
1

Distributed Random Walks

Atish Das Sarma, eBay Research Labs, San Jose, CA, USA. E-mail: atish.dassarma@gmail.com

Danupon Nanongkai, Division of Mathematical Sciences, Nanyang Technological University, Singapore

637371. E-mail: danupon@gmail.com

Gopal Pandurangan, Division of Mathematical Sciences, Nanyang Technological University, Singapore

637371 and Department of Computer Science, Brown University, Providence, RI 02912, USA.

E-mail: gopalpandurangan@gmail.com

Prasad Tetali, School of Mathematics and School of Computer Science, Georgia Institute of Technology

Atlanta, GA 30332, USA. E-mail: tetali@math.gatech.edu

Performing random walks in networks is a fundamental primitive that has found applications in many areas
of computer science, including distributed computing. In this paper, we focus on the problem of sampling
random walks efficiently in a distributed network and its applications. Given bandwidth constraints, the
goal is to minimize the number of rounds required to obtain random walk samples.

All previous algorithms that compute a random walk sample of length ℓ as a subroutine always do so
naively, i.e., in O(ℓ) rounds. The main contribution of this paper is a fast distributed algorithm for perform-
ing random walks. We present a sublinear time distributed algorithm for performing random walks whose
time complexity is sublinear in the length of the walk. Our algorithm performs a random walk of length
ℓ in Õ(

√
ℓD) rounds (Õ hides polylog n factors where n is the number of nodes in the network) with high

probability on an undirected network, where D is the diameter of the network. For small diameter graphs,
this is a significant improvement over the naive O(ℓ) bound. Furthermore, our algorithm is optimal within
a poly-logarithmic factor as there exists a matching lower bound [Nanongkai et al. 2011]. We further extend
our algorithms to efficiently perform k independent random walks in Õ(

√
kℓD + k) rounds. We also show

that our algorithm can be applied to speedup the more general Metropolis-Hastings sampling.
Our random walk algorithms can be used to speed up distributed algorithms in applications that use

random walks as a subroutine. We present two main applications. First, we give a fast distributed algo-
rithm for computing a random spanning tree (RST) in an arbitrary (undirected unweighted) network which
runs in Õ(

√
mD) rounds with high probability (m is the number of edges). Our second application is a

fast decentralized algorithm for estimating mixing time and related parameters of the underlying network.
Our algorithm is fully decentralized and can serve as a building block in the design of topologically-aware
networks.

Preliminary versions of this paper appeared in 28th ACM Symposium on Principles of Distributed Com-
puting (PODC) 2009, Calgary, Canada and 29th ACM Symposium on Principles of Distributed Computing
(PODC) 2010, Zurich, Switzerland [Das Sarma et al. 2009; Das Sarma et al. 2010].
G. Pandurangan is supported by the following grants: Nanyang Technological University grant M58110000,
Singapore Ministry of Education (MOE) Academic Research Fund (AcRF) Tier 2 grant MOE2010-T2-2-082,
US NSF grant CCF-1023166, and a grant from the US-Israeli Binational Science Foundation (BSF). P. Tetali
is supported in part by NSF DMS 0701023 and NSF CCR 0910584.
Work partially done while A. Das Sarma was at Georgia Institute of Technology and Google Research and
while D. Nanongkai was at Georgia Institute of Technology and University of Vienna.
Author’s addresses: A. Das Sarma, eBay Research Labs, San Jose, CA, USA; D. Nanongkai, Division of Math-
ematical Sciences, Nanyang Technological University, Singapore; G. Pandurangan, Division of Mathemat-
ical Sciences, Nanyang Technological University, Singapore and Department of Computer Science, Brown
University, RI, USA; P. Tetali, School of Mathematics and School of Computer Science, Georgia Institute of
Technology Atlanta, GA, USA.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 1 ACM 0004-5411/1/01-ART1 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

1:2 A. Das Sarma, D. Nanongkai, G. Pandurangan, T. Tetali

Categories and Subject Descriptors: C.2.4 [Computer Systems Organization]: Computer-Communication
Networks—Distributed Systems; F.0 [Theory of Computation]: General; G.2.2 [Mathematics of Com-

puting]: Discrete Mathematic—Graph Theory

General Terms: Random walks, Random sampling, Decentralized computation, Distributed algorithms, Ran-
dom Spanning Tree, Mixing Time.

ACM Reference Format:

Das Sarma, A., Nanongkai, D., Pandurangan, G., Tetali, P. 2011. Distributed Random Walks. J. ACM 1, 1,
Article 1 (January 1), 31 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

Random walks play a central role in computer science, spanning a wide range of ar-
eas in both theory and practice. The focus of this paper is on random walks in net-
works, in particular, decentralized algorithms for performing random walks in arbi-
trary networks. Random walks are used as an integral subroutine in a wide variety
of network applications ranging from token management [Israeli and Jalfon 1990;
Bernard et al. 2004; Coppersmith et al. 1993], load balancing [Karger and Ruhl 2006],
small-world routing [Kleinberg 2000], search [Zhong and Shen 2006; Adamic et al.
2001; Cooper 2005; Gkantsidis et al. 2005; Lv et al. 2002], information propagation
and gathering [Bharambe et al. 2004; Kempe et al. 2004], network topology construc-
tion [Gkantsidis et al. 2005; Law and Siu 2003; Loguinov et al. 2003], checking ex-
pansion [Dolev and Tzachar 2010], constructing random spanning trees [Broder 1989;
Bar-Ilan and Zernik 1989; Baala et al. 2003], monitoring overlays [Morales and Gupta
2007], group communication in ad-hoc network [Dolev et al. 2006], gathering and dis-
semination of information over a network [Aleliunas et al. 1979], distributed construc-
tion of expander networks [Law and Siu 2003], and peer-to-peer membership manage-
ment [Ganesh et al. 2003; Zhong et al. 2005]. Random walks are also very useful in pro-
viding uniform and efficient solutions to distributed control of dynamic networks [Bui
et al. 2004; Zhong and Shen 2006]. Random walks are local and lightweight; moreover,
they require little index or state maintenance which makes them especially attrac-
tive to self-organizing dynamic networks such as Internet overlay and ad hoc wireless
networks.

A key purpose of random walks in many of these network applications is to per-
form node sampling. While the sampling requirements in different applications vary,
whenever a true sample is required from a random walk of certain steps, typically all
applications perform the walk naively — by simply passing a token from one node to
its neighbor: thus to perform a random walk of length ℓ takes time linear in ℓ.

In this paper, we present an optimal (within a poly-logarithmic factor) sublinear
time (sublinear in ℓ) distributed random walk sampling algorithm that is significantly
faster than the naive algorithm when ℓ ≫ D. Our algorithm runs in time Õ(

√
ℓD)

rounds. This running time is optimal (within a poly-logarithmic factor) since a match-
ing lower bound was shown recently in [Nanongkai et al. 2011]. We then present two
key applications of our algorithm. The first is a fast distributed algorithm for comput-
ing a random spanning tree, a fundamental problem that has been studied widely in
the classical setting (see e.g., [Kelner and Madry 2009] and references therein) and in
some special cases in distributed settings [Bar-Ilan and Zernik 1989]. To the best of
our knowledge, our algorithm gives the fastest known running time in an arbitrary
network. The second is to devising efficient decentralized algorithms for computing
key global metrics of the underlying network — mixing time, spectral gap, and con-
ductance. Such algorithms can be useful building blocks in the design of topologically
(self-)aware networks, i.e., networks that can monitor and regulate themselves in a
decentralized fashion. For example, efficiently computing the mixing time or the spec-

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

Distributed Random Walks 1:3

tral gap, allows the network to monitor connectivity and expansion properties of the
network.

1.1. Distributed Computing

Consider an undirected, unweighted, connected n-node graph G = (V,E). The net-
work is modeled by an undirected n-vertex graph, where vertices model the processors
and edges model the links between the processors. Suppose that every node (vertex)
hosts a processor with unbounded computational power, but with limited initial knowl-
edge. The processors communicate by exchanging messages via the links (henceforth,
edges). The vertices have limited global knowledge, in particular, each of them has its
own local perspective of the network, which is confined to its immediate neighborhood.
Specifically, assume that each node is associated with a distinct identity number from
the set {1, 2, . . . , poly(n)}. At the beginning of the computation, each node v accepts as
input its own identity number and the identity numbers of its neighbors in G. The node
may also accept some additional inputs as specified by the problem at hand. The nodes
are allowed to communicate through the edges of the graph G. The communication is
synchronous, and occurs in discrete pulses, called rounds. In particular, all the nodes
wake up simultaneously at the beginning of round 1. For convenience, our algorithms
assume that nodes always know the number of the current round (although this is not
really needed — cf. Section 2).

We assume the CONGEST communication model, a widely used standard model to
study distributed algorithms [Peleg 2000]: a node v can send an arbitrary message
of size at most O(log n) through an edge per time step. (We note that if unbounded-
size messages were allowed through every edge in each time step, then the problems
addressed here can be trivially solved in O(D) time by collecting all information at
one node, solving the problem locally, and then broadcasting the results back to all
the nodes [Peleg 2000].) The design of efficient algorithms for the CONGEST model
has been the subject of an active area of research called (locality-sensitive) distributed
computing (see [Peleg 2000] and references therein.) It is straightforward to generalize
our results to a CONGEST (B) model, where O(B) bits can be transmitted in a single
time step across an edge.

There are several measures of efficiency of distributed algorithms, but we will con-
centrate on one of them, specifically, the running time, that is, the number of rounds
of distributed communication. (Note that the computation that is performed by the
nodes locally is “free”, i.e., it does not affect the number of rounds.) Many fundamen-
tal network problems such as minimum spanning tree, shortest paths, etc. have been
addressed in this model (e.g., see [Lynch 1996; Peleg 2000; Pandurangan and Khan
2010]). In particular, there has been much research into designing very fast distributed
approximation algorithms (that are even faster at the cost of producing sub-optimal so-
lutions) for many of these problems (see e.g., [Elkin 2004; Dubhashi et al. 2007; Khan
and Pandurangan 2008; Khan et al. 2012]). Such algorithms can be useful for large-
scale resource-constrained and dynamic networks where running time is crucial.

1.2. Problems

We consider the following basic random walk problem.

Computing One Random Walk where Destination Outputs Source. We are given an
arbitrary undirected, unweighted, and connected n–node network G = (V,E) and a
source node s ∈ V . The goal is to devise a distributed algorithm such that, in the end,
some node v outputs the ID of s, where v is a destination node picked according to the
probability that it is the destination of a random walk of length ℓ starting at s. For
brevity, this problem will henceforth be simply called Single Random Walk.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

1:4 A. Das Sarma, D. Nanongkai, G. Pandurangan, T. Tetali

For clarity, observe that the following naive algorithm solves the above problem in
O(ℓ) rounds: The walk of length ℓ is performed by sending a token for ℓ steps, picking
a random neighbor in each step. Then, the destination node v of this walk outputs the
ID of s. Our goal is to perform such sampling with significantly less number of rounds,
i.e., in time that is sublinear in ℓ. On the other hand, we note that it can take too much
time (as much as Θ(|E|+D) time) in the CONGEST model to collect all the topological
information at some node (and then computing the walk locally).

We also consider the following variations and generalizations of the Single Random
Walk problem.

(1) k Random Walks, Destinations output Sources (k-RW-DoS): We have k sources
s1, s2, ..., sk (not necessarily distinct) and we want each of k destinations to output
the ID of its corresponding source.

(2) k Random Walks, Sources output Destinations (k-RW-SoD): Same as above but we
want each source to output the ID of its corresponding destination.

(3) k Random Walks, Nodes know their Positions (k-RW-pos): Instead of outputting
the ID of source or destination, we want each node to know its position(s) in the
random walk. That is, for each si, if v1, v2, ..., vℓ (where v1 = si) is the resultant
random walk starting at si, we want each node vj in the walk to know the number
j at the end of the process.

Throughout this paper, we assume the standard (simple) random walk: in each step,
an edge is taken from the current node v with probability 1/deg(v) where deg(v) is the
degree of v. Our goal is to output a true random sample from the ℓ-walk distribution
starting from s.

1.3. Motivation

There are two key motivations for obtaining sublinear time bounds. The first is that in
many algorithmic applications, walks of length significantly greater than the network
diameter are needed. For example, this is necessary in both the applications presented
later in the paper, namely distributed computation of a random spanning tree (RST)
and computation of mixing time. In the RST algorithm, we need to perform a random
walk of expected length O(mD) (where m is the number of edges in the network). In
decentralized computation of mixing time, we need to perform walks of length at least
the mixing time which can be significantly larger than the diameter (e.g., in a random
geometric graph model [Muthukrishnan and Pandurangan 2010], a popular model for
ad hoc networks, the mixing time can be larger than the diameter by a factor of Ω(

√
n).)

More generally, many real-world communication networks (e.g., ad hoc networks and
peer-to-peer networks) have relatively small diameter, and random walks of length at
least the diameter are usually performed for many sampling applications, i.e., ℓ ≫ D.
It should be noted that if the network is rapidly mixing/expanding which is sometimes
the case in practice, then sampling from walks of length ℓ ≫ D is close to sampling
from the steady state (degree) distribution; this can be done in O(D) rounds (note
however, that this gives only an approximately close sample, not the exact sample for
that length). However, such an approach fails when ℓ is smaller than the mixing time.

The second motivation is understanding the time complexity of distributed random
walks. Random walk is essentially a “global” problem which requires the algorithm to
“traverse” the entire network. Classical global problems include the minimum span-
ning tree, shortest path etc. Network diameter is an inherent lower bound for such
problems. Problems of this type raise the basic question whether n (or ℓ as is the
case here) time is essential or is the network diameter D, the inherent parameter. As
pointed out in the work of [Garay et al. 1998], in the latter case, it would be desirable
to design algorithms that have a better complexity for graphs with low diameter.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

Distributed Random Walks 1:5

Notation: Throughout the paper, we let ℓ be the length of the walks, k be the number
of walks, D be the network diameter, δ be the minimum node degree, n be the number
of nodes, and m be the number of edges in the network.

1.4. Our Results

A Fast Distributed Random Walk Algorithm. We present the first sublinear, time-
optimal, distributed algorithm for the 1-RW-DoS problem in arbitrary networks that
runs in time Õ(

√
ℓD) with high probability1, where ℓ is the length of the walk (the

precise theorem is stated in Section 2). Our algorithm is randomized (Las Vegas type,
i.e., it always outputs the correct result, but the running time claimed is with high
probability).

The high-level idea behind our algorithm is to “prepare” a few short walks in the
beginning and carefully stitch these walks together later as necessary. If there are not
enough short walks, we construct more of them on the fly. We overcome a key technical
problem by showing how one can perform many short walks in parallel without causing
too much congestion.

Our algorithm exploits a certain key property of random walks. The key property
is a bound on the number of times any node is visited in an ℓ-length walk, for any
length ℓ = O(m2). We prove that w.h.p. any node x is visited at most Õ(deg(x)

√
ℓ)

times, in an ℓ-length walk from any starting node (deg(x) is the degree of x). We then
show that if only certain ℓ/λ special points of the walk (called connector points) are

observed, then any node is observed only Õ(deg(x)
√
ℓ/λ) times. The algorithm starts

with all nodes performing short walks (of length uniformly random in the range λ to 2λ
for appropriately chosen λ) efficiently and simultaneously; here the randomly chosen
lengths play a crucial role in arguing about a suitable spread of the connector points.
Subsequently, the algorithm begins at the source and carefully stitches these walks
together till ℓ steps are completed.

We note that the running time of our algorithm matches the unconditional lower
bound recently shown in [Nanongkai et al. 2011]. Thus the running time of our algo-
rithm is (essentially) the best possible (up to polylogarithmic factors).

We also extend the result to give algorithms for computing k random walks (from

any k sources —not necessarily distinct) in Õ
(

min(
√
kℓD + k, k + ℓ)

)

rounds. We note

that the k random walks generated by our algorithm are independent (cf. Section 4.1).
Computing k random walks is useful in many applications such as the one we present
below on decentralized computation of mixing time and related parameters. While the
main requirement of our algorithms is to just obtain the random walk samples (i.e.
the end point of the ℓ step walk), our algorithms can regenerate the entire walks such
that each node knows its position(s) among the ℓ steps (the k-RW-pos problem). Our
algorithm can be extended to do this in the same number of rounds.

We finally present extensions of our algorithm to perform random walk according
to the Metropolis-Hastings [Hastings 1970; Metropolis et al. 1953] algorithm, a more
general type of random walk with numerous applications (e.g., [Zhong and Shen 2006]).
The Metropolis-Hastings algorithm gives a way to define transition probabilities so
that a random walk converges to any desired distribution. An important special case
is when the distribution is uniform.

Remarks. While the message complexity is not the main focus of this paper, we note
that our improved running time comes with the cost of an increased message complex-

1Throughout this paper, “with high probability (whp)” means with probability at least 1− 1/nΩ(1), where n
is the number of nodes in the network.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

1:6 A. Das Sarma, D. Nanongkai, G. Pandurangan, T. Tetali

ity from the naive algorithm (we discuss this in Section 6). Our message complexity for
computing a random walk of length ℓ is Õ(m

√
ℓD + n

√

ℓ/D) which can be worse than

the naive algorithm’s Õ(ℓ) message complexity.

Applications. Our faster distributed random walk algorithm can be used in speeding
up distributed applications where random walks arise as a subroutine. Such applica-
tions include distributed construction of expander graphs, checking whether a graph
is an expander, construction of random spanning trees, and random-walk based search
(we refer to [Das Sarma et al. 2009] for details). Here, we present two key applications:

(1) A Fast Distributed Algorithm for Random Spanning Trees (RST): We give an
Õ(

√
mD) time distributed algorithm (cf. Section 5.1) for uniformly sampling a random

spanning tree in an arbitrary undirected (unweighted) graph (i.e., each spanning tree
in the underlying network has the same probability of being selected). Spanning trees
are fundamental network primitives and distributed algorithms for various types of
spanning trees such as minimum spanning tree (MST), breadth-first spanning tree
(BFS), shortest path tree, shallow-light trees etc., have been studied extensively in
the literature [Peleg 2000]. However, not much is known about the distributed com-
plexity of the random spanning tree problem. The centralized case has been studied
for many decades, see e.g., the recent work of [Kelner and Madry 2009] and the refer-
ences therein; also see the recent work of Goyal et al. [Goyal et al. 2009] which gives
nice applications of RST to fault-tolerant routing and constructing expanders. In the
distributed computing context, the work of Bar-Ilan and Zernik [Bar-Ilan and Zernik
1989] give distributed RST algorithms for two special cases, namely that of a complete
graph (running in constant time) and a synchronous ring (running in O(n) time). The
work of [Baala et al. 2003] gives a self-stablizing distributed algorithm for construct-
ing an RST in a wireless ad hoc network and mentions that RST is more resilient to
transient failures that occur in mobile ad hoc networks.

Our algorithm works by giving an efficient distributed implementation of the well-
known Aldous-Broder random walk algorithm [Aldous 1990; Broder 1989] for con-
structing an RST.

(2) Decentralized Computation of Mixing Time. We present a fast decentralized al-
gorithm for estimating mixing time, conductance and spectral gap of the network (cf.
Section 5.2). In particular, we show that given a starting point x, the mixing time
with respect to x, called τxmix, can be estimated in Õ(n1/2 + n1/4

√

Dτxmix) rounds. This
gives an alternative algorithm to the only previously known approach by Kempe and
McSherry [Kempe and McSherry 2008] that can be used to estimate τxmix in Õ(τxmix)
rounds.2 To compare, we note that when τxmix = ω(n1/2) the present algorithm is faster
(assuming D is not too large).

1.5. Related Work

Random walks have been used in a wide variety of applications in distributed networks
as mentioned in the beginning of Section 1. We describe here some of the applications
in more detail. Our focus is to emphasize the papers of a more theoretical nature, and
those that use random walks as one of the central subroutines.

Speeding up distributed algorithms using random walks has been considered for a
long time. Besides our approach of speeding up the random walk itself, one popular
approach is to reduce the cover time. Recently, Alon et. al. [Alon et al. 2011] show that

2Note that [Kempe and McSherry 2008] in fact does more and gives a decentralized algorithm for computing
the top k eigenvectors of a weighted adjacency matrix that runs in O(τmix log2 n) rounds if two adjacent
nodes are allowed to exchange O(k3) messages per round, where τmix is the mixing time and n is the size
of the network.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

Distributed Random Walks 1:7

performing several random walks in parallel reduces the cover time in various types
of graphs. They assert that the problem with performing random walks is often the
latency. In these scenarios where many walks are performed, our results could help
avoid too much latency and yield an additional speed-up factor. Other recent works
involving multiple random walks in different settings include Elsässer et. al. [Elsässer
and Sauerwald 2011], and Cooper et al. [Cooper et al. 2009].

A nice application of random walks is in the design and analysis of expanders. We
mention two results here. Law and Siu [Law and Siu 2003] consider the problem of
constructing expander graphs in a distributed fashion. One of the key subroutines in
their algorithm is to perform several random walks from specified source nodes. While
the overall running time of their algorithm depends on other factors, the specific step
of computing random walk samples can be improved using our techniques presented
in this paper. Dolev and Tzachar [Dolev and Tzachar 2010] use random walks to check
if a given graph is an expander. The first algorithm given in [Dolev and Tzachar 2010]
is essentially to run a random walk of length n log n and mark every visited vertices.
Later, it is checked if every node is visited.

Broder [Broder 1989] and Wilson [Wilson 1996] gave algorithms to generate random
spanning trees using random walks and Broder’s algorithm was later applied to the
network setting by Bar-Ilan and Zernik [Bar-Ilan and Zernik 1989]. Recently Goyal
et al. [Goyal et al. 2009] show how to construct an expander/sparsifier using random
spanning trees. If their algorithm is implemented on a distributed network, the tech-
niques presented in this paper would yield an additional speed-up in the random walk
constructions.

Morales and Gupta [Morales and Gupta 2007] discuss about discovering a consistent
and available monitoring overlay for a distributed system. For each node, one needs to
select and discover a list of nodes that would monitor it. The monitoring set of nodes
need to satisfy some structural properties such as consistency, verifiability, load bal-
ancing, and randomness, among others. This is where random walks come in. Random
walks is a natural way to discover a set of random nodes that are spread out (and hence
scalable), that can in turn be used to monitor their local neighborhoods. Random walks
have been used for this purpose in another paper by Ganesh et al. [Ganesh et al. 2003]
on peer-to-peer membership management for gossip-based protocols.

The general high-level idea of using a few short walks in the beginning (executed in
parallel) and then carefully stitch these walks together later as necessary was intro-
duced in [Das Sarma et al. 2011] to find random walks in data streams with the main
motivation of computing PageRank. However, the two models have very different con-
straints and motivations and hence the subsequent techniques used here and in [Das
Sarma et al. 2011] are very different. Recently, Sami and Twigg [Sami and Twigg 2008]
consider lower bounds on the communication complexity of computing the stationary
distribution of random walks in a network. Although their problem is related to our
problem, the lower bounds obtained do not imply anything in our setting.

The work of [Gkantsidis et al. 2007] discusses spectral algorithms for enhancing
the topology awareness, e.g., by identifying and assigning weights to critical links.
However, the algorithms are centralized, and it is mentioned that obtaining efficient
decentralized algorithms is a major open problem. Our algorithms are fully decentral-
ized and based on performing random walks, and so are more amenable to dynamic
and self-organizing networks.

Subsequent Work. Since the publication of the conference versions of our papers
[Das Sarma et al. 2009; Das Sarma et al. 2010], additional results have been shown,
extending our algorithms to various settings.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

1:8 A. Das Sarma, D. Nanongkai, G. Pandurangan, T. Tetali

The work of [Nanongkai et al. 2011] showed a tight lower bound on the running
time of distributed random walk algorithms using techniques from communication
complexity [Das Sarma et al. 2011]. Specifically, it is shown in [Nanongkai et al. 2011]
that for any n, D, and D ≤ ℓ ≤ (n/(D3 log n))1/4, performing a random walk of length

Θ(ℓ) on an n-node network of diameter D requires Ω(
√
ℓD +D) time. This shows that

the running time of our 1-RW-DoS algorithm is (essentially) the best possible (up to
polylogarithmic factors).

In [Das Sarma et al. 2012b], it is shown how to improve the message complexity of
the distributed random walk algorithms presented in this paper. The main reason for
the increased message complexity of our algorithms is that to compute one long walk
many short walks are generated — most of which go unused. One idea is to use these
unused short walks to compute other (independent) long walks. This idea is explored
in [Das Sarma et al. 2012b] where it is shown that under certain conditions (e.g., when
the starting point of the random walk is chosen proportional to the node degree), the
overall message complexity of computing many long walks can be made near-optimal.

The fast distributed random walk algorithms presented in this paper applies only
for static networks and does not apply to a dynamic network. The recent work of
[Das Sarma et al. 2012a] investigates efficient distributed computation in dynamic
networks in which the network topology changes (arbitrarily) from round to round.
The paper presents a rigorous framework for design and analysis of distributed ran-
dom walk sampling algorithms in dynamic networks. Building on the techniques de-
veloped in the present paper, the main contribution of [Das Sarma et al. 2012a] is a
fast distributed random walk sampling algorithm that runs in Õ(

√
τΦ) rounds (with

high probability) (τ is the dynamic mixing time and Φ is the dynamic diameter of the
network) and returns a sample close to a suitably defined stationary distribution of
the dynamic network. This is then shown to be useful in designing a fast distributed
algorithm for information spreading in a dynamic network.

2. ALGORITHM FOR 1-RW-DoS

In this section we describe the algorithm to sample one random walk destination. We
show that this algorithm takes Õ(

√
ℓD) rounds with high probability and extend it

to other cases in the next sections. First, we make the following simple observation,
which will be assumed throughout.

OBSERVATION 2.1. We may assume that ℓ is O(m2), where m is the number of edges
in the network.

The reason is that if ℓ is Ω(m2), the required bound of Õ(
√
ℓD) rounds is easily

achieved by aggregating the graph topology (via upcast) onto one node in O(m + D)
rounds (e.g., see [Peleg 2000]). The difficulty lies in proving the case of ℓ = O(m2).

A Slower algorithm. Let us first consider a slower version of the algorithm to high-
light the fundamental idea used to achieve the sub-linear time bound. We will show
that the slower algorithm runs in time Õ(ℓ2/3D1/3). The high-level idea (see Figure 1)
is to perform “many” short random walks in parallel and later stitch them together as
needed. In particular, we perform the algorithm in two phases, as follows.

In Phase 1, we perform η “short” random walks of length λ from each node v, where η
and λ are some parameters whose values will be fixed in the analysis. (We note that we
will need slightly more short walks when we develop a faster algorithm.) This is done

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

Distributed Random Walks 1:9

naively by forwarding η “coupons” having the ID of v, from v to random destinations3,
as follows.

1: Initially, each node v creates η messages (called coupons) C1, C2, ..., Cη and writes
its ID on them.

2: for i = 1 to λ do
3: This is the i-th iteration. Each node v does the following: Consider each coupon C

held by v which is received in the (i− 1)-th iteration. (The zeroth iteration is the
initial stage where each node creates its own messages.) Now v picks a neighbor
u uniformly at random and forwards C to u after incrementing the counter on
the coupon to i.

4: end for

At the end of the process, for each node v, there will be η coupons containing v’s ID
distributed to some nodes in the network. These nodes are the destinations of short
walks of length λ starting at v. We note that the notion of “phase” is used only for sim-
plicity. The algorithm does not really need round numbers. If there are many messages
to be sent through the same edge, send one with minimum counter first.

For Phase 2, for sake of exposition, let us first consider an easier version of the algo-
rithm (that is incomplete) which avoids some details. Starting at source s, we “stitch”
some of the λ-length walks prepared in Phase 1 together to form a longer walk. The
algorithm starts from s and randomly picks one coupon distributed from s in Phase 1.
This can be accomplished by having every node holding coupons of s write their IDs
on the coupon and sending the coupons back to s. Then s picks one of these coupons
randomly and returns the rest to the owners. (However, aggregating all coupons at s
is inefficient. The better way to do this is to use the idea of reservoir sampling [Vitter
1985]. We will develop an algorithm called SAMPLE-COUPON to do this job efficiently
later on.)

Let C be the sampled coupon and v be the destination node of C. The source s then
sends a “token” to v and v deletes coupon C (so that C will not be sampled again
next time). The process then repeats. That is, the node v currently holding the token
samples one of the coupons it distributed in Phase 1 and forwards the token to the
destination of the sampled coupon, say v′. (Nodes v, v′ are called “connectors” — they
are the endpoints of the short walks that are stitched.) A crucial observation is that
the walk of length λ used to distribute the corresponding coupons from s to v and from
v to v′ are independent random walks. Therefore, we can stitch them to get a random
walk of length 2λ. (This fact will be formally proved in the next section.) We therefore
can generate a random walk of length 3λ, 4λ, ... by repeating this process. We do this
until we have completed more than ℓ− λ steps. Then, we complete the rest of the walk
by running the naive random walk algorithm. The algorithm for Phase 2 is thus the
following.

1: The source node s creates a message called “token” which contains the ID of s
2: while Length of the walk completed is at most ℓ− λ do
3: Let v be the node that is currently holding the token.
4: v calls SAMPLE-COUPON(v) to sample one of the coupons distributed by v (in

Phase 1) uniformly at random. Let C be the sampled coupon.
5: Let v′ be the node holding coupon C. (ID of v′ is written on C.)
6: v sends the token to v′ and v′ deletes C so that C will not be sampled again.
7: The length of the walk completed has now increased by λ.

3The term “coupon” refers to the same meaning as the more commonly used term of “token” but we use the
term coupon here and reserve the term token for the second phase.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

1:10 A. Das Sarma, D. Nanongkai, G. Pandurangan, T. Tetali

Fig. 1. Figure illustrating the algorithm of stitching short walks together.

8: end while
9: Walk naively (i.e., forward the token to a random neighbor) until ℓ steps are com-

pleted.
10: A node holding the token outputs the ID of s.

Figure 1 illustrates the idea of this algorithm. To understand the intuition behind
this (incomplete) algorithm, let us analyze its running time. First, we claim that
Phase 1 needs Õ(ηλ) rounds with high probability. This is because if we send out deg(v)
coupons from each node v at the same time, each edge should receive two coupons in
the average case. In other words, there is essentially no congestion (i.e., not too many
coupons are sent through the same edge). Therefore sending out (just) one coupon from
each node for λ steps will take O(λ) rounds in expectation and the time becomes O(ηλ)

for η coupons. This argument can be modified to show that we need Õ(ηλ) rounds with
high probability. (The full proof will be provided in Lemma 3.2 in the next section.) We
will also show that SAMPLE-COUPON can be done in O(D) rounds and it follows that

Phase 2 needs O(D · ℓ/λ) rounds. Therefore, the algorithm needs Õ(ηλ+D · ℓ/λ) which

is Õ(
√
ℓD) when we set η = 1 and λ =

√
ℓD.

The reason the above algorithm for Phase 2 is incomplete is that it is possible that
η coupons are not enough: We might forward the token to some node v many times
in Phase 2 and all coupons distributed by v in the first phase may get deleted. In
other words, v is chosen as a connector node many times, and all its coupons have been

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

Distributed Random Walks 1:11

ALGORITHM 1: SAMPLE-COUPON(v)

Input: Starting node v.
Output: A node sampled from among the nodes holding the coupon of v

1: Construct a Breadth-First-Search (BFS) tree rooted at v. While constructing, every node
stores its parent’s ID. Denote such a tree by T .

2: We divide T naturally into levels 0 through D (where nodes in level D are leaf nodes and
the root node v is in level 0).

3: Every node u that holds some coupons of v picks one coupon uniformly at random. Let C0

denote such a coupon and let x0 denote the number of coupons u has. Node u writes its ID
on coupon C0.

4: for i = D down to 0 do
5: Every node u in level i that either receives coupon(s) from children or possesses coupon(s)

itself do the following.
6: Let u have q coupons (including its own coupons). Denote these coupons by

C0, C1, C2, . . . , Cq−1 and let their counts be x0, x1, x2, . . . , xq−1. Node u samples one of C0

through Cq−1, with probabilities proportional to the respective counts. That is, for any
0 ≤ j ≤ q − 1, Cj is sampled with probability

xj

x0+x1+...+xq−1
.

7: The sampled coupon is sent to the parent node (unless already at root) along with a count
of x0 + x1 + . . .+ xq−1 (the count represents the number of coupons from which this
coupon has been sampled).

8: end for
9: The root outputs the ID of the owner of the final sampled coupon (written on such a coupon).

exhausted. If this happens then the stitching process cannot progress. To cope with this
problem, we develop an algorithm called SEND-MORE-COUPONS to distribute more
coupons. In particular, when there is no coupon of v left in the network and v wants to
sample a coupon, it calls SEND-MORE-COUPONS to send out η new coupons to random
nodes. (SEND-MORE-COUPONS gives the same result as Phase 1 but the algorithm will
be different in order to get a good running time.) In particular, we insert the following
lines between Line 4 and 5 of the previous algorithm.

1: if C = NULL (all coupons from v have already been deleted) then
2: v calls SEND-MORE-COUPONS(v, η, λ) (Distribute η new coupons. These coupons

are forwarded for λ rounds.)
3: v calls SAMPLE-COUPON(v) and let C be the returned coupon.
4: end if

To complete this algorithm we now describe SAMPLE-COUPON and SEND-MORE-
COUPONS. The main idea of algorithm SAMPLE-COUPON is to sample the coupons
through a BFS (breadth-first search) tree from the leaves upward to the root. We al-
low each node to send only one coupon to its parent to avoid congestion. That is, in
each round some node u will receive some coupons from its children (at most one from
each child). Let these children be u1, u2, ..., uq. Then, u picks one of these coupons and
sends to its parent. To ensure that u picks a coupon with uniform distribution, it picks
the coupon received from ui with probability proportional to the number of coupons
in the subtree rooted at ui. The precise statement of this algorithm can be found in
Algorithm 1. The correctness of this algorithm (i.e., it outputs a coupon from uniform
probability) will be proved in the next section (cf. Claim 3.8).

The SEND-MORE-COUPONS algorithm does essentially the same as what we did in
Phase 1 with only one exception: Since this time we send out coupons from only one
node, we can avoid congestions by combining coupons delivered on the same edge in

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

1:12 A. Das Sarma, D. Nanongkai, G. Pandurangan, T. Tetali

ALGORITHM 2: SEND-MORE-COUPONS(v, η, λ)

Part 1. Distribute η new coupons for λ steps.
1: The node v constructs η (identical) messages containing its ID. We refer to these messages

new coupons.
2: for i = 1 to λ do
3: Each node u does the following:
4: - For each new coupon C held by u, node u picks a neighbor z uniformly at random as a

receiver of C.
5: - For each neighbor z of u, node u sends the ID of v and the number of new coupons for

which z is picked as a receiver, denoted by c(u, v).
6: - Each neighbor z of u, upon receiving ID of v and c(u, v), constructs c(u, v) new coupons,

each containing the ID of v.
7: end for

Part 2. Each coupon has now been forwarded for λ steps. These coupons are now extended
probabilistically further by r steps where each r is independent and uniform in the range
[0, λ− 1].

1: for i = 0 to λ− 1 do
2: For each coupon, independently with probability 1

λ−i
, stop sending the coupon further

and save the ID of the source node (in this event, the node with the message is the
destination). For each coupon that is not stopped, each node picks a neighbor
correspondingly and sends the coupon forward as before.

3: end for
4: At the end, each destination node knows the source ID as well as the number of times the

corresponding coupon has been forwarded.

each round. This algorithm is described in Algorithm 2, Part 1. (We will describe Part 2
later after we explain how to speed up the algorithm).

The analysis in the next section shows that SEND-MORE-COUPONS is called at most
ℓ/(ηλ) times in the worst case and it follows that the algorithm above takes time

Õ(ℓ2/3D1/3).

Faster algorithm. We are now ready to introduce the second idea which will complete
the algorithm. (The complete algorithm is described in Algorithm 3.) To speed up the
above slower algorithm, we pick the length of each short walk uniformly at random in
range [λ, 2λ− 1], instead of fixing it to λ. The reason behind this is that we want every
node in the walk to have some probability to take part in token forwarding in Phase 2.

For example, consider running our random walk algorithm on a star network start-
ing at the center and let λ = 2. If all short walks have length two then the center will
always forward the token to itself in Phase 2. In other words, the center is the only
connector and thus will appear as a connector ℓ/2 times. This is undesirable since we
have to prepare many walks from the center. In contrast, if we randomize the length
of each short walk between two and three then the number of times that the center
is a connector is ℓ/4 in expectation. (To see this, observe that, regardless of where the
token started, the token will be forwarded to the center with probability 1/2.)

In the next section, we will show an important property which says that a random
walk of length ℓ = O(m2) will visit each node v at most Õ(

√
ℓ deg(v)) times. We then

use the above modification to claim that each node will be visited as a connector only
Õ(

√
ℓ deg(v)/λ) times. This implies that each node does not have to prepare too many

short walks which leads to the improved running time.
To do this modification, we need to modify Phase 1 and SEND-MORE-COUPONS. For

Phase 1, we simply change the length of each short walk to λ+ r where r is a random
integer in [0, λ− 1]. This modification is shown in Algorithm 3. A very slight change is

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

Distributed Random Walks 1:13

ALGORITHM 3: SINGLE-RANDOM-WALK(s, ℓ)

Input: Starting node s, desired walk length ℓ and parameters λ and η.
Output: A destination node of the random walk of length ℓ output the ID of s.
Phase 1: Generate short walks by coupon distribution. Each node v performs η deg(v)
random walks of length λ+ ri where ri (for each 1 ≤ i ≤ η deg(v)) is chosen independently
and uniformly at random in the range [0, λ− 1]. (We note that random numbers ri
generated by different nodes are different.) At the end of the process, there are η deg(v) (not
necessarily distinct) nodes holding a “coupon” containing the ID of v.

1: for each node v do
2: Generate η deg(v) random integers in the range [0, λ− 1], denoted by r1, r2, ..., rη deg(v).
3: Construct η deg(v) messages containing its ID and in addition, the i-th message contains

the desired walk length of λ+ ri. We will refer to these messages created by node v as
“coupons created by v”.

4: end for
5: for i = 1 to 2λ do
6: This is the i-th iteration. Each node v does the following: Consider each coupon C held by

v which is received in the (i− 1)-th iteration. (The zeroth iteration is the initial stage
where each node creates its own messages.) If the coupon C ’s desired walk length is at
most i, then v keeps this coupon (v is the desired destination). Else, v picks a neighbor u
uniformly at random and forwards C to u.

7: end for

Phase 2: Stitch short walks by token forwarding. Stitch Θ(ℓ/λ) walks, each of length
in [λ, 2λ− 1].

1: The source node s creates a message called “token” which contains the ID of s
2: The algorithm will forward the token around and keep track of a set of connectors, denoted

by C. Initially, C = {s}.
3: while Length of the walk completed is at most ℓ− 2λ do
4: Let v be the node that is currently holding the token.
5: v calls SAMPLE-COUPON(v) to uniformly sample one of the coupons distributed by v. Let

C be the sampled coupon.
6: if v′ = NULL (all coupons from v have already been deleted) then
7: v calls SEND-MORE-COUPONS(v, η, λ) (Perform Θ(η) walks of length λ+ ri starting at

v, where ri is chosen uniformly at random in the range [0, λ− 1] for the i-th walk.)
8: v calls SAMPLE-COUPON(v) and let C be the returned value
9: end if
10: Let v′ be node holding coupon C. (ID of v′ is written on C.)
11: v sends the token to v′, and v′ deletes C so that C will not be sampled again.
12: C = C ∪ {v′}
13: end while
14: Walk naively until ℓ steps are completed (this is at most another 2λ steps)
15: A node holding the token outputs the ID of s

also made on Phase 2. For a technical reason, we also prepare η deg(v) coupons from
each node in Phase 1, instead of previously η coupons. Our analysis in the next section
shows that this modification still needs Õ(ηλ) rounds as before.

To modify SEND-MORE-COUPONS, we add Part 2 to the algorithm (as in Algo-
rithm 2) where we keep forwarding each coupon with some probability. It can be shown
by a simple calculation that the number of steps each coupon is forwarded is uniformly
between λ and 2λ− 1.

We now have the complete description of the algorithm (Algorithm 3) and are ready
to show the analysis.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

1:14 A. Das Sarma, D. Nanongkai, G. Pandurangan, T. Tetali

3. ANALYSIS OF SINGLE-RANDOM-WALK

We divide the analysis into four parts. First, we show the correctness of Algorithm
SINGLE-RANDOM-WALK. (The proofs of the following lemmas will be shown in subse-
quent sections.)

LEMMA 3.1. Algorithm SINGLE-RANDOM-WALK solves 1-RW-DoS. That is, for any
node v, after algorithm SINGLE-RANDOM-WALK finishes, the probability that v outputs
the ID of s is equal to the probability that it is the destination of a random walk of length
ℓ starting at s.

Once we have established the correctness, we focus on the running time. In the
second part, we show the probabilistic bound of Phase 1.

LEMMA 3.2. Phase 1 finishes in Õ(λη) rounds with high probability.

In the third part, we analyze the worst case bound of Phase 2, which is a building
block of the probabilistic bound of Phase 2.

LEMMA 3.3. Phase 2 finishes in Õ(ℓ·Dλ + ℓ
η) rounds.

We note that the above bound holds even when we fix the length of the short walks
(instead of randomly picking from [λ, 2λ]). Moreover, using the above lemmas we can

conclude the (weaker) running time of Õ(ℓ2/3D1/3) by setting η and λ appropriately, as
follows.

COROLLARY 3.4. For any ℓ, Algorithm Single-Random-Walk (cf. Algorithm 3) solves

1-RW-DoS correctly and, with high probability, finishes in Õ(ℓ2/3D1/3) rounds.

PROOF. Set η = ℓ1/3/D1/3 and λ = ℓ1/3D2/3. Using Lemma 3.2 and 3.3, the algo-

rithm finishes in Õ(λη + ℓD
λ + ℓ

η) = Õ(ℓ2/3D1/3) with high probability.

In the last part, we improve the running time of Phase 2 further, using a proba-
bilistic bound, leading to a better running time overall. The key ingredient here is
the Random Walk Visits Lemma (cf. Lemma 3.12) stated formally in Section 3.4 and
proved in Section 3.5. Then we use the fact that the short walks have random length
to obtain the running time bound.

LEMMA 3.5. For any η and λ such that ηλ ≥ 32
√
ℓ(log n)3, Phase 2 finishes in Õ(ℓDλ)

rounds with high probability.

Using the results above, we conclude the following theorem.

THEOREM 3.6. For any ℓ, Algorithm Single-Random-Walk (cf. Algorithm 3) solves

1-RW-DoS correctly and, with high probability, finishes in Õ(
√
ℓD) rounds.

PROOF. Set η = 1 and λ = 32
√
ℓD(log n)3. Using Lemma 3.2 and 3.5, the algorithm

finishes in Õ(λη + ℓD
λ) = Õ(

√
ℓD) with high probability.

3.1. Correctness (Proof of Lemma 3.1)

In this section, we prove Lemma 3.1 which claims the correctness of the algorithm.
Recall that the lemma is as follows.

LEMMA 3.1 (RESTATED). Algorithm SINGLE-RANDOM-WALK solves 1-RW-DoS.
That is, for any node v, after algorithm SINGLE-RANDOM-WALK finishes, the proba-
bility that v outputs the ID of s is equal to the probability that it is the destination of a
random walk of length ℓ starting at s.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

Distributed Random Walks 1:15

To prove this lemma, we first claim that SAMPLE-COUPON returns a coupon where
the node holding this coupon is a destination of a short walk of length uniformly ran-
dom in [λ, 2λ− 1].

CLAIM 3.7. Each short walk length (returned by SAMPLE-COUPON) is uniformly
sampled from the range [λ, 2λ− 1].

PROOF. Each walk can be created in two ways.

— It is created in Phase 1. In this case, since we pick the length of each walk uniformly
from the length [λ, 2λ− 1], the claim clearly holds.

— It is created by SEND-MORE-COUPON. In this case, the claim holds by the tech-
nique of reservoir sampling [Vitter 1985]: Observe that after the λth step of the walk
is completed, we stop extending each walk at any length between λ and 2λ − 1 uni-
formly. To see this, observe that we stop at length λ with probability 1/λ. If the walk
does not stop, it will stop at length λ + 1 with probability 1

λ−1 . This means that the

walk will stop at length λ + 1 with probability λ−1
λ × 1

λ−1 = 1
λ . Similarly, it can be

argue that the walk will stop at length i for any i ∈ [λ, 2λ− 1] with probability 1
λ .

Moreover, we claim that SAMPLE-COUPON(v) samples a short walk uniformly at
random among many coupons (and therefore, short walks starting at v).

CLAIM 3.8. Algorithm SAMPLE-COUPON(v) (cf. Algorithm 1), for any node v, sam-
ples a coupon distributed by v uniformly at random.

PROOF. Assume that before this algorithm starts, there are t (without loss of gen-
erality, let t > 0) coupons containing ID of v stored in some nodes in the network. The
goal is to show that SAMPLE-COUPON brings one of these coupons to v with uniform
probability. For any node u, let Tu be the subtree rooted at u and let Su be the set of
coupons in Tu. (Therefore, Tv = T and |Sv| = t.)

We claim that any node u returns a coupon to its parent with uniform probability
(i.e., for any coupons x ∈ Su, P[u returns x] is 1/|Su| (if |Su| > 0)). We prove this by
induction on the height of the tree. This claim clearly holds for the base case where
u is a leaf node. Now, for any non-leaf node u, assume that the claim is true for any
of its children. To be precise, suppose that u receives coupons and counts from q − 1
children. Assume that it receives coupons d1, d2, ..., dq−1 and counts c1, c2, ..., cq−1 from
nodes u1, u2, ..., uq−1, respectively. (Also recall that d0 is the sample of its own coupons
(if exists) and c0 is the number of its own coupons.) By induction, dj is sent from uj to u
with probability 1/|Suj

|, for any 0 ≤ j ≤ q− 1. Moreover, cj = |Suj
| for any j. Therefore,

any coupon dj will be picked with probability 1
|Suj

| ×
cj

c0+c1+...cq−1
= 1

|Su| as claimed.

The lemma follows by applying the claim above to v.

The above two claims imply the correctness of the Algorithm Single-Random-Walk as
shown next.

PROOF OF LEMMA 3.1. Any two [λ, 2λ − 1]-length walks (possibly from different
sources) are independent from each other. Moreover, a walk from a particular node
is picked uniformly at random. Therefore, algorithm Single-Random-Walk is equiva-
lent to having a source node perform a walk of length between λ and 2λ − 1 and then
have the destination do another walk of length between λ and 2λ − 1 and so on. That
is, for any node v, the probability that v outputs the ID of s is equal to the probability
that it is the destination of a random walk of length ℓ starting at s.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

1:16 A. Das Sarma, D. Nanongkai, G. Pandurangan, T. Tetali

3.2. Analysis of Phase 1 (Proof of Lemma 3.2)

In this section, we prove the performance of Phase 1 claimed in Lemma 3.2. Recall that
the lemma is as follows.

LEMMA 3.2 (RESTATED). Phase 1 finishes in Õ(λη) rounds with high probability.

We now prove the lemma. For each coupon C, any j = 1, 2, ..., λ, and any edge e,
we define Xj

C(e) to be a random variable having value 1 if C is sent through e in the
jth iteration (i.e., when the counter on C is increased from j − 1 to j). Let Xj(e) =
∑

C:coupon X
j
C(e). We compute the expected number of coupons that go through an edge

e, as follows.

CLAIM 3.9. For any edge e and any j, E[Xj(e)] = 2η.

PROOF. Recall that each node v starts with η deg(v) coupons and each coupon takes
a random walk. We prove that after any given number of steps j, the expected number
of coupons at node v is still η deg(v). Consider the random walk’s probability transition

matrix, call it A. In this case Au = u for the vector u having value deg(v)
2m where m is

the number of edges in the graph (since this u is the stationary distribution of an undi-
rected unweighted graph). Now the number of coupons we started with at any node i
is proportional to its stationary distribution, therefore, in expectation, the number of
coupons at any node remains the same.

To calculate E[Xj(e)], notice that edge e will receive coupons from its two end points,
say x and y. The number of coupons it receives from node x in expectation is exactly
the number of coupons at x divided by deg(x). The claim follows.

By Chernoff ’s bound (e.g., in [Mitzenmacher and Upfal 2005, Theorem 4.4.]), for any
edge e and any j,

P[Xj(e) ≥ 4η log n] ≤ 2−4 logn = n−4.

(We note that the number 4η log n above can be improved to cη log n/ log log n for some
constant k. This improvement of log log n can be further improved as η increases. This
fact is useful in practice but does not help improve our claimed running time since we
always hide a polylog n factor.)

It follows that the probability that there exists an edge e and an integer 1 ≤ j ≤ λ
such that Xj(e) ≥ 4η log n is at most |E(G)|λn−4 ≤ 1

n since |E(G)| ≤ n2 and λ ≤ ℓ ≤ n
(by the way we define λ).

Now suppose that Xj(e) ≤ 4η log n for every edge e and every integer j ≤ λ. This
implies that we can extend all walks of length i to length i + 1 in 4η log n rounds.
Therefore, we obtain walks of length λ in 4λη log n rounds, with high probability, as
claimed.

3.3. Worst-case bound of Phase 2 (Proof of Lemma 3.3)

In this section, we prove the worst-case performance of Phase 2 claimed in Lemma 3.3.
Recall that the lemma is as follows.

LEMMA 3.3 (RESTATED). Phase 2 finishes in Õ(ℓ·Dλ + ℓ
η) rounds.

We first analyze the running time of SEND-MORE-COUPONS and SAMPLE-COUPON.

LEMMA 3.10. For any v, SEND-MORE-COUPONS(v, η, λ) always finishes within
O(λ) rounds.

PROOF. Consider any node u during the execution of the algorithm. If it contains
x coupons of v (i.e., which just contain the ID of v), for some x, it has to pick x of its

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

Distributed Random Walks 1:17

neighbors at random, and pass the coupon of v to each of these x neighbors. It might
pass these coupons to less than x neighbors and cause congestion if the coupons are
sent separately. However, it sends only the ID of v and a count to each neighbor, where
the count represents the number of coupons it wishes to send to such neighbor. Note
that there is only one ID sent during the process since only one node calls SEND-
MORE-COUPONS at a time. Therefore, there is no congestion and thus the algorithm
terminates in O(λ) rounds.

LEMMA 3.11. SAMPLE-COUPON always finishes within O(D) rounds.

PROOF. Since, constructing a BFS tree can be done easily in O(D) rounds, it is left
to bound the time of the second part where the algorithm wishes to sample one of
many coupons (having its ID) spread across the graph. The sampling is done while
retracing the BFS tree starting from leaf nodes, eventually reaching the root. The
main observation is that when a node receives multiple samples from its children,
it only sends one of them to its parent. Therefore, there is no congestion. The total
number of rounds required is therefore the number of levels in the BFS tree, O(D).

Now we prove the worst-case bound of Phase 2. First, observe that SAMPLE-COUPON

is called O(ℓ
λ) times since it is called only by a connector (to find the next node to for-

ward the token to). By Lemma 3.11, this algorithm takes O(ℓ·Dλ) rounds in total. Next,

we claim that SEND-MORE-COUPONS is called at most O(ℓ
λη) times in total (summing

over all nodes). This is because when a node v calls SEND-MORE-COUPONS(v, η, λ),
all η walks starting at v must have been stitched and therefore v contributes λη steps
of walk to the long walk we are constructing. It follows from Lemma 3.10 that SEND-
MORE-COUPONS algorithm takes O(ℓη) rounds in total. The claimed worst-case bound

follows by summing up the total running times of SAMPLE-COUPON and SEND-MORE-
COUPONS.

3.4. A Probabilistic bound for Phase 2 (Proof of Lemma 3.5)

In this section, we prove the high probability time bound of Phase 2 claimed in
Lemma 3.5. Recall that the lemma is as follows.

LEMMA 3.5 (RESTATED). For any η and λ such that ηλ ≥ 32
√
ℓ(log n)3, Phase 2

finishes in Õ(ℓDλ) rounds with high probability.

Recall that we may assume that ℓ = O(m2) (cf. Observation 2.1). We prove the
stronger bound using the following lemmas. As mentioned earlier, to bound the num-
ber of times SEND-MORE-COUPONS is invoked, we need a technical result on random
walks that bounds the number of times a node will be visited in a ℓ-length random
walk. Consider a simple random walk on a connected undirected graph on n vertices.
Let deg(x) denote the degree of x, and let m denote the number of edges. Let Nx

t (y)
denote the number of visits to vertex y by time t, given that the walk started at vertex
x.

Now, consider k walks, each of length ℓ, starting from (not necessary distinct)
nodes x1, x2, . . . , xk. We show a key technical lemma that applies to random walks
on any (undirected) graph: With high probability, no vertex y is visited more than
32 deg(x)

√
kℓ+ 1 log n+ k times.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

1:18 A. Das Sarma, D. Nanongkai, G. Pandurangan, T. Tetali

LEMMA 3.12 (RANDOM WALK VISITS LEMMA). For any nodes x1, x2, . . . , xk, and
ℓ = O(m2),

P
(

∃y s.t.
k

∑

i=1

Nxi

ℓ (y) ≥ 32 deg(x)
√
kℓ+ 1 log n+ k

)

≤ 1/n .

Since the proof of this lemma is interesting on its own and lengthy, we defer it to
Section 3.5. We note that one can also show a similar bound for a specific vertex, i.e.

P
(

∃y s.t.
∑k

i=1 N
xi

ℓ (y) ≥ 32 deg(x)
√
kℓ+ 1 log n + k

)

. Since we will not use this bound
here, we defer it to Lemma 3.18 in Subsection 3.5. Moreover, we prove the above lemma
only for a specific number of visits of roughly

√
kℓ because this is the expected number

of visits (we show this in Proposition 3.16 in Section 3.5). It might be possible to prove
more general bounds; however, we do not include them here since they need more
proofs and are not relevant to the results of this paper.

Also note that Lemma 3.12 is not true if we do not restrict ℓ to be O(m2). For example,
consider a star network and a walk of length ℓ such that ℓ ≫ n2 and ℓ is larger than
the mixing time. In this case, this walk will visit the center of the star Ω̃(ℓ) times
with high probability. This contradicts Lemma 3.12 which says that the center will
be visited Õ(n

√
ℓ) = o(ℓ) times with high probability. We can modify the statement of

Lemma 3.12 to hold for a general value of ℓ as follows (this fact is not needed in this

paper): P(∃y s.t.
∑k

i=1 N
xi

ℓ (y) ≥ 32 deg(x)
√
kℓ+ 1 log n + k + ℓ deg(x)/m) ≤ 1/n. (Recall

that m is the number of edges in the network.) This inequality can be proved using
Lemma 3.12 and the fact that m2 is larger than the mixing time, which means that
the walk will visit vertex x with probability deg(x)/m in each step after the (m2)th step.

Lemma 3.12 says that the number of visits to each node can be bounded. However,
for each node, we are only interested in the case where it is used as a connector. The
lemma below shows that the number of visits as a connector can be bounded as well;
i.e., if any node vi appears t times in the walk, then it is likely to appear roughly t/λ
times as connectors.

LEMMA 3.13. For any vertex v, if v appears in the walk at most t times then it
appears as a connector node at most t(log n)2/λ times with probability at least 1− 1/n2.

At first thought, the lemma above might sound correct even when we do not ran-
domize the length of the short walks since the connectors are spread out in steps of
length approximately λ. However, there might be some periodicity that results in the
same node being visited multiple times but exactly at λ-intervals. (As we described ear-
lier, one example is when the input network is a star graph and λ = 2.) This is where
we crucially use the fact that the algorithm uses walks of length uniformly random
in [λ, 2λ − 1]. The proof then goes via constructing another process equivalent to par-
titioning the ℓ steps into intervals of λ and then sampling points from each interval.
We analyze this by constructing a different process that stochastically dominates the
process of a node occurring as a connector at various steps in the ℓ-length walk and
then use a Chernoff bound argument.

In order to give a detailed proof of Lemma 3.13, we need the following two claims.

CLAIM 3.14. Consider any sequence A of numbers a1, ..., aℓ′ of length ℓ′. For any
integer λ′, let B be a sequence aλ′+r1 , a2λ′+r1+r2 , ..., aiλ′+r1+...+ri , ... where ri, for any i,
is a random integer picked uniformly from [0, λ′ − 1]. Consider another subsequence
of numbers C of A where an element in C is picked from “every λ′ numbers” in A;
i.e., C consists of ⌊ℓ′/λ′⌋ numbers c1, c2, ... where, for any i, ci is chosen uniformly at
random from a(i−1)λ′+1, a(i−1)λ′+2, ..., aiλ′ . Then, P[C contains {ai1 , ai2 , ..., aik}] = P[B =
{ai1 , ai2 , ..., aik}] for any set {ai1 , ai2 , ..., aik}.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

Distributed Random Walks 1:19

PROOF. Observe that B will be equal to {ai1 , ai2 , ..., aik} only for a specific value
of r1, r2, ..., rk. Since each of r1, r2, ..., rk is chosen uniformly at random from [1, λ′],
P[B = {ai1 , ai2 , ..., aik}] = λ′−k. Moreover, the C will contain ai1 , ai2, ..., aik} if
and only if, for each j, we pick aij from the interval that contains it (i.e., from
a(i′−1)λ′+1, a(i′−1)λ′+2, ..., ai′λ′ , for some i′). (Note that ai1 , ai2 , ... are all in different inter-

vals because ij+1 − ij ≥ λ′ for all j.) Therefore, P[C contains ai1 , ai2 , ..., aik}] = λ′−k.

CLAIM 3.15. Consider any sequence A of numbers a1, ..., a
′
ℓ of length ℓ′. Consider

subsequence of numbers C of A where an element in C is picked from from “every λ′

numbers” in A; i.e., C consists of ⌊ℓ′/λ′⌋ numbers c1, c2, ... where, for any i, ci is chosen
uniformly at random from a(i−1)λ′+1, a(i−1)λ′+2, ..., aiλ′ .. For any number x, let nx be the

number of appearances of x in A; i.e., nx = |{i | ai = x}|. Then, for any R ≥ 6nx/λ
′, x

appears in C more than R times with probability at most 2−R.

PROOF. For i = 1, 2, ..., ⌊ℓ′/λ′⌋, let Xi be a 0/1 random variable that is 1 if and only

if ci = x and X =
∑⌊ℓ′/λ′⌋

i=1 Xi. That is, X is the number of appearances of x in C.
Clearly, E[X] = nx/λ

′. Since Xi’s are independent, we can apply the Chernoff bound
(e.g., in [Mitzenmacher and Upfal 2005, Theorem 4.4.]): For any R ≥ 6E[X] = 6nx/λ

′,

P[X ≤ R] ≥ 2−R.

The claim is thus proved.

PROOF OF LEMMA 3.13. Now we use the claims to prove the lemma. Choose ℓ′ = ℓ
and λ′ = λ and consider any node v that appears at most t times. The number of times
it appears as a connector node is the number of times it appears in the subsequence
B described in Claim 3.14. By applying Claim 3.14 and 3.15 with R = t(log n)2, we
have that v appears in B more than t(log n)2 times with probability at most 1/n2 as
desired.

Now we are ready to prove the probabilistic bound of Phase 2 (cf. Lemma 3.5).
First, we claim, using Lemma 3.12 and 3.13, that each node is used as a connector

node at most 32 deg(x)
√
ℓ(logn)3

λ times with probability at least 1 − 2/n. To see this, ob-

serve that the claim holds if each node x is visited at most t(x) = 32 deg(x)
√
ℓ+ 1 log n

times and consequently appears as a connector node at most t(x)(log n)2/λ times. By
Lemma 3.12, the first condition holds with probability at least 1−1/n. By Lemma 3.13
and the union bound over all nodes, the second condition holds with probability at
least 1 − 1/n, provided that the first condition holds. Therefore, both conditions hold
together with probability at least 1− 2/n as claimed.

Now, observe that SAMPLE-COUPON is invoked O(ℓ
λ) times (only when we stitch the

walks) and therefore, by Lemma 3.11, contributes O(ℓDλ) rounds. Moreover, we claim
that SEND-MORE-COUPONS is never invoked, with probability at least 1 − 2/n. To
see this, recall our claim above that each node x is used as a connector node at most
32 deg(x)

√
ℓ(logn)3

λ times. Additionally, observe that we have prepared this many walks in

Phase 1; i.e., after Phase 1, each node has η deg(x) ≥ 32 deg(x)
√
ℓ(logn)3

λ short walks. The
claim follows.

Therefore, with probability at least 1− 2/n, the rounds are Õ(ℓDλ) as claimed.

3.5. Proof of Random Walk Visits Lemma (cf. Lemma 3.12)

In this section, we prove the Random Walk Visits Lemma introduced in the previous
section. We restated it here for the sake of readability.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

1:20 A. Das Sarma, D. Nanongkai, G. Pandurangan, T. Tetali

LEMMA 3.12 (RANDOM WALK VISITS LEMMA, RESTATED). For any nodes
x1, x2, . . . , xk, and ℓ = O(m2),

P
(

∃y s.t.

k
∑

i=1

Nxi

ℓ (y) ≥ 32 deg(x)
√
kℓ+ 1 log n+ k

)

≤ 1/n .

We start with the bound of the first moment of the number of visits at each node by
each walk.

PROPOSITION 3.16. For any node x, node y and t = O(m2),

E[Nx
t (y)] ≤ 8 deg(y)

√
t+ 1 . (1)

To prove the above proposition, let P denote the transition probability matrix of such
a random walk and let π denote the stationary distribution of the walk, which in this
case is simply proportional to the degree of the vertex, and let πmin = minx π(x).

The basic bound we use is the following estimate from Lyons (see Lemma 3.4 and
Remark 4 in [Lyons 2005]). Let Q denote the transition probability matrix of a chain
with self-loop probablity α > 0, and with c = min {π(x)Q(x, y) : x 6= y and Q(x, y) > 0} .
Note that for a random walk on an undirected graph, c = 1

2m . For k > 0 a positive
integer (denoting time) ,

∣

∣

Qk(x, y)

π(y)
− 1

∣

∣ ≤ min
{ 1

αc
√
k + 1

,
1

2α2c2(k + 1)

}

. (2)

For k ≤ βm2 for a sufficiently small constant β, and small α, the above can be sim-
plified to the following bound (we use Observation 2.1 here); see Remark 3 in [Lyons
2005].

Qk(x, y) ≤ 4π(y)

c
√
k + 1

=
4deg(y)√

k + 1
. (3)

Note that given a simple random walk on a graph G, and a corresponding matrix P ,
one can always switch to the lazy version Q = (I + P)/2, and interpret it as a walk on
graph G′, obtained by adding self-loops to vertices in G so as to double the degree of
each vertex. In the following, with abuse of notation we assume our P is such a lazy
version of the original one.

PROOF OF PROPOSITION 3.16. Let X0, X1, . . . describe the random walk, with Xi

denoting the position of the walk at time i ≥ 0, and let 1A denote the indicator (0-1)
random variable, which takes the value 1 when the event A is true. In the following we
also use the subscript x to denote the fact that the probability or expectation is with
respect to starting the walk at vertex x. We get the expectation.

E[Nx
t (y)] = Ex[

t
∑

i=0

1{Xi=y}] =
t

∑

i=0

P i(x, y)

≤ 4 deg(y)

t
∑

i=0

1√
i+ 1

, (using the above inequality (3))

≤ 8 deg(y)
√
t+ 1 .

Using the above proposition, we bound the number of visits of each walk at each
node, as follows.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

Distributed Random Walks 1:21

LEMMA 3.17. For t = O(m2) and any vertex y ∈ G, the random walk started at x
satisfies:

P
(

Nx
t (y) ≥ 32 deg(y)

√
t+ 1 log n

)

≤ 1

n2
.

PROOF. First, it follows from the Proposition and Markov’s inequality that

P
(

Nx
t (y) ≥ 4 · 8 deg(y)

√
t+ 1

)

≤ 1

4
. (4)

For any r, let Lx
r (y) be the time that the random walk (started at x) visits y for the

rth time. Observe that, for any r, Nx
t (y) ≥ r if and only if Lx

r (y) ≤ t. Therefore,

P(Nx
t (y) ≥ r) = P(Lx

r (y) ≤ t). (5)

Let r∗ = 32 deg(y)
√
t+ 1. By (4) and (5), P(Lx

r∗(y) ≤ t) ≤ 1
4 . We claim that

P(Lx
r∗ logn(y) ≤ t) ≤

(

1

4

)logn

=
1

n2
. (6)

To see this, divide the walk into log n independent subwalks, each visiting y exactly r∗

times. Since the event Lx
r∗ logn(y) ≤ t implies that all subwalks have length at most t,

(6) follows. Now, by applying (5) again,

P(Nx
t (y) ≥ r∗ log n) = P(Lx

r∗ logn(y) ≤ t) ≤ 1

n2

as desired.

We now extend the above lemma to bound the number of visits of all the walks at
each particular node.

LEMMA 3.18 (RANDOM WALK VISITS LEMMA FOR A SPECIFIC VERTEX). For γ >
0, and t = O(m2), and for any vertex y ∈ G, the random walk started at x satisfies:

P
(

k
∑

i=1

Nxi

t (y) ≥ 32 deg(y)
√
kt+ 1 log n+ k

)

≤ 1

n2
.

PROOF. First, observe that, for any r,

P
(

k
∑

i=1

Nxi

t (y) ≥ r − k
)

≤ P[Ny
kt(y) ≥ r]. (7)

To see this, we construct a walk W of length kt starting at y in the following way: For
each i, denote a walk of length t starting at xi by Wi. Let τi and τ ′i be the first and last
time (not later than time t) that Wi visits y. Let W ′

i be the subwalk of Wi from time
τi to τ ′i . We construct a walk W by stitching W ′

1,W
′
2, ...,W

′
k together and complete the

rest of the walk (to reach the length kt) by a normal random walk. It then follows that
the number of visits to y by W1,W2, . . . ,Wk (excluding the starting step) is at most the

number of visits to y by W . The first quantity is
∑k

i=1 N
xi

t (y)− k. (The term ‘−k’ comes
from the fact that we do not count the first visit to y by each Wi which is the starting
step of each W ′

i .) The second quantity is Ny
kt(y). The observation thus follows.

Therefore,

P
(

k
∑

i=1

Nxi

t (y) ≥ 32 deg(y)
√
kt+ 1 log n+ k

)

≤ P
(

Ny
kt(y) ≥ 32 deg(y)

√
kt+ 1 log n

)

≤ 1

n2

where the last inequality follows from Lemma 3.17.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

1:22 A. Das Sarma, D. Nanongkai, G. Pandurangan, T. Tetali

The Random Walk Visits Lemma (cf. Lemma 3.12) follows immediately from
Lemma 3.18 by union bounding over all nodes.

4. VARIATIONS, EXTENSIONS, AND GENERALIZATIONS

4.1. Computing k Random Walks

We now consider the scenario when we want to compute k walks of length ℓ from dif-
ferent (not necessary distinct) sources s1, s2, . . . , sk. We show that SINGLE-RANDOM-
WALK can be extended to solve this problem. Consider the following algorithm.

MANY-RANDOM-WALKS. Let λ = (32
√
kℓD + 1 log n + k)(log n)2 and η = 1. If λ > ℓ

then run the naive random walk algorithm, i.e., the sources find walks of length ℓ
simultaneously by sending tokens. Otherwise, do the following. First, modify Phase 2
of SINGLE-RANDOM-WALK to create multiple walks, one at a time; i.e., in the second
phase, we stitch the short walks together to get a walk of length ℓ starting at s1 then
do the same thing for s2, s3, and so on.

The correctness of MANY-RANDOM-WALKS follows from Lemma 3.1; intuitively, this
algorithm outputs independent random walks because it obtains long walks by stitch-
ing short walks that are all independent (no short walk is used twice). We now prove
the running time of this algorithm.

THEOREM 4.1. MANY-RANDOM-WALKS finishes in Õ
(

min(
√
kℓD + k, k + ℓ)

)

rounds with high probability.

PROOF. First, consider the case where λ > ℓ. In this case, min(
√
kℓD + k,

√
kℓ +

k + ℓ) = Õ(
√
kℓ + k + ℓ). By Lemma 3.12, each node x will be visited at most

Õ(deg(x)(
√
kℓ + k)) times. Therefore, using the same argument as Lemma 3.2, the

congestion is Õ(
√
kℓ+k) with high probability. Since the dilation is ℓ, MANY-RANDOM-

WALKS takes Õ(
√
kℓ+k+ ℓ) rounds as claimed. Since 2

√
kℓ ≤ k+ ℓ, this bound reduces

to O(k + ℓ).

Now, consider the other case where λ ≤ ℓ. In this case, min(
√
kℓD+ k,

√
kℓ+ k+ ℓ) =

Õ(
√
kℓD + k). Phase 1 takes Õ(λη) = Õ(

√
kℓD + k). The stitching in Phase 2 takes

Õ(kℓD/λ) = Õ(
√
kℓD). Moreover, by Lemma 3.12, SEND-MORE-COUPONS will never be

invoked. Therefore, the total number of rounds is Õ(
√
kℓD + k) as claimed.

4.2. Regenerating the entire random walk

Our algorithm can be extended to regenerate the entire walk, solving k-RW-pos. This
will be use, e.g., in generating a random spanning tree. The algorithm is the follow-
ing. First, inform all intermediate connecting nodes of their position which can be
done by keeping track of the walk length when we do token forwarding in Phase 2.
Then, these nodes can regenerate their O(

√
ℓ) length short walks by simply sending

a message through each of the corresponding short walks. This can be completed in
Õ(

√
ℓD) rounds with high probability. This is because, with high probability, SEND-

MORE-COUPONS will not be invoked and hence all the short walks are generated in
Phase 1. Sending a message through each of these short walks (in fact, sending a mes-
sage through every short walk generated in Phase 1) takes time at most the time taken
in Phase 1, i.e., Õ(

√
ℓD) rounds.

4.3. Generalization to the Metropolis-Hastings algorithm

We now discuss extensions of our algorithm to perform a random walk according to the
Metropolis-Hastings algorithm, a more general type of random walk with numerous

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

Distributed Random Walks 1:23

applications (e.g., [Zhong and Shen 2006]). The Metropolis-Hastings [Hastings 1970;
Metropolis et al. 1953] algorithm gives a way to define a transition probability so that
a random walk converges to any desired distribution π (where πi, for any node i, is
the desired stationary probability at node i). It is assumed that every node i knows its
steady state probability πi (and can know its neighbors’ steady state probabilities in
one round).

The Metropolis-Hastings algorithm is roughly as follows (see, e.g., [Hastings 1970;
Metropolis et al. 1953] for the full description). For any desired distribution π and any
desired laziness factor 0 < α < 1, the transition probability from node i to its neighbor
j is defined to be

Pij = αmin(1/di, πj/(πidj))

where di and dj are degree of i and j respectively. It can be shown that a random walk
with this transition probability converges to π.

Using the transition probability defined above, we now run the SINGLE-RANDOM-
WALK algorithm with one modification: in Phase 1, we generate

η · π(x)

αminx
π(x)

deg(x)

short walks instead of η deg(v).
The correctness of the algorithm follows from Lemma 3.1. The running time follows

from the following theorem.

THEOREM 4.2. For any η and λ such that ηλ ≥ 32
√
ℓ(log n)3, the modified SINGLE-

RANDOM-WALK algorithm stated above finishes in

Õ(λη · maxx π(x)/deg(x)

miny π(y)/deg(y)
+

ℓD

λ
)

rounds with high probability.

An interesting application of the above theorem is when π is a stationary distribu-
tion. In this case, we can compute a random walk of length ℓ in Õ(λη + ℓD

λ) rounds
which is exactly Theorem 3.6. Like Theorem 3.6, the above theorem follows from the
following two lemmas which are similar to Lemmas 3.2 and 3.5.

LEMMA 4.3. For any π and α, Phase 1 finishes in O(λη log n·maxx π(x)/ deg(x)
miny π(y)/ deg(y)) rounds

with high probability.

PROOF. The proof is essentially the same as Lemma 3.2. We present it here for
completeness. Let β = 1

αminx
π(x)

deg(x)

. Consider the case when each node i creates βπ(i)η

messages. We show that the lemma holds even in this case.
We use the same definition as in Lemma 3.2. That is, for each message M , any

j = 1, 2, ..., λ, and any edge e, we define Xj
M (e) to be a random variable having value 1

if M is sent through e in the jth iteration (i.e., when the counter on M has value j− 1).
Let Xj(e) =

∑

M :message X
j
M (e). We compute the expected number of messages that go

through an edge. As before, we show the following claim.

CLAIM 4.4. For any edge e and any j, E[Xj(e)] = 2η · maxx π(x)/ deg(x)
miny π(y)/ deg(y) .

PROOF. Assume that each node v starts with βπ(v)η messages. Each message takes
a random walk. We prove that after any given number of steps j, the expected number
of messages at node v is still βπ(v)η. Consider the random walk’s probability transition

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

1:24 A. Das Sarma, D. Nanongkai, G. Pandurangan, T. Tetali

matrix, say A. In this case Au = u for the vector u having value π(v) (since this π(v) is
the stationary distribution). Now the number of messages we started with at any node
i is proportional to its stationary distribution, therefore, in expectation, the number of
messages at any node remains the same.

To calculate E[Xj(e)], notice that edge e will receive messages from its two end
points, say x and y. The number of messages it receives from node x in expectation

is exactly βπ(x)η × αmin(1
dx
,

πy

πxdy
) ≤ η · π(x)/ deg(x)

miny π(y)/ deg(y) . The claim follows.

The high probability analysis follows the same way as the analysis of Lemma 3.2.

LEMMA 4.5. For any η and λ such that ηλ ≥ 32
√
ℓ(log n)3, Phase 2 finishes in Õ(ℓ

λ)
rounds with high probability.

PROOF. (Sketched) We first prove a result similar to Proposition 3.16

CLAIM 4.6. For any node x, node y and t = O(m2),

E[Nx
t (y)] ≤

8π(y)
√
t+ 1

αminx π(x)/deg(x)
. (8)

PROOF. The proof is similar to the proof of Lemma 3.16 except that

c = αmin
x

π(x)/deg(x).

It follows that

E[Nx
t (y)] = Ex[

t
∑

i=0

1{Xi=y}] =
t

∑

i=0

P i(x, y)

≤ 4π(y)

c

t
∑

i=0

1√
i+ 1

, (using the above inequality (3))

≤ 8π(y)
√
t+ 1

αminx π(x)/deg(x)
.

By following the rest of the proof of Lemma 3.12, we conclude the following.

CLAIM 4.7. For any nodes x1, x2, . . . , xk, and ℓ = O(m2),

P
(

∃y s.t.

k
∑

i=1

Nxi

ℓ (y) ≥ 32
π(y)

αminx π(x)/deg(x)

√
kℓ+ 1 log n+ k

)

≤ 1/n .

Following the proof of Lemma 3.5, we have that each node y is used as a connector at
most

32(π(y)
αminx π(x)/ deg(x))

√
ℓ(log n)3

λ

times with probability at least 1 − 2/n. Additionally, observe that we have prepared
this many walks in Phase 1; i.e., after Phase 1, each node x has

η · π(x)

αminx
π(x)

deg(x)

≥
32(π(x)

αminy π(y)/d(y))
√
ℓ(log n)3

λ

short walks. The claim follows.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

Distributed Random Walks 1:25

4.4. k Walks where Sources output Destinations (k-RW-SoD)

In this section we extend our results to k-RW-SoD using the following lemma.

LEMMA 4.8. Given an algorithm that solves k-RW-DoS in O(S) rounds, for any S,
one can extend the algorithm to solve k-RW-SoD in O(S + k +D) rounds.

The idea of the above lemma is to construct a BFS tree and have each destination
node send its ID to the corresponding source via the root. By using upcast and down-
cast algorithms [Peleg 2000], this can be done in O(k +D) rounds.

PROOF. Let the algorithm that solves k-RW-DoS perform one walk each from source
nodes s1, s2, . . . , sk. Let the destinations that output these sources be d1, d2, . . . , dk re-
spectively. This means that for each 1 ≤ i ≤ k, node deg(x) has the ID of source si.
To prove the lemma, we need a way for each deg(x) to communicate its own ID to si
respectively, in O(k +D) rounds. The simplest way to do this is for each node ID pair
(deg(x), si) to be communicated to some fixed node r, and then for r to communicate
this information to the sources si. This is done by r constructing a BFS tree rooted
at itself. This step takes O(D) rounds. Now, each destination deg(x) sends its pair
(deg(x), si) up this tree to the root r. This can be done in O(D + k) rounds using an
upcast algorithm [Peleg 2000]. Node r then uses the same BFS tree to route back the
pairs to the appropriate sources. This again takes O(D + k) rounds using a downcast
algorithm [Peleg 2000].

Applying Theorem 4.1 and Lemma 4.8, the following theorem follows.

THEOREM 4.9. Given a set of k sources, one can perform k-RW-SoD after random

walks of length ℓ in Õ(
√
kℓD +D + k) rounds.

5. APPLICATIONS

In this section, we present two applications of our algorithm.

5.1. A Distributed Algorithm for Random Spanning Tree

We now present an algorithm for generating a random spanning tree (RST) of an un-
weighted undirected network in Õ(

√
mD) rounds with high probability. The approach

is to simulate Aldous and Broder’s [Aldous 1990; Broder 1989] RST algorithm which is
as follows. First, pick one arbitrary node as a root. Then, perform a random walk from
the root node until all nodes are visited. For each non-root node, output the edge that
is used for its first visit. (That is, for each non-root node v, if the first time v is visited
is t then we output the edge (u, v) where u is the node visited at time t− 1.) The output
edges clearly form a spanning tree and this spanning tree is shown to come from a uni-
form distribution among all spanning trees of the graph [Aldous 1990; Broder 1989].
The running time of this algorithm is bounded by the time to visit all the nodes of the
the graph which can shown to be Õ(mD) (in the worst case, i.e., for any undirected,
unweighted graph) by Aleniunas et al. [Aleliunas et al. 1979].

This algorithm can be simulated on the distributed network by our random walk
algorithm as follows. The algorithm can be viewed in phases. Initially, we pick a root
node arbitrarily and set ℓ = n. In each phase, we run log n (different) walks of length
ℓ starting from the root node (this takes Õ(

√
ℓD) rounds using our distributed random

walk algorithm). If none of the O(log n) different walks cover all nodes (this can be
easily checked in O(D) time), we double the value of ℓ and start a new phase, i.e.,
perform again log n walks of length ℓ. The algorithm continues until one walk of length
ℓ covers all nodes. We then use such walk to construct a random spanning tree: As the
result of this walk, each node knows its position(s) in the walk (cf. Section 3), i.e., it

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

1:26 A. Das Sarma, D. Nanongkai, G. Pandurangan, T. Tetali

has a list of steps in the walk that it is visited. Therefore, each non-root node can pick
an edge that is used in its first visit by communicating to its neighbors. Thus at the
end of the algorithm, each node can know which of its adjacent edges belong to the
output tree. (An additional O(n) rounds may be used to deliver the resulting tree to a
particular node if needed.)

We now analyze the number of rounds in term of τ , the expected cover time of the
input graph. The algorithm takes O(log τ) phases before 2τ ≤ ℓ ≤ 4τ , and since one of
log n random walks of length 2τ will cover the input graph with high probability, the
algorithm will stop with ℓ ≤ 4τ with high probability. Since each phase takes Õ(

√
ℓD)

rounds, the total number of rounds is Õ(
√
τD) with high probability. Since τ = Õ(mD),

we have the following theorem.

THEOREM 5.1. The algorithm described above generates a uniform random span-

ning tree in Õ(
√
mD) rounds with high probability.

5.2. Decentralized Estimation of Mixing Time

We now present an algorithm to estimate the mixing time of a graph from a speci-
fied source. Throughout this section, we assume that the graph is connected and non-
bipartite (the conditions under which mixing time is well-defined). The main idea in es-
timating the mixing time is, given a source node, to run many random walks of length
ℓ using the approach described in the previous section, and use these to estimate the
distribution induced by the ℓ-length random walk. We then compare the distribution
at length ℓ, with the stationary distribution to determine if they are close, and if not,
double ℓ and retry. For this approach, one issue that we need to address is how to
compare two distributions with few samples efficiently (a well-studied problem). We
introduce some definitions before formalizing our approach and theorem.

Definition 5.2 (Distribution vector). Let πx(t) define the probability distribution
vector reached after t steps when the initial distribution starts with probability 1 at
node x. Let π denote the stationary distribution vector.

Definition 5.3 (τx(δ) (δ-near mixing time), and τxmix (mixing time) for source x).
Define τx(δ) = min t : ||πx(t)− π||1 < δ. Define τxmix = τx(1/2e).

The goal is to estimate τxmix. Notice that the definitions of τx(δ) and τxmix are consis-
tent due to the following standard monotonicity property of distributions.

LEMMA 5.4. ||πx(t+ 1)− π||1 ≤ ||πx(t)− π||1.

PROOF. We need to show that the definition of mixing times are consistent, i.e.
monotonic in t the number of steps of the random walk. This is folklore but for com-
pleteness, we show this via simple linear algebra and the definition of distributions.
Let A denote the transpose of the transition probability matrix of the graph being con-
sidered. That is, A(i, j) denotes the probability of transitioning from node j to node i.
Further, let x denote any probability vetor. Now notice that we have ||Ax||1 ≤ ||x||1;
this follows from the fact that the sum of entries of any column of A is 1 (since it is
a Markov chain), and the sum of entries of the vector x is 1 (since it is a probability
distribution vector).

Now let π be the stationary distribution of the graph corresponding to A. This implies
that if ℓ is δ-near mixing, then ||Aℓu− π||1 ≤ δ, by the definition of δ-near mixing time.
Now consider ||Aℓ+1u−π||1. This is equal to ||Aℓ+1u−Aπ||1 since Aπ = π. However, this
reduces to ||A(Aℓu − π)||1 ≤ δ (which again follows from the fact that A is stochastic).
It follows that (ℓ+ 1) is δ-near mixing.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

Distributed Random Walks 1:27

To compare two distributions, we use the technique of Batu et. al. [Batu et al. 2001]
to determine if the distributions are δ-near. Their result (slightly restated) is summa-
rized in the following theorem.

THEOREM 5.5 ([BATU ET AL. 2001]). For any ǫ, given Õ(n1/2poly(ǫ−1)) samples of
a distribution X over [n], and a specified distribution Y , there is a test that outputs

PASS with high probability if |X − Y |1 ≤ ǫ3

4
√
n logn

, and outputs FAIL with high proba-

bility if |X − Y |1 ≥ 6ǫ.

The distribution X in our context is some distribution on nodes and Y is the station-
ary distribution, i.e., Y (v) = deg(v)/(2m) (recall that m is the number of edges in the
network). In this case, the algorithm used in the above theorem can be simulated in a
distributed network in Õ(D + 2/ log(1 + ǫ)) rounds, as in the following theorem.

THEOREM 5.6. For any ǫ, given Õ(n1/2poly(ǫ−1)) samples of a distribution X over

[n], and a stationary distribution Y , there is a Õ(D + 2/ log(1 + ǫ))-time test that out-

puts PASS with high probability if |X − Y |1 ≤ ǫ3

4
√
n logn

, and outputs FAIL with high

probability if |X − Y |1 ≥ 6ǫ.

PROOF. We now give a brief description of the algorithm of Batu et. al. [Batu
et al. 2001] to illustrate that it can in fact be simulated on the distributed net-
work efficiently. The algorithm partitions the set of nodes into k buckets, where
k = (2/ log(1 + ǫ)) log n, based on Y (the stationary distribution in this case). De-
note these buckets by R1, . . . , Rk. Each bucket Ri consists of all nodes v such that
(1+ǫ)i−1

n logn ≤ Y (v) < (1+ǫ)i

n logn . Since n, m and ǫ can be broadcasted to all nodes in O(D)

rounds and each node v can compute its stationary distribution Y (v) = deg(v)/(2m),
each node can determine which bucket it is in in O(D) rounds.

Now, we sample Õ(n1/2poly(ǫ−1)) nodes based on distribution X. Each of the

Õ(n1/2poly(ǫ−1)) sampled nodes from X falls in one of these buckets. We let ℓi be the
number of sampled nodes in bucket Ri and let Y (Ri) be the distribution of Y on Ri.
The values of ℓi and Y (Ri), for all i, can compute and sent to some central node in

O(k) = Õ(2/ log(1+ ǫ)) rounds. Finally, the central node uses this information to deter-
mine the output of the algorithm. We refer the reader to [Batu et al. 2001] for a precise
description.

Our algorithm starts with ℓ = 1 and runs K = Õ(
√
n polylog(ǫ−1)) walks (for choice

of ǫ = 1/12e) of length ℓ from the specified source x. As the test of comparison with the
stationary distribution outputs FAIL, ℓ is doubled. This process is repeated to identify
the largest ℓ such that the test outputs FAIL with high probability and the smallest
ℓ such that the test outputs PASS with high probability. These give lower and upper
bounds on the required τxmix respectively. Our resulting theorem is presented below.

THEOREM 5.7. Given a graph with diameter D, a node x can find, in Õ(n1/2 +

n1/4
√

Dτx(δ)) rounds, a time τ̃xmix such that τxmix ≤ τ̃xmix ≤ τx(δ), where δ = 1
6912e

√
n logn

.

PROOF. For undirected unweighted graphs, the stationary distribution of the ran-

dom walk is known and is deg(i)
2m for node i with degree deg(i), where m is the number

of edges in the graph. If a source node in the network knows the degree distribution,
we only need Õ(n1/2poly(ǫ−1)) samples from a distribution to compare it to the station-
ary distribution. This can be achieved by running MULTIPLERANDOMWALK to obtain
K = Õ(n1/2poly(ǫ−1)) random walks. We choose ǫ = 1/12e. To find the approximate

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

1:28 A. Das Sarma, D. Nanongkai, G. Pandurangan, T. Tetali

mixing time, we try out increasing values of ℓ that are powers of 2. Once we find the
right consecutive powers of 2, the monotonicity property admits a binary search to
determine the exact value for the specified ǫ.

The result in [Batu et al. 2001] can also be adapted to compare with the stationary
distribution even if the source does not know the entire distribution. As described
previously, the source only needs to know the count of number of nodes with sta-
tionary distribution in given buckets. Specifically, the buckets of interest are at most
Õ(n1/2poly(ǫ−1)) as the count is required only for buckets were a sample is drawn
from. Since each node knows its own stationary probability (determined just by its
degree), the source can broadcast a specific bucket information and recover, in O(D)
steps, the count of number of nodes that fall into this bucket. Using upcast, the source
can obtain the bucket count for each of these at most Õ(n1/2poly(ǫ−1)) buckets in

Õ(n1/2poly(ǫ−1) +D) rounds.
By Theorem 4.1, a source node can obtain K samples from K independent random

walks of length ℓ in Õ(K+
√
KℓD) rounds. Setting K = Õ(n1/2poly(ǫ−1)+D) completes

the proof.

Suppose our estimate of τxmix is close to the mixing time of the graph defined as
τmix = maxx τ

x
mix, then this would allow us to estimate several related quantities.

Given a mixing time τmix, we can approximate the spectral gap (1 − λ2) and the con-
ductance (Φ) due to the known relations that 1

1−λ2
≤ τmix ≤ logn

1−λ2
and Θ(1− λ2) ≤ Φ ≤

Θ(
√
1− λ2) as shown in [Jerrum and Sinclair 1989].

6. CONCLUDING REMARKS

This paper gives a tight upper bound on the time complexity of distributed computa-
tion of random walks in undirected networks. Thus the running time of our algorithm
is optimal (within a poly-logarithmic factor), matching the lower bound that was shown
recently [Nanongkai et al. 2011]. However, our upper bound for performing k indepen-
dent random walks may not be tight and it will be interesting to resolve this.

While the focus of this paper is on time complexity, message complexity is also im-
portant. In particular, our message complexity for computing k independent random
walks of length ℓ is Õ(m

√
ℓD+n

√

ℓ/D) which can be worse than the naive algorithm’s

Õ(kℓ) message complexity. It would be important to come up with an algorithm that is
round efficient and yet has smaller message complexity. In a subsequent paper [Das
Sarma et al. 2012b], we have addressed this issue partly and shown that, under certain
assumptions, we can extend our algorithms to be message efficient also.

We presented two algorithmic applications of our distributed random walk algo-
rithm: estimating mixing times and computing random spanning trees. It would be
interesting to improve upon these results. For example, is there a Õ(

√

τxmix + n1/4)
round algorithm to estimate τx; and is there an algorithm for estimating the mixing
time (which is the worst among all starting points)? Another open question is whether
there exists a Õ(n) round (or a faster) algorithm for RST?

There are several interesting directions to take this work further. Can these tech-
niques be useful for estimating the second eigenvector of the transition matrix (useful
for sparse cuts)? Are there efficient distributed algorithms for random walks in di-
rected graphs (useful for PageRank and related quantities)? Finally, from a practical
standpoint, it is important to develop algorithms that are robust to failures and it
would be nice to extend our techniques to handle such node/edge failures. This can be
useful for doing decentralized computation in large-scale dynamic networks.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

Distributed Random Walks 1:29

REFERENCES

ADAMIC, L. A., LUKOSE, R. M., PUNIYANI, A. R., AND HUBERMAN, B. A. 2001. Search in power-law
networks. Physical Review 64.

ALDOUS, D. 1990. The random walk construction of uniform spanning trees and uniform labelled trees.
SIAM J. Discrete Math. 3, 4, 450–465.

ALELIUNAS, R., KARP, R. M., LIPTON, R. J., LOVASZ, L., AND RACKOFF, C. 1979. Random walks, uni-
versal traversal sequences, and the complexity of maze problems. In Proceedings of the 20th Annual
Symposium on Foundations of Computer Science (FOCS). IEEE Computer Society, Washington, DC,
USA, 218–223.

ALON, N., AVIN, C., KOUCKÝ, M., KOZMA, G., LOTKER, Z., AND TUTTLE, M. R. 2011. Many random walks
are faster than one. Combinatorics, Probability & Computing 20, 4, 481–502.

BAALA, H., FLAUZAC, O., GABER, J., BUI, M., AND EL-GHAZAWI, T. A. 2003. A self-stabilizing distributed
algorithm for spanning tree construction in wireless ad hoc networks. J. Parallel Distrib. Comput. 63, 1,
97–104.

BAR-ILAN, J. AND ZERNIK, D. 1989. Random leaders and random spanning trees. In 3rd International
Workshop on Distributed Algorithms (WDAG; later called DISC). 1–12.

BATU, T., FORTNOW, L., FISCHER, E., KUMAR, R., RUBINFELD, R., AND WHITE, P. 2001. Testing ran-
dom variables for independence and identity. In 42nd Annual Symposium on Foundations of Computer
Science (FOCS). 442–451.

BERNARD, T., BUI, A., AND FLAUZAC, O. 2004. Random distributed self-stabilizing structures maintenance.
In Advanced Distributed Systems: Third International School and Symposium (ISSADS). 231–240.

BHARAMBE, A. R., AGRAWAL, M., AND SESHAN, S. 2004. Mercury: supporting scalable multi-attribute
range queries. In Proceedings of the ACM SIGCOMM 2004 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication (SIGCOMM). 353–366.

BRODER, A. Z. 1989. Generating random spanning trees. In 30th Annual Symposium on Foundations of
Computer Science (FOCS). 442–447.

BUI, M., BERNARD, T., SOHIER, D., AND BUI, A. 2004. Random walks in distributed computing: A survey.
In 4th International Workshop on Innovative Internet Community Systems (IICS). 1–14.

COOPER, B. F. 2005. Quickly routing searches without having to move content. In 4th International Work-
shop on Peer-to-Peer Systems (IPTPS). 163–172.

COOPER, C., FRIEZE, A. M., AND RADZIK, T. 2009. Multiple random walks in random regular graphs. SIAM
J. Discrete Math. 23, 4, 1738–1761.

COPPERSMITH, D., TETALI, P., AND WINKLER, P. 1993. Collisions among random walks on a graph. SIAM
J. Discret. Math. 6, 3, 363–374.

DAS SARMA, A., GOLLAPUDI, S., AND PANIGRAHY, R. 2011. Estimating pagerank on graph streams. J.
ACM 58, 3, 13.

DAS SARMA, A., HOLZER, S., KOR, L., KORMAN, A., NANONGKAI, D., PANDURANGAN, G., PELEG, D.,
AND WATTENHOFER, R. 2011. Distributed verification and hardness of distributed approximation. In
Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC). 363–372.

DAS SARMA, A., MOLLA, A., AND PANDURANGAN, G. 2012a. Fast distributed computation in dynamic
networks via random walks. In 26th International Symposium on Distributed Computing (DISC).

DAS SARMA, A., MOLLA, A. R., AND PANDURANGAN, G. 2012b. Near-optimal random walk sampling in
distributed networks. In Proceedings of the IEEE INFOCOM. 2906–2910.

DAS SARMA, A., NANONGKAI, D., AND PANDURANGAN, G. 2009. Fast distributed random walks. In Pro-
ceedings of the 28th Annual ACM Symposium on Principles of Distributed Computing (PODC). 161–170.

DAS SARMA, A., NANONGKAI, D., PANDURANGAN, G., AND TETALI, P. 2010. Efficient distributed random
walks with applications. In Proceedings of the 29th Annual ACM Symposium on Principles of Distributed
Computing (PODC). 201–210.

DOLEV, S., SCHILLER, E., AND WELCH, J. L. 2006. Random walk for self-stabilizing group communication
in ad hoc networks. IEEE Trans. Mob. Comput. 5, 7, 893–905.

DOLEV, S. AND TZACHAR, N. 2010. Spanders: distributed spanning expanders. In Proceedings of the ACM
Symposium on Applied Computing (SAC). 1309–1314.

DUBHASHI, D. P., GRANDONI, F., AND PANCONESI, A. 2007. Distributed Algorithms via LP Duality
and Randomization. In Handbook of Approximation Algorithms and Metaheuristics. Chapman and
Hall/CRC.

ELKIN, M. 2004. An overview of distributed approximation. ACM SIGACT News Distributed Computing
Column 35, 4, 40–57.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

1:30 A. Das Sarma, D. Nanongkai, G. Pandurangan, T. Tetali

ELSÄSSER, R. AND SAUERWALD, T. 2011. Tight bounds for the cover time of multiple random walks. Theor.
Comput. Sci. 412, 24, 2623–2641.

GANESH, A. J., KERMARREC, A.-M., AND MASSOULIÉ, L. 2003. Peer-to-peer membership management for
gossip-based protocols. IEEE Trans. Comput. 52, 2, 139–149.

GARAY, J., KUTTEN, S., AND PELEG, D. 1998. A sublinear time distributed algorithm for minimum-weight
spanning trees. SIAM J. Comput. 27, 302–316.

GKANTSIDIS, C., GOEL, G., MIHAIL, M., AND SABERI, A. 2007. Towards topology aware networks. In 26th
IEEE International Conference on Computer Communications (INFOCOM). 2591–2595.

GKANTSIDIS, C., MIHAIL, M., AND SABERI, A. 2005. Hybrid search schemes for unstructured peer-to-peer
networks. In 24th Annual Joint Conference of the IEEE Computer and Communications Societies (IN-
FOCOM). 1526–1537.

GOYAL, N., RADEMACHER, L., AND VEMPALA, S. 2009. Expanders via random spanning trees. In Proceed-
ings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 576–585.

HASTINGS, W. K. 1970. Monte carlo sampling methods using markov chains and their applications.
Biometrika 57, 1, 97–109.

ISRAELI, A. AND JALFON, M. 1990. Token management schemes and random walks yield self-stabilizing
mutual exclusion. In Proceedings of the Ninth Annual ACM Symposium on Principles of Distributed
Computing (PODC). 119–131.

JERRUM, M. AND SINCLAIR, A. 1989. Approximating the permanent. SIAM Journal of Computing 18, 6,
1149–1178.

KARGER, D. R. AND RUHL, M. 2006. Simple efficient load-balancing algorithms for peer-to-peer systems.
Theory Comput. Syst. 39, 6, 787–804.

KELNER, J. A. AND MADRY, A. 2009. Faster generation of random spanning trees. In 50th Annual IEEE
Symposium on Foundations of Computer Science (FOCS). 13–21.

KEMPE, D., KLEINBERG, J. M., AND DEMERS, A. J. 2004. Spatial gossip and resource location protocols. J.
ACM 51, 6, 943–967.

KEMPE, D. AND MCSHERRY, F. 2008. A decentralized algorithm for spectral analysis. Journal of Computer
and System Sciences 74(1), 70–83.

KHAN, M., KUHN, F., MALKHI, D., PANDURANGAN, G., AND TALWAR, K. 2012. Efficient distributed ap-
proximation algorithms via probabilistic tree embeddings. Distributed Computing 25, 3, 189–205.

KHAN, M. AND PANDURANGAN, G. 2008. A fast distributed approximation algorithm for minimum spanning
trees. Distributed Computing 20, 6, 391–402.

KLEINBERG, J. M. 2000. The small-world phenomenon: an algorithmic perspective. In Proceedings of the
Thirty-Second Annual ACM Symposium on Theory of Computing (STOC). ACM, Portland, Oregon, USA,
163–170.

LAW, C. AND SIU, K.-Y. 2003. Distributed construction of random expander networks. In The 22nd Annual
Joint Conference of the IEEE Computer and Communications Societies (INFOCOM). IEEE, Cambridge,
MA, USA.

LOGUINOV, D., KUMAR, A., RAI, V., AND GANESH, S. 2003. Graph-theoretic analysis of structured peer-
to-peer systems: routing distances and fault resilience. In Proceedings of the ACM SIGCOMM 2003
Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication
(SIGCOMM). ACM, New York, NY, USA, 395–406.

LV, Q., CAO, P., COHEN, E., LI, K., AND SHENKER, S. 2002. Search and replication in unstructured peer-
to-peer networks. In Proceedings of the 2002 International Conference on Supercomputing (ICS). ACM,
New York, NY, USA, 84–95.

LYNCH, N. A. 1996. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

LYONS, R. 2005. Asymptotic enumeration of spanning trees. Combinatorics, Probability & Computing 14, 4,
491–522.

METROPOLIS, N., ROSENBLUTH, A. W., ROSENBLUTH, M. N., TELLER, A. H., AND TELLER, E. 1953.
Equation of state calculations by fast computing machines. The Journal of Chemical Physics 21, 6,
1087–1092.

MITZENMACHER, M. AND UPFAL, E. 2005. Probability and Computing: Randomized Algorithms and Prob-
abilistic Analysis. Cambridge University Press, New York, NY, USA.

MORALES, R. AND GUPTA, I. 2007. Avmon: Optimal and scalable discovery of consistent availability mon-
itoring overlays for distributed systems. In Proceedings of the 27th International Conference on Dis-
tributed Computing Systems (ICDCS). 55.

MUTHUKRISHNAN, S. AND PANDURANGAN, G. 2010. Thresholding random geometric properties motivated
by ad hoc sensor networks. Journal of Computer and System Sciences 76(7), 686–696.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

Distributed Random Walks 1:31

NANONGKAI, D., DAS SARMA, A., AND PANDURANGAN, G. 2011. A tight unconditional lower bound on
distributed randomwalk computation. In Proceedings of the 30th Annual ACM Symposium on Principles
of Distributed Computing (PODC). 257–266.

PANDURANGAN, G. AND KHAN, M. 2010. Algorithms and theory of computation handbook. Chapman &
Hall/CRC, Chapter Theory of communication networks, 27–27.

PELEG, D. 2000. Distributed computing: a locality-sensitive approach. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA.

SAMI, R. AND TWIGG, A. 2008. Lower bounds for distributed markov chain problems. CoRR abs/0810.5263.

VITTER, J. S. 1985. Random sampling with a reservoir. ACM Trans. Math. Softw. 11, 1, 37–57.

WILSON, D. B. 1996. Generating random spanning trees more quickly than the cover time. In Proceedings
of the 28th ACM Symposium on Theory of Computing (STOC). 296–303.

ZHONG, M. AND SHEN, K. 2006. Random walk based node sampling in self-organizing networks. Operating
Systems Review 40, 3, 49–55.

ZHONG, M., SHEN, K., AND SEIFERAS, J. I. 2005. Non-uniform random membership management in peer-
to-peer networks. In 24th Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM). 1151–1161.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 1.

