
must appear in ascending order of their 
sizes in the path leading to the first fully 
reduced relation Y. 

E x a m p l e  6.3. The strategy in Example 
6.1(a) violates Property 6.2, because A1 and 
A2 a r e  in descending order of size; the strat- 
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egies in Example 6.1(b) and 6.1(e) satisfy 
Property 6.2. [] 

By Property 6.2, the first fully reduced 
relation in OPTS(m, n, I) is Am or Bn or I. 
Thus OPTS(m, n, I) has one of the follow- 
ing three forms: 

OPTS(m, n, I, Am), 

OPTS(m, n , / ,  B,),  

OPTS{m, n, L I). 

Consider OPTS(m, n, I, Am). The vertex 
immediately preceding Am cannot be a B- 
relation since if a B-relation is sent to A , ~ ,  

the sending is a waste because it cannot 
merge with Am directly. This vertex there- 
fore must be either I or Am-l, by Property 
6.2. 

Subcase 1. If the vertex is Am-l, the set 
of relations preceding Am then forms a sub- 
strategy involving the m - 1 A-relations 
{AI, A2, . . . ,  Am-~}, the n B-relations {B1, 
B2 . . . .  , B~}, and the/-relat ion.  This sub- 
strategy denoted by OPTS(m - 1, n, I, 
Am-i) is optimal among all substrategies 
ending at Am-~ and involving the same sub- 
set of relations. (Otherwise, a better sub- 
strategy followed by the data transfer of 
the reduced Am-1 to Am will produce a better 
strategy.) 

Subcase 2. If the vertex is I, then again 
we have an optimal substrategy involving 
the same subset of relations. This sub- 
strategy is denoted by OPTS(m - 1, n, 
/, I), since the last vertex in the substrategy 
is I. 

Both substrategies process the same set 
of relations, and the relation immediately 
following each of these substrategies is Am. 
The amount of data thus transmitted from 
each of those substrategies to Am is identi- 
cal and can be denoted by Z. OPTS(m, n, 
I, Am) is either Am preceded by OPTS(m - 
1, n , / ,  I) or Am preceded by OPTS(m - 1, 
n , / ,  Am-l). If C(strategy) is the cost of the 
strategy, then 

C(OPTS(m, n,I, Am)) 

= (Co + c~* Z) + minIC(OPTS(m- 1,n, LAm-~)), 

C(OPTS(m- 1, n,/,I))}. 
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Pictorially, OPTS(m, n, I, Am) can be rep- 
resented by 

A~. *-- min{OPTS(m - 1, n, I, I), 

OPTS(m - 1, n, I, Am-l)}, (6.1) 

where the cost functions are not explicitly 
written. Similarly, OPTS(m, n , / ,  B,)  is 

Bn ~- min{OPTS(m, n - 1, 11, I), 

OPTS(m, n - 1, I, B~-I)}. (6.2) 

If the first fully reduced relation I of 
OPTS(m, n , / ,  I) has in-degree 1, then the 
relation immediately preceding I can be 
either Am or B,.  The two subcases are, 
respectively, 

I ~-- Am~-- rain{ OPTS(m- 1, n,/, I), 

OPTS(m- I,n, LAm-,)}, (6.3) 

I .--Bn ..-min{OPTS(m,n- 1,LI), 

OPTS(m, n-  1,LB~-,)}. (6.4) 

If the first fully reduced relation I has in- 
degree 2, then by Property 6.0 the optimal 
strategy is 

rain{OPTS( m, O, O, An,), 

OPTS( m, O, IA, A., ) } 

I (6.5) ,-... 
min{OPTS(0,n,0,Bn), 

OPTS(O,n, IB, B~)} 

where IA and IB are the projections of I on 
the attributes A and B, respectively. 

OPTS(m, n, I) is the minimal cost strat- 
egy among the five strategies given by 
(6.1)-(6.5) (see Example 6.4 for the end 
cases). It is clear from the equations above 
that OPTS(m, n , / ,  Y), where Y = Am, B~, 
o r / ,  can be computed in constant time if 
OPTS(m - 1, n, I, I), OPTS(rn - 1, n, I, 
Am-i), OPTS(m, n - 1 , / ,  I), OPTS(m, n 
- 1,/,  Bn-1), OPTS(m, 0, 0, Am), OPTS(m, 
O, IA, Am), OPTS(0, n, IB, B,),  and 
OPTS(0, n, 0, B, )  are known. The following 
method is suggested to obtain the optimal 
strategy. 

In the two-dimensional figure in Figure 
13, the point (i, j )  denotes three optimal 
strategies involving {A1, . . . ,  A~, B1 . . . .  , 
Bj, I}, one ending in AI, one ending in Bj, 
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(O,n) 

B*S in 
ascending 
order of sizes 

(m-l,n) 
r x= i(m'n) 

x ~ x  (m,n-1) 

(0,2) x 

(0,1) x 

x x 

(1,0) (2,0) 
x ~  

(m,O) 

ASs in 

ascending order 
of sizes 

Figure 13. Illustration of how the optimal strategy is obtained. 

and one ending in I. From eqs. (6.1)-(6.5), 
the optimal strategies at  (m, n) can 
be obtained from those at (m - 1, n), (m, 
n - 1), (m, 0), and (0, n). If  we compute  
all optimal strategies at  (x~, x2), xl + 
x2 = t, and at the boundary  points  (i, 0), 
(0, j ) ,  1 < i < n, 1 < j < m (the optimal 
strategies at  the boundary  points  involv- 
ing essentially single-attribute relations 
are easily computable  [Hevner  and Yao 
1979]), then the strategies at  (yl ,  y2), yl + 
312 = t + 1 can easily be computed using 
(6.1)-(6.5). Start ing from t = 2, we pro- 
gress to t = m + n when the optimal strat- 
egy for the query is obtained. This  opera- 
tion can be shown to take O(mn) t ime [Yu 
et al. 1979]. 

Example 6.4. Given IAl l  -< IA21 --- 
IIAI,  IIBI <- [B t l ,  and m = 2, n = 1; see 
Figure 14. 

(1) For the points  on the A axis, the 
optimal strategies OPTS(k ,  0, 0, Ah), 
OPTS(k ,  0, IA, Ah), and OPTS(k ,  0 , / ,  I),  
where k = 1 or 2, are calculated as follows: 

OPTS(k ,  0, 0, Ah): 

A1, k - -  1, 

A1 "-* A2, k --- 2 

OPTS(k ,  0, IA, Ak): 

min{A, --* IA ---> A1, IA ---* A,}, k = 1, 

rain{A1 ---> A2 ---> IA ~ A2, 

A,  ---> IA ---> A2}, k = 2. 

OPTS(k ,  0 , / ,  I): 

A1--* L k =  1, 

A I " *  A2""> I, k = 2 .  

(2) For the points  on the B axis, the 
optimal strategies OPTS(0 ,  1, 0, B1), 
OPTS(0,  1, IB, B1), and OPTS(0,  1 , / ,  I )  
are calculated as follows: 

OPTS(0,  1, 0, B1): B1, 

OPTS(0,  1, IB, Bx): IB ---> B1, 

OPTS(0,  1 , / ,  I): 

min{IB ~ B1 -*  I, Bx ~ I}. 
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Figure 14. Example 6.4. 

A'S 

Then, all points (xl, x2) satisfying x, _> 1, 
x~ + xe = 2 are located. In our example, 
(1, 1) is the only point. The three optimal 
strategies to be considered are OPTS(l ,  1, 
/, A~), OPTS(l ,  1, /, I), and OPTS(l ,  1, 
L B~). 

By (6.1) and 6.2), 

OPTS(l, i , / ,  A,) 

is AI (-- OPTS(0, 1,/, I) 

and 

OPTS(l ,  1 , / ,  B~) 

is B1 ~-- OPTS(l ,  0 , / ,  I). 

By (6.3), and (6.4) and (6.5), OPTS(l ,  1, 
/, I) is the minimal cost strategy among the 
following three strategies: 

I ~ -  OPTS(l ,  1, / ,  A~), 

I *-- OPTS(I ,  1, / ,  B1), 

and 

rain{OPTS(I, 0, 0, A,), 
/ 

I OPTS(l ,  0, I, A1)}, 

~"min lOPTS(O,  1, O, B1), 

OPTS(0,1, / ,  B~)}. 

There is only one point (2, 1) satisfying 
x, _ 1, x~ + x2 = 3. The three optimal 
strategies at (2, 1) are calculated by {6.1)- 
{6.5). They are as follows: 

OPTS(2, 1, / ,  A2): 

A2 ~-- min{OPTS(1, 1 , / , / ) ,  

OPTS(l ,  1, L A,)}, 

OPTS(2, 1, L B2): 

B1 ~-- OPTS(2, 0 , / , / ) ,  
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and 

OPTS(2, 1, / ,  I): 

min{I ~-- OPTS(2, 1 , / ,  A2), 

I *-- OPTS(2, 1, L B,), 

min{OPTS(2, 0, 0, A2), 

¢ /  OPTS(2, 0, IA, As)} 
I 

~"min{OPTS(0, 1, 0, B,), 

OPTS(0, 1, IB, B,)}. 

If the minimum cost strategy to fully reduce 
some relation is sought, the answer is then 

min{OPT(2, 1,/,A2), OPT(2,1,/,B~), 

OPT(2, 1,/,I)}. [] 

The algorithm can be generalized to ob- 
tain optimal strategies to fully reduce a 
relation for tree queries (see Chiu and Ho 
[1980] and Yu et al. [1979]). However, the 
algorithm runs in exponential time. 

7. HEURISTICS ALGORITHMS 
BASED ON SEMIJOINS 

Two query-processing algorithms using 
semijoins are discussed in this section. 
They assume that  one copy of each relation 
referred to by the query has been selected 
and then the reduction and the assembly 
phases are carried out. The cost of a semi- 
join X - -  A --* Y is defined to be the cost 
of transferring X.A from the site contain- 
ing X to the site containing Y (if the two 
sites are identical, the cost is zero). The 
benefit of the semijoin is the size of Y before 
the operation minus the size of Y after the 
operation. A semijoin is profitable if its cost 
is less than its benefit. 

7.1 The SDD-1 Query-Processing Algorithm 
and Its Enhancements [Bernstein et al. 
1981; Goodman et al. 1979] 

The reduction phase is very simple; it iden- 
tifies all possible semijoins between any two 
relations. The cost and the benefit of each 
semijoin are estimated. A profitable semi- 
join having the smallest cost is then chosen. 
(In one of the two papers, the semijoin 
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having the highest {benefit - cost) is se- 
lected.) The costs and the benefits of those 
semijoins that can be affected by the exe- 
cution of the chosen semijoin are updated, 
and another semijoin is considered. The 
process is repeated until no profitable 
semijoin can be found. Some details are as 
follows. 

First, all local reductions using selections 
and projections are performed. Semijoins 
within the same site can also be executed 
to reduce the sizes of relations. Then all 
possible semijoins across sites are identi- 
fied. As pointed out earlier, after renaming 
attributes, all semijoins are of the form 
R, ~ Ak ~ Rj,  because semijoins of the 
form R,.Ak ----> Rj .At are neither stated nor 
implied by the qualification of the query. 
For each such semijoin across sites, the cost 
and the benefit are estimated to bepi] Ak ] w 
and I R~ [wj(1 - p,}, respectively, where p~ 
is the selectivity of R, on attribute A~, I Ah I 
is the cardinality of Ak, w is the average 
width of a value in Ak, wj is the average 
width of a tuple in relation Rj, and [RjI 
is the number of tuples of the relation. 
The semijoin is profitable if P,I Ak lw  < 
I Rj I wj (1 - p,). After identifying all prof- 
itable semijoins, the semijoin with least 
cost is selected to be the first semijoin to 
be executed, for example, Rr ~ A, ~ Rt. 
(The second version of SDD-1 selects the 
semijoin which maximizes {benefit - cost).) 
This semijoin is not executed until the en- 
tire sequence of semijoins and the assembly 
site are chosen. In spite of not executing 
this semijoin immediately, its effect on the 
relation Rt is estimated. Specifically, the 
benefits and the costs of semijoins from Rt 
to other relations have to be updated, due 
to expected reduction of Rt. After the up- 
date is performed, the next semijoin to be 
executed is chosen with the same criterion: 
that is, in the first version, the semijoin 
that  has the least cost and is still profitable; 
and in the second version, the semijoin that 
has the largest (benefit - cost) and is still 
profitable. This process is repeated until all 
possible profitable semijoins have been ex- 
hausted. 

The assembly phase consists of selecting, 
among all the sites, the site to which the 
transmission of all the relations referred to 
by the query incurs the minimum cost. The 
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site is chosen to be the one containing the 
largest amount of data after the reduction 
phase so that  the sum of the amount of 
data transferred from other sites will be 
minimum. After selecting the assembly site, 
it may be possible to discard some useless 
semijoins. If, for example, relation R resides 
in the assembly site and R is scheduled to 
be reduced by a semijoin, but is not used to 
reduce other relations after the scheduled 
execution of the semijoin, then since R need 
not be moved to another site during the 
assembly phase, the semijoin on R is useless 
and should therefore be discarded. 

The operations generated by the SDD-1 
algorithm can be improved in the following 
ways [Yu et al. 1983]. Certain relations that 
are involved in the execution of semijoins 
need not be sent to the assembly site for 
further processing, and therefore both com- 
munication cost and local processing cost 
are saved. Furthermore, semijoins involv- 
ing these relations can either be eliminated 
or replaced by other semijoins, yielding a 
smaller communication cost. Some details 
are provided below. 

When a semijoin, for example, R, - -  
X --. R~ is executed, not only is Rj reduced, 
but in some situations, the contents of R, 
are completely incorporated into the re- 
sulting Rj so that R, will not be needed for 
processing of the query. More precisely, let 
J(R,)  be the joining attributes of R,  If (i) 
X = J(R,)  (which implies J (R,)  _ J(Rj))  
and (ii) the target of the query either does 
not contain any attribute of R~ or is equiv- 
alent to one without any attribute of R,, Ri 
can be eliminated from further considera- 
tion after executing the semijoin. In Figure 
15a, Ak is the only joining attribute of R~ 
and the semijoin is R, w A k  ~ Rj. Thus if 
the semijoin executed is R, w Ah --* Rj, 
Condition (i) is satisfied. If the target of 
the query is that given in Figure 15b, which 
does not contain R,, or that  given in Figure 
15c, which can be transformed to one not 
containing R~, then R~ can be eliminated 
after executing the semijoin. Note that 
Condition (i) is precisely one of the two key 
steps in determining whether a given query 
is a tree query. When it is satisfied, the 
part of the query containing R~ is a tree 
{sub)query. In Figure 15a, R, ~ A k  - -  R~  is 
a tree subquery, which permits Rj to be 



Ri ~ A k - - R j - - A 1 - - R t  

\ I 
As An 

Rm 

(a) 
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Target ffi (Rt.Ar, Rm.Au, Ri. Ak) 

ffi (Rt.Ar, Rm.Au,Rj.Ak ) 

(c) 

Target • ( Ri. Ag, Rt. Ar, Am.Au ) 

(d) 

Figure 15. • Possibility of eliminating R, after executing the semijoin R, - -  
Ak --* R~: (a) query graph; (b) target; (c) another target; (d) another target. 

fully reduced by R, with respect to it. On 
the other hand, Condition (i) is not satis- 
fied by semijoins involving any two of the 
three relations {R~, Rt, Rm} in Figure 15a, 
for an obvious reason: The subquery in- 
volving the three relations is cyclic. Figure 
15d shows a target that cannot be trans- 
formed into an equivalent target without 
the relation R,. Thus considering the target 
given in Figure 15d, R, cannot be eliminated 
even if Condition (i) is satisfied. The sat- 
isfaction of both Conditions (i) and (ii) 
allows R, to be eliminated after the execu- 
tion of the semijoin. 

As pointed out in the last paragraph, 
SDD-1 does not recognize that certain re- 
lations involved in previously executed 
semijoins are not needed for further pro- 
cessing and can be eliminated, and that 
semijoins involving these relations can still 
be generated subsequently. It turns out [Yu 
et al. 1983] that any semijoin involving any 
such disposable relation can always be re- 
placed by another semijoin such that the 
cost of the new strategy is not higher than 
that of the original strategy. The replace- 
ment procedure begins by letting the 
semijoin be replaced by R, - -  A --* Rj, where 
R~ or Rj or both relations can be eliminated. 
R, will be replaced by Rr, where, if R, cannot 
be eliminated, Rr is Ri; otherwise, there 
exists a sequence of semijoins such that R, 
--* R~I causes R, to be eliminated, R~j --, 
R,j +1 causes R,j to be eliminated, 1 ___ j ___ t, 
R~t+l is  not eliminated, and Rr is R~t+l. If 
the relation replacing R, is denoted by 
Repl(R,), the same replacement procedure 

applies to R~. In the example of Figure 16, 

no relation is eliminated initially; thus 

Repl(R,) = R,, 1 _ i _< 4. After the first 

semijoin RI -- C --* R2, RI is eliminated and 
therefore Repl(Rl) ffi R2, as shown in Figure 

16b. If the next semijoin is SI:R1 -- C --* 

R4, then the replacement semijoin is $2: 
R2 -- C --* R4. Since RI was used to reduce 
R2, it is clear that RI(C) in semijoin SI con- 
tains R2(C) in semijoin $2, and therefore 

cost(S2) _< cost(St). Furthermore, R4, 

which is reduced by semijoin SI, contains 
R4, which is reduced by semijoin $2. Any 
semijoin thus originating from the latter R4 

has a smaller cost than the corresponding 
semijoin originating from the former R4, 

and if no further semijoin is executed on 

R4, the cost to send the latter relation to 
the assembly site is smaller than that to 

send the former relation to the same des- 

tination. 

Instead of having the next semijoin be 

$1, the next semijoin is $ 3 : R 4  - -  C ---> R1. 
It is then replaced by $4:R4 - -  C --, R2. 
Since R1 is not needed for processing the 
query, the semijoin $3 is not a useful oper- 
ation. And since RI(C) after executing $3 
contains R2(C) after executing $4, any 
semijoin originating from RI(C) will be 
more costly than the corresponding one 
from R2(C). Thus in both cases, replacing 
R1 by R2 yields a better strategy. 

Figure 16c-e shows that after executing 
some other semijoins other relations are 
eliminated, and defines the relations that 
should be replaced by other particular re- 
lations at each stage. 
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Q = {R2.D [ (Rl.C = R2.C) and (R4.C = Rx.C) and (R2.D = Ra.D)} 

Initially, no relation is 
eliminated. 

(a) 

After execution of the semljoin 
R, - -  C--* R2, 

R1 is eliminated. 
Repl(R1) = R2; 
Repl(R2) = R2; 
Repl(Rz) = R3; 
Repl(R4) = R4. 

(b) 

After 

R2 -- C--* R4, 

there is no change, that is, 

Repl(Rd = R2; 

Repl(R2) = R2; 
Repl(R3) = R3; 
RepI(R4) = R4. 

(c) 

After R4 --  C --* R~, 
R4 is eliminated. 
RepI(R1) = R2; 
Repl(R2) --- R2; 
RepI(R3) - R3; 
Repl(R4) --- R2. 

(d) 

Figure 16. 

After R2 --  D -* R3, 
R2 is eliminated. 
Repl(Rx) = R3; 

Repl(R2) = Ra; 
Repl(R3) = R3; 
Repl(R4) = R3. 

(e) 

Replacing an eliminated relation by another relation. 

7.2 The General Algorithm 
in Apers et al. [1983] 

Apers et al. [1983] p resen t  an a lgor i thm 
tha t  is a general izat ion of  the  opt imal  al- 
gor i thm given in Sect ion 5 to process s im- 
ple queries. The  s t ra tegy cons t ruc ted  by the  
a lgor i thm is a union of  n substrategies,  one 
for each relation, where n is the  num ber  of  
relat ions referenced by the  query. Consider  
a relat ion R of  the  query. Let  A be a joining 
a t t r ibute  of  R. An opt imal  me thod  is sought  
to reduce and  send R to the  result  site using 
semijoins on a t t r ibu te  A only. Given tha t  
R,1, Rt2 . . . .  , R,t,  t <_ n, be the relat ions of  
the query having joining a t t r ibute  A such 
t h a t  the i r  project ions on A are a r ranged  in 
ascending order  of  size, tha t  is, [ R , I ( A  ) [ <- 

[R,2(A) [ _ < . . . _  [ R , ( A ) ] ,  and supposing 
t ha t  R is R,k for some 1 --< k _ t, then,  by  
the result  given in Sect ion 5, s ingle-at tr i -  
bute  relat ions in op t imal  s trategies to send 
R,k to the result  site should be in ascending 
order of  size. T h u s  the  c a n d i d a t e  schedu les  

o n  a t t r i b u t e  A to send the  ent i re  relat ion 
R,h to the  result  site are 

(A) R , I ( A )  - -  A --* R,k 

R,I (A)  - -  A --* R,2(A) - -  A 

---> R/h --~ 

R~I(A) - -  A --* R,2(A) - -  A --* . . .  

---> R , k - I ( A  ) - -  A ---> R,h 

and 

(B) R, ~ (A  ) - -  A --* R , 2 (A  ) - -  A - - . . . .  

R , k - I ( A  ) - -  A --* R , k ( A  ) - -  

A --~ R,h+I(A) - -  A "-* R,k 

R, I (A)  - -  A ~ R,2(A) - -  A --~ . . .  

R , k - I ( A  ) - -  A --* R , h (A  ) - -  A --* 

• " "*  R , t ( A )  - -  A ---> R,h ---> 

where the  last  da ta  t r ans fe r  in each candi- 
date  schedule "R,h --->" sends the  ent i re  re- 
lat ion R,k to the result  site. In  each s t ra tegy 
in (A), R,k Occurs once, while in each s t ra t -  
egy in (B), bo th  R , k ( A  ) and  R,h occur once. 
In  the  la t ter  si tuation,  there  are two possi- 
ble cases for each schedule, one having 
R , k ( A )  as given in the  figure and  the other  
leaving out  R , k ( A ) .  T h e  m i n i m u m  cost  
schedule among  all these  schedules is cho- 
sen and  is denoted as the  bes t  s t ra t egy  to 

reduce  R,k on  a t t r i bu t e  A .  This  procedure  is 
repeated  for each joining a t t r ibute  of  each 
relat ion R. Let  B S T i ,  BST2 . . . . .  BSTp be 
the  set  of  all the  bes t  s trategies to reduce R 
on the  joining a t t r ibu tes  of  relat ion R, 
where p is the  n u m b e r  of  a t t r ibu tes  of  re- 
lat ion R appear ing  in the  qualif ication 
of the  query. Assume cost(BST1) < 
cost(BST2) < . . .  _< cost (BSTp),  where 
cos t (BST,)  is the  cost  of  the  best  s t ra tegy 
BST,  to reduce R on a cer ta in  a t t r ibute  of  
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R and send the resulting R to some other 
site. BST1, BST2 . . . .  , BSTq are combined 
to form a strategy to reduce R, 1 _ q _< p. 
As q varies from 1 to p, p combined strate- 
gies are formed. The combined strategy 
having the smallest cost is the least cost 

strategy to reduce R. A similar strategy for 
each relation is produced at the reduction 
phase. 

In the assembly phase, the reduced rela- 
tions are then sent to the result site to 
produce the answer as in the following ex- 
ample. 

Example  7.1. Suppose that  R1, R2, Ra, 
and R4 are four relations, each residing 
in a different site. Let Q = {(R3.X, 
R4. Y)  [ (R1.A = R2.A) AND (R2.A = R4.A ) 

AND (R3.B = R1.B)}. 

Figure 17a describes the size of the do- 
main of each joining attribute, the size of 
each relation, and the selectivity of each 
relation on each joining attribute. 

Figure 17b presents the candidate sched- 
ules for attributes A and B. Assume that 
Co = 0 and c~ = 1. The best strategies for 
relation R1 on attributes A and B are then 
obtained. They are BST1 : R3 - -  B --* R1 --~ 
and BST2:R4 - -  A --* R1 --% where 
cost(BST1) = 400 and cost(BST2) = 440. 
The combined strategies to reduce R~ are 

and 

R3 - -  B --* R1 --* 

R3 - -  B --* R1 --* 

I 
A 

I 
R4 

The least cost strategy to reduce Ra is then 
selected from the above two combined 
strategies, and the least cost strategies of 
R2, R~, and R4 are selected by a similar 
process. Figure 17d shows the least cost 
strategies for all four different relations. 

Figure 17e gives the final strategy to an- 
swer the query. [] 

7.3 Better Sernijoin Sequence 

Each of the two algorithms above con- 
structs a semijoin strategy to answer a 
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given query. However, each of the con- 
structed semijoin strategies can sometimes 
be improved. In Luk and Luk [1980], a 
polynomial time algorithm is presented to 
transform a given semijoin strategy (pro- 
duced by some heuristic) into an equivalent 
strategy such that  each semijoin in the 
former strategy corresponds to a semijoin 
in the latter strategy and incurs neither 
higher cost nor lower benefit. (The en- 
hancements in SDD-1 given in Section 7.1 
are applicable when one or more relations 
are eliminated. Here, the procedure is ap- 
plicable even if no relation is eliminated.) 

For example, the node R1 in substrategy 
R2 ~ A B  --, R1 ~-- B - -  R3 has in-degree 
>1, and the label in one semijoin is a subset 
of the label in the other. Satisfying the 
conditions above guarantees that  a better 
strategy can be obtained. R3 - -  B --. R2 - -  
A B  --. R~ is an example of such a strategy, 
because although the semijoin R3 - -  B --* 
X (X is R1 in the former strategy and is R2 
in the latter strategy) is executed with the 
same cost in both strategies, the semijoin 
R2 - -  A B  --, RI is executed with a smaller 
cost in the latter strategy. This process can 
be applied to R3, if it should satisfy the 
above conditions. The algorithm by Luk 
and Luk [1980] scans a given strategy and 
identifies the situations in which a node 
has either in-degree :>1 or out-degree >1, 
and checks whether the label in one semi- 
join involving the node is a subset of that  
in another semijoin involving the same 
node. When such a situation is detected, 
the algorithm replaces the substrategy by a 
better one. This process is applied to the 
preceding nodes recursively until no such 
situation exists. 

8. ALGORITHMS BASED ON JOINS 

Although the use of semijoins reduces the 
amount of data transfer and is a valuable 
tool, it is not always superior to the use of 
joins only. One reason is that  for certain 
networks, the number of messages ex- 
changed rather than the amount of data 
transferred may be the dominating factor. 
Additional messages may be generated 
when semijoins are employed. Another rea- 
son is that  local processing costs can be 
significant, and since SDD-1 and related 
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Selectivity 

Size A B 

RI 1200 0.2 0.5 

R2 6OO 0.6 

Rs 1200 0.25 
R,  2000 0.2 

Cardinality o f A  = 1000. 

Cardinality of  B -- 400. 
C o l  0, c] = 1. 

Each dist inct  value in A and each dist inct  value in B have uni t  length. 

Q ffi {(R3.X, R4.Y) J (R~A = R2.A) AND (R2.A ---- R4.A) AND (R1.B = R3.B)} 

(a) 

A: 

cost  
200 

200 + 40 

200 + 40 

+ 24 

R !  - - A  

R, -- A--~ R4-- A-*  

R, - -  A---~ R 4 - -  A- -~  R2 - -  A - -*  

(b) 

B :  

cost  

100 R 3 - -  B---* 

100 + 50 R3 - -  B --> R1 - -  B --,  

R 1 • 

cost  
200 + 240 

R2: 
200 + 40 

+ 24 

R3: 

R4: 
200 + 40 

+ 24 + 240 

A 

R4 - -  A --> R, 

B 

cost  
100 + 300 R3 - -  B --,  RI --* 

R, -- A -* R4-- A--~ R2--~ 

100 + 50 
+ 600 

Rt - -  A -* R4-- A-*  R2-- A--~ R4"-* 

(c) 

R s - -  B ' ~  R, - -  B"-> R 3 " "  

RI: R 3 - -  B- -*  RI--*  

R4 - -  A 

R2: R 1 - -  A "--~ R4 - -  A "* R2"> 

R3: R3 - -  B " *  R 1 - -  B " >  Rs-'> 

R4: RI - -  A "~ R4 - -  A " >  R2 - -  A "* R 4 " "  

(d) 

Rs - -  B --* R1 

R4 -- A / ~  

R, - -  A --* R4 - -  A --* R2 -'* R E S U L T  SITE 

' l R3 - -  B --* R, - -  B --* Rs 
RI - -  A --* R, - - A  --', R 2 - -  A --*R4 

(e) 

Figure 17. An example il lustrating the  general algori thm in Apers et  al. [1983]. (a) Size of domain of  each 
joining at tr ibute,  size of  each relation, and  selectivity of  each relation on  each joining attr ibute;  (b) candidate 
schedules for each joining attribute; (c) bes t  strategies for reducing each relation on each of  its attributes;  (d) 
least cost  strategies of  different  relations; (e) s trategy for answering the  query. 



algorithms ignore these costs, the actual 
processing cost of strategies based on these 
algorithms can be high. Last, although 
semijoins can be executed in parallel, the 
minimization of response time using semi- 
joins is complicated [Apers et al. 1983]. 
Several algorithms using joins are studied 
below. 

8.1 Enumerative Algorithms 

8.1.1 Algorithm in Epstein 
and Stonebraker [1980] 

The algorithm first partitions the set of 
relations in the query into two complemen- 
tary groups, GI and G2, where G~ has at 
least two relations and G~ has zero or more 
relations. Substrategy for the relations in 
G~ is next obtained by designating the site 
containing the largest relation as the result 
site and sending all other relations in G~ to 
it. It seeks the minimal cost substrategy by 
a recursive call for the relations in G2 t9 
{R}, where R is the resulting relation ob- 
tained from the those relations in G1. All 
possible combinations of G1 and G2 are con- 
sidered to obtain the minimal strategy. 

Should relations R1, R2, and R3 reside in 
different sites and a query asks for the join 
of these three relations, the algorithm will 
first partitions R1, R2, and R3 into {{R1, R2}, 
{R3}}. Then the minimal cost substrategy 
for {R~, R2} is constructed by sending the 
smaller of the two relations R1 and R2 to 
the other. The relation obtained by joining 
R1 with R~, for example, TI, is added to the 
second group and the minimal cost sub- 
strategy for {T~, Rs} is sought. A strategy 
for the joins of R1, Re, and R3 is then 
obtained. The same process is repeated 
for {{R;, R3}, {Re}}, {{Re, R3}, {R1}}, and 
{{R;, Re, R3}, { }}. At the end, the optimal 
strategy for the query is obtained. 

In general, when the natural join of n 
relations is sought, the exhaustive enumer- 
ative search algorithm will scan through 
e (n )  strategies, where 

e(1) = 1, 

e(2) -- 1, 
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where (,') stands for the number of different 
combinations for the first group having i 
relations, and e ( n  - i + 1) stands for the 
number of substrategies that the recursive 
call will scan through if the first group has 
i relations. 

By leaving out the lower order terms (i.e., 
i _ 3) in the above expression, e (n )  > 

(~) e (n  - 1). e(4) = 29; e(5) _> 10 • 29 - 290; 
e(6) _ 15 x 290 = 435. Thus e (n )  grows 
very rapidly, although some of the strate- 
gies are degenerate (i.e., certain subsets of 
relations may not be joined, but strategies 
involving these subsets of relations are 
enumerated). 

8.1.2 R* [Williams et al. 1981] 

As in Epstein and Stonebraker [1980], R* 
enumerates many strategies and chooses 
the one with the least cost. However, many 
more alternatives are considered in R*. If a 
relation is replicated, the choice of the ap- 
propriate copies of the relation to be used 
for processing the query has a significant 
effect on the cost; the sequence in which 
the operations are performed is also impor- 
tant. For example, the cost of the strategy 
((R1 joined with R2) joined with R3) differs 
from that of the strategy (RI joined with 
(R2 joined with R3)). Even the join between 
two different relations R1 and R2, situated 
at distinct sites $1 and $2, respectively, can 
be performed in several ways, resulting in 
different costs, for example: 

(i) Send R1 to site $2 and join with R2 
there. 

(ii) Send R2 to site $1 and join with R1 
there. 

(iii) Send both relations R~ and R2 to a 
different site $3 and join them there. 

(iv) For each tuple of  R1 transmitted to $2, 
send the matching tuples of R2 to S1. 

(v) The same as {iv), with the roles of R1 
and R2 reversed. 

Many strategies are thus evaluated by 
R*, which takes into consideration both 
local processing cost and data communica- 
tion cost. Although enumerating all these 
strategies for a query can be costly, this 
approach can be worthwhile if the query is 
frequently executed. Such an approach is 
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also taken in centralized databases [Grif- 
fiths Selinger et al. 1979]. 

8.2 Nonenumerative Algorithms 

8.2.1 Algorithm in Baldissera et al. [1979] 

The algorithm in Baldissera et al. [1979] 
accepts only tree queries. It decomposes a 
query into chain queries and solves them 
to obtain the answer. A chain query is a 
query whose query-graph or equivalent 
query-graph is a chain. A nonchain query 
is a query for which none of its equivalent 
query graphs is a chain. 

Suppose that  a chain query with a node 
designated as root is given. The algorithm 
finds the assembly site, which is the site 
with the maximum number of data refer- 
enced by the query. Then the algorithm 
repeats the following process until the an- 
swer to the chain query is obtained. Start- 
ing from a leaf, the algorithm checks 
whether joining the leaf with its parent first 
and then sending the result to the assembly 
site incurs less cost than sending the two 
relations directly to the assembly site and 
performing the join there. If the former 
strategy is less costly, then the leaf node 
and its parent are merged to form a tem- 
porary relation, and the query graph is 
modified by replacing the part of the graph 
connecting the two relations by the newly 
created relation. Otherwise, the leaf node 
is sent to the assembly site and is elimi- 
nated from the query graph. This process 
is repeated over the modified query graph. 
When two relations are joined, the algo- 
rithm sends the smaller relation to the site 
containing the larger relation and merges 
them. 

Figure 18c gives an example of a chain 
query. A decision has to be made whether 
to merge the leaf R5 and its parent R34 to 
form a new relation R345 or to send R~ and 
R34 directly to the root. The choice with the 
lower transmission cost is selected. 

If the query graph is a tree but not a 
chain, and R is the root, adjacent to k nodes, 
the following two cases arise: 

Case 1. k > 1. The tree is decomposed 
into k subtrees, with each subtree contain- 
ing R as the root. R is the only node in 

common between the subtrees. For exam- 
ple, the subtrees of Figure 18a are given in 
Figure 18d. The subtree with the smallest 
number of nodes is first selected for pro- 
cessing. If the subtree is a chain, the pre- 
vious procedure is applied to the subquery 
corresponding to the subtree, and the root 
is modified and incorporated into the orig- 
inal tree. For example, processing the chain 
in Figure 18d and incorporating the modi- 
fied root into the original tree yields the 
modified query-graph in Figure 18b. If the 
selected subtree is not a chain, then the 
present procedure is applied recursively to 
the subtree. 

Case 2. k = 1. Let the direct descendant 
of R be r. If r has two or more direct 
descendants, then the subtree with root r 
is identical to Case 1 and the same proce- 
dure is applied to it; otherwise, process in 
Case 2 is applied. 

Example 8.1. Given a tree query with 
root R1 as shown in Figure 18a, since R1 is 
adjacent to two nodes, the tree is decom- 
posed into two subtrees, as shown in Figure 
18d. Let the corresponding subqueries be 
Q, and Q2. Since Q1 is a chain query, it is 
processed as described above. Relations R1 
and R2 are merged to form the modified 
root R12, which is incorporated into the 
original tree to form the modified query 
graph as shown in Figure 18b. This modi- 
fied query graph has one subtree only, and 
thus it belongs to Case 2. The direct des- 
cendant of R~2, R4, has two direct descend- 
ants. Thus the subtree with root R4 is de- 
composed into two subtrees, namely R4 
C - -  R3 and R4 - -  D - -  Rs. Suppose that 
the former subtree is selected for process- 
ing. R3 and R4 are  merged to form R34, and 
the modified query-graph is that shown in 
Figure 18c. Since this is a chain query, the 
procedure for processing chain queries is 
invoked. [] 

8.2.2 The INGRES Algorithm [Epstein et al. 
1978] 

A given query is decomposed into a se- 
quence of subqueries Q1, Q2 . . . .  , Qp with 
at most one variable in common between 
two consecutive subqueries, as in Wong and 
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R1 

/ \  
A B 

/ 
R2 C' 

I 
R3 

\ 
R4 

\ 
D 
\ 
R5 

(a) 
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Q={R1 .EI(RI.A=R2.A ) 

AND (RI.B= R4.B) 

AND(R4.C=R3.C) 

AND(R4 D=RS.D)} 

425 

R12 
I 
B 

i 
c D 

I I 
R3 R5 

R12 = R1 jom R2 

R12 
I 
B 

I 
R34 

I 
D 

I 
R5 

(b) (c) 

R54= R5 join R4 

R1 
i 
A 

I 
R2 

QI={(RI.E,R1.B) I R1 Q2={ R1.EI(RI.B=R4.B ) 
(R1.A=R2.A)} B ANDIR4.C-R3.C ) 

I AND (R4.D=R5.D,} 

/ R 4 \  

C D 
I \ 

R3 R5 

(d) 

Figure 18. Query processing in Baldissera et al. [1979]. 

Youssefi [1976]. Each subquery is irredu- 
cible. A query is irreducible if and only if 
its query-graph is a chain with two nodes 
or a cycle with k nodes and all its equivalent 
query-graphs have a cycle with the same k 
nodes, where k _> 3. For example, given a 
query as shown in Figure 19a, the algorithm 
decomposes the query into two irreducible 
subqueries Q1 followed by Q2, as shown in 
Figure 19b. Q1 is processed and the result 
is incorporated into the query graph of Q2, 
which is then processed. 

Distributed INGRES [Epstein et al. 
1978] considers both data communication 

and local processing costs and allows rela- 
tions to be fragmented in various sites (see 
Section 9). For ease of presentation, it is 
assumed that  relations are not fragmented, 
and only the data communication cost is 
considered. If a subquery is a chain with 
two nodes, say Rx and Ry, then either Rx is 
sent to the site containing Ry, or Ry is sent 
to the site containing Rx, depending on 
which strategy incurs less cost. If the 
subquery is a cyclic query, then a decision 
has to be made whether to process the 
entire subquery at once or subdivide it into 
pieces. The subquery is subdivided if it 
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R1-D-R4  

/ \  
c\ 

R2 B ~ R 3  

(a) 

Q- {R4.EI(R1.A=R2.A) 
A,O 

AND (R2.B-R3.B) 
A,O 

01={Rl.01(R1 A--R2.A) 

ANO (R2.e.R3.e) 
AND (R1.C = R3.C)} 

/ /" ' \ \  
R2 B R3 

Q2- {R4 .E  J(R123.D : R 4 . D ) }  

(b) 

R4 
I 
D 

I 
R123 

where R123 is the result of 
processing Q1 

IR'i-'l 21-'iR31 
Rh~R 3 R1 • R2 ' R3 

R1 ~ R3 ' R2 
R2 f R2 ' R3 • R1 

process ot once subdivide to o sequence 
of operotions 

(c) (d) 

Figure 19. Query processing in Epstein et al. [1978]. 

results in a lower cost. As an example, given 
three relations R1, R2, and R3 with I R11 -< 
i R2i - iR30, wl = w2 = w3, and each 
relation residing in a different site, I R, i is 
the number of tuples of R, and w, is the 
average tuple width of R~. Figure 19c illus- 
trates the strategy for processing the 
subquery Q1 at once with minimum cost, 
while Figure 19d shows all possible strate- 
gies for subdividing Q~ into pieces. The 
strategy in Figure 19c means that R~ and 
R2 are sent to the site containing R3, and 
the answer to Q~ is produced there. The 
first strategy, in Figure 19d, for instance, is 
interpreted as follows: (i) R1 is sent to the 
site containing R2 to perform the join of R~ 
with R2; (ii) the resulting relation, let us 
say R~2, is sent to the site containing R3 to 

perform the join with R3. The cost of the 
minimal strategy in Figure 19d is compared 
with that of the strategy in Figure 19c. If 
the former strategy has less cost, Q1 is then 
subdivided into the pieces as given by the 
minimal strategy; otherwise, Q1 is pro- 
cessed at once. 

It is important to point out that both the 
query processing algorithms in distributed 
INGRES and R* take into consideration 
the local processing cost as well as the data 
transmission cost. Distributed INGRES 
also provides a different algorithm to op- 
timize the response time of a query in a 
broadcasting system. 

Wong [1981] suggested decomposing a 
given query into a sequence of subqueries 
that  contain at most one join and possibly 
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some projections and selections. His 
method emphasizes maximizing parallelism 
by making use of redundancy of data. 

9. FRAGMENT PROCESSING 

A relation can be viewed as a matrix where 
the rows stand for tuples and the columns 
stand for attributes. A horizontal fragment 
of a relation is a subset of the rows of the 
matrix. It is obtained by applying a select 
operation on the relation. Sometimes a hor- 
izontal fragment is accessed frequently in 
one site, while another horizontal fragment 
is referenced frequently in another site. 
Thus it may be beneficial to assign frag- 
ments to sites according to their reference 
locality. A vertical fragment of a relation is 
a subset of the columns of the relation and 
is constructed by using the projection op- 
eration on the relation. In this section, we 
restrict our discussion to horizontal frag- 
ments. 

In Goodman et al. [1979], a query that 
refers to fragmented relations is first de- 
composed into subqueries. The SDD-1 al- 
gorithm described in Section 7 is then used 
to obtain an answer for each subquery. The 
union of the answers of all the subqueries 
is the answer to the query. 

The following procedure is used to de- 
compose the query into subqueries: For a 
given query, (1) find all the fragmented 
relations referenced by the query, say F, G, 
. . . .  and H; (2) for each combination of 
fragments F,, G I . . . . .  and Hk, where F~, Gj, 
. . . .  and Hk are the fragments of F, G, . . . ,  
and H, respectively, construct a subquery 
by replacing F, G , . . . ,  and H in the query 
by F,, Gj . . . . .  and Hk, respectively. Thus 
the number of subqueries is equal to the 
product of the numbers of fragments of the 
referenced relations. 

Example 9.1. Let F = {F~,/'2} and G = 
{G1, G2} be two fragmented relations. 

Let Q = {F.B I F.A = G.A } be a query. 
Query Q is decomposed by the above 

procedure into the subqueries: 

Q1 = {F1.B [FI .A  = G1.A }, 

Q2 = {F2.B I F2.A -- G, .A }, 

Q3 = {F, .B I F , . A  = G2.A }, 

Q4 = {F2.B [ F2.A = G2.A }. 
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The four subqueries are then individually 
evaluated by SDD-I 's  query processing al- 
gorithm, and the union of the answers is 
the final answer. 

A semijoin in a fragmented database en- 
vironment will fall into one of the following 
three types: F-F,  R-F ,  or R - R  [Chang 
1982b]. An F - F  semijoin is one in which 
both the sending and the reduced relations 
are fragments; An R - F ' s  sending relation 
is a whole relation, but the reduced relation 
is a fragment; in an R - R  semijoin, both 
relations are whole relations. Thus a query- 
processing algorithm in a fragmented da- 
tabase environment can be classified into 
three categories: F - F  semijoin-based algo- 
rithm, R - F  semijoin-based algorithm, and 
R - R  semijoin-based algorithm. 

Version 1 of SDD-I 's  query-processing 
algorithm [Goodman et al. 1979] as de- 
scribed in Example 9.1 is an F - F  semijoin- 
based algorithm. An R - F  semijoin-based 
algorithm is introduced in Chang [1982b]. 
It repeatedly chooses a beneficial R - F  sem- 
ijoin until no beneficial R - F  semijoin ex- 
ists. Then the reduced fragments/relations 
are sent to the assembly site to produce the 
answer. The query-processing algorithm in 
Yu et al. [1983] is an R - R  semijoin-based 
algorithm. For each given semijoin Ri - -  A 
--* Rj, where R, and Rj may or may not be 
fragmented, it selects a set of sites where 
the semijoin can be performed with mini- 
mum cost. 

Another way to process a query referenc- 
ing fragmented relations follows [Epstein 
et al. 1978; Stonebraker et al. 1982]: One 
fragmented relation is chosen, and other 
fragmented relations referenced by the 
query are replicated at the sites of the cho- 
sen fragmented relation. As an example, let 
a query reference R1 and R2. Suppose that 
R1 contains fragments/'11 at site 1 and F12 
at site 2, and R2 contains fragments F2~ at 
site 1, F22 at site 3, and F23 at site 4. The 
algorithm may then choose R~ to remain 
fragmented and replicate R2 at sites 1 and 
2. The latter operation is performed by 
sending F2~ to site 2, and sending both F22 
and F23 to sites 1 and 2. After R2 arrives at 
the sites, R2 is joined with FH at site 1 and 
with F~2 at site 2. The union of the tuples 
at the two sites is the final answer. In 
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Epstein et al. [1978], the relation to remain 
fragmented is chosen such that the amount 
of data processed is minimized. In reality, 
the cost of accessing data depends on the 
supporting access path. For example, with 
the use of an index, access could be speeded 
up significantly. In Yu et al. [1984b], such 
consideration is given to minimize the cost. 

It is clear that this method of processing 
fragments may require substantial data 
transfer. We believe that in a realistic en- 
vironment fragments are not placed arbi- 
trarily, and there are placement dependen- 
cies between the locations of certain sets of 
fragmented relations on certain attributes. 
For example, Students (student-id, course- 
id, . . . )  and Courses (course-id, instructor, 
. . . )  are two fragmented relations with a 
fragment of each relation situated at each 
campus of a university. Since a student 
usually takes courses only from his or her 
own campus, the join of a Student fragment 
in a campus and a Course fragment in a 
different campus on the attribute course-id 
is null. In other words, the join of the 
relations Course and Student can be per- 
formed at local sites without data transfer. 
Formally, if F,~ should be a fragment of 
relation R, at site j, a placement dependency 
between R1 and R2 on attribute A will exist 
if the join of Flk and F2t on attribute A is 
null for k ~ t. 

A query may reference a number of frag- 
mented relations that share placement de- 
pendencies among them on a certain set of 
attributes. It is desirable to determine 
whether the query can be processed without 
data transfer [Yu et al. 1984a]. (A dual 
problem is to determine the placement of 
fragments such that queries can be pro- 
cessed without data transfer. A solution of 
the dual problem is given in Wong and Katz 
[1983].) 

First, one seeks two relations (among the 
referenced relations of the query) that have 
a placement dependency between them on 
a certain attribute, that attribute being one 
of the joining attributes of the two rela- 
tions. If two such relations cannot be found, 
the query cannot be processed without data 
transfer. Otherwise, LP1 becomes the set 
containing these two relations, which can 
be joined together without data transfer, 

although in practice they need not be the 
first pair of relations to be operated on. If 
another relation referenced by the query 
has a placement dependency with a relation 
in LP~ on a set of attributes that is a subset 
of the set of joining attributes of the query, 
then it is added to LP1. This process is 
repeated until either all relations are added 
to LP1, in which case the query can be 
processed without data transfer or some 
relations remain and the query cannot be 
so processed. 

If a query references both fragmented 
and unfragmented relations, then the fol- 
lowing condition is sufficient for the query 
to be processed without data transfer. The 
fragmented relations (if there are two or 
more such relations referenced by the 
query) should satisfy the condition of the 
algorithm given in the last paragraph, while 
a copy of the unfragmented relations re- 
mains at each of the sites containing the 
fragmented relations. 

10. THE TRANSFORMATION APPROACH 

Perhaps a more systematic way to process 
queries is the transformation approach 
[Ceri and Pelagatti 1984; Ullman 1980] 
given as follows. In this approach, there 
exists a set of rules, where each rule trans- 
forms a query expression into an equivalent 
expression. The idea is to apply these rules 
repeatedly to obtain an expression that can 
be evaluated with a small cost. 

Typically, the resulting relation after ap- 
plying a unary operator, like project or se- 
lect, tends to be smaller than the original 
relation, while the resulting relation after 
applying a binary operator, like join or 
union, can be significantly larger than the 
original operands. If the operands are in 
different sites, it will be profitable to reduce 
their sizes by applying the unary operators 
while preserving the equivalence of the 
expressions. For example, joining the rela- 
tions RI(A, B, C) and R2(B, E, F) on at- 
tribute B and then projecting the result on 
the attributes (A, B, E) is equivalent to 
projecting R1 on attribute A and B to elim- 
inate C, projecting R2 on the attributes B 
and E to eliminate F, and then taking the 
join of the two reduced relations. If R1 and 
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Figure 21. Fragment processing by eliminating 
unnecessary fragments. 

R2 are in different sites, the latter expres- 
sion can be evaluated with less data trans- 
fer and is therefore preferable. The rule 
that  is applicable in this case is 

U(R~ B R2) = U(R1) B U(R2), 

where U is a unary operator and B is a 
binary operator. A complete set of rules and 
the conditions under which the rules are 
applicable can be found in Ceri and Pela- 
gatti [1984] and Ullman [1980]. 

In general, an expression can be repre- 
sented by an expression tree in which each 
binary operation between two operands is 
represented by a subtree where the oper- 
ands are two nodes whose parent is the 
operation, and each unary operation on an 
operand is represented by a suhtree with 
the operation as the parent of the operand 
(illustrated in Fig. 20a). The application of 
the rule transforms the expression tree into 
an equivalent expression tree given in Fig- 
ure 20b. The strategy is to move the unary 
operators toward the leaves of the tree as 
much as possible. The evaluation of the 
expression tree starts from the leaves to- 
ward the root, so that the unary operators 
can be evaluated as quickly as possible, 
reducing the original relations to smaller 
ones. This strategy of reducing the sizes of 

intermediate relations applies to both cen- 
tralized and distributed databases. In cen- 
tralized databases, the intermediate rela- 
tions move between the secondary and the 
main memories, while the movement in 
distributed databases is between the sites. 
In each case, reducing the sizes of the in- 
termediate results seem logical. 

When a relation is fragmented and 
placed into two or more sites, an expression 
involving the relation can be rewritten as 
an expression involving the fragments of 
the relation. Figure 21 illustrates how re- 
lation R1 is replaced by its fragments Fn  
and F12, where each fragment is defined by 
a condition on the attribute A1. In Figure 
21, a selection is applied to R1 on the at- 
tribute A1. Since only one of the fragments 
Fn and F~2 can satisfy the selection condi- 
tion A~ = "X," the expression reduces to a 
selection of a single fragment. Thus, al- 
though the fragments are located at differ- 
ent sites, it is sufficient to perform a selec- 
tion at the site containing the appropriate 
fragment; the transfer of the other frag- 
ment is not required. 

It is easy to see that  the earlier ap- 
proaches are special cases of the transfor- 
mation approach. For example, a semijoin 
is used to transform a given expression 
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involving a join into an equivalent expres- 
sion including the semijoin operation. A 
rule in support of this process is 

R1 join R2 = R1 join (R1 --* R2). 

Thus R2 can be reduced by the semijoin 
operation before the join with R1 takes 
place. 

Similarly, the fragment and replicate ap- 
proach [Epstein et al. 1978] is supported by 
the rule 

RI join U F2, = U(R1 join/'2,) 

in which R1 is joined with each individual 
fragment of R2 and then the union is taken 
rather than assembling all fragments of R2 
into a site and then joining with R1. 

Not only can equivalence of expressions 
be captured by the rules, but semantic in- 
formation can also be represented. For ex- 
ample, if a relation should give the facilities 
of ports and another relation the properties 
of ships, then the type of ships that can go 
to their respective type of ports can be 
expressed as a rule. Thus artificial intelli- 
gence techniques may also be applicable in 
the processing of queries {see, e.g., King 
[1982]). When the number of rules is large, 
it is difficult to choose the appropriate se- 
quence of rules to be applied, and it can be 
a time-consuming process. 

11. CONCLUSION 

We assume in this paper that a relational 
database is used, and that queries are ex- 
pressed in a QUEL-like tuple relational 
calculus. We did not cover those query- 
processing algorithms for aggregate queries 
[Kim 1982; Yu et al. 1984a] and quantified 
queries [Jarke and Koch 1983; Jarke and 
Schmit 1982]. We have sketched some of 
the ideas used in the existing distributed 
query-processing algorithms: the estima- 
tion of the size of intermediate relations, 
the use of semijoins, the separation of an 
algorithm based on semijoins into three 
phases, the properties of tree queries that 
allow them to be processed rather effi- 
ciently, the transformation of cyclic queries 
into tree queries, the enhancement of 
semijoin strategies, the enumeration of 
strategies, and the different ways of han- 

dling fragments. The transformation ap- 
proach can be viewed as a generalization of 
some of the ideas presented here. We hope 
that large-scale experiments will be con- 
ducted to verify the usefulness of these 
ideas. 
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