
Distributed Query Processing

C. T. YU AND C. C. CHANG

Department of Electrical Engmeering and Computer Science, Unwerstty of Illmois at Chicago, Chtcago,
Illinois 60680

In this paper, various techniques for optimizing queries in distributed databases are
presented. Although no attempt is made to cover all proposed algorithms on this topic,
quite a few ideas extracted from existing algorithms are outlined. It is hoped that large-
scale experiments will be conducted to verify the usefulness of these ideas and that they
will be integrated to construct a powerful algorithm for distributed query processing.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]:
Distributed Systems--distributed databases; F.2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and Problems; H.2.4 [Database
Management]: Systems--dtstnbuted systems; query processing

General Terms: Algorithms, Design, Theory

Additional Key Words and Phrases: Communication, cyclic queries, distributed query
processing, fragment processing, heuristms, join, optimization, performance, semijoin, tree
queries

INTRODUCTION

Many algorithms to process queries in dif-
ferent distributed database systems have
been proposed and implemented. In this
paper, we restrict our attention to those
strategies on relational databases [Codd
1970, 1972; Date 1977; Ullman 1980]. In
spite of the restriction, there are numerous
algorithms on the subject [Apers et al. 1983;
Baldissera et al. 1979; Bernstein and Chiu
1981; Bernstein et al. 1981; Black and Luk
1982; Chang 1982a, 1982b; Cheung 1981;
Chiu 1980; Chiu and Ho 1980; Epstein et
al. 1978; Goodman et al. 1979; Gouda and
Dayal 1981; Hevner 1980; Hevner and Yao
1979; Jarke and Koch 1983; Jarke and
Schmit 1982; Kambayashi et al. 1982;
Kerchberg et al. 1980; Kim 1982; Reiner
1982; Williams et al. 1981; Wong 1977,
1981; Yu and Ozsoyoglu 1979; Yu et al.

1982a, 1983, 1984a, 1984b], but they are not
designed for the same environment. For
example, the algorithm in Gouda and Dayal
[1981] is suitable for a local network, the
algorithm in Kerchberg et al. [1980] is de-
signed for a star network, and most of the
other algorithms are designed for long haul
networks. Also, some environments have
no fragmented relations, whereas in others
some relations may be fragmented. In some
situations, a query is embedded in a pro-
gram and is likely to be executed repeatedly
and therefore requires an extremely effi-
cient strategy to process the query, even if
the compilation cost is high. In other situ-
ations, the queries are submitted by users
on an ad hoc basis, and thus a reasonably
efficient strategy produced by a fast algo-
rithm is needed. Because of this diversity,
it is unlikely that a particular algorithm is
suitable for all environments. In fact, no

Author's present address: C. C. Chang, Department of Computer Science, Iowa State University, Ames,
Iowa 50010.
Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
© 1984 ACM 0360-0300/84/1200-0399 $00.75

Computing Surveys, Vol. 16, No. 4, December 1984

C. T. Yu and C. C. Chang

CONTENTS

INTRODUCTION

I. OPERATIONS AND COST MEASURES

2. ESTIMATION

3. THREE PHASES

4 TREE QUERIES VERSUS CYCLIC

QUERIES

4.1 Charactermtics

4.2 Tree Query Recognmon Algorithm
4.3 Transforming a Cyclic Query

into a Tree Query
5. OPTIMAL STRATEGY

FOR SIMPLE QUERIES
6. OPTIMAL STRATEGY

FOR TREE QUERIES
7. HEURISTICS ALGORITHMS

BASED ON SEMIJOINS
7.1 The SDD- 1 Query-Processing Algorithm

and Its Enhancements
7.2 The General Algorithm

in Apers et al [1983]
7.3 Better Semljom Sequence

8. ALGORITHMS BASED ON JOINS
8.1 Enumeratwe Algorithms
8.2 Nonenumerative Algorithms

9. FRAGMENT PROCESSING
10. THE TRANSFORMATION APPROACH
11. CONCLUSION
ACKNOWLEDGMENTS
REFERENCES

A

v

large-scale experiments have been per-
formed to demonstrate the superiority of
one algorithm over all other algorithms in
a given environment.

Our intention is to present some of the
important ideas that have been proposed
for processing queries in distributed rela-
tional systems. The ideas involve the fol-
lowing: the necessity for and the assump-
tions used in estimating the sizes of
temporary relations that are created during
the processing of a distributed query; the
use of semijoins to reduce intersite com-
munication cost; the separation of an al-
gorithm based on semijoins into three
phases-- the copy identification phase, the
reduction phase, and the assembly phase;
the characterization of queries solvable by
semijoins; the transformation of cyclic
queries into tree queries; the optimal pro-
cessing of certain restricted types of quer-
ies, enhancements of semijoin strategies in

the reduction phase, and the identification
of relations that need not participate in
joins in the assembly phase; and the han-
dling of fragments. These ideas are ex-
plored in the sections below.

No attempt is made to cover all proposed
algorithms. Brief descriptions of some
query-processing algorithms can be found
in Reiner [1982]. Other issues in distrib-
uted databases can be found in Adiba et al.
[1977], Rothnie and Goodman [1977a,
1977b], and Rothnie et al. [1980].

1. OPERATIONS AND COST MEASURES

In this paper a relational database [Codd
1970, 1972; Date 1977; Ullman 1980] with
relations distributed in different sites is
assumed. A relation is a two-dimensional
table and is denoted by R[X], where X is
the schema of relation R and represents the
names of columns. The relational data ma-
nipulation operations used in this paper are
projection, selection, join, and semijoin
[Bernstein and Chiu 1981]. They are de-
scribed as follows:

Projection. The projection of relation R
on a set of attributes T is denoted by R. T
or R(T) , where R is a relation with schema
X, and T is a subset of X. It is obtained by
discarding all columns of R that are not in
T, and eliminating duplicated rows, if nec-
essary.

Selection. The selection of those tuples
whose A-attribute values equal to a speci-
fied constant in relation R is denoted by
(R.A --- the specified constant), where A is
an element of X.

It is obtained by choosing all rows of R
whose A-attribute values are equal to the
specified constant. One or more select
clauses on the same relation may be used
in selection. Operators other than " - " (e.g.,
_ and ~) are allowed.

Join. The join of relation R1 with rela-
tion R2 on attribute A is denoted by (R1.A
-- R2.A), where R1 and R2 are the joining
relations. Let X and Y be the schema of R1
and R2, respectively. The attribute A, which
is an element of X and Y, is the joining
attribute of R1 and R2.

The join is obtained by concatenating
each row of R1 with each row of R2 when-
ever the A-attribute values of the two rows

Computing Surveys, VoL 16, No. 4, December 1984

stts2

Distributed Query Processing

Y b slts3 site 2

I
x Z

1
sits1 X ~ site3

(a) (b)

Figure 1. To answer a query, (a) X units of data are transferred from
site I to site 2 and Y units of data are transferred from site 2 to site 3.
(b) X units of data from site 1 and Z units of data from site 2 are
transferred in parallel to site 3.

sits 1

• 401

are equal. Since the equality operat ion re-
sults in two identical columns, one column
may be eliminated. One commonly used
join operat ion is the natural join, where two
rows from the joining relations are con-
catenated whenever the corresponding val-
ues under all common at t r ibutes of the
two relations are equal. We use (R1 = R2)
to denote the natural join of relations R1
and R2.

Semijoin [Bernstein and Chiu 1981;
Berns te in and Goodman 1979; Yu and Oz-
soyoglu 1979]. The semijoin from relation
R2 to relation R~ on at t r ibute A is denoted
by R2 - - A --* R1, where R2 is the sending
relation, R~ is the reduced relation, and A is
the joining attr ibute. Sometimes we use
R2 --* R1 to represent R2 - - A --* R~ if there
is no need to identify the at tr ibute. I t can
be obtained by joining R1 and R2 on attrib-
ute A, then projecting the resulting rela-
t ion on the schema of R~. Semijoins are
also useful in database machines (see, e.g.,
Babb [1979]).

If no relat ion is fragmented, then in the
performance of projections and selections,
a local processing cost only is involved.
However, when joins and semijoins are ex-
ecuted, communicat ion costs between dif-
ferent sites may be incurred in addition to
the local processing cost. For example, if R~
and R2 are in different sites, R1 must be
sent to the site containing R2, or R2 must
be sent to the site of R~ before the operat ion
can take place.

Local processing costs usually are evalu-
ated in terms of the number of disk accesses

and CPU processing time, while commu-
nicat ion costs are expressed in terms of the
total amount of data t ransmit ted. For geo-
graphically dispersed computer networks,
communicat ion cost is normally the domi-
nan t consideration, bu t local processing
cost is of greater significance for local net-
works. In this paper, we are mostly con-
cerned with geographically dispersed com-
puter networks.

We assume tha t the cost of t ransferr ing
an amount of data, say X, from one site to
ano ther site is Co + cl * X, where co is the
s tar t-up cost of init iating t ransmission and
cl is a propor t ional i ty constant . The cost
for answering a query can be expressed in
terms of the total cost measure or the re-
sponse time measure. T h e total cost mea-
sure [Hevner and Yao 1979] is the sum of
the costs of t ransferr ing data. In Figure la,
where X units of data necessary to answer
a query is t ransfer red from site 1 to site 2
and Y units of data from site 2 to site 3,
the total cost is (Co + cl * X) + (Co + cl * Y)
= 2Co + cl(X + Y). The response t ime
measure [Hevner and Yao 1979] is the t ime
from the init iat ion of the query to the t ime
when the answer is produced. In Figure lb,
where X units of data f rom site 1 and Z
units of data f rom site 2 are t ransfer red in
parallel to site 3 to answer the query, the
response t ime cost is the maximum of Co +
cl * X and Co + c~ * Z. In this paper, we are
mostly concerned with the total cost mea-
sure only.

Since the amount of data t ransfer red af-
fects the cost of a strategy, a t tempts have

Computing Surveys, Vol. 16, No. 4, December 1984

402 C. T. Yu and C. C. Chang

R!

A B

ol bl

02 bl

]2)3

]2 ~)4

o3)3

R2

B C

b! cl

b2 c2

b5 =1

b5 "2

b6 c4:

b7 c2

k>8 c3

R1

A B

ol bl

02 bl

a3 b5

02 k)4

a3 b3

R2

B C

bl I cl

b21c2

b41 cl

b3 la2

k)4 Ic4

b41c2

b31c3

R2 ~ B'---~ R1 R1 ~ B ' - ~ R 2

A B

(a)

Figure 2. Illustrating semijoms.

B C

bl cl

b4 cl

b3 c;

b4 c '

b4 c;

b3 c ~ .

(b)

been proposed to reduce it. A promis-
ing approach is to make use of semijoins
[Bernstein and Chiu 1981; Hevner and Yao
1979]. For example, the semijoin from re-
lation R2[B, C] to relation RI[A, B] on
attribute B (R2 - - B ~ R1) can be obtained
by projecting R2 on attribute B, then joining
the result of the projection with R1, rather
than computing the join and then the pro-
jection. We can easily see that R2 - - B
R1 is never bigger than R1, and is usually
much smaller in size. In Figure 2a, the
attribute values {b3, b4} of R1 do not ap-
pear in R2. Thus the corresponding tuples
{(a2, b3), (a2, b4), (a3, b3)} are elimi-
nated from R1. The semijoin from R2 to R~
consists of the retained tuples {(al, bl),
(a2, bl)}.

Suppose that R~ and R2 as given in Figure
2 are at different computer sites, and the
join of R~ and R2 is desired at the site
containing R1. Suppose that each value in

each of the attributes A, B, and C has unit
width. To obtain a join of R1 and R2 at the
site containing R1, one method is that we
send R2 to R1, then take the join at the site
containing R1. This method has a commu-
nication cost of Co + c117(1 + 1)] = Co +
14Cl. The second method consists of send-
ing the B-attribute values of R1, that is,
{bl, b3, b4} to the site containing R2. Then
all those tuples of R2 whose B-attribute
values do not appear in {hi, b3, b4} are
eliminated; that is, R1 - - B --. R2 is com-
puted. This operation yields {(bl, Cl)}. The
reduced R2 is then sent back to the site
containing R1 to join with R1. In this ex-
ample, the sending of R1 projected on B
costs Co + c1(3). The sending of the reduced
R2 costs Co + Cl(1 + 1). Thus the second
method is better than the first if 2Co + 5c~
< Co + 14Cl. This use of semijoin is justified
in situations of small Co. On the other hand,
if the number of B-attribute values in corn-

Computing Surveys, Vol. 16, No 4, December 1984

mon between R~ and R2 is large, as in Figure
2b, the use of semijoin may not be profita-
ble. Clearly, it is desirable to estimate the
number of attribute values in common be-
tween two relations before deciding to ex-
ecute certain semijoins.

2. ESTIMATION

It can be inferred from the previous section
that the performance of a distributed
query-processing algorithm depends to a
significant extent on the estimation algo-
rithm used to evaluate the expected sizes
of some intermediate relations. The choice
of a reasonable estimation algorithm is
therefore extremely important, as is de-
scribed below.

Suppose that relations R1 and R2 are
single-attribute relations, and, further, that
the values of the common attribute, say A,
are uniformly and independently distrib-
uted on the relations. The desired esti-
mation is the size of R2 - - A --. R~, that is,
[R 2 - - A --* R1 [* w, where I X I denotes the
cardinality of X and w is the average width
of a tuple in R~.

Letting p . be the probability that a value
in attribute A appears in R,, i -- 1, 2, then
p~ is called the selectivity of R, on attribute
A. Since the values in the two relations are
independently distributed, the probability
that a value appears in both relations is
P~a *p2a. Thus the expected number of dis-
tinct values in common between the two
relations is I A [* Pl a * P2a, where [A [is the
cardinality of the domain of the attribute
A. The size of the reduced R~ can be esti-
mated to be I A I *p~a*p2~* w. This can be
rewritten as I R~I *P2a * W.

In a different scenario, R2 is the same as
above but R~ is a relation with two attri-
butes A and B. After the semijoin, R2 - - A
--* R1, the cardinality of R1 can be estimated
as [R1 [*P2a, where [R~ [is the number of
tuples of R~ before the semijoin was per-
formed. The estimation problem of the car-
dinality of R~ projected on the B-attribute
after the semijoin can be demonstrated in
the following ball-color problem: "There are
n balls with m different colors. Find the
expected number of colors if t balls are
randomly selected from the n balls." The

Distributed Query Processing * 403

correspondences are as follows: n balls are
the number of tuples of R1 before the
semijoin, m colors are the number of dis-
tinct values of R1 projected on the B-attrib-
ute before the semijoin, and the t selected
balls correspond to the number of tuples of
R1 after the semijoin. The expected number
of colors of the t selected balls is

g(m, n, t)

= m . [1 - [I (n { (m - 1) ~ -) + - i + l)]
,.1 n - - : - 1 "

This solution is the same as the solution
given by Yao [1977] in the block-access
problem. It should be pointed out that,
although t is a parameter given in the ball-
color problem, the number of tuples of R1
after the semijoin needs to be estimated.
Some inaccuracy in the estimation can be
expected. The formula, if evaluated in the
present form, is computationally expensive
and may cause overflow or underflow for
large values of t. The following function
given in Goodman et al. [1979] and Bern-
stein et al. [1981] is an approximation to
the formula described above:

m if t>__ 2m,

(t + m) if 2 m - t - (2)
3

t if (2) > t.

A semijoin strategy can be viewed as a

directed graph, where the vertices are the

relations and a directed edge from Ri to Rj;
that is, R, --. Rj denotes the semijoin from

R, to Rj. The semijoins that are executed

first are those involving nodes with in-

degree -- 0. For example, in the semijoin

strategy R, ---> R~ ~ Rk, R, has in-degree --
0 and the semijoin R, --* R~ is executed first.
After the execution of the semijoin, the
reduced Rj, denoted by R~,, is produced.
The strategy becomes R~, --* Rh. R~, has
in-degree - 0, implying that the semijoin
R~, --* Rh will be executed next. Clearly,
directed cycles will not appear in a valid
semijoin strategy; otherwise, the semijoin
strategy does not terminate.

Computing Surveys, Vol. 16, No. 4, December 1984

404 • C. T. Yu and C. C. Chang

Now, suppose that R1 and R2 are the same
as above, and R3 is a single-attribute rela-
tion with attribute B. After R1 is reduced
by R2 and R3 using the semijoins R2 - -
A --* R1 <---B - - R3, the number of tuples of
the resulting R1 can be estimated as
P2a *P3b *] R1], where Pzb is the selectivity
of R3 under attribute B. Thus the size of R1
can be estimated as p2a*p3b* [R1 [* w,
where w is the average width of a tuple in
R1. Moreover, the expected number of dis-
tinct A values and the expected number of
distinct B values in R1 can be estimated by
using the block-access formula as described
above.

We are given three relations R1, R2, and
R3, each having the attribute values A and
B. In the following strategies, R1 - - B --.
R~ - - A --* R3 and R2 - - A --* R1 - - B --~
R3, R3 is reduced by the same set of rela-
tions on the same attributes. In the first
case, the number of distinct A-values of R2
after executing the semijoin R1 - - B --, R2
is estimated to be g(p2~[AI, JR21,
[R2 } plb). Thus the number of tuples of R3
can be estimated to be [R3 [*g(p~] A [,
I R2 [, [R2 [p~b)/[A [. In the latter case, the
number of tuples of R~ can be estimated to
be JR3[*g([B [Plb, [R~ [, JR1 Ip2~)/[B[.
Since the two expressions are in general
not equal, the reduced relations R3 are dif-
ferent in size for the two strategies after
the execution of the semijoins. Thus esti-
mating the size of a relation in a semijoin
strategy necessitates recognizing the h/s-
tory of the operations. Such estimation al-
gorithms are given by Bernstein et al.
[1981], Luk and Black [1981], and Yu et al.
[1983]. The above estimation techniques
may be extended to apply to multiattribute
semijoins.

Consider the semijoin R~ ~ AB ---> R2,
where both R~ and R2 contain attributes A
and B and AB denotes the composite at-
tribute A and B. Le t t ingp~ be the selectiv-
ity of R, under AB, i = 1 or 2, define it as
[R,(A, B) [/([A [* I B [), where [R,(A, B) [
is the number of tuples in the projection of
R~ on AB. Then the number of tuples in the
resulting R2 can be evaluated as p ~ [R2 [,
and the expected number of distinct values
of R2 under A can be estimated via the ball-
color problem with n = [R2(A, B) I, t = the

size of R2(A, B) after the semijoin -~
p~[R2(A, B) I, and m -- [R2(A) I.

We have mentioned that if R, and Rj are
at different sites, R, - - A --* Rj can be
computed by sending Ri(A) from the site
containing Ri to the site containing Rj.
Other methods for computing the semijoin
have been developed [Kambayashi 1981,
1982; Krishnamurthy and Morgan 1984;
Sacco 1984; Wah and Lien 1984; Yu et al.
1982b]. For example, if [R,(A) I <: [A[-
[R,(A) [, it is cheaper to send the comple-
ment, A - RI(A). Another way is to send a
bit vector indicating the presence or ab-
sence of the attribute values. These data
compression techniques help to reduce data
transfer.

3. THREE PHASES

We shall concern ourselves with strategies
of semijoins in Sections 3-7 of this paper.
The queries under consideration are of the
form {target component [qualification
component}, where the qualification com-
ponent identifies the tuples of the relations
satisfying the query and is of the form AND
(R,.Ak = Rj .Al); that is, it is the conjunction
of equality clauses where the R's stand for
the relations and the A's for the attributes.
The target component specifies the attri-
butes of certain relations to be outputted
to the user and is of the form (Rt.A, ,
Rg.An) as in the following example:
{(R1.A1, R3.Az) I (R1.A1 = R2.A1) AND
(R1.A2 = R3.A2)}. For each tuple of R1, each
tuple of R2, and each tuple of R3 satisfying
(R1.A1 = R2.A1) AND (R1.A2 -- R3.A2), the
tuple of R1 and the tuple of R3 are projected
onto attributes A1 and A3, respectively, to
be presented to the user.

If a clause of the form (R~.Ah - constant)
appears in the qualification of the query,
this clause can be processed at the local site
containing Ri and therefore can be elimi-
nated. If the qualification of a query is a
disjunction of equality clauses, then each
clause can be treated as the qualification of
a suhquery. After evaluating the sub-
queries, the results are merged to provide
the answer to the original query. We shall
restrict ourselves to the type of queries
mentioned above.

Computing Surveys, Vo|. 16, No 4, December 1984

Distributed Query Processing

Query: {(R1.A1,R3.A3)I(R1.AI= R 2.A1)AND(R1.A2 = R3.A2) }

site $3

she S1 site S2

Figure 3. Three relations distributed on three sites.

• 405

The processing of distributed queries can
be separated into three phases: the copy
identification phase, the reduction phase,
and the assembly phase. In the copy identi-
fication phase, one or more copies of every
relation appearing in the qualification of
the query are identified and will be used to
process the query. Since a distributed
database system may contain duplicate
copies of some relations, the identification
of appropriate copies of the relations in
order to minimize the cost of transmission
may not be an easy process.

The following query will serve as an ex-
ample: {(R1.A,, R3.A3) [(R1.A1 = R2.A,)
AND (RI.A2 - R3.A2)}, with the three re-
lations R,, R2, and R3 distributed in the
three sites $1, $2, and $3, as shown in
Figure 3. One way of approaching the prob-
lem would be to select the copy of R, from
$2, the copy of R2 from S~, and the copy of
R3 from $3, but this operation would likely
incur high transmission cost, because two
of the three relations have to be sent to the
site containing the other relation. Another
method would be to have the copies of the
relations R2 and R3 in site $3 and the copy
of the relation R1 in $2. In this case, since
R2 and R3 do not have a common joining
attribute, either R1 is sent to site $3 or R2
and R3 are sent to $2. Still another ap-
proach would be to have copies of R, and
R2 at site S, and the copy of R3 at site $3.
This last choice is the best of the three,
because (1) R, and R2 projected on A, can
be merged together without communication
cost to produce a relation that is not larger
than the original relation R1, and (2) it is

then sufficient either to transfer the
merged relation from $1 to $3 or to transfer
R3 from $3 to $1.

Suppose that a query references n rela-
tions. If relation R, has Xi copies, 1 _ i _
n, then a straightforward enumerative al-
gorithm to choose one copy for each rela-
tion takes time O(l] , - lx,) . This is expo-
nential in time. It turns out [Yu et al.
1982b] that finding one copy among several
possibilities of each relation referenced by
a given query so that the cost of answering
the query is minimized is a NP-hard prob-
lem (in the number of sites having at least
one copy of a relatio~ referenced by the
query). This situation holds true even when
restricted to the simple queries (all relations
have one and exactly the same attribute) in
a fully connected network (i.e., each site can
communicate directly with every other
site).

In the reduction phase, semijoins are usu-
ally used to eliminate tuples of the relations
that do not satisfy the qualification of the
query. For example, for the query cited
earlier with the best choice of the copies of
the relations, one could perform semijoin
R2 - - A1 ~ R1 to eliminate some tuples of
R1 without incurring communication cost.
If the result of the semijoin were to be RI,,
other semijoins could then be performed
R1, - - A2 --> R3 to reduce R3, or semijoin
R3 - - A2 --> R1, to further reduce R~,.

In the assembly phase, relations in the
qualification component of the query are
sent to one site to produce the output re-
quired by the user. For example, in the
above query, R1, (which is the result of

Computing Surveys, Vol. 16, No. 4, December 1984

406 C. T. Yu and C. C. Chang

Query ffi {(R1.A1,R2.A2I[IR1.AIffi R2.A41

AND (RI. A2 • R3. AS) AND(R1. AI= R4.AS}}

R1.A1 R2.A4 R1.A1
x x

R2.A1
x

x R4.A5 x R4.A1

Rt.A2 R3.A5 R1. A2 R3.A2
X X X X

(a) (b)

Figure 4. Representing a query by its join-graph: (a) join-graph; (b) join-
graph with attributes renamed.

semijoin R2 - - A1 --* R1) can be sent to $3
to be merged with R3 to produce the output.

We should like to point out that the
separation of the query-processing strategy
into the three phases may not yield the
least transmission cost; rather, it tends to
simplify the concepts involved.

A reasonable strategy for choosing the
copies of the relations is to find the mini-
mum number of sites containing chosen
copies of the relations. Unfortunately, that
is also a NP-complete problem [Yu et al.
1982b]. However, since the number of re-
lations referenced by a query and the num-
ber of sites containing those relations is
usually small, finding the number of sites
by enumeration does not require much
time. The reduction phase and the assem-
bly phase will be described in more detail
in the subsequent sections.

4. TREE QUERIES VERSUS CYCLIC
QUERIES

4.1 Characteristics

Only certain types of queries can be solved
using semijoins. More precisely, a relation
appearing in the qualification of a query is
said to be fully reduced if all tuples not
satisfying the qualification of the query

have been eliminated. It is clear that if the
joins of all the relations in the qualification
are taken, and the resulting relation is then
projected back onto the attributes of the
original relations, then the projected rela-
tions will then be fully reduced, because
any tuple of each projected relation not
satisfying the qualification would have
been eliminated by the joins. If semijoins
are used to reduce relations, less commu-
nication cost may be incurred. However,
depending on the type of query, the rela-
tions appearing in the query may not be
fully reduced. As a result, communication
cost in assemblying the relations can still
be high. A precise characterization of the
type of queries whose referenced relations
can be fully reduced by semijoins is there-
fore desirable. The characterization is fa-
cilitated by defining a join-graph and a
query-graph [Bernstein and Chiu 1981].

The vertices of a join-graph are described
as {Ri.AjIR, is a relation, A~ is an attribute,
and R,.A~ appears in a clause of the quali-
fication}. The edges of the graph represent
the equality clauses. As shown in Figure 4a,
each R,.A~ is a vertex, and an equality
clause of the form (R,.A~ ffi Rh.A1) is rep-
resented by an edge between R,.Aj and
Rk.AI. Since equality is a transitive opera-
tor, (R~.Aj = Rk.A1) AND (Rh.A1 = Re.Am)

Computing Surveys, Vol 16, No 4, December 1984

Join-graph

Distributed Query Processing

Query - graph

R1. A2 R3 .A2 R 2 - - A t E R 1 - - A 2 m R 3

I
R1. A1 - - R4.A1 A1

I I
R2.A1 R4

Figure 5. An example of join-graph and query-graph.

• 407

imply (R,.Aj = Rt.A, ,) . If two or more at-
tributes of a relation are transitively re-
lated, it is sufficient to retain one of them,
since the other can be eliminated by local
processing.

We can thus rename all attributes that
are transitively related to be the same at-
tribute. In Figure 4b, A1, A4, and As in one
component of the join-graph are all re-
named to be A1, while A2 and A5 in another
component are renamed to be A2. In other
words, all vertices in a connected compo-
nent refer to the same joining attribute,
and the connected component can be
uniquely identified by the attribute. If R,.Ah
and Rj.Ah are in the same connected com-
ponent identified by attribute Ak, then
clearly R= - - Ak ----> Rj and Rj - - Ak --~ R, are
possible semijoins. On the other hand,
R,.Ah ---, Rj .At , for t ~ k, is not a possible
semijoin because (R , Ak -- Rj .At) is neither
stated nor implied by the qualification. In
this manner all possible semijoins of the
qualification are of the form R, - - Ak "-> Rj

or Rj - - Ak --* R, for some attribute Ah, after
the renaming of the attributes.

The vertices of the query-graph are the
relations appearing in the qualification. An
edge (R, Rj) with label Ak exists in the
query-graph if (Rz.Ak = R~.Ak) is a clause
in the qualification. If (R,.At -- Rj .At) also
appears in the join-graph, the label of the
edge in the query-graph is {Ah, At}; that is,
the label is to include all attribute names
that participate in the clauses involving the
relations R, and Rj. For example, Figure 5
illustrates a join-graph and its correspond-
ing query-graph.

If a query-graph is a tree in the graph-
theoretical sense, then it can be shown
[Bernstein and Chiu 1981] that a sequence
of semijoins can fully reduce all the rela-
tions. The sequence suggested by Bernstein

and Chiu [1981] is rather simple. A relation
is chosen arbitrarily in the query-graph as
the root of the tree, for example, R. Then
the leaves of the tree are well defined. For
example, in Figure 6 the leaves are R2, Rs,
R6, and R4. The process of fully reducing
all relations consists of two phases: (1)
"leaves to root," which fully reduces the
root relation, and (2) "root to leaves," which
fully reduces the other relations after car-
rying out Phase 1.

The "leaves to root" phase consists of
taking semijoins from each relation to its
parent, starting from the leaves and ending
at the root. Semijoins from relations to
their common parent all should be taken
before any operation of the parent with its
immediate ancestor is taken. For example,
in Figure 6, the semijoins R5 - - A4 ~ R3
and Re - - A5 --* R~ are taken before the
semijoin R3 ~ A2A3 ---* R1 is executed. The
clause (Rs.A4 = Rs.A4) is satisfied intui-
tively by R8 after the semijoin R5 - - A4 --*
R3 is taken. Similarly, the clause (R3.A5 =

R6.As) is satisfied by R3 after the execution
of the semijoin R6 - - A5 --* R3. Thus R3
satisfies the two clauses after application
of the two semijoins. Similar arguments
show that at the end of the first phase, the
root relation R1 will satisfy the clauses
{(R5.A4 -- R3.A4), (R3.A5 ffi R~.As), . . . ,

(R 4 . A 4 = R1.A4)}; that is, the relation R1 is
fully reduced.

In the second phase ("root to leaves"),
the fully reduced root relation, let us say R,
is used to reduce its immediate descend-
ants. When the semijoin from R to an im-
mediate descendant, for example, R,, is
taken, R, is fully reduced. This can be dem-
onstrated by constructing a tree with R, as
the root. The "leaves to root" phase with R,
as root will be executed after the comple-
tion of the "leaves to root" phase with R as

Computing Surveys, Vol. 16, No. 4, December 1984

408 C. T. Yu and C. C. Chang

Query- graph

A1

/
R2

Jam- graph

A2 A3

I
R3

/ \
A4 A5

/ \
R5 R6

A4

\
R4

Query-graph

R1.A2

R1. A1

I
R2.A1

R3.A2

R4!A2

R4.A1

R1 A 2 ~ R 3

A1 A1 A2
I ~ 1

R2 R4

(a)

To fully reduce R1

(RS--A4- -R3, R6--AS-R3,

R2- -AlmR1, R3--A2A3"R1,

R4--A4~R1)

Figure 6.

To fully reduce the other relotions
after RI is fully reduced

(R1--AI~R2, R1EAP- A~v--R3,

R1--A4,--R4, R 3 - - A 4 ~ R 5 ,

R3--A5--R6)

A sequence of semijoins fully reduces the relations.

root plus the semijoin R --> R,. In Figure
6, the sequence of semijoins (R5 - - A 4 --->

R3, R6 - - A~ --* R3, R2 - - A1 --* R1, R3 - -
A2Az --* R1, R4 - - A4 -.--> R1) (the sequence
is the "leaves to root" phase with R1 as
root) followed by R1 - - A4 ~ R4 contains
the sequence of semijoins (R5 - - A4 ---* Ra,
R6 - - A5 ---> R3, R2 - - A1 --.> RI, R3 - - A2A3

--* R1, R1 - - A4 --* R4) (the sequence is the
"leaves to root" phase with R4 as root).
Thus R4 will be fully reduced. The process
of using the newly fully reduced relation to
fully reduce its immediate descendants is
continued until all the leaves are reached;
at this point, all relations are fully reduced.
This process is illustrated in Figure 6.

This discussion should make clear that if
the query-graph of the qualification of a
query is a tree, the relations can be fully

reduced by semijoins. Even if the query-
graph of a given qualification should be
cyclic, an equivalent qualification exists
that uses a tree query-graph, as is demon-
strated in Figure 7a. The qualification is
equivalent to that given in Figure 7b be-
cause (R1.A~ = R3.A2) AND (R~.A2 =

R4.A2) is equivalent to (RI.A2 = R3.A2)
AND (Rz.A2 = R4.A2). The latter qualifi-
cation has a tree query-graph and therefore
is solvable by semijoins.

The definition of a tree query is that the
query graph of its qualification or an equiv-
alent qualification is a tree. A query is a
cyclic query if none of the query-graphs of
equivalent qualifications is a tree. As illus-
trated earlier, if the query is a tree query,
the relations of a tree query can be fully
reduced by semijoins, but semijoins may be

Computing Surveys, Vol 16, No. 4, December 1984

Join- graph

R1.A2 R3.A2

R4!A2

R1.A1 - - R4.A1

I
R2.A1

(a)

Query- graph

Distributed Query Processing • 409

Equivalent Join-graph Equivalent Query-graph

R1 A 2 - - R 3 RI.A2 ~ R3.A2 R 2 - - A 1 - - R I - - A 2 m R 3

I I I
All AlgAl2 R4.A2 A A21
R2 R4 Rt.A1 R4.A1 R4

I
R2.A1

(b)

Figure 7. An example of equivalent query-graph.

Qualification

(Rt.A= R2.A) AND (R1.B=R3.B)

AND (R2.C=R3.C)

(a)

Join- graph

RI.A R2.A

R1.B R3.B

R2.C RS.C

(b)

Query-graph The relations R1, R2 and R3

cannot be fully reduced by

semi joins

R1 A . . R2

B\R3/C

(c)

R! R3 R2

A B B C C A

(d)

Figure 8. An illustration that the relations in a query having a cyclic query-
graph cannot be fully reduced by semijoins.

inadequate to fully reduce a cyclic query
[Bernstein and Chiu 1981; Bernstein and
Goodman 1981]. This is illustrated by the
following example. The relations R1, R2,
and R3 are referred to by the query as given
in Figure 8d. If the semijoin R1 - - A --* R2
is used, then R2 remains unchanged because
RI.A and R2.A are identical. Similarly, the
semijoins R2 - - C --) R3 and R~ - - B -* R1
have no effect on R3 and R1, respectively.
However, the fully reduced R1, R~, and R3
should be the null relations, because no
tuple of R~, of R2, and of R3 simultaneously
satisfies the qualification.

4.2 Tree Query Recognition Algorithm

Section 4.1 illustrates the importance of
recognizing qualifications that have either
tree query-graphs or are equivalent to other
qualifications having tree query-graphs. It
turns out that there is a simple algorithm
[Graham 1979; Yu and Ozsoyoglu 1979] for
the recognition of such queries, as follows.
The algorithm takes a query as input, and
it has two key steps. Initially, for each
relation Rt, the set of attributes of the
relation appearing in the qualification,
J(Rt), is constructed. As described earlier,

Computing Surveys, Vol. 16, No. 4, December 1984

410 * C. T. Yu and C. C. Chang

each attribute A of Rt in the qualification
denotes a relationship between Rt and the
set of relations containing A.

In the first step, Ri is eliminated from
consideration, if a pair of relations R, and
R~ exists such that J(Ri) C J(Rj). Condi-
tion J(R,) C J(Rj) guarantees that an
equivalent qualification can be constructed
by substituting each clause of the form
Rz.X ffi Rk.X, where k ~ j, with two clauses
(Rz.X = Rj.X) AND (R~:X = Rk.X). (This
substitution may produce some duplicated
clauses.) After substitution, R, appears only
in the clause R,.X = Rj.X. It is then clear
that in the query-graph, R, is only adjacent
to Rj, and therefore is not part of any cycle.
Hence the elimination of R, will not change
the type of the query-graph. In Figure 7,
J(R3) ffi {A2} C J(R1). The edge between R3
and R4 is replaced by that between R1 and
R4 (and that between R1 and R3). As a
result, R3 is not part of any cycle and can
be eliminated without affecting the type of
the query.

In the second step, if any relation is
eliminated in Step 1, it is checked to deter-
mine whether it causes the elimination of
an attribute. An attribute is to be elimi-
nated if only one relation remains contain-
ing that attribute. (One should here recall
that if a set of relations contains the same
attribute, they are related by the equality
of that attribute; thus if there is no more
than one relation having that attribute, no
such relationship exists.) For example, if
R,.A = Rj.A is the only clause involving
attribute A, and if R, is eliminated in Step
1, then attribute A will be eliminated in
this step. It is clear that the elimination of
an attribute causes the updating of the
relation R (more precisely, J(R)) having
that attribute originally. The algorithm is
simply an iteration of Steps 1 and 2. If all
relations are eliminated at the end of the
algorithm, the original query is then a tree
query, because the algorithm does not affect
the type of a query (tree or cyclic) and
a null query is clearly a tree query. If
some relations do exist at the end of the
algorithm, then it can be shown that the
original query is a cyclic query [Yu and
Ozsoyoglu 1979]. Figure 9 illustrates the

J(RI) ffi {A1, A2}

J(R2) = {A1}
J(R3) = [A2}
J(R4) = [A1, A2}

Since J(R2) C_ J(R1), eliminate R2.
J(R3) C J(R1), eliminate R3.
J(R4) C J(R1), eliminate R4.

Since A1 occurs in R1 only, eliminate A1.
As occurs in R~ only, eliminate A2.
R1 does not have any attribute, eliminate R~.

All relations are eliminated. Thus, this is a tree query.

Figure 9. Demonstrating that the query in Figure 7a
is a tree query.

operation of the algorithm on the query
given in Figure 7a.

A further characterization of cyclic quer-

ies should illustrate the concept more

clearly [Goodman and Shmueli 1983].

There are two basic forms of cyclic queries

as shown in Figure 10.

It is clear that the two operations used

to determine a tree query will not eliminate

any attribute or relation from the above
query-graphs, and therefore Aring and

A clique are cyclic queries.
All other cyclic queries can be reduced to

either an A ring or an A clique by repeated
applications of the two operations and by
eliminating a common set of attributes

from each of the relations. In essence, the
absence of Aring and Aclique implies that

the query is a tree query. Numerous other
characterizations of cyclic and tree queries
are given in Beeri et al. [1981, 1983], Fagin
et al. [1980], and Goodman and Shmueli

[1983] relating distributed query processing
to dependency theory, database schema de-
sign, and graph theory; these processes are

not covered in this paper.

4.3 Transforming a Cyclic Query
into a Tree Query

Since the tree query is fully reducible, al-
gorithms capable of transforming a cyclic

query to a tree query are desirable [Good-
man and Shmueli 1982b; Kambayashi and
Yoshikawa 1983; Kambayashi et al. 1982].

Computing Surveys, Vol. 16, No. 4, December 1984

AI
R,(A., A,) R2(AI, A2)

I

A2

D i s t r i b u t e d Q u e r y P r o c e s s i n g

Rs(A2, A3) Rn(An-,, An)

An [
(a)

* 411

R,(An, A, An-2)

l

A1A2"'" An-2 A 2 " " A~-,

~2(A1, A2 An-l) "R3(A2, . . . , An)

A~A,... A.-s

(b)

R~(A~-l An-3)

Figure 10. (a) A ring of n-relationships; (b) A clique of n-relationships.

Basically, there are three different trans-
formation algorithms: (1) a relation-merg-
ing algorithm [Goodman and Shmueli
1982a; Kambayashi and Yoshikawa 1983],
(2) a tuplewise decomposition algorithm,
and (3) an attribute addition algorithm
[Kambayashi et al. 1982]. Some details of
the algorithms are as follows:

(1) The relation-merging algorithm sim-
ply joins certain relations residing in a cycle
to eliminate the cycle. For example, given
a cyclic query as shown in Figure 11a, the
algorithm can join any two relations in the
cycle. This causes the cycle to disappear.
Figure 11b shows the query-graph resulting
by joining R2 and R3 together.

(2) The tuple-wise decomposition algo-
rithm is based on the tuple-substitution
idea of Wong and Youssefi [1976]. The
algorithm eliminates a cycle by decompos-
ing a cyclic query into a number of tree
subqueries. By first arbitrarily selecting a
relation in a cycle, it constructs a tree
subquery for each tuple of the relation by
substituting the attribute values of the tu-
pie. Using the query in Figure l la , if rela-
tion R3 is selected, [R31 subqueries will be
generated, with each subquery correspond-
ing to a tuple of R3. Each subquery has a
query graph as shown in Figure l lc. The
answer of the query is then the union of all
the answers of the subqueries.

(3) The attribute addition algorithm
aims at fully reducing a relation in a cyclic

query. In Kambayashi et al. [1982], certain
attributes of some relations involved in
cycles are added to other relations in such
a way that a tree query results. Semijoins
can be then used to fully reduce any given
relation. The algorithm takes as input a
cyclic query and a relation to be fully re-
duced, for example, R. It then chooses a
spanning tree from the query-graph of the
query with R as the root. Given the same
example in Figure 11a, suppose that R1 is
to be fully reduced. Figure 11d-f gives the
three possible spanning trees (the solid
edges in each figure) with R1 as the root.
Since the query is cyclic, at least one edge
is not in the spanning tree. For each edge
not in the spanning tree (the dotted edge
in each figure), the label of the edge is added
to those of the edges that form a cycle with
the edge. For example, in Figure l ld , R3 m
B m R1 is the edge not in the spanning tree.
Its label B is added to the labels of the
edges R1 - - A - - R2 and R2 - - C - - R3 to
form the new edges R , - - A B - - R2 and R2
- - B C - - R3. (At this point, R2, which
originally does not have attribute B, is as-
sumed to have all distinct values of B so
that semijoins on attribute B involving R2
will not produce null relations.) After this
process, Figure lld becomes a tree query.

By the "leaves to root" algorithm given in

Bernstein and Chiu [1981], Rz can be fully

reduced if the semijoins R3 -- BC --. R2 and

R2 -- AB ----> R, are executed. Notice that if
attribute addition had not been used, the

Computing Surveys, Vol 16, No. 4, December 1984

412 •

R1 ~ A - - R 2
\ /
B\/c

R3

C. T. Yu and C. C. Chang

O={R~.Okm.A=R2.A~
AND (R2.C= R3.C)

AND (RI.B = R3.B)}

(a)

R I m A B ~ R 2 5

where R23 = R2 natural join R3

(b)

R1--AmR2

I I
B C

I I
b3i cSi

where t3 = (b3i ,c3i)

and t3 is o tuple of R3

(c)

R I ~ AB- -R2

\ I
g BC
\ /

R3
semi - joins:

R3--BC--~R2,

R Z - - A B - - R1

(d)

R1 --AC --R2
\ /
Bc, /c

R3 semi-joins:

R2--AC~R1,

R3--BC-'R1

(e)

R1 - - A - - R 2
\ /
AB ~ C

\
N$ semi-joins.

R2--AC - -R3 ,

R3--AB ~R1

(f)

Figure 11. Transforming cyclic query into tree query.

R l m A D - - R 2
\ /
B D \ /CD

R3

Q = {R1.EI(R1.A= R2.A)R1 - - A D - - R 2

AND (RI.D-R2.D)

AND (R1.B-R3.B)

AND (R1.D-R3.D)

AND (R2.C.RS.C)

AND (R2.D=R3.D)}

D CD

after R3--BD---~R1,

D ~ Bin R3

(a)

D ::~ B inR I ,R3

(b)

Figure 12.

RImAD--R2

/ an equivalent
CD

/ query of (c)
R3

(c)

Functional dependency and query graph.

Computing Surveys, Vol. 16, No. 4, December 1984

corresponding semijoin sequence would
have been R 3 - - C ~ R2, R2 - - A "* R1,

and R1 might not have been fully reduced.
Kambayashi and Yashikawa [1983] have

studied the effect of functional and multi-
valued dependencies on query processing,
and have identified a sufficient condition
for a relation in a cyclic query to be fully
reduced. Given a cyclic query as shown in
Figure 12a, D ~ B can be considered a
functional dependency identified in R3. By
executing a semijoin R3 - - B D ----> R1, the
resulting relation Rx will preserve the func-
tional dependency D ~ B. Thus in the
current database, the values of attribute B
are uniquely determined if those of attrib-
ute D are known. Consequently, attribute
B can be deleted, and the query-graph is
changed to Figure 12b. Since all three re-
lations contain attribute D, the query-
graph is further simplified to Figure 12c,
which is a tree. A relation in a cyclic query
can therefore be fully reduced by semijoins
if, "for each cycle in the query-graph,

(1) all relations in the cycle contain the
attribute(s) X,

(2) an edge in the cycle is labeled X Y , and
(3) a relation on the edge has the func-

tional dependency X ~ Y."

5. OPTIMAL STRATEGY
FOR SIMPLE OUERIES

In the reduction phase, the query-process-
ing algorithms described in the previous
section are all heuristics and may not al-
ways yield optimal strategies. In this sec-
tion we present an optimal algorithm for
simple queries (all relations appearing in
the qualification of such a query have the
same attribute, and each relation has a
single attribute). The discussion will pro-
ceed under the following assumptions. Let
the common attribute be A. Let the rela-
tions be {R1, R 2 , . . . , Rn} situated at differ-
ent sites. Let R, be the result site where the
answer is to be produced.

As noted in Section 2, a strategy can be
represented by a directed graph where the
vertices are the relations and the edges
represent the semijoins. It is clear that a

Distributed Query Processing • 413

strategy should have all paths directed
toward the result site R, and that the strat-
egy should contain the n relations, some of
which may appear more than once. The
cost of a strategy is the sum of the data
transmission cost of executing the semi-
joins represented by the edges. Since it is
impossible to find the precise cost of a
strategy before its execution, the usual pro-
cedure is to minimize the expected cost. As
an example, if a strategy is R,1 - - A ~ R,2
. . . . A " * R~m, m ffi n, R i m ffi R, and ifp,j
is the selectivity of relation R~j on attribute
A, then the expected transmission cost of
the strategy is I A I[P~I + Pi~Pi2 + . . . +

P, lP,2 ". . P,m-1]. An optimal strategy is one
having the smallest expected cost among
the directed graphs satisfying the condi-
tions noted above.

Some properties are satisfied by an op-
timal strategy for a simple query. They are
listed as follows:

Property 5.0. All relations should appear
on one directed path; that is, an optimal
strategy for a simple query is a "string"
of directed edges of the form Rn --* R,2 --*
R , 3 --~ . . . --4 R , t .

In Hevner and Yao [1979], two cases are
considered. In the first case, the result site
is one of the sites containing R1, R2

Rn. In the other case, the site does not
contain any of the n relations.

If the result site does not contain any of
the n relations, then all of the relations in
an optimal strategy Ril ~ Ri2 "-'> " " • ~ R , t

are distinct; that is, no relation appears
more than once. This conclusion is rather
obvious, because if a relation occurs twice
or more, then the second and subsequent
occurrences of the relation can be removed
from the strategy, yielding an equivalent
but lower cost strategy. They are equivalent
because the last relation in both strategies
satisfies R~.A = R2.A Rn.A; the
latter strategy has a lower cost because the
second and subsequent occurrences of the
relation, having appeared earlier, will not
provide extra reduction to later relations.

Property 5.1 [Hevner and Yao 1979].
All relations should appear in ascending
order of size.

Computing Surveys, Vol. 16, No. 4, December 1984

414 • C. T. Y u and C. C. Chang

Thus, the optimal strategy is in fact
R1 --* R2 -* --. --* Rn --* R,, where JR1 [-
]R2I - " " -] R n l .

One can verify the result by a straight-
forward check to see that if Ril --* Ri2 . . .

--. R,j_I --* R,j --~ Ri# +1 --* Rij +2 --* • • • -'* R~t
is a strategy with [R,j [> [R,j +1 [, then
the strategy R,1 --* R,2 ~ . . . --* R,j_I --*
R,j+I --, R,j --* R,j+2 --* . . . --* R , yields a
lower cost.

If the result site R, contains a relation
R,, then the optimal strategy [Hevner
and Yao 1979] is either R1 --* R2 --* . . . --*
R,-1 --~ R, --* R,+I --* " . --* R, or R1 --*
R2 --* • • • --* R,-1 --* Ri+l --* • • • --* R, , where
the former strategy passes through the re-
sult site twice and the latter strategy passes
through the result site once. The lower cost
strategy between the two strategies is taken
as the optimal one. Optimal strategies can
thus be easily obtained for simple queries.

6. OPTIMAL STRATEGY
FOR TREE QUERIES

In this section, we provide an outline of a
method to obtain optimal strategies to fully
reduce a relation for tree queries with the
restriction that any two relations have at
most one single common joining attribute.
The method will be illustrated by a special
type of tree query in which there are m
single attribute relations, each having the
joining attribute A; these are labeled A1,
A 2 , . . . , Am with [AI[--- [A2[-< . . . -<
[Am [. There are n single attribute rela-
tions, each having the joining attribute
B, which are labeled B1, B2, . . . , B , with
[Bll -< [B2[<- . . . - [B, [, and a two-
attribute relation I having the joining at-
tributes A and B. We are given a query
referring to the above m A's, n B's, and the
I relation. OPTS(m, n, I) is an optimal
strategy to fully reduce some relation Y in
the query, where Y should be the last rela-
tion in the sequence, and OPTS(m, n,
/, X) an optimal strategy to fully reduce a
specific relation X in the query.

Some properties of OPTS(m, n, I) are
given as follows [Chen and Li 1983; Yu et
al. 1979, 1982@

Proper ty 6.0. Relations having a com-
mon attribute should all appear on one

directed path. (This is the generalized ver-
sion of Property 5.0 for arbitrary queries.)

E x a m p l e 6.1

(a) A2 ~ AI ~ I ~ B2 ~ B3

B1

does not violate Property 6.0.

(b) A x - - , A 2 - - . I - - . B1--* B2--* B3--* I

is a possible optimal strategy.

(c) A1 --* A2--* I

/ B 3 / ~ /

B2 B1

cannot be an optimal strategy, because B1
and B2 are not on the same directed path.
This violates Property 6.0.

(d) A1 --* I --* B1 --* B2 ~ B3 ---> I ~ A2
/ ,

B1

does not violate Property 6.0.

(e) A1---~ I---* A2--* I - -~ B~---~ B3
/-

B1

is a possible optimal strategy.

(f) A1---~ I---~ A2---~ I---~ B2---~ B3

BI

violates Property 6.0 because the first
occurrence of I and B1 are in different
paths. []

Proper t y 6.1. All A's and B 's appear ex-
actly once, while I may appear once or
more.

E x a m p l e 6.2. The strategy in Example
6.1(d) violates Property 6.1 since BI ap-
pears twice in the strategy. []

Proper ty 6.2. Single-attribute relations
must appear in ascending order of their
sizes in the path leading to the first fully
reduced relation Y.

E x a m p l e 6.3. The strategy in Example
6.1(a) violates Property 6.2, because A1 and
A2 a r e in descending order of size; the strat-

Computing Surveys, Voi. 16, No. 4, December 1984

egies in Example 6.1(b) and 6.1(e) satisfy
Property 6.2. []

By Property 6.2, the first fully reduced
relation in OPTS(m, n, I) is Am or Bn or I.
Thus OPTS(m, n, I) has one of the follow-
ing three forms:

OPTS(m, n, I, Am),

OPTS(m, n , / , B,),

OPTS{m, n, L I).

Consider OPTS(m, n, I, Am). The vertex
immediately preceding Am cannot be a B-
relation since if a B-relation is sent to A , ~ ,

the sending is a waste because it cannot
merge with Am directly. This vertex there-
fore must be either I or Am-l, by Property
6.2.

Subcase 1. If the vertex is Am-l, the set
of relations preceding Am then forms a sub-
strategy involving the m - 1 A-relations
{AI, A2, . . . , Am-~}, the n B-relations {B1,
B2 , B~}, and the/-relat ion. This sub-
strategy denoted by OPTS(m - 1, n, I,
Am-i) is optimal among all substrategies
ending at Am-~ and involving the same sub-
set of relations. (Otherwise, a better sub-
strategy followed by the data transfer of
the reduced Am-1 to Am will produce a better
strategy.)

Subcase 2. If the vertex is I, then again
we have an optimal substrategy involving
the same subset of relations. This sub-
strategy is denoted by OPTS(m - 1, n,
/, I), since the last vertex in the substrategy
is I.

Both substrategies process the same set
of relations, and the relation immediately
following each of these substrategies is Am.
The amount of data thus transmitted from
each of those substrategies to Am is identi-
cal and can be denoted by Z. OPTS(m, n,
I, Am) is either Am preceded by OPTS(m -
1, n , / , I) or Am preceded by OPTS(m - 1,
n , / , Am-l). If C(strategy) is the cost of the
strategy, then

C(OPTS(m, n,I, Am))

= (Co + c~* Z) + minIC(OPTS(m- 1,n, LAm-~)),

C(OPTS(m- 1, n,/,I))}.

Distributed Query Processing * 415

Pictorially, OPTS(m, n, I, Am) can be rep-
resented by

A~. *-- min{OPTS(m - 1, n, I, I),

OPTS(m - 1, n, I, Am-l)}, (6.1)

where the cost functions are not explicitly
written. Similarly, OPTS(m, n , / , B,) is

Bn ~- min{OPTS(m, n - 1, 11, I),

OPTS(m, n - 1, I, B~-I)}. (6.2)

If the first fully reduced relation I of
OPTS(m, n , / , I) has in-degree 1, then the
relation immediately preceding I can be
either Am or B,. The two subcases are,
respectively,

I ~-- Am~-- rain{ OPTS(m- 1, n,/, I),

OPTS(m- I,n, LAm-,)}, (6.3)

I .--Bn ..-min{OPTS(m,n- 1,LI),

OPTS(m, n- 1,LB~-,)}. (6.4)

If the first fully reduced relation I has in-
degree 2, then by Property 6.0 the optimal
strategy is

rain{OPTS(m, O, O, An,),

OPTS(m, O, IA, A.,) }

I (6.5) ,-...
min{OPTS(0,n,0,Bn),

OPTS(O,n, IB, B~)}

where IA and IB are the projections of I on
the attributes A and B, respectively.

OPTS(m, n, I) is the minimal cost strat-
egy among the five strategies given by
(6.1)-(6.5) (see Example 6.4 for the end
cases). It is clear from the equations above
that OPTS(m, n , / , Y), where Y = Am, B~,
o r / , can be computed in constant time if
OPTS(m - 1, n, I, I), OPTS(rn - 1, n, I,
Am-i), OPTS(m, n - 1 , / , I), OPTS(m, n
- 1,/, Bn-1), OPTS(m, 0, 0, Am), OPTS(m,
O, IA, Am), OPTS(0, n, IB, B,), and
OPTS(0, n, 0, B,) are known. The following
method is suggested to obtain the optimal
strategy.

In the two-dimensional figure in Figure
13, the point (i, j) denotes three optimal
strategies involving {A1, . . . , A~, B1 ,
Bj, I}, one ending in AI, one ending in Bj,

Computing Surveys, Vol. 16, No. 4, December 1984

416 * C. T. Yu and C. C. Chang

(O,n)

B*S in
ascending
order of sizes

(m-l,n)
r x= i(m'n)

x ~ x (m,n-1)

(0,2) x

(0,1) x

x x

(1,0) (2,0)
x ~

(m,O)

ASs in

ascending order
of sizes

Figure 13. Illustration of how the optimal strategy is obtained.

and one ending in I. From eqs. (6.1)-(6.5),
the optimal strategies at (m, n) can
be obtained from those at (m - 1, n), (m,
n - 1), (m, 0), and (0, n). If we compute
all optimal strategies at (x~, x2), xl +
x2 = t, and at the boundary points (i, 0),
(0, j) , 1 < i < n, 1 < j < m (the optimal
strategies at the boundary points involv-
ing essentially single-attribute relations
are easily computable [Hevner and Yao
1979]), then the strategies at (yl , y2), yl +
312 = t + 1 can easily be computed using
(6.1)-(6.5). Start ing from t = 2, we pro-
gress to t = m + n when the optimal strat-
egy for the query is obtained. This opera-
tion can be shown to take O(mn) t ime [Yu
et al. 1979].

Example 6.4. Given IAl l -< IA21 ---
IIAI, IIBI <- [B t l , and m = 2, n = 1; see
Figure 14.

(1) For the points on the A axis, the
optimal strategies OPTS(k , 0, 0, Ah),
OPTS(k , 0, IA, Ah), and OPTS(k , 0 , / , I),
where k = 1 or 2, are calculated as follows:

OPTS(k , 0, 0, Ah):

A1, k - - 1,

A1 "-* A2, k --- 2

OPTS(k , 0, IA, Ak):

min{A, --* IA ---> A1, IA ---* A,}, k = 1,

rain{A1 ---> A2 ---> IA ~ A2,

A, ---> IA ---> A2}, k = 2.

OPTS(k , 0 , / , I):

A1--* L k = 1,

A I " * A2""> I, k = 2 .

(2) For the points on the B axis, the
optimal strategies OPTS(0 , 1, 0, B1),
OPTS(0, 1, IB, B1), and OPTS(0, 1 , / , I)
are calculated as follows:

OPTS(0, 1, 0, B1): B1,

OPTS(0, 1, IB, Bx): IB ---> B1,

OPTS(0, 1 , / , I):

min{IB ~ B1 -* I, Bx ~ I}.

Computing Surveys, Vol. 16, No. 4, December 1984

BIs

(o,1) (I, 1,,~, (2,1)

t= l t=2 t=3

(1,o) (2,o)

Figure 14. Example 6.4.

A'S

Then, all points (xl, x2) satisfying x, _> 1,
x~ + xe = 2 are located. In our example,
(1, 1) is the only point. The three optimal
strategies to be considered are OPTS(l , 1,
/, A~), OPTS(l , 1, /, I), and OPTS(l , 1,
L B~).

By (6.1) and 6.2),

OPTS(l, i , / , A,)

is AI (-- OPTS(0, 1,/, I)

and

OPTS(l , 1 , / , B~)

is B1 ~-- OPTS(l , 0 , / , I).

By (6.3), and (6.4) and (6.5), OPTS(l , 1,
/, I) is the minimal cost strategy among the
following three strategies:

I ~ - OPTS(l , 1, / , A~),

I *-- OPTS(I , 1, / , B1),

and

rain{OPTS(I, 0, 0, A,),
/

I OPTS(l , 0, I, A1)},

~"min lOPTS(O, 1, O, B1),

OPTS(0,1, / , B~)}.

There is only one point (2, 1) satisfying
x, _ 1, x~ + x2 = 3. The three optimal
strategies at (2, 1) are calculated by {6.1)-
{6.5). They are as follows:

OPTS(2, 1, / , A2):

A2 ~-- min{OPTS(1, 1 , / , /) ,

OPTS(l , 1, L A,)},

OPTS(2, 1, L B2):

B1 ~-- OPTS(2, 0 , / , /) ,

Distributed Query Processing ° 417

and

OPTS(2, 1, / , I):

min{I ~-- OPTS(2, 1 , / , A2),

I *-- OPTS(2, 1, L B,),

min{OPTS(2, 0, 0, A2),

¢ / OPTS(2, 0, IA, As)}
I

~"min{OPTS(0, 1, 0, B,),

OPTS(0, 1, IB, B,)}.

If the minimum cost strategy to fully reduce
some relation is sought, the answer is then

min{OPT(2, 1,/,A2), OPT(2,1,/,B~),

OPT(2, 1,/,I)}. []

The algorithm can be generalized to ob-
tain optimal strategies to fully reduce a
relation for tree queries (see Chiu and Ho
[1980] and Yu et al. [1979]). However, the
algorithm runs in exponential time.

7. HEURISTICS ALGORITHMS
BASED ON SEMIJOINS

Two query-processing algorithms using
semijoins are discussed in this section.
They assume that one copy of each relation
referred to by the query has been selected
and then the reduction and the assembly
phases are carried out. The cost of a semi-
join X - - A --* Y is defined to be the cost
of transferring X.A from the site contain-
ing X to the site containing Y (if the two
sites are identical, the cost is zero). The
benefit of the semijoin is the size of Y before
the operation minus the size of Y after the
operation. A semijoin is profitable if its cost
is less than its benefit.

7.1 The SDD-1 Query-Processing Algorithm
and Its Enhancements [Bernstein et al.
1981; Goodman et al. 1979]

The reduction phase is very simple; it iden-
tifies all possible semijoins between any two
relations. The cost and the benefit of each
semijoin are estimated. A profitable semi-
join having the smallest cost is then chosen.
(In one of the two papers, the semijoin

Computing Surveys, Voi. 16, No. 4, December 1984

418 • C. T. Yu and C. C. Chang

having the highest {benefit - cost) is se-
lected.) The costs and the benefits of those
semijoins that can be affected by the exe-
cution of the chosen semijoin are updated,
and another semijoin is considered. The
process is repeated until no profitable
semijoin can be found. Some details are as
follows.

First, all local reductions using selections
and projections are performed. Semijoins
within the same site can also be executed
to reduce the sizes of relations. Then all
possible semijoins across sites are identi-
fied. As pointed out earlier, after renaming
attributes, all semijoins are of the form
R, ~ Ak ~ Rj, because semijoins of the
form R,.Ak ----> Rj .At are neither stated nor
implied by the qualification of the query.
For each such semijoin across sites, the cost
and the benefit are estimated to bepi] Ak] w
and I R~ [wj(1 - p,}, respectively, where p~
is the selectivity of R, on attribute A~, I Ah I
is the cardinality of Ak, w is the average
width of a value in Ak, wj is the average
width of a tuple in relation Rj, and [RjI
is the number of tuples of the relation.
The semijoin is profitable if P,I Ak lw <
I Rj I wj (1 - p,). After identifying all prof-
itable semijoins, the semijoin with least
cost is selected to be the first semijoin to
be executed, for example, Rr ~ A, ~ Rt.
(The second version of SDD-1 selects the
semijoin which maximizes {benefit - cost).)
This semijoin is not executed until the en-
tire sequence of semijoins and the assembly
site are chosen. In spite of not executing
this semijoin immediately, its effect on the
relation Rt is estimated. Specifically, the
benefits and the costs of semijoins from Rt
to other relations have to be updated, due
to expected reduction of Rt. After the up-
date is performed, the next semijoin to be
executed is chosen with the same criterion:
that is, in the first version, the semijoin
that has the least cost and is still profitable;
and in the second version, the semijoin that
has the largest (benefit - cost) and is still
profitable. This process is repeated until all
possible profitable semijoins have been ex-
hausted.

The assembly phase consists of selecting,
among all the sites, the site to which the
transmission of all the relations referred to
by the query incurs the minimum cost. The

Computing Surveys, Vo|. 16, No. 4, December 1984

site is chosen to be the one containing the
largest amount of data after the reduction
phase so that the sum of the amount of
data transferred from other sites will be
minimum. After selecting the assembly site,
it may be possible to discard some useless
semijoins. If, for example, relation R resides
in the assembly site and R is scheduled to
be reduced by a semijoin, but is not used to
reduce other relations after the scheduled
execution of the semijoin, then since R need
not be moved to another site during the
assembly phase, the semijoin on R is useless
and should therefore be discarded.

The operations generated by the SDD-1
algorithm can be improved in the following
ways [Yu et al. 1983]. Certain relations that
are involved in the execution of semijoins
need not be sent to the assembly site for
further processing, and therefore both com-
munication cost and local processing cost
are saved. Furthermore, semijoins involv-
ing these relations can either be eliminated
or replaced by other semijoins, yielding a
smaller communication cost. Some details
are provided below.

When a semijoin, for example, R, - -
X --. R~ is executed, not only is Rj reduced,
but in some situations, the contents of R,
are completely incorporated into the re-
sulting Rj so that R, will not be needed for
processing of the query. More precisely, let
J(R,) be the joining attributes of R, If (i)
X = J(R,) (which implies J (R,) _ J(Rj))
and (ii) the target of the query either does
not contain any attribute of R~ or is equiv-
alent to one without any attribute of R,, Ri
can be eliminated from further considera-
tion after executing the semijoin. In Figure
15a, Ak is the only joining attribute of R~
and the semijoin is R, w A k ~ Rj. Thus if
the semijoin executed is R, w Ah --* Rj,
Condition (i) is satisfied. If the target of
the query is that given in Figure 15b, which
does not contain R,, or that given in Figure
15c, which can be transformed to one not
containing R~, then R~ can be eliminated
after executing the semijoin. Note that
Condition (i) is precisely one of the two key
steps in determining whether a given query
is a tree query. When it is satisfied, the
part of the query containing R~ is a tree
{sub)query. In Figure 15a, R, ~ A k - - R~ is
a tree subquery, which permits Rj to be

Ri ~ A k - - R j - - A 1 - - R t

\ I
As An

Rm

(a)

Distributed Query Processing

Target = (Rt. Ar, Rm.Au)

(b)

• 419

Target ffi (Rt.Ar, Rm.Au, Ri. Ak)

ffi (Rt.Ar, Rm.Au,Rj.Ak)

(c)

Target • (Ri. Ag, Rt. Ar, Am.Au)

(d)

Figure 15. • Possibility of eliminating R, after executing the semijoin R, - -
Ak --* R~: (a) query graph; (b) target; (c) another target; (d) another target.

fully reduced by R, with respect to it. On
the other hand, Condition (i) is not satis-
fied by semijoins involving any two of the
three relations {R~, Rt, Rm} in Figure 15a,
for an obvious reason: The subquery in-
volving the three relations is cyclic. Figure
15d shows a target that cannot be trans-
formed into an equivalent target without
the relation R,. Thus considering the target
given in Figure 15d, R, cannot be eliminated
even if Condition (i) is satisfied. The sat-
isfaction of both Conditions (i) and (ii)
allows R, to be eliminated after the execu-
tion of the semijoin.

As pointed out in the last paragraph,
SDD-1 does not recognize that certain re-
lations involved in previously executed
semijoins are not needed for further pro-
cessing and can be eliminated, and that
semijoins involving these relations can still
be generated subsequently. It turns out [Yu
et al. 1983] that any semijoin involving any
such disposable relation can always be re-
placed by another semijoin such that the
cost of the new strategy is not higher than
that of the original strategy. The replace-
ment procedure begins by letting the
semijoin be replaced by R, - - A --* Rj, where
R~ or Rj or both relations can be eliminated.
R, will be replaced by Rr, where, if R, cannot
be eliminated, Rr is Ri; otherwise, there
exists a sequence of semijoins such that R,
--* R~I causes R, to be eliminated, R~j --,
R,j +1 causes R,j to be eliminated, 1 ___ j ___ t,
R~t+l is not eliminated, and Rr is R~t+l. If
the relation replacing R, is denoted by
Repl(R,), the same replacement procedure

applies to R~. In the example of Figure 16,

no relation is eliminated initially; thus

Repl(R,) = R,, 1 _ i _< 4. After the first

semijoin RI -- C --* R2, RI is eliminated and
therefore Repl(Rl) ffi R2, as shown in Figure

16b. If the next semijoin is SI:R1 -- C --*

R4, then the replacement semijoin is $2:
R2 -- C --* R4. Since RI was used to reduce
R2, it is clear that RI(C) in semijoin SI con-
tains R2(C) in semijoin $2, and therefore

cost(S2) _< cost(St). Furthermore, R4,

which is reduced by semijoin SI, contains
R4, which is reduced by semijoin $2. Any
semijoin thus originating from the latter R4

has a smaller cost than the corresponding
semijoin originating from the former R4,

and if no further semijoin is executed on

R4, the cost to send the latter relation to
the assembly site is smaller than that to

send the former relation to the same des-

tination.

Instead of having the next semijoin be

$1, the next semijoin is $ 3 : R 4 - - C ---> R1.
It is then replaced by $4:R4 - - C --, R2.
Since R1 is not needed for processing the
query, the semijoin $3 is not a useful oper-
ation. And since RI(C) after executing $3
contains R2(C) after executing $4, any
semijoin originating from RI(C) will be
more costly than the corresponding one
from R2(C). Thus in both cases, replacing
R1 by R2 yields a better strategy.

Figure 16c-e shows that after executing
some other semijoins other relations are
eliminated, and defines the relations that
should be replaced by other particular re-
lations at each stage.

Computing Surveys, Vol. 16, No. 4, December 1984

..... ~ L

420 C. T. Y u a n d C. C. C h a n g

Q = {R2.D [(Rl.C = R2.C) and (R4.C = Rx.C) and (R2.D = Ra.D)}

Initially, no relation is
eliminated.

(a)

After execution of the semljoin
R, - - C--* R2,

R1 is eliminated.
Repl(R1) = R2;
Repl(R2) = R2;
Repl(Rz) = R3;
Repl(R4) = R4.

(b)

After

R2 -- C--* R4,

there is no change, that is,

Repl(Rd = R2;

Repl(R2) = R2;
Repl(R3) = R3;
RepI(R4) = R4.

(c)

After R4 -- C --* R~,
R4 is eliminated.
RepI(R1) = R2;
Repl(R2) --- R2;
RepI(R3) - R3;
Repl(R4) --- R2.

(d)

Figure 16.

After R2 -- D -* R3,
R2 is eliminated.
Repl(Rx) = R3;

Repl(R2) = Ra;
Repl(R3) = R3;
Repl(R4) = R3.

(e)

Replacing an eliminated relation by another relation.

7.2 The General Algorithm
in Apers et al. [1983]

Apers et al. [1983] p resen t an a lgor i thm
tha t is a general izat ion of the opt imal al-
gor i thm given in Sect ion 5 to process s im-
ple queries. The s t ra tegy cons t ruc ted by the
a lgor i thm is a union of n substrategies, one
for each relation, where n is the num ber of
relat ions referenced by the query. Consider
a relat ion R of the query. Let A be a joining
a t t r ibute of R. An opt imal me thod is sought
to reduce and send R to the result site using
semijoins on a t t r ibu te A only. Given tha t
R,1, Rt2 , R,t, t <_ n, be the relat ions of
the query having joining a t t r ibute A such
t h a t the i r project ions on A are a r ranged in
ascending order of size, tha t is, [R , I (A) [<-

[R,2(A) [_ < . . . _ [R , (A)] , and supposing
t ha t R is R,k for some 1 --< k _ t, then, by
the result given in Sect ion 5, s ingle-at tr i -
bute relat ions in op t imal s trategies to send
R,k to the result site should be in ascending
order of size. T h u s the c a n d i d a t e schedu les

o n a t t r i b u t e A to send the ent i re relat ion
R,h to the result site are

(A) R , I (A) - - A --* R,k

R,I (A) - - A --* R,2(A) - - A

---> R/h --~

R~I(A) - - A --* R,2(A) - - A --* . . .

---> R , k - I (A) - - A ---> R,h

and

(B) R, ~ (A) - - A --* R , 2 (A) - - A - -

R , k - I (A) - - A --* R , k (A) - -

A --~ R,h+I(A) - - A "-* R,k

R, I (A) - - A ~ R,2(A) - - A --~ . . .

R , k - I (A) - - A --* R , h (A) - - A --*

• " "* R , t (A) - - A ---> R,h --->

where the last da ta t r ans fe r in each candi-
date schedule "R,h --->" sends the ent i re re-
lat ion R,k to the result site. In each s t ra tegy
in (A), R,k Occurs once, while in each s t ra t -
egy in (B), bo th R , k (A) and R,h occur once.
In the la t ter si tuation, there are two possi-
ble cases for each schedule, one having
R , k (A) as given in the figure and the other
leaving out R , k (A) . T h e m i n i m u m cost
schedule among all these schedules is cho-
sen and is denoted as the bes t s t ra t egy to

reduce R,k on a t t r i bu t e A . This procedure is
repeated for each joining a t t r ibute of each
relat ion R. Let B S T i , BST2 BSTp be
the set of all the bes t s trategies to reduce R
on the joining a t t r ibu tes of relat ion R,
where p is the n u m b e r of a t t r ibu tes of re-
lat ion R appear ing in the qualif ication
of the query. Assume cost(BST1) <
cost(BST2) < . . . _< cost (BSTp), where
cos t (BST,) is the cost of the best s t ra tegy
BST, to reduce R on a cer ta in a t t r ibute of

Computing Surveys, Voi. 16, No 4, December 1984

R and send the resulting R to some other
site. BST1, BST2 , BSTq are combined
to form a strategy to reduce R, 1 _ q _< p.
As q varies from 1 to p, p combined strate-
gies are formed. The combined strategy
having the smallest cost is the least cost

strategy to reduce R. A similar strategy for
each relation is produced at the reduction
phase.

In the assembly phase, the reduced rela-
tions are then sent to the result site to
produce the answer as in the following ex-
ample.

Example 7.1. Suppose that R1, R2, Ra,
and R4 are four relations, each residing
in a different site. Let Q = {(R3.X,
R4. Y) [(R1.A = R2.A) AND (R2.A = R4.A)

AND (R3.B = R1.B)}.

Figure 17a describes the size of the do-
main of each joining attribute, the size of
each relation, and the selectivity of each
relation on each joining attribute.

Figure 17b presents the candidate sched-
ules for attributes A and B. Assume that
Co = 0 and c~ = 1. The best strategies for
relation R1 on attributes A and B are then
obtained. They are BST1 : R3 - - B --* R1 --~
and BST2:R4 - - A --* R1 --% where
cost(BST1) = 400 and cost(BST2) = 440.
The combined strategies to reduce R~ are

and

R3 - - B --* R1 --*

R3 - - B --* R1 --*

I
A

I
R4

The least cost strategy to reduce Ra is then
selected from the above two combined
strategies, and the least cost strategies of
R2, R~, and R4 are selected by a similar
process. Figure 17d shows the least cost
strategies for all four different relations.

Figure 17e gives the final strategy to an-
swer the query. []

7.3 Better Sernijoin Sequence

Each of the two algorithms above con-
structs a semijoin strategy to answer a

Distributed Q u e ~ Processing • 421

given query. However, each of the con-
structed semijoin strategies can sometimes
be improved. In Luk and Luk [1980], a
polynomial time algorithm is presented to
transform a given semijoin strategy (pro-
duced by some heuristic) into an equivalent
strategy such that each semijoin in the
former strategy corresponds to a semijoin
in the latter strategy and incurs neither
higher cost nor lower benefit. (The en-
hancements in SDD-1 given in Section 7.1
are applicable when one or more relations
are eliminated. Here, the procedure is ap-
plicable even if no relation is eliminated.)

For example, the node R1 in substrategy
R2 ~ A B --, R1 ~-- B - - R3 has in-degree
>1, and the label in one semijoin is a subset
of the label in the other. Satisfying the
conditions above guarantees that a better
strategy can be obtained. R3 - - B --. R2 - -
A B --. R~ is an example of such a strategy,
because although the semijoin R3 - - B --*
X (X is R1 in the former strategy and is R2
in the latter strategy) is executed with the
same cost in both strategies, the semijoin
R2 - - A B --, RI is executed with a smaller
cost in the latter strategy. This process can
be applied to R3, if it should satisfy the
above conditions. The algorithm by Luk
and Luk [1980] scans a given strategy and
identifies the situations in which a node
has either in-degree :>1 or out-degree >1,
and checks whether the label in one semi-
join involving the node is a subset of that
in another semijoin involving the same
node. When such a situation is detected,
the algorithm replaces the substrategy by a
better one. This process is applied to the
preceding nodes recursively until no such
situation exists.

8. ALGORITHMS BASED ON JOINS

Although the use of semijoins reduces the
amount of data transfer and is a valuable
tool, it is not always superior to the use of
joins only. One reason is that for certain
networks, the number of messages ex-
changed rather than the amount of data
transferred may be the dominating factor.
Additional messages may be generated
when semijoins are employed. Another rea-
son is that local processing costs can be
significant, and since SDD-1 and related

Computing Surveys, Vol. 16, No. 4, December 1984

Selectivity

Size A B

RI 1200 0.2 0.5

R2 6OO 0.6

Rs 1200 0.25
R, 2000 0.2

Cardinality o f A = 1000.

Cardinality of B -- 400.
C o l 0, c] = 1.

Each dist inct value in A and each dist inct value in B have uni t length.

Q ffi {(R3.X, R4.Y) J (R~A = R2.A) AND (R2.A ---- R4.A) AND (R1.B = R3.B)}

(a)

A:

cost
200

200 + 40

200 + 40

+ 24

R ! - - A

R, -- A--~ R4-- A-*

R, - - A---~ R 4 - - A- -~ R2 - - A - -*

(b)

B :

cost

100 R 3 - - B---*

100 + 50 R3 - - B --> R1 - - B --,

R 1 •

cost
200 + 240

R2:
200 + 40

+ 24

R3:

R4:
200 + 40

+ 24 + 240

A

R4 - - A --> R,

B

cost
100 + 300 R3 - - B --, RI --*

R, -- A -* R4-- A--~ R2--~

100 + 50
+ 600

Rt - - A -* R4-- A-* R2-- A--~ R4"-*

(c)

R s - - B ' ~ R, - - B"-> R 3 " "

RI: R 3 - - B- -* RI--*

R4 - - A

R2: R 1 - - A "--~ R4 - - A "* R2">

R3: R3 - - B " * R 1 - - B " > Rs-'>

R4: RI - - A "~ R4 - - A " > R2 - - A "* R 4 " "

(d)

Rs - - B --* R1

R4 -- A / ~

R, - - A --* R4 - - A --* R2 -'* R E S U L T SITE

' l R3 - - B --* R, - - B --* Rs
RI - - A --* R, - - A --', R 2 - - A --*R4

(e)

Figure 17. An example il lustrating the general algori thm in Apers et al. [1983]. (a) Size of domain of each
joining at tr ibute, size of each relation, and selectivity of each relation on each joining attr ibute; (b) candidate
schedules for each joining attribute; (c) bes t strategies for reducing each relation on each of its attributes; (d)
least cost strategies of different relations; (e) s trategy for answering the query.

algorithms ignore these costs, the actual
processing cost of strategies based on these
algorithms can be high. Last, although
semijoins can be executed in parallel, the
minimization of response time using semi-
joins is complicated [Apers et al. 1983].
Several algorithms using joins are studied
below.

8.1 Enumerative Algorithms

8.1.1 Algorithm in Epstein
and Stonebraker [1980]

The algorithm first partitions the set of
relations in the query into two complemen-
tary groups, GI and G2, where G~ has at
least two relations and G~ has zero or more
relations. Substrategy for the relations in
G~ is next obtained by designating the site
containing the largest relation as the result
site and sending all other relations in G~ to
it. It seeks the minimal cost substrategy by
a recursive call for the relations in G2 t9
{R}, where R is the resulting relation ob-
tained from the those relations in G1. All
possible combinations of G1 and G2 are con-
sidered to obtain the minimal strategy.

Should relations R1, R2, and R3 reside in
different sites and a query asks for the join
of these three relations, the algorithm will
first partitions R1, R2, and R3 into {{R1, R2},
{R3}}. Then the minimal cost substrategy
for {R~, R2} is constructed by sending the
smaller of the two relations R1 and R2 to
the other. The relation obtained by joining
R1 with R~, for example, TI, is added to the
second group and the minimal cost sub-
strategy for {T~, Rs} is sought. A strategy
for the joins of R1, Re, and R3 is then
obtained. The same process is repeated
for {{R;, R3}, {Re}}, {{Re, R3}, {R1}}, and
{{R;, Re, R3}, { }}. At the end, the optimal
strategy for the query is obtained.

In general, when the natural join of n
relations is sought, the exhaustive enumer-
ative search algorithm will scan through
e (n) strategies, where

e(1) = 1,

e(2) -- 1,

Distributed Query Processing • 423

where (,') stands for the number of different
combinations for the first group having i
relations, and e (n - i + 1) stands for the
number of substrategies that the recursive
call will scan through if the first group has
i relations.

By leaving out the lower order terms (i.e.,
i _ 3) in the above expression, e (n) >

(~) e (n - 1). e(4) = 29; e(5) _> 10 • 29 - 290;
e(6) _ 15 x 290 = 435. Thus e (n) grows
very rapidly, although some of the strate-
gies are degenerate (i.e., certain subsets of
relations may not be joined, but strategies
involving these subsets of relations are
enumerated).

8.1.2 R* [Williams et al. 1981]

As in Epstein and Stonebraker [1980], R*
enumerates many strategies and chooses
the one with the least cost. However, many
more alternatives are considered in R*. If a
relation is replicated, the choice of the ap-
propriate copies of the relation to be used
for processing the query has a significant
effect on the cost; the sequence in which
the operations are performed is also impor-
tant. For example, the cost of the strategy
((R1 joined with R2) joined with R3) differs
from that of the strategy (RI joined with
(R2 joined with R3)). Even the join between
two different relations R1 and R2, situated
at distinct sites $1 and $2, respectively, can
be performed in several ways, resulting in
different costs, for example:

(i) Send R1 to site $2 and join with R2
there.

(ii) Send R2 to site $1 and join with R1
there.

(iii) Send both relations R~ and R2 to a
different site $3 and join them there.

(iv) For each tuple of R1 transmitted to $2,
send the matching tuples of R2 to S1.

(v) The same as {iv), with the roles of R1
and R2 reversed.

Many strategies are thus evaluated by
R*, which takes into consideration both
local processing cost and data communica-
tion cost. Although enumerating all these
strategies for a query can be costly, this
approach can be worthwhile if the query is
frequently executed. Such an approach is

Computing Surveys, Vol. 16, No. 4, December 1984

424 • C. T. Yu and C. C. Chang

also taken in centralized databases [Grif-
fiths Selinger et al. 1979].

8.2 Nonenumerative Algorithms

8.2.1 Algorithm in Baldissera et al. [1979]

The algorithm in Baldissera et al. [1979]
accepts only tree queries. It decomposes a
query into chain queries and solves them
to obtain the answer. A chain query is a
query whose query-graph or equivalent
query-graph is a chain. A nonchain query
is a query for which none of its equivalent
query graphs is a chain.

Suppose that a chain query with a node
designated as root is given. The algorithm
finds the assembly site, which is the site
with the maximum number of data refer-
enced by the query. Then the algorithm
repeats the following process until the an-
swer to the chain query is obtained. Start-
ing from a leaf, the algorithm checks
whether joining the leaf with its parent first
and then sending the result to the assembly
site incurs less cost than sending the two
relations directly to the assembly site and
performing the join there. If the former
strategy is less costly, then the leaf node
and its parent are merged to form a tem-
porary relation, and the query graph is
modified by replacing the part of the graph
connecting the two relations by the newly
created relation. Otherwise, the leaf node
is sent to the assembly site and is elimi-
nated from the query graph. This process
is repeated over the modified query graph.
When two relations are joined, the algo-
rithm sends the smaller relation to the site
containing the larger relation and merges
them.

Figure 18c gives an example of a chain
query. A decision has to be made whether
to merge the leaf R5 and its parent R34 to
form a new relation R345 or to send R~ and
R34 directly to the root. The choice with the
lower transmission cost is selected.

If the query graph is a tree but not a
chain, and R is the root, adjacent to k nodes,
the following two cases arise:

Case 1. k > 1. The tree is decomposed
into k subtrees, with each subtree contain-
ing R as the root. R is the only node in

common between the subtrees. For exam-
ple, the subtrees of Figure 18a are given in
Figure 18d. The subtree with the smallest
number of nodes is first selected for pro-
cessing. If the subtree is a chain, the pre-
vious procedure is applied to the subquery
corresponding to the subtree, and the root
is modified and incorporated into the orig-
inal tree. For example, processing the chain
in Figure 18d and incorporating the modi-
fied root into the original tree yields the
modified query-graph in Figure 18b. If the
selected subtree is not a chain, then the
present procedure is applied recursively to
the subtree.

Case 2. k = 1. Let the direct descendant
of R be r. If r has two or more direct
descendants, then the subtree with root r
is identical to Case 1 and the same proce-
dure is applied to it; otherwise, process in
Case 2 is applied.

Example 8.1. Given a tree query with
root R1 as shown in Figure 18a, since R1 is
adjacent to two nodes, the tree is decom-
posed into two subtrees, as shown in Figure
18d. Let the corresponding subqueries be
Q, and Q2. Since Q1 is a chain query, it is
processed as described above. Relations R1
and R2 are merged to form the modified
root R12, which is incorporated into the
original tree to form the modified query
graph as shown in Figure 18b. This modi-
fied query graph has one subtree only, and
thus it belongs to Case 2. The direct des-
cendant of R~2, R4, has two direct descend-
ants. Thus the subtree with root R4 is de-
composed into two subtrees, namely R4
C - - R3 and R4 - - D - - Rs. Suppose that
the former subtree is selected for process-
ing. R3 and R4 are merged to form R34, and
the modified query-graph is that shown in
Figure 18c. Since this is a chain query, the
procedure for processing chain queries is
invoked. []

8.2.2 The INGRES Algorithm [Epstein et al.
1978]

A given query is decomposed into a se-
quence of subqueries Q1, Q2 , Qp with
at most one variable in common between
two consecutive subqueries, as in Wong and

Computing Surveys, Vol. 16, No. 4, December 1984

R1

/ \
A B

/
R2 C'

I
R3

\
R4

\
D
\
R5

(a)

Distributed Query Processing

Q={R1 .EI(RI.A=R2.A)

AND (RI.B= R4.B)

AND(R4.C=R3.C)

AND(R4 D=RS.D)}

425

R12
I
B

i
c D

I I
R3 R5

R12 = R1 jom R2

R12
I
B

I
R34

I
D

I
R5

(b) (c)

R54= R5 join R4

R1
i
A

I
R2

QI={(RI.E,R1.B) I R1 Q2={ R1.EI(RI.B=R4.B)
(R1.A=R2.A)} B ANDIR4.C-R3.C)

I AND (R4.D=R5.D,}

/ R 4 \

C D
I \

R3 R5

(d)

Figure 18. Query processing in Baldissera et al. [1979].

Youssefi [1976]. Each subquery is irredu-
cible. A query is irreducible if and only if
its query-graph is a chain with two nodes
or a cycle with k nodes and all its equivalent
query-graphs have a cycle with the same k
nodes, where k _> 3. For example, given a
query as shown in Figure 19a, the algorithm
decomposes the query into two irreducible
subqueries Q1 followed by Q2, as shown in
Figure 19b. Q1 is processed and the result
is incorporated into the query graph of Q2,
which is then processed.

Distributed INGRES [Epstein et al.
1978] considers both data communication

and local processing costs and allows rela-
tions to be fragmented in various sites (see
Section 9). For ease of presentation, it is
assumed that relations are not fragmented,
and only the data communication cost is
considered. If a subquery is a chain with
two nodes, say Rx and Ry, then either Rx is
sent to the site containing Ry, or Ry is sent
to the site containing Rx, depending on
which strategy incurs less cost. If the
subquery is a cyclic query, then a decision
has to be made whether to process the
entire subquery at once or subdivide it into
pieces. The subquery is subdivided if it

Computing Surveys, Voi. 16, No. 4, December 1984

C. T. Yu and C. C. Chang

R1-D-R4

/ \
c\

R2 B ~ R 3

(a)

Q- {R4.EI(R1.A=R2.A)
A,O

AND (R2.B-R3.B)
A,O

01={Rl.01(R1 A--R2.A)

ANO (R2.e.R3.e)
AND (R1.C = R3.C)}

/ /" ' \ \
R2 B R3

Q2- {R4 .E J(R123.D : R 4 . D) }

(b)

R4
I
D

I
R123

where R123 is the result of
processing Q1

IR'i-'l 21-'iR31
Rh~R 3 R1 • R2 ' R3

R1 ~ R3 ' R2
R2 f R2 ' R3 • R1

process ot once subdivide to o sequence
of operotions

(c) (d)

Figure 19. Query processing in Epstein et al. [1978].

results in a lower cost. As an example, given
three relations R1, R2, and R3 with I R11 -<
i R2i - iR30, wl = w2 = w3, and each
relation residing in a different site, I R, i is
the number of tuples of R, and w, is the
average tuple width of R~. Figure 19c illus-
trates the strategy for processing the
subquery Q1 at once with minimum cost,
while Figure 19d shows all possible strate-
gies for subdividing Q~ into pieces. The
strategy in Figure 19c means that R~ and
R2 are sent to the site containing R3, and
the answer to Q~ is produced there. The
first strategy, in Figure 19d, for instance, is
interpreted as follows: (i) R1 is sent to the
site containing R2 to perform the join of R~
with R2; (ii) the resulting relation, let us
say R~2, is sent to the site containing R3 to

perform the join with R3. The cost of the
minimal strategy in Figure 19d is compared
with that of the strategy in Figure 19c. If
the former strategy has less cost, Q1 is then
subdivided into the pieces as given by the
minimal strategy; otherwise, Q1 is pro-
cessed at once.

It is important to point out that both the
query processing algorithms in distributed
INGRES and R* take into consideration
the local processing cost as well as the data
transmission cost. Distributed INGRES
also provides a different algorithm to op-
timize the response time of a query in a
broadcasting system.

Wong [1981] suggested decomposing a
given query into a sequence of subqueries
that contain at most one join and possibly

Computing Surveys, Vol, 16, No 4, December 1984

some projections and selections. His
method emphasizes maximizing parallelism
by making use of redundancy of data.

9. FRAGMENT PROCESSING

A relation can be viewed as a matrix where
the rows stand for tuples and the columns
stand for attributes. A horizontal fragment
of a relation is a subset of the rows of the
matrix. It is obtained by applying a select
operation on the relation. Sometimes a hor-
izontal fragment is accessed frequently in
one site, while another horizontal fragment
is referenced frequently in another site.
Thus it may be beneficial to assign frag-
ments to sites according to their reference
locality. A vertical fragment of a relation is
a subset of the columns of the relation and
is constructed by using the projection op-
eration on the relation. In this section, we
restrict our discussion to horizontal frag-
ments.

In Goodman et al. [1979], a query that
refers to fragmented relations is first de-
composed into subqueries. The SDD-1 al-
gorithm described in Section 7 is then used
to obtain an answer for each subquery. The
union of the answers of all the subqueries
is the answer to the query.

The following procedure is used to de-
compose the query into subqueries: For a
given query, (1) find all the fragmented
relations referenced by the query, say F, G,
. . . . and H; (2) for each combination of
fragments F,, G I and Hk, where F~, Gj,
. . . . and Hk are the fragments of F, G, . . . ,
and H, respectively, construct a subquery
by replacing F, G , . . . , and H in the query
by F,, Gj and Hk, respectively. Thus
the number of subqueries is equal to the
product of the numbers of fragments of the
referenced relations.

Example 9.1. Let F = {F~,/'2} and G =
{G1, G2} be two fragmented relations.

Let Q = {F.B I F.A = G.A } be a query.
Query Q is decomposed by the above

procedure into the subqueries:

Q1 = {F1.B [FI .A = G1.A },

Q2 = {F2.B I F2.A -- G, .A },

Q3 = {F, .B I F , . A = G2.A },

Q4 = {F2.B [F2.A = G2.A }.

Distributed Query Processing • 427

The four subqueries are then individually
evaluated by SDD-I 's query processing al-
gorithm, and the union of the answers is
the final answer.

A semijoin in a fragmented database en-
vironment will fall into one of the following
three types: F-F, R-F , or R - R [Chang
1982b]. An F - F semijoin is one in which
both the sending and the reduced relations
are fragments; An R - F ' s sending relation
is a whole relation, but the reduced relation
is a fragment; in an R - R semijoin, both
relations are whole relations. Thus a query-
processing algorithm in a fragmented da-
tabase environment can be classified into
three categories: F - F semijoin-based algo-
rithm, R - F semijoin-based algorithm, and
R - R semijoin-based algorithm.

Version 1 of SDD-I 's query-processing
algorithm [Goodman et al. 1979] as de-
scribed in Example 9.1 is an F - F semijoin-
based algorithm. An R - F semijoin-based
algorithm is introduced in Chang [1982b].
It repeatedly chooses a beneficial R - F sem-
ijoin until no beneficial R - F semijoin ex-
ists. Then the reduced fragments/relations
are sent to the assembly site to produce the
answer. The query-processing algorithm in
Yu et al. [1983] is an R - R semijoin-based
algorithm. For each given semijoin Ri - - A
--* Rj, where R, and Rj may or may not be
fragmented, it selects a set of sites where
the semijoin can be performed with mini-
mum cost.

Another way to process a query referenc-
ing fragmented relations follows [Epstein
et al. 1978; Stonebraker et al. 1982]: One
fragmented relation is chosen, and other
fragmented relations referenced by the
query are replicated at the sites of the cho-
sen fragmented relation. As an example, let
a query reference R1 and R2. Suppose that
R1 contains fragments/'11 at site 1 and F12
at site 2, and R2 contains fragments F2~ at
site 1, F22 at site 3, and F23 at site 4. The
algorithm may then choose R~ to remain
fragmented and replicate R2 at sites 1 and
2. The latter operation is performed by
sending F2~ to site 2, and sending both F22
and F23 to sites 1 and 2. After R2 arrives at
the sites, R2 is joined with FH at site 1 and
with F~2 at site 2. The union of the tuples
at the two sites is the final answer. In

Computing Surveys, Vol. 16, No. 4, December 1984

428 • C. T. Yu and C. C. Chang

Epstein et al. [1978], the relation to remain
fragmented is chosen such that the amount
of data processed is minimized. In reality,
the cost of accessing data depends on the
supporting access path. For example, with
the use of an index, access could be speeded
up significantly. In Yu et al. [1984b], such
consideration is given to minimize the cost.

It is clear that this method of processing
fragments may require substantial data
transfer. We believe that in a realistic en-
vironment fragments are not placed arbi-
trarily, and there are placement dependen-
cies between the locations of certain sets of
fragmented relations on certain attributes.
For example, Students (student-id, course-
id, . . .) and Courses (course-id, instructor,
. . .) are two fragmented relations with a
fragment of each relation situated at each
campus of a university. Since a student
usually takes courses only from his or her
own campus, the join of a Student fragment
in a campus and a Course fragment in a
different campus on the attribute course-id
is null. In other words, the join of the
relations Course and Student can be per-
formed at local sites without data transfer.
Formally, if F,~ should be a fragment of
relation R, at site j, a placement dependency
between R1 and R2 on attribute A will exist
if the join of Flk and F2t on attribute A is
null for k ~ t.

A query may reference a number of frag-
mented relations that share placement de-
pendencies among them on a certain set of
attributes. It is desirable to determine
whether the query can be processed without
data transfer [Yu et al. 1984a]. (A dual
problem is to determine the placement of
fragments such that queries can be pro-
cessed without data transfer. A solution of
the dual problem is given in Wong and Katz
[1983].)

First, one seeks two relations (among the
referenced relations of the query) that have
a placement dependency between them on
a certain attribute, that attribute being one
of the joining attributes of the two rela-
tions. If two such relations cannot be found,
the query cannot be processed without data
transfer. Otherwise, LP1 becomes the set
containing these two relations, which can
be joined together without data transfer,

although in practice they need not be the
first pair of relations to be operated on. If
another relation referenced by the query
has a placement dependency with a relation
in LP~ on a set of attributes that is a subset
of the set of joining attributes of the query,
then it is added to LP1. This process is
repeated until either all relations are added
to LP1, in which case the query can be
processed without data transfer or some
relations remain and the query cannot be
so processed.

If a query references both fragmented
and unfragmented relations, then the fol-
lowing condition is sufficient for the query
to be processed without data transfer. The
fragmented relations (if there are two or
more such relations referenced by the
query) should satisfy the condition of the
algorithm given in the last paragraph, while
a copy of the unfragmented relations re-
mains at each of the sites containing the
fragmented relations.

10. THE TRANSFORMATION APPROACH

Perhaps a more systematic way to process
queries is the transformation approach
[Ceri and Pelagatti 1984; Ullman 1980]
given as follows. In this approach, there
exists a set of rules, where each rule trans-
forms a query expression into an equivalent
expression. The idea is to apply these rules
repeatedly to obtain an expression that can
be evaluated with a small cost.

Typically, the resulting relation after ap-
plying a unary operator, like project or se-
lect, tends to be smaller than the original
relation, while the resulting relation after
applying a binary operator, like join or
union, can be significantly larger than the
original operands. If the operands are in
different sites, it will be profitable to reduce
their sizes by applying the unary operators
while preserving the equivalence of the
expressions. For example, joining the rela-
tions RI(A, B, C) and R2(B, E, F) on at-
tribute B and then projecting the result on
the attributes (A, B, E) is equivalent to
projecting R1 on attribute A and B to elim-
inate C, projecting R2 on the attributes B
and E to eliminate F, and then taking the
join of the two reduced relations. If R1 and

Computing Surveys, Vol. 16, No. 4, December 1984

Distributed Query Processing

Project
A,B,E

Join

/ \
RllA,B,C) R2IB,E,F)

Join

Pr]je Proiect
B,E

RI(A,B,C) R2(B,E,F)

(a) (b)

Figure 20. Two eqmvalent expression trees.

• 429

SEL

I AI= X

R1
(a)

SEL

All X

UNION

Ftt F12
(o<A|<b) (b <AI<c)

(b)

Figure 21. Fragment processing by eliminating
unnecessary fragments.

R2 are in different sites, the latter expres-
sion can be evaluated with less data trans-
fer and is therefore preferable. The rule
that is applicable in this case is

U(R~ B R2) = U(R1) B U(R2),

where U is a unary operator and B is a
binary operator. A complete set of rules and
the conditions under which the rules are
applicable can be found in Ceri and Pela-
gatti [1984] and Ullman [1980].

In general, an expression can be repre-
sented by an expression tree in which each
binary operation between two operands is
represented by a subtree where the oper-
ands are two nodes whose parent is the
operation, and each unary operation on an
operand is represented by a suhtree with
the operation as the parent of the operand
(illustrated in Fig. 20a). The application of
the rule transforms the expression tree into
an equivalent expression tree given in Fig-
ure 20b. The strategy is to move the unary
operators toward the leaves of the tree as
much as possible. The evaluation of the
expression tree starts from the leaves to-
ward the root, so that the unary operators
can be evaluated as quickly as possible,
reducing the original relations to smaller
ones. This strategy of reducing the sizes of

intermediate relations applies to both cen-
tralized and distributed databases. In cen-
tralized databases, the intermediate rela-
tions move between the secondary and the
main memories, while the movement in
distributed databases is between the sites.
In each case, reducing the sizes of the in-
termediate results seem logical.

When a relation is fragmented and
placed into two or more sites, an expression
involving the relation can be rewritten as
an expression involving the fragments of
the relation. Figure 21 illustrates how re-
lation R1 is replaced by its fragments Fn
and F12, where each fragment is defined by
a condition on the attribute A1. In Figure
21, a selection is applied to R1 on the at-
tribute A1. Since only one of the fragments
Fn and F~2 can satisfy the selection condi-
tion A~ = "X," the expression reduces to a
selection of a single fragment. Thus, al-
though the fragments are located at differ-
ent sites, it is sufficient to perform a selec-
tion at the site containing the appropriate
fragment; the transfer of the other frag-
ment is not required.

It is easy to see that the earlier ap-
proaches are special cases of the transfor-
mation approach. For example, a semijoin
is used to transform a given expression

Computing Surveys, Vol. 16, No. 4, December 1984

430 • C. T. Yu and C. C. Chang

involving a join into an equivalent expres-
sion including the semijoin operation. A
rule in support of this process is

R1 join R2 = R1 join (R1 --* R2).

Thus R2 can be reduced by the semijoin
operation before the join with R1 takes
place.

Similarly, the fragment and replicate ap-
proach [Epstein et al. 1978] is supported by
the rule

RI join U F2, = U(R1 join/'2,)

in which R1 is joined with each individual
fragment of R2 and then the union is taken
rather than assembling all fragments of R2
into a site and then joining with R1.

Not only can equivalence of expressions
be captured by the rules, but semantic in-
formation can also be represented. For ex-
ample, if a relation should give the facilities
of ports and another relation the properties
of ships, then the type of ships that can go
to their respective type of ports can be
expressed as a rule. Thus artificial intelli-
gence techniques may also be applicable in
the processing of queries {see, e.g., King
[1982]). When the number of rules is large,
it is difficult to choose the appropriate se-
quence of rules to be applied, and it can be
a time-consuming process.

11. CONCLUSION

We assume in this paper that a relational
database is used, and that queries are ex-
pressed in a QUEL-like tuple relational
calculus. We did not cover those query-
processing algorithms for aggregate queries
[Kim 1982; Yu et al. 1984a] and quantified
queries [Jarke and Koch 1983; Jarke and
Schmit 1982]. We have sketched some of
the ideas used in the existing distributed
query-processing algorithms: the estima-
tion of the size of intermediate relations,
the use of semijoins, the separation of an
algorithm based on semijoins into three
phases, the properties of tree queries that
allow them to be processed rather effi-
ciently, the transformation of cyclic queries
into tree queries, the enhancement of
semijoin strategies, the enumeration of
strategies, and the different ways of han-

dling fragments. The transformation ap-
proach can be viewed as a generalization of
some of the ideas presented here. We hope
that large-scale experiments will be con-
ducted to verify the usefulness of these
ideas.

ACKNOWLEDGMENTS

We are grateful to the referees for their suggestions
and clarification. One referee in particular has con-
tributed much toward reorganizing the paper to im-
prove readability.

A much abbreviated version of this paper appears
in Topics in In[ormation Science, Kim, Reiner, and
Batory, Eds. Springer Verlag, Berlin and New York,
1985.

REFERENCES

ADIBA, M., CHUPIN, J. C., DEMOLOMBE, R., BIHAN,
J. L., AND GARDARIN, G. 1978. Issues in distrib-

uted database management systems: A technical
overview. In Proceedings of the 4th International
Conference on Very Large Data Bases (West Ber-
lin, Sept. 13-15). IEEE, New York, pp. 89-110.

APERS, P., HEVNER, A., AND YAO, S. B. 1983.
Optimization algorithm for distributed queries.

IEEE Trans So#w Eng. SE-9, 1 (Jan.), 57-68.

BABE, E. 1979. Implementing a relational database
by means of specialized hardware. ACM Trans.
Database Syst. 4, 1 (Mar.), 1-29.

BALDISSERA, C., BRACEHI, G., AND CERI, S. 1979. A
query processing strategy for distributed data-
bases. EURO IFIP 79, P. A. Samet, Ed. Elsevier,
New York, pp. 667-677.

BEERI, C., FAGIN, R., MAIER, D., MENDELZON, A.,
AND YANNAKAKIS, M. 1981. Properties of

acyclic database schemes. In Proceedings o[the
13th Annual ACM Symposium on Theory of Com-
puting (Milwaukee, Wis., May 11-13). ACM, New
York, pp. 355-362.

BEERI, C., FAGIN, R., MAIER, D., AND YANNAKAKIS,
M. 1983. On the desirability of acyclic database

schemes. J. ACM 30, 3 (July), 479-513.

BERNSTEIN, P., AND CHIU, D. 1981. Using semljoins
to solve relational queries. J. ACM 28, I (Jan.),
25-40

BERNSTEIN, P., AND GOODMAN, N. 1979. Full re-
ducers for relational queries using multiattribute
semijoms. Tech. Rep., Center for Research in
Computing Technology, Harvard Univ., Cam-

bridge, Mass., July.

BERNSTEIN, P., AND GOODMAN, N. 1981. The power
of natural semijoins. SIAMJ. Comput. 10, 4, 751-
771.

BERNSTEIN, P., GOODMAN, N., WONG, E., REEVE, C.,
AND ROTHNIE, J. 1981. Query processing in a
system for distributed databases (SDD-1). ACM
Trans. Database Syst 6, 4 (Dec.), 602-625.

Computing Surveys, Vol 16, No. 4, December 1984

BLACK, P., AND LUK, W. 1982. A new heuristic for
generating sem~join programs for distributed
query processing. In Proceedings of the IEEE 6th
International Computer Software and Applwation
Conference (Chicago, Ill., Nov. 8-12). IEEE, New
York, pp. 581-588.

CERI, S., AND PELAGATTI, G. 1984. Distributed Da-
tabases, Principles and Systems. McGraw-Hill,
New York.

CHANDY, K. 1977. Models of distributed systems. In
Proceedmgs of the 3rd International Conference
on Very Large Data Bases (Tokyo, Oct. 6-8).
IEEE, New York, pp. 105-120.

CHANG, J. 1982a. A heuristic approach to distributed
query processing. In Proceedings of the 8th Inter-
natmnal Conference on Very Large Data Bases
(Mexico City). VLDB Endowment, Saratoga,
Calif., pp. 54-61.

CHANG, J. 1982b. Query processing in a fragmented
database environment. Tech. Rep., Bell Labora-
tories.

CHEN, A. L. P., AND LI, V. O. K. 1983. Properties of
optimal semi-join programs for distributed query
processing. In Proceedings of the IEEE 7th Inter-
natmnal Computer Software and Application Con-
ference (Chicago, Ill., Nov. 7-11). IEEE, New
York, pp. 476-483.

CHEUNG, T. 1981. Two methods of resolution for
general equi-join queries in distributed relational
database. Tech. Rep., Dept. of Computer Science,
Univ. of Ottawa, Ottawa, Ont., Canada.

CHIU, D. 1980. Optimal query interpretation for dis-
tributed databases. Ph.D. dissertatmn, Division
of Applied Sciences, Harvard Univ., Cambridge,
Mass.

CHIU, D., AND HO, Y. 1980 A methodology for in-
terpreting tree queries into optimal semi-join
expressions. In Proceedings of the ACM-SIGMOD
Internatmnal Conference on Management of Data
(Santa Monica, Calif., May 14-16). ACM, New
York, pp. 169-178.

CODD, E. F. 1970. A relational model for large shared
databases. Commun. ACM 13, 6 (June), 377-389.

CODD, E. V. 1972. Further normalization of the da-
tabase relational model. In Database Systems
Prentice-Hall, Englewood Cliffs, N.J., pp. 33-64.

DATE, C. J. 1977. An Introductmn to Database Sys-
tems. Addison-Wesley, Reading, Mass.

EPSTEIN, R., AND STONEBRAKER, M. 1980. Analysis
of distributed database processing strategies. In
Proceedings of the 6th Internattonal Conference
on Very Large Data Bases (Montreal, Oct. 1-3).
IEEE, New York, pp. 92-101.

EPSTEIN, R., STONEBRAKER, M., AND WONG, E.
1978. Distributed query processing m a rela-
tional database system. In Proceedings of the
ACM-SIGMOD Internatwnal Conference on
Management of Data (Austin, Tex., May 31-June
2). ACM, New York, pp. 169-180.

Distributed Query Processing * 431

FAGIN, R., MENDELZON, A., AND ULLMAN, J.
1980. A simplified universal relation assump-
tion and its properties. Tech. Rep., IBM.

GOODMAN, N., AND SHMUELI, O. 1982a. The tree
property is fundamental for query processing. In
proceedings of the A CM Symposium on Principles
of Data Systems (Los Angeles, Calif., Mar. 29-
31). ACM, New York.

GOODMAN, N., AND SHMUELI, O. 1982b. Transform-
ing cyclic schemas into trees. In Proceedmgs of
the ACM Symposium on Principles of Data Sys-
tems (Los Angeles, Calif., Mar. 29-31). ACM,
New York.

GOODMAN, N., AND SHMUEL1, O. 1983. Syntactic
characterization of tree database schema. J ACM
30, 4 (Oct.), 767-786.

GOODMAN, N., et al 1979. Query processing in a
system for distributed databases. Tech. Rep.,
Computer Corporation of America, Cambridge,
Mass.

GOUDA, M., AND DAYAL, U. 1981. Optimal semijoin
schedules for query processing in local distributed
database systems. In Proceedings of the ACM-
SIGMOD International Conference on Manage-
ment of Data (Ann Arbor, Mmh., Apr. 29-May
1). ACM, New York, pp. 164-175.

GRAHAM, M. H. 1979. On the universal relation.
Tech. Rep., Dept. of Computer Science, Umv. of
Toronto, Toronto, Ont., Canada, Sept.

GRIFFITHS SELINGER, P., et al. 1979. Access path
selection in a relational data base management
system. Tech. Rep., IBM Research Laboratory,
San Jose, Calf., Jan

HEVNER, A. R. 1980. The optimization of query
processing on distributed database systems.
Ph.D. dissertation, Dept. of Computer Scmnce,
Purdue Univ., Lafayette, Ind.

HEVNER, A. R, AND YAO, S. B. 1979. Query pro-
cessing m distributed database system. IEEE
Trans. Softw. Eng SE-5, 3 (May), 177-187.

JARKE, M., AND KOCH, J 1983 Range nesting: A
fast method to evaluate quantffied queries. In
Proceedings of the ACM-SIGMOD Internatmnal
Conference on Management of Data (San Jose,
Calif., May 23-26). ACM, New York, pp. 196-
206.

JARKE, M, AND SCHMIDT, J. 1982. Query processing
strategies in the Paseal/R relational database
management system. In Proceedings of the ACM-
SIGMOD Internattonal Conference on Manage-
ment of Data (Orlando, Fla., June 2-4). ACM,
New York, pp 256-264.

KAMBAYASHI, Y. 1981. Compressed semijoins and
their apphcatlons to distributed query processing.
IECE Japan, AL81-54.

KAMBAYASHI, Y., AND YOSHIKAWA, M. 1983 Query
processing utilizing dependencies and horizontal
decomposlhon. In Proceedings of the ACM-SIG-
MOD Internatwnal Conference on Management
of Data (San Jose, Calif., May 23-26). ACM, New
York, pp. 55-67.

Computing Surveys, Vol. 16, No. 4, December 1984

432 • C. T. Yu and C. C. Chang

KAMBAYASHI, Y., YOSHIKAWA, M., AND YAGIMA, S.
1982. Query processing for distributed data-
bases using generalized semijolns. In Procee&ngs
of the ACM-SIGMOD International Conference
on Management of Data (Orlando, Fla., June 2-
4). ACM, New York, pp. 151-160.

KERSCHBERG, L., WING, P. D., AND YAO, S. B.
1980. Optimal distributed query processing.
Bell Laboratories, Holmdel, N. J.

KIM, W. 1982. On optimizing an SQL-like nested
query. Trans Database Syst. 7, 3 (Sept.), 443-
469.

KING, J. J. 1982. QUIST: A system for semantic
query optimization in relational databases. In
Proceedings of the 7th Internatmnal Conference
on Very Large Data Bases (Cannes, Sept. 9-11).
IEEE, New York, pp. 510-517.

KRISHNAMURTHY, R., AND MORGAN, S. 1984.
Distributed query optimization: An engineering
approach. IEEE Data Eng 220-227.

KUNG, H. T., AND LEHMAN, P L. 19"80. Systolic
(VLSI) arrays for relational database operations.
In Proceedings of the ACM-SIGMOD Interna-
tmnal Conference on Management of Data (Santa
Monica, Cahf., May 14-16). ACM, New York, pp.
105-116.

LUK, W. S., AND BLACK, P. A. 1981. On cost esti-
mation in processing a query in a distributed
database system. In Proceedings of the IEEE 5th
Internatmnal Computer Software and Apphcation
Conference (Chicago, Ill., Nov. 18-20). IEEE,
New York, pp. 24-32.

LUK, W. S., AND LUK, L. 1980. Optimal query pro-
cessing strategies in a distributed database sys-
tem. Tech. Rep., Dept. of Computer Scmnce, Si-
mon Fraser Umv., Burnaby, B.C., Canada.

REINER, D. 1982 (Guest Ed.). IEEE Database Engi-
neering Specml Issue on Query Processing, Sept.

ROTHN1E, J. B., AND GOODMAN, N. 1977a. A survey
of research and development in distributed data-
base management. In Proceedings of the 3rd In-
ternatwnal Conference on Very Large Data Bases
(Tokyo, Oct. 6-8). IEEE, New York, pp. 48-62.

ROTHNIE, J. B., AND GOODMAN, N. 1977b. An over-
view of the preliminary design of SDD-1- A sys-
tem for distributed databases. In Proceedings of
the Berkeley Workshop on Distributed Data Man-
agement and Computer Networks (Berkeley,
Calif.).

ROTHNIE, J. B., JR., BERNSTEIN, P. A., FOX, S.,
GOODMAN, N., HAMMER, M., LANDERS, T. A.,
REEVE, C., SHIPMAN, D. W., AND WONG, E.
1980. Introduction to a system for distributed
databases (SDD-1). ACM Trans Database Syst.
5, 1 (Mar.), 1-17.

SACCO, G. M. 1984. Distributed query evaluation in
local area network. IEEE Data Eng 510-516.

STONEBRAKER, M., et al. 1982. Performance analysis
of distributed data base systems. IEEE Database
Eng. 5, 4 (Dec.), 58-65.

ULLMAN, J. D. 1980. Princtple of Database Systems.
Computer Science Press, Rockvllle, Md.

WAH, B. W., AND LIEN, Y. N. 1984. The file assign-
ment and query processing problems in local
multiaccess networks. IEEE Data Eng 228-235.

WILLIAMS, R., DANIELS, D., HAAS, L., LAPIS, G.,
LINDSAY, B., NG, P., OBERMARCK, R., SEL1NGER,
P., WALKER, A., WILMS, P., AND YOST, R.
1981. R*: An overview of the architecture. Tech.
Rep., IBM Research Laboratories, San Jose,
Calif.

WONG, E. 1977. Retrieving dispersed data from
SDD-I: A system for distributed databases. In
Proceedings of the 2nd Berkeley Workshop on
Dastributed Data Management and Computer
Networks (Berkeley, Calif.), pp. 217-235.

WONG, E. 1981. Dynamic re-materialization: Pro-
cessmg distributed queries using redundant data.
In Proceedings of the Berkeley workshop on Dis-
tributed Data Management and Computer Net-
works (Berkeley, Calif.).

WONG, E., AND KATZ, R. 1983. Distributing a data-
base for parallelism. In Proceedings of the ACM-
SIGMOD International Conference on Manage-
ment of Data (San Jose, Calif., May 23-26). ACM,
New York, pp. 23-29.

WONG, E., AND YOUSSEFI, K. 1976. Decomposi-
tion--A strategy for query processing. ACM
Trans Database Syst. 1, 3 (Sept.), 223-241.

YAO, S. B. 1977. Aproximating block accesses in
database organization. Commun. ACM 20, 4
(Apr.), 260-261.

Yu, C. T , AND OZSOYOGLU, M. Z. 1979. An algo-
rithm for tree-query membership of a distributed
query. In Proceedings of the IEEE 3rd Interna-
tional Computer Software and Apphcatmn Confer-
ence (Chicago, Ill., Nov.). IEEE, New York, pp.
306-312.

Yu, C. T., LAM, K., AND OZSOYOGLU, M. Z.
1979. Distributed query optimization for tree
queries. Dept. of Information Engineering, Univ.
of Illinois at Chmago Circle, Oct. Also in J. Corn-
put Syst. Sci. 29 (1984), 409-445.

Yu, C. T., LAM, K., CHANG, C., AND CHANG, S.
1982a Promising approach to distributed query
processing. In Proceedings of the Berkeley Work-
shop on Distributed Data Management and Com-
puter Networks (Berkeley, Calif.), pp. 363-390.

Yu, C. T., CHANG, C., AND CHANG, Y. 1982b. Two
surprising results in processing simple queries in
distributed databases. In Proceedings of the IEEE
6th International Computer Software and Apph-
cation Conference (Chicago, Ill., Nov. 8-12).
IEEE, New York, pp. 377-384.

Yu, C., CHANG, C., TEMPLETON, M., BRILL, D., AND
LUND, E. 1983. On the design of a distributed
query processing algorithm. In Proceedings of the
ACM-SIGMOD International Conference on
Management of Data (San Jose, Calif., May 23-
26). ACM, New York, pp. 30-39.

Computing Surveys, Vol 16, No. 4, December 1984

Yu, C., GUH, K., CHANG, C., CHEN, C., TEMPLETON,
M., AND BRILL, D. 1984a. Placement depend-
ency and aggregate processing in fragmented dis-
tributed database environment. In Procee&ngs of
the IEEE 8th International Computer Software
and Apphcation Conference (Chicago, Ill.). IEEE,
New York.

Distributed Query Processing * 433

YU, C., GUH, K., CHANG, C., CHEN, C., TEMPLETON,
M., AND BRILL, D. 1984b. An algorithm to pro-
cess queries in a fast distributed network. In
Proceedings of the IEEE Real Time Systems Sym-
posium (Austin, Tex.). IEEE, New York, pp. 115-
122.

Computing Surveys, Vol. 16, No. 4, December 1984

