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Distributed Real-time Anomaly Detection in

Networked Industrial Sensing Systems

Abstract—Reliable real-time sensing plays a vital role in
ensuring the reliability and safety of industrial Cyber-Physical
Systems (CPSs) such as wireless sensor and actuator networks.
For many reasons, such as harsh industrial environments, fault-
prone sensors, or malicious attacks, sensor readings may be
abnormal or faulty. This could lead to serious system perfor-
mance degradation or even catastrophic failure. Current anomaly
detection approaches are either centralized and complicated,
or restricted due to strict assumptions, which are not suitable
for practical large-scale Networked Industrial Sensing Systems
(NISSs) where sensing devices are connected via digital commu-
nications, such as wireless sensor networks or smart grid systems.
In this paper, we introduce a fully distributed general-anomaly-
detection (GAD) scheme, which uses graph theory and exploits
spatiotemporal correlations of physical processes to carry out
real-time anomaly detection for general large-scale NISSs. We
formally prove the scalability of our GAD approach and evaluate
the performance of GAD for two industrial applications: building
structure monitoring and smart grids. Extensive trace-driven
simulations validate our theoretical analysis, and demonstrate
that our approach can significantly outperform state-of-the-art
approaches in terms of detection accuracy and efficiency.

I. INTRODUCTION

Industrial Cyber-physical systems (CPSs) have been pro-

viding promising opportunities in many critical industrial seg-

ments such as energy, automotive, chemical, instrumentation,

and industrial automation [1], [2]. Sensing is a key subsystem

of industrial CPSs, which provides real-time measurements of

physical process information, including temperature, humid-

ity, illumination, vibration, chemical gas, smart power meter

readings. In many industrial CPSs such as smart grids [3],

the sensing devices can communicate with each other or with

the central controller through information and communication

technology (ICT) infrastructures such as wireless communi-

cations. We call such sensing systems Networked Industrial

Sensing Systems (NISSs) in this paper.

In practice, sensor readings may be abnormal or faulty due

to various unpredictable reasons such as harsh environments,

inherently fault-prone sensors, or malicious attacks (e.g. false

data injection attack in smart grid systems [4]). These anoma-

lies could lead to significant system performance degradation

or even catastrophic failure. Therefore, effective detection of

sensing anomalies is highly important for the reliability and

safety of the overall industrial CPS.

A. Motivation

In this paper, we focus on anomaly detection for NISSs.

Our objective is to develop an anomaly detection algorithm

that has the following three properties:

• Real-time Detection. Since sensor information is critical

and even a single abnormal critical sensor reading may

lead to a catastrophic cascade of failures throughout

the whole system. Therefore abnormalities should be

detected as early as possible to minimize the possibility

of potential damage. To achieve this, an on-line scheme

that provides real-time anomaly detections is needed. This

scheme should be able identify the anomaly condition of

each sensor observation, as soon as sensor observations

are collected.

• Distributed Solution. Anomaly detection can be per-

formed either at the central controller (i.e. centralized

solution) or at local sensing devices (i.e. distributed so-

lution). Centralized solutions require transmitting sensor

readings to the central controller, which may result in data

loss and delay to the detection decisions, especially in

large-scale wireless NISSs. In contrast, distributed solu-

tions are much more agile and robust to data transmission

failures, and more importantly, scale to larger sizes.

• General Solution. For different NISSs, the system behav-

iors and dynamics could be very different. For instance,

the stochastic behaviors of energy usage in smart grids

could be quite different from that of chemical control

processes. Therefore a general solution covering various

NISSs is highly desirable. This self-tuning solution means

that unrealistic assumptions or models related to specific

industrial scenarios are not required.

B. Our Approaches

We propose General Anomaly Detection (GAD), a

correlation-based anomaly detection algorithm for general

NISSs that achieves all aforementioned properties. The con-

tributions of this paper are summarized as follows:

1. We develop a Distributed Matching-based Grouping

Algorithm (DMGA), the first correlation-aware algorithm that

divides all sensing components into small strongly correlated

groups in a fully distributed way. We then propose a novel

approach to detect anomalies in real time, based on the spa-

tiotemporal correlations among sensors within each correlation

group.

2. We prove that the computation and storage complexity

of GAD are of O(1)1 with respect to the number of sensing

devices, which means that it can be applied in large-scale

industrial sensing systems such as smart grid and smart water

systems.

3. The performance of GAD is evaluated in two NISSs: the

sensing systems of buildings and smart grids. Extensive sim-

ulations using real building and smart grid data demonstrate

that GAD achieves all its design objectives and outperforms

1This notation shows that GAD requires constant computational time and
memory.
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current approaches, in terms of detection accuracy, efficiency,

and scalability.

C. Related Work

Industrial Sensing Systems. There exist a large body

of research on networked sensing systems in industrial en-

vironments [5]–[7], such as building monitoring and control

[8], smart water system monitoring [9], machine-condition

monitoring and diagnostic [10], [11], and smart power grid

systems [3]. None of the above examples consider distributed

real-time anomaly detections. To improve the reliability of the

overall system, [12], [13] study fault detection and for different

types of sensors. However, they focus on specific sensor types

and do not consider networked sensing systems.

Anomaly Detection Mechanisms. Anomaly detection

schemes [14] can be broadly classified into non-parametric

(including semi-parametric) and parametric approaches. On

one hand, non-parametric mechanisms [15]–[17] such as sta-

tistical models and machine learning techniques, are capable

of coping with changes and heterogeneities in the deployment

environments. However, these solutions usually suffer from

either low detection accuracy, or high computation com-

plexity and poor scalability. Some non-parametric solutions

[16], [18]–[20] tried to exploit other data-mining techniques

(e.g. clustering, support vector machine (SVM), and kernel

functions) to achieve a balanced solution. However, they

either depend on static routing trees, or require accurately

assigned thresholds to ensure their detection accuracy. Other

approaches, such as [21]–[23], although they provide efficient

anomaly-detection solutions, they do not focus on identifying

anomalies with respect to each sensor observation, but the

anomaly condition of samples (which is a sets of observations)

and sensor devices.

On the other hand, parametric approaches [19], [24]–[28],

that exploit spatiotemporal correlations between sensors, are

lightweight and provide accuracy guarantees. However, these

parametric approaches are normally based on quite specific

assumptions which may not hold true in practice and need

to be known in advance. This significantly restricts their

application for many sensing systems. In summary, current

approaches cannot achieve all the design objectives of anomaly

detection in NISSs.

D. Organization

The remainder of this paper is organized as follows: Sec-

tion II specifies our targeted sensing systems and, discusses the

spatiotemporal correlations of physical phenomena. Section IV

presents DMGA. The design of in-group anomaly detection are

discussed in Section V. Evaluation of GAD are represented in

Section VII, and we finally conclude the paper in Section VIII.

II. PRELIMINARIES

In this section, we introduce the problem statement of

our approach and the background information regarding the

spatiotemporal correlation in physical phenomena.

A. Networked Industrial Sensing Systems

Our work focuses on identifying the anomaly-condition

of each sensor observation in NISSs. These systems may

contain single or multiple physical sources (e.g. boilers) that

can simultaneously influence the observations of all of their

nearby sensors. Specifically, we consider a set of sensors S that

can communicate with other nearby sensors through wireless

or wired communications. Each sensor i ∈ S is synchronised

with others and monitors the same physical phenomenon

(e.g. temperature and pressure), and periodically reports its

measurement ri(t) at every time slot t = {0, 1, ...}.

B. Spatiotemporal Correlation in Physical Phenomena

Spatiotemporal correlation is a natural property in various

physical phenomena [26], [29], including temperature, humid-

ity, illumination, mechanical vibration, sound, gas concentra-

tion, radiation, and even human behaviors.

1) Spatial Correlation: Physical states pertaining to a

given special area can simultaneously influence the sensor

measurements observed in that specific area. For instance, a

leakage of a water pipe can be detected by multiple nearby

sensors. Specifically, consider two sensors i and j in a cor-

related sphere. At a given t, a correlation mapping f t
i,j from

sensor i to j can be defined as:

f t
i,j : Ri(t) → Rj(t) (1)

where Ri(t) and Rj(t) represent the set of all possible

readings of i and j respectively at time t. In practice, f t
i,j de-

pends on two key factors: the status of the physical phenomena

in which we are interested (e.g. geographical distributions such

as source values and sensor-source distances), and the sur-

rounding environment (e.g. background noise). For instance, a

correlation mapping between the readings of two temperature

sensors should be affected by the nearby temperature sources

(e.g. heaters), and the air temperature, which simultaneously

influence the measurements of both sensors.

2) Temporal Correlation: Since physical phenomena is

continuous, these spatial correlations should have a relation-

ship with those measured previously. To be more specific,

mapping f t
i,j should be temporally correlated to previous

mappings fτ
i,j , τ ∈ [t − △t, t − 1], where sampling window

size △t represents the period during within which the physical

dynamic patterns are treated as stable.

III. THE OUTLINE OF GAD

To summarise, the design of GAD can be mainly divided

into two phases. In the first phase, we aim to group sensors

in a sensing system S into multiple correlation groups, while

maximize the total correlation in all correlation groups G ⊆ S .

This guarantees that the sensors are highly correlated to others

when they are in the same group. In the second phase,

each group performs an on-line in-group anomaly-detection

algorithm to tag each sensor observation with its anomaly

condition in a real-time fashion. Fig. 1 illustrates the above

operations of GAD algorithm.
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Fig. 1. The overview of GAD algorithm (a) The initial of GAD. (b) Sensors
are grouped by DMGA at time tgroup. (c) After applying DMGA, the
anomaly condition of each sensor reading is identified at each time t.

• When GAD initials its algorithm (Fig.1(a)), each sensor

node i ∈ S broadcasts its readings to its one-hop

communication neighbours N 1−hop
i . These readings will

be stored and used by each sensor node j ∈ N 1−hop
i

to calculate the Pearson correlation coefficient between

sensor i and j.

• When acquire |tgroup| observations for the correlation

calculation (Fig.1(b)), DMGA, a correlation-aware group-

ing algorithm, is performed. This algorithm exploits a

matching technique [30] to group sensors into clusters,

where the total correlations between sensor nodes are

maximized. During this grouping, each sensor node i ex-

changes grouping-request messages with their neighbour

nodes in N 1−hop
i . This process terminates when the size

of each group G ⊆ S meets the minimum requirement

Nmin. The detailed design of DMGA can be found in

Section IV.

• After grouping (Fig.1(c)), each group chooses a sensor

node as its cluster head. This cluster head can be selected

as per application requirements, including sensor energy

budget, communication capability, or sensor ID. Once the

cluster heads are selected, at each time slot t, each sensor

sends its reading to its cluster head. After the cluster

heads received all sensor readings in their groups, they

perform an in-group anomaly detection algorithm to tag

each reading with its anomaly condition. The details of

this in-group algorithm will be given in Section V.

Note that, although GAD groups sensor nodes in to groups,

in which sensor measurements have to be first routed to cluster

heads, users can still apply any network topology, routing

protocol, or data aggregation scheme, after sensor readings

are tagged with their anomaly condition.

IV. CORRELATION-AWARE GROUPING

At the first stage of GAD, a grouping scheme is required

to divide sensors into small correlation groups in a fully dis-

tributed way. The objective of grouping is to ensure strong spa-

tiotemporal correlations among all sensors in each correlation

group, while minimizing the overhead of GAD. To this end

we develop distributed matching-based grouping algorithm

(DMGA), the first correlation aware grouping algorithm for

anomaly detection.

A. DMGA Design

For a given industrial sensing system S , let G ⊆ S
represent a correlation group, and G ⊆ 2S represent the set

of all correlation groups, i.e. a grouping solution. We define

Π ⊂ 2S as the set of all possible grouping solutions. DMGA

aims to find a grouping solution G ∈ Π, which maximizes

the spatiotemporal correlations in all groups and guarantees

strong spatiotemporal correlations among all sensors in each

correlation group, while minimize the computational complex-

ity of GAD. Formally, DMGA aim at solving the following

problem:

max
G∈Π

∑

{i,j}⊂G,G∈G

ci,j (2)

subject to

|G| ≥ Nmin, ∀G ∈ G (3)

ci,j ≥ cmin, ∀i, j ∈ G ∈ G (4)∑

G∈G

|G|2 ≤
∑

G∈G′

|G|2, ∀G′ ̸= G (5)

where 0 ≤ ci,j ≤ 1 is the standard Pearson correlation

coefficient, which represents the spatiotemporal correlation

between sensor i and j; cmin is a predefined minimal cor-

relation threshold; and Nmin presents the minimal correlation

group size to guarantee anomaly-detection accuracy [15], [25].

The objective (2) is to maximize total correlations between

sensors in all groups. Constraint (3) states that each group

should consist of at least Nmin sensors. Constraint (4) ensures

the strong correlations between each pair of sensors in each

group. Constraint (5) ensures the grouping solution should

also minimize the computational overhead of GAD algorithm,

which is O(
∑

G∈G
|G|2/|S|) per sensor (This will be discussed

in detail in next section).

DMGA solves problem (2)-(5) by utilizing distributed

Maximum Weighted Matching (MWM) [30]. In graph theory,

a matching is a set of links that do not share common node.

A MWM is a matching with maximal aggregate weights (i.e.

the maximal aggregated correlations in our context) over all

other matchings for a given weight graph. The pseudocode of

the DMGA is summarized in Fig. 2.

The idea of DMGA is based on the concept of hyper

correlation graphs Gn
c (G

n,Ln,Wn) at the nth iteration of the

while loop (lines 6-10), where G
n represents the set of hyper-

nodes (i.e. non-overlapping correlation groups of the same
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Input Parameters

S: the set of all sensors in a industrial sensing system.

ci,j : Correlation between every pair of sensors i, j ∈ S.

cmin: Predefined minimal correlation threshold.

Nmin: the minimal number of nodes in a correlation group.

N 1-hop
i : the set of one-hop communication neighbors of i.

Variables:

n: iteration round.

Gn
c : the nth Hyper Correlation Graph.

Gn: the set of hyper-nodes in the nth iteration.

Ln: the set of hyper-links in the nth iteration.

Wn: the set of weights over hyper-links in the nth iteration.

Functions:

CON(G,L,W): construct a hyper-graph based on G,L,W.

MWM(G): compute the MWM of a graph G.

/* Initialization */

01: n← 0;

02: G0 ← {{i} : i ∈ S};

03: L0 ← {({i}, {j}) : i ∈ S, j ∈ N 1-hop
i , ci,j ≥ cmin};

04: W0 ← {ci,j : ({i}, {j}) ∈ L0}; G0
c ← CON(G0,L0,W0);

/*Establish nonoverlapping groups with same sizes*/

05: while 2n < Nmin do

06: n← n+ 1;

07: Gn ←MWM(Gn−1
c );

08: Ln ← {(G1,G2) : ∀i ∈ G1 ∈ Gn, j ∈ G2 ∈ Gn

08: s.t.({i}, {j}) ∈ L0};

09: Wn ← {WG1,G2
=

∑
i,j∈G1∪G2

ci,j : (G1,G2) ∈ Ln};

10: Gn
c = CON(Gn,Ln,Wn);

/* Insert individual sensors in established groups */

11: for each sensor (i ∈ S) ∧ (i /∈ G,∀G ∈ Gn) do

12: for each group G ∈ Gn, |G| = 2n do

13: if ∀G′ ∈ Gns.t.|G′| = 2n ∧
∑

j∈G
ci,j ≥

∑
j∈G′ ci,j then

14: G ← G ∪ {i};

15: return (Gn);

Fig. 2. The pseudo code of DMGA.

size 2n), L
n is the set of hyper-links between each pair of

hyper nodes; and the weight of each hyper-link (G1,G2) ∈ L
n

is computed as the sum of Pearson correlation coefficients

between each pair of sensors in G1 ∪ G2. At the nth iteration,

the while loop first computes the MWM (discuss later) for

the hyper-correlation graph Gn-1
c (Gn-1,Ln-1,Wn-1) generated

in the last iteration. Based on the computed MWM the nth

hyper correlation graph Gn
c (G

n,Ln,Wn) is then constructed.

According to Theorem 1, the while loop operates at most

⌈log2 N
min⌉ times, where ⌈log2 N

min⌉ represents the minimal

integer that is larger than log2 N
min. Eventually, if each

sensor in S has been put into a correlation group in G
n,

the algorithm terminates after the while loop; otherwise, the

algorithm inserts each sensor individually to an established

group in G
n (lines 11–15), according to Theorem 1.

Fig. 3 illustrates an example to show the operation of

DMGA. Assume Nmin = 4 in this example. Initially, we

have the initial hyper-correlation graph G0
c consisting of 10

sensors (Step 0). In the first iteration of the while loop

(Steps 1 and 2 in Fig. 3), the MWM is computed (Step 1)

and the fisrt hyper-correlation graph G1
c is constructed (Step

2), where G
1 = {{a, c}, {g, h}, {e, d}, {i, j}, {f, b}}.

Fig. 3. An example to illustrate DMGA.

Similarly, the second while loop (steps 3 and 4 in Fig. 3)

computes the MWM for G1
c (Step 3) and constructs G2

c (Step

4), where G
2 = {{g, h, i, j}, {e, d, f, b}}. Finally, in Step 5,

the individual sensors a and c are inserted into the established

two groups respectively, and then the algorithm terminates.

B. Distributed Operations of DMGA

DMGA is based on locally greedy optimal-link selections.

Three one-hop control messages are used in this DMGA:

Matching Apply (MA), Matching Reply (MR) and drop.

To initialize the first hyper-correlation graph G0
c(G

0,L0,W0)
(Lines 1-4 in Fig. 2), every sensor i ∈ S broadcast its readings

of a previous periods △t to all its 1-hop neighbors j ∈ N 1-hop
i .

Based on these sensor readings, the first hyper correlation

graph G0
c(G

0,L0,W0) can be established in a fully distributed

manner.

Now we discuss the distributed operations of matching.

For the nth hyper-correlation graph Gn
c (G

n,Ln,Wn), DMGA

compute MWM as follows. Every hyper node Gn
k selects its

locally heaviest-weighted and free (LHWF) link (Gn
k ,G

n
l∗),

where

(Gn
k ,G

n
l∗) = arg max

(Gn

k
,Gn

l
)∈Ln

∑

i,j∈Gn

k
∪Gn

l

ci,j (6)

Then Gn
k sends a MA message to Gn

l∗ to request the

matching of link (Gn
k ,G

n
l∗). If this link is also the LHWF

link for Gn
l∗ , then Gn

l∗ sends a MR message back to Gn
k to

confirm this link is matched, and multicasts a drop message to

its other neighbor groups, otherwise, Gl ignores the message.

Alternatively, (Gn
k ,G

n
l∗) is eventually dropped. If link (Gn

k ,G
n
l∗)

is dropped, then Gn
k selects a new LHWF link and sends

another MA message. The above process repeats until every

hyper node has either a matched link, or all its links are

dropped and marked as free.

C. Performance Analysis

Theorems 1 below demonstrates three theoretical perfor-

mance guarantees achieved by DMGA. For readability, the

proofs of this theorem is presented in Appendix.

Theorem 1. DMGA achieves the following performance guar-

antees:
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1) DMGA minimizes the computational overhead of GAD

algorithm, i.e. Constraint (5) is guaranteed.

2) The worst-case communication overhead of DMGA is

O(1) per sensor, with respect to the industrial sensing

system size |S|.
3) DMGA achieves at least 1/Nmin performance of the

optimal solution of problem (2)-(5).

Theoretically, problem (2)-(5) may not have a feasible

solution for some large Nmin and cmin. From graph theoretical

point of view, the setting of cmin defines the topology of the

initial hyper-correlation graph G0
c(G

0,L0,W0). To ensure (2)-

(5) has a feasible solution, G0
c(G

0,L0,W0) must have at least

|S|/Nmin non-overlapping cliques (i.e. complete subgraph) of

size Nmin [31].

In practice, when the certain setting of Nmin and cmin

derives no feasible solution, the most straightforward solu-

tion is to reduce these two thresholds. However, to fulfill

the redundancy and reliability requirements of GAD, it is

necessary to have a reasonably high cmin . This is because that

GAD exploits the spatiotemporal correlations between sensors,

which are guaranteed by cmin, the lowest bond of sensor-

correlation requirement during DMGA grouping. Therefore, if

there is no feasible solution, users should try to reduce Nmin

rather cmin. It is worth noting that GAD only require each

correlation group consists of more than 3 sensors to achieve

its high detection accuracy.

V. IN-GROUP ANOMALY DETECTION

After DMGA, the following stages of anomaly detection

will be performed within each correlation group G: correlation

consistency assessment, measurement anomaly assessment,

and classification of novelty and anomaly. We assume that

sensor reading errors follow Gaussian distribution, which is a

well-accepted assumption and normally holds true in practice.

A. Correlation Consistency Assessment

Consider each pair of sensors i and j in a group G. Let ri(t)
and rj(t) be the readings of sensor i ∈ G at slot t, respectively.

As we discussed in Subsection II-B, ri(t) and rj(t) should be

temporally correlated to their the previous readings of sensor

i and j. Therefore, based on previous sensor readings before

time t, their consistency region R̃i,j(t) can be computed.

Here, R̃i,j(t) represents the set of all possible potentially

consistent reading pairs of ri(t) and rj(t) at current time t.

If current sensor reading pair (ri(t), rj(t)) ∈ R̃i,j(t), we say

the reading pair ri(t) and rj(t) are consistent; otherwise, they

are inconsistent. Denote Ci,j(t) as the correlation consistency

of sensor readings ri(t) and rj(t) at slot t, i.e.

Ci,j(t) =

{
1, if (ri(t), rj(t)) ∈ R̃i,j(t)

0, otherwise
(7)

Geometrically, R̃i,j(t) is a rotated ellipse area on the

Cartesian coordinate formed with rj and rj , as shown in Fig.

4 (a). Here, the center of the ellipse (r̃i(t), r̃j(t)) is computed

Fig. 4. Illustration of correlation consistency assessment.

by using Exponential Weighted Moving Average (EWMA) of

previous sensor readings as follows:

r̃i(t) = 0.5ri(t− 1) + 0.5r̃i(t− 1) (8)

The major and minor radius of the ellipse R̃i,j(t) are com-

puted by using the Principle Component Analysis (PCA) [22],

which is a mathematical procedure to convert observations of

multiple observers into orthogonal variables called principle

components (PCs). These PCs indicate the most representative

variances in these observations. Consider the first step of PCA,

Eigen decomposition on a data covariance matrix:

COVi,j =

[
covi,i(t) covi,j(t)
covj,i(t) covj,j(t)

]
(9)

where each entry covi,j(t) is defined as

covi,j = E
GOOD
t,△t [(ri(t)−E

GOOD
t,△t [ri(t)])(rj(t)−E

GOOD
t,△t [rj(t)])]

where the operator EGOOD
t,△t [·] returns the arithmetic average of

previous reliable sensor readings during the sampling window

[t−△t, t−1]. The identification of reliable (i.e. GOOD) sensor

readings will be discussed in detail in next subsection. With

COVi,j(t), we have

COVi,j(t)PCi,j(t) = λi,j(t)PCi,j(t) (10)

where the eigenvectors PCi,j(t) contains two orthogonal prin-

ciple components (vectors) pcai,j(t) and pcbi,j(t); and the ma-

trix of eigenvalues λi,j(t) consists of two variances (σa
i,j(t)

2)
and (σb

i,j(t))
2, where ϕσa

i,j(t) and ϕσb
i,j(t) are standard devi-

ations related to the two principle components above.

With PCi,j(t) and λi,j(t), the consistency region ellipse

R̃i,j(t) can be computed, as shown in Fig. 4 (b). Here, ϕ is a

parameter that controls the probability margin of R̃i,j(t). For

instance, ϕ = 3 can assure that 99.46% of normal observations

lie in R̃i,j(t).

B. Measurement Anomaly Assessment

In this stage, GAD exploits a trust-based voting algorithm

to identify anomaly condition of the reading ri(t) of each

sensor i in every correlation group G at time t. Here, the

correlation consistencies Ci,j(t) defined in (7), are considered

as a measure of trust between each pair of sensors i, j ∈ G.
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Before introducing the voting, we first define the consistent

neighbor set N cons
i (t) for each sensor i ∈ G at time t as:

N cons
i (t) = {j : Ci,j(t) = 1, j ∈ Ni}

where Ni = G−{i} is the set of sensor i’s all neighbors. This

stage consists of two rounds of voting:

1) First Round Voting: In this voting, certain sensors

are voted as trustworthy references. Sensor i is regarded as

trustworthy, if the majority of i’s neighbors are consistent

neighbors (i.e. |N cons
i (t)|/|Ni| ≥ 50% ); otherwise, it is

regarded as untrustworthy.

2) Second Round Voting: After the first round voting, only

trustworthy sensors are qualified to involve in the second round

voting. For each sensor i, denote N trust
i (t) ⊆ Ni as the

set of its all trustworthy neighbors. The second round voting

identifies one of the following three conditions of reading ri(t)
of each sensor in G:

• GOOD, if the majority of i’s neighbors are trustwor-

thy (|N trust
i (t)|/|Ni| ≥ 50%), and the majority of

its consistent neighbors are trustworthy (|N cons
i (t) ∩

N trust
i (t)|/|N trust

i (t)| ≥ 50%).

• ABNORMAL. if the majority of i’s neighbors are trust-

worthy, and the minority of its consistent neighbors are

trustworthy (|N cons
i (t)∩N trust

i (t)|/|N trust
i (t)| < 50%).

• UNKNOWN, if the minority of i’s neighbors are trust-

worthy (|N trust
i (t)|/|Ni| < 50%). In this case, anomaly

condition of reading ri(t) cannot be determined, due to

the lack of trustworthy references.

C. Novelty and Anomaly Classification

In this stage, GAD aims to distinguish novelties from

anomalies. Unlike anomalies that are faults or errors, novelties

are the emerging patterns in the physical process that were

previously unobserved. Novelties represent the real dynamics

of physical phenomena, which may be critical for industrial

CPS applications. For example, the occurrence of sudden

heightened temperature (e.g. a fire) is a novelty to temperature

monitoring systems rather than an anomaly.

In a correlated group G, the probability that the measure-

ments of all sensors are unreliable simultaneously is close to

zero. Therefore, we assume that the novelty can be identified

when the majority of spatial correlations between sensor

measurements changes, i.e. the readings of more than 50%

sensors in a correlation group are declared UNKNOWN. This

assumption is reasonable, because the fact that spatial varying

physical phenomena should influence nearby sensor readings

at the same time. Therefore, when genuine environmental

changes occur, the correlation mappings between each pair

of sensors in a correlation group should begin to vary.

D. Performance Analysis

Theorem 2 and 3 below demonstrate the scalability of

GAD.

Theorem 2. The per sensor computational complexity of GAD

is O(1) with respect to the industrial sensing system size |S|.

Proof. It can be seen only the consistency assessment stage

of GAD require heavy computations, i.e. Eigen decomposition

requires O(|G|2) matrix-multiplication operations for each

correlation group G ∈ G, where G is the grouping solution

computed by DMGA. Therefore the per sensor computational

complexity is O(
∑

G∈G
|G|2)/|S|). Consider DMGA, we have

∑

G∈G

|G|2/|S| ≤
|S|

Nmin
(Nmin + 1)2

1

|S|

= (Nmin + 1)2/Nmin

This proves Theorem 2. �

Theorem 3. The per sensor storage complexity of GAD is O(1)

with respect to the industrial sensing system size |S|.

Proof. According to Section IV and Subsection V-A, each

sensor requires O(|N 1−hop| × tgroup) and O(|G| × | △ t|)
memory storage to perform DMGA and to compute R̃i,j(t),
respectively. Since |tgroup| and |△ t| are constant parameters,

the storage complexities of these two operations become

O(|N 1−hop|) and O(|G|). Typically, |G| ≤ |Nmin| + 1 ≤
|N 1−hop| = D ,where D is the degree of Gc(G

0,L0,W0);
therefore, the per sensor storage complexity of GAD is O(D),
which is independent of |S|. �

VI. DEPLOY GAD IN REAL-WORLD NISSS

Theorem 2, 3 in Subsection V-D and Part 2 of Theorem

1 in Subsection IV-C have demonstrated that GAD is a

lightweight distributed anomaly-detection algorithm that has

a great potential in large-scale industrial sensing systems. In

this section, we further discuss the feasibility of deploying

GAD on real-world NISSs.

• Storage. According to the analysis in Theorem 3, DMGA

is typically the most storage-intense operation in GAD.

For example, when a sensor node has 20 1-hop neigh-

bours (i.e. |N 1−hop| = 20), and needs 50 2-bytes read-

ings of each neighbour (tgroup = 50) to calculate their

Person correlation coefficients, it requires at most 2kB

memory to perform GAD. This storage requirement can

be easily fulfilled by current resource-constrained wire-

less sensors platforms, such as TelosB (10kB memory)

or iMote2 (256kB memory).

• Computation. In GAD, the PCA operation in Section V-

A is the most computational-intense operation. This PCA

operates on 2 × 2 covariance matrixes. For example, in

correlation group having 4 sensor nodes, the cluster head

only has to compute 10 covariance values, to form the

covariance matrixes needed by GAD. This make GAD

be suitable for resource-restrained micro control units

(MCUs), such as MSP430 on TelosB, to perform.

• Communication When apply GAD on sensing systems,

the main communication overhead comes from the in-

group data exchanging between sensors. This commu-

nication overhead can be minimized by assigning the

most communication effective sensor nodes as the cluster

heads defined in Section III. For example, when a NISS

is constructed under a tree topology, users can select the

sensor nodes that are closer to the root as cluster heads.
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Fig. 5. Floor plan and sensor deployment in the ground floor of the building.

VII. EVALUATION

This section presents simulation studies to evaluated the

performance of GAD, and to demonstrate how to apply GAD

in various industrial scenarios. All simulations used data sets

from real-world industrial environments, and ran on a PC with

Intel 4-core CPU, and 8 GB memory.

A. Case Study 1: Environmental Monitoring in a Building

As one of the most important industrial sensing appli-

cations, structural monitoring aims to guarantee the healthy

conditions of buildings, by deploying ambient sensors at the

specific assigned positions [8], [32]. Due to massive deploy-

ments, these sensors are usually low-cost low-end components

and typically do not provide reliability guarantee. Therefore,

anomaly detection is required to ensure the reliability of

overall sensing systems.

We constructed simulations based on a real data set ob-

tained from a building (the floor plan of which is illustrated in

Fig. 5) was performed. This data set contains of temperature

and humidity data from 72 sensors (with same sensing rate

of one reading per every 15 seconds) during one year (from

20/Oct/2008 to 19/Oct/2009). Due to the lack of ground-

truth-anomalous measurements, anomalies were simulated by

the two abnormal sensor behaviours: CONSTANT fault and

NOISE fault [33], [34]. To create discernable impacts on

sensor measurements, we simulated CONSTANT and NOISE

faults by increasing sensor readings by 20% and the back-

ground noises by 600%, respectively. Note that since SHORT

faults [33], [34] show similar short-term behaviours (i.e. a

sudden transients in sensor readings) to the other two types of

faults, and they are relatively easier to detect [34], we did not

include this type of faults in our simulation.

To measure the detection accuracy of GAD, we use two

different metrics, successful detection rate (SDR) and false-

positive detection rate (FPDR), which are defined as follows:

SDR =
number of successful detections

number of anomalous measurements
×%

FPDR =
number of false detections

number of normal measurements
×%
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Fig. 6. The performance of GAD with different grouping criteria in the build
structure monitoring application.

Also, to demonstrate the effectiveness of DMGA, two non-

standard GAD was performed on the same data set, including

the GAD that adopted a naive grouping algorithm (with which

sensors are randomly grouped) and the GAD without grouping

(where 72 sensors are regarded as a single group). Both

DMGA and naive grouping clustered the 72 sensors into 9

different groups consisting of 8 sensors.

As shown Fig 6(a) and (b), by using DMGA, GAD can

identify more than 95% anomalies with only around 0.4%

false-positives, which are much better than no-grouping (75%–

85% SDR and 4%– 4.6% FPDR) and naive grouping (61% –

81% SDR and 4% –4.6% FPDR). This is because naive group-

ing cannot provide spatiotemporal correlation guarantees, and

strongly spatial correlations do not exist between all the sen-

sors in the entire building. The lack of correlations resulted in

many unexpected false-positive events and erroneous devices.

B. Case Study 2: FDI Attack Detection in Smart Grids

Smart grids systems use information and communication

technology (ICT) to provide reliable and efficient electricity

transmission and distribution of power grids [3], [35]. Here,

sensors such as smart meters are connected via both power

lines and ICT infrastructure as shown in Fig. 7. However,

the heterogeneity, diversity, and complexity of the smart grid
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Fig. 7. The conceptual illustration of a smart grid system.

Fig. 8. US smart grid topology.

components pose critical challenge in ensuring overall cyber

security [36]. Among various emerging security issues, false

data injection (FDI) attacks (i.e. maliciously modify sensor

readings) have a substantial cost in terms of the energy

distribution process [4]. To demonstrate how GAD can

minimize the impacts of FDI attacks, simulations based on a

simplified version of the US smart grid (as illustrated in Fig.

8 (http://www.oe.energy.gov/smartgrid.htm)) was conducted in

this subsection. In this set of simulations, each state contains

10 energy suppliers and 10 energy consumers to simulate

local energy generations and consumptions within the state.

Each of these suppliers/consumers contains generates 365

daily energy generation/consumption profiles to simulate the

annual behaviour of the smart-grid system. All these profiles

used in this simulation are based on 2009 US Energy Infor-

mation Administration State Electricity Profiles (available at

http://www.eia.gov/).

Two different types FDI attacks were considered in this

set of simulations: The first one aims to increase the metric

Costtotal defined in [4] (i.e. the total energy transmission cost

over all power lines in the smart grid system). The demands

of the energy consumers were maliciously increased by 100%

and 200% while the supplies of the energy suppliers were

falsely decreases by 10% and 20%. The second one aim to

incur significant power-supply outage rate (i.e. the percentage

of outage states over all energy demanding states), by falsely

increasing the energy supply-demand value by 15% and 30%

in our simulations.

Fig. 9 shows the simulation results when applying our FDI-

detection approach and the state-of-the-art distanced-based

(DB) solution [16], [37] proposed in 2013. Both approaches

referenced the past 30 days data during evaluation (i.e. △t =
30). Also, the user-defined parameters of DB solution was set

as r=0.5 and D=0.5 [37].

As shown in Fig. 9 (a) and (c), GAD can significantly

reduce the adverse impact caused by FDI attacks with nearly

zero false-positive detections. The total energy transmission

cost reduces from 6.35 to 5.21 million US dollars when

FDI-attack probability is 1%. In contrast, although the DB-

detection scheme achieves comparable cost reduction, it suf-

fers from extremely high false-positive detection rate. For

instance, when the FDI-attack probability is equal to 1%,

the DB-detection scheme treats about 40% correct advertised

energy supplying and demanding as FDI attacks. Such false-

positive detections would result in significant confusion in

decision making and would incur additional costs, such as

extra labour to understand the problem where the integrity of

the information is required to be checked manually.

Fig. 9 (b) and (c) show similar results to our observation in

the aforementioned simulation. GAD manages to reduce the

user outage rate from 40.5% to 18% with almost no false-

positive detections, while the distance-based solution suffered

from false alarms, especially when the attack probability is

1%. Furthermore, as shown in Fig. 9(d), GAD only introduces

about 15% additional computational overhead to the system,

while the DB-approach leads to more than 4000% additional

computational complexity, which demonstrate the high effi-

ciency of GAD.

VIII. CONCLUSION

In this paper, we propose GAD, a novel distributed real-

time approach for anomaly detection in general large-scale

networked industrial sensing systems. Unlike current anomaly-

detection approaches that make stringent assumptions about

physical phenomenon being sensed and anomaly models, GAD

assumes that spatiotemporal correlations exist in the physical

system and that measurement errors follow Gaussian distribu-

tions. Both are well-accepted assumptions and normally hold

true in practice. We prove the scalability and efficiency of

GAD, by computing its worst-case complexity bounds. The

performance of GAD is then evaluated using real data from

two industrial sensing systems: building structural monitoring

and smart grids. Simulation results demonstrate that GAD can

be used in different industrial sensing systems and outperforms

state-of-the-art approaches in terms of scalability, detection

accuracy, and efficiency.

APPENDIX

A. Proof of Part 1

We can write the overhead of the GAD algorithm for a

correlation group G as α|G|2, α > 0. To minimize computation

overhead of GAD, we have following problem
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Fig. 9. The performance of GAD in the smart grid FDI attack detection application.

min
G∈Π

α
∑

G∈G

|G|2 (11)

subject to∑

G∈G

|G| = |S|, |G| ≥ Nmin, ∀G ∈ G (12)

Due to its convexity of the objective (11), it is clear to see

that the objective (11) is minimized when every group size

is identical and minimized (i.e. Nmin). DMGA achieves this

according to lines 1–10 of shown Fig. 2. Let Nrest = |S|
mod Nmin and Ng = ⌊|S|/Nmin⌋. Now the Nrest sensors

can be divided into K ≤ Nrest subgroups. Denote Ik as the

size of the kth subgroup, i.e.
∑

1≤k≤K Ik = Nrest, where

each subgroup are inserted into a established group with size

Nmin. We have the overall overhead of the GAD algorithm:

α((Ng −K)(Nmin)2 +
K∑

k=1

(Nmin + Ik)
2) (13)

Obviously, (13) is minimized when Ik = 1, ∀k ≤ K, which

is achieved by DMGA (Lines 11–14 shown in Fig. 2) �

B. Proof of Part 2

According to the distributed operations of DMGA, at

most two messages are transmitted over a hyper-link in each

hyper-correlation graph (i.e. a MA and a MR messages,

or a MA and a drop messages). For any correlation graph

Gc(G
n,Ln,Wn), 0 ≤ n ≤ ⌈log2 N

min⌉, we have the number

of groups |Gn| ≤ |S|/2n and the number of hyper links

|Ln| = D|Gn|/2 ≤ D|S|/2n+1, where D is the degree of

Gc(G
1,L1,W1). Therefore, the per sensor messages produced

by DMGA algorithm for all hyper correlation graphs is at most

2

log2N
min∑

n=0

|Ln|/|S| ≤
∞∑

n=0

D|S|

2n
/|S| = 2D

which is independent of |S|. �

C. Proof of Part 3

Distributed matching at each hyper correlation graph can

achieve at least 1/2 of the total weights of the optimal

[30]. Since DMGA compute the distributed matching for

(log2⌈N
min⌉ hyper correlation graphs, at can achieve at least

1/Nmin of the optimal. �
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