
IEEE PROCEEDINGS, VOL. XXX, NO. YYY, DATE 1

Distributed Real-Time Software

for Cyber-Physical Systems
John C. Eidson, Life Fellow, IEEE, Edward A. Lee, Fellow, IEEE, Slobodan Matic, Member, IEEE,

Sanjit A. Seshia, Member, IEEE, and Jia Zou, Student Member, IEEE

Abstract—Real-time embedded software today is commonly
built using programming abstractions with little or no temporal
semantics. This paper addresses this problem by presenting a
programming model called PTIDES that serves as a coordination
language for model-based design of distributed real-time embed-
ded systems. Specifically, the paper describes the principles of
PTIDES, which leverages network time synchronization to pro-
vide a determinate distributed real-time semantics. We show how
PTIDES can function as a coordination language, orchestrating
components that may be designed and specified using different
formalisms. We show the use of this environment in the design of
interesting and practical cyber-physical systems, such as a power
plant control system.

I. INTRODUCTION

In cyber-physical systems (CPS) the passage of time be-

comes a central feature of system behavior — in fact, it is one

of the important constraints distinguishing these systems from

distributed computing in general. Time is central to predicting,

measuring, and controlling properties of the physical world:

given a physical model, the initial state, the inputs, and

the amount of time elapsed, one can compute the current

state of the plant. This principle provides the foundations of

control theory. However, for current mainstream programming

paradigms, given the source code, the program’s initial state,

and the amount of time elapsed, we cannot reliably predict

future program states. When that program is integrated into a

system with physical dynamics, this makes principled design

of the entire system difficult. Moreover, the disparity between

the dynamics of the physical plant and the program potentially

leads to errors, some of which can be catastrophic.

The challenge of integrating computing and physical pro-

cesses has been recognized for some time, motivating the

emergence of hybrid systems theories. Progress in that area,

The authors are with the EECS Department of UC Berke-
ley. Contact them at {eidson, eal, matic, sseshia,

jiazou}@eecs.berkeley.edu.
This work was supported in part by the Center for Hybrid and Embedded

Software Systems (CHESS) at UC Berkeley, which receives support from
the National Science Foundation (NSF awards #0720882 (CSR-EHS: PRET),
#0931843 (ActionWebs), and #1035672 (CSR-CPS Ptides)), the U. S.
Army Research Office (ARO #W911NF-07-2-0019), the U. S. Air Force
Office of Scientific Research (MURI #FA9550-06-0312), the Air Force
Research Lab (AFRL), the Multiscale Systems Center (MuSyC), one of
six research centers funded under the Focus Center Research Program, a
Semiconductor Research Corporation program, and the following companies:
Bosch, National Instruments, Thales, and Toyota. The fourth author was also
supported in part by NSF grant #0644436 and an Alfred P. Sloan Research
Fellowship.

Manuscript received February 28, 2011.

however, remains limited to relatively simple systems com-

bining ordinary differential equations with automata. These

models inherit from control theory a uniform notion of time,

an oracle called t available simultaneously in all parts of the

system. Even though traditional computer science concepts

in distributed systems emphasize asynchrony, when these

concepts are adapted to control problems, researchers often

make the assumption of the oracle t. For example, in [21],

consensus problems from computer science are translated into

control systems formulations, but with the introduction of

this global binding notion of time. In networked software

implementations, such a uniform notion of time cannot be

precisely realized. Time triggered networks [12] can be used

to approximate a uniform model of time, but the analysis of

the dynamics has to include the imperfections.

Although design of real-time software is not a new problem,

there exist trends with a potential to change the landscape.

Model-based design [11], for example, has caught on in

industrial practice, through the use of tools such as Simulink,

TargetLink, and LabVIEW. Domain-specific modeling lan-

guages are increasingly being used because they tend to

have formal semantics that experts can use to describe their

domain constraints. For CPS, models with temporal semantics

are particularly natural to system designers. An example of

such a language is Timing-Augmented Description Language

[10], a domain-specific language recently developed within the

automotive initiative AUTOSAR.

A formal semantics enables safety verification of individ-

ual components and helps with integration of components

into systems. Safety and dependability are emphasized in

the synchronous-reactive languages, particularly Esterel and

SCADE [1], used primarily in safety critical applications. An

example that addresses integration and mutual consistency

issues of different modeling languages is the UML extension

called MARTE (Modeling and Analysis of Real-Time and

Embedded Systems). Some frameworks, like BIP [2], are

component frameworks based on formal verification methods,

and they address both issues. BIP focuses on compositional

verification of properties such as deadlock freedom and relies

on priorities to model scheduling policies. As far as we know,

it has not been used to address modeling and design problems

for components with explicit timing requirements. The model-

based design approach we propose in this paper borrows sound

fixed-point semantics from the synchronous languages, but is

more flexible and concurrent.

To control timing in embedded software, programmers

typically use platform-specific system timers. However, de-

IEEE PROCEEDINGS, VOL. XXX, NO. YYY, DATE 2

sign of a system should be as independent of implemen-

tation details as possible, to allow for portability and de-

sign space exploration. To this end, we have previously

proposed a programming model called PTIDES (program-

ming temporally-integrated distributed embedded systems, pro-

nounced “tides”) [29]. PTIDES structures real-time software

as an interconnection of components communicating using

timestamped events. Ptides leverages network time synchro-

nization to provide a coherent global temporal semantics in

distributed systems. With PTIDES, application programmers

specify the interaction between the control program and the

physical dynamics in the system model, without the knowledge

of low-level details such as timers.

Prior work on PTIDES includes a study of the semantic

properties of an execution model that permits out of order pro-

cessing of events without sacrificing determinacy and without

requiring backtracking [32]. The same work introduces feasi-

bility analysis for PTIDES programs, a problem that is only

partially solved. PTIDES has been used to coordinate real-

time components written in Java [31] and C [33], where the

“glue code” is automatically generated from PTIDES models.

A simulator has been developed that supports joint modeling

of PTIDES controllers, physical plants, and communication

networks [5], [33].

The goal of this paper is to review the principles of PTIDES

and to demonstrate its usefulness for time-critical CPS ap-

plications. We first explain how PTIDES models provide

deterministic processing of events. Building on [32], in this

paper (Sec. II-C), we consider the networked case, deriving

bounds for deadlines for event network transmissions. Then we

illustrate how to specify timed reactions to events in PTIDES

models. This results in identical traces from model simulation

and execution of automatically generated code.

In order to account for different modes of operation, modal

models have been widely used in embedded system design [8].

By “modal models,” we mean the use of state machines

that define modes of operation and govern the switching

between modes [16]. In this paper, we introduce the use

of modal PTIDES models. This combination enables precise

specification of timed mode transitions.

This paper is organized as follows. First, section II discusses

the PTIDES design environment, which enables a programmer

to first model and simulate the design and then implement

it through a target-specific code generator. This environment

extends Ptolemy II [7] to realize a coordination language for

the design of distributed real-time embedded systems and to

provide a co-simulator for embedded software, physical plants,

and networks. Section III then explains temporal semantics

of PTIDES, and shows how the use of modal models in the

context of PTIDES provides a firm basis for the design of

an important class of CPS. This is followed by a detailed

application example in section IV. We conclude in section V.

II. DESIGN ENVIRONMENT

A. PTIDES Workflow

Fig. 1 shows our workflow, which includes modeling

and analysis, code generation and implementation, and co-

simulation with physical plants and networks. The PTIDES

!"#$%&'()*#+(,-&).#

/(*0(1.12#

345)&)6#

$78.9#:(8.%# /(8.#

;.1.)&2()#

$786<+#

/(8.#

$%&12#:(8.%#

1.

=.2-()>#

:(8.%#

!"#41#2?.#

3((0#

+4*@%&2()#

/&@9&%426#

A1&%6949#

/

A

$)(B)&*#

A1&%6949#

/

+C?.8@%&54%426#

A1&%6949#

A1&%6949#

:4D.8#

+4*@%&2()#

!"#$%&'()*#&).#

1.12#

)66

((8.#

..)&2()#()#

!" $% '

$

:(8.%#

..)&

-()>#

8.%

!"#41#2?.#

3((0#

+4*@%&2()

$)(B)&*#

A1&%6949#

8

8@%&54%426#

1&%6949#

+4*@%&

$%&'

" 41 2

$786<+

/(8.#

$2(%.*6#EE#$78.9#8(*&41#

$2(%.*6#EE#F49C).2.G.H.12I#

/(171@(@9I#&18#

"4).%.99#8(*&419#

3@*41&)6#:4C)(#JKLM#

ENNN#OPJJ#

=.2-()>#7*.#0)(2(C(%#

Fig. 1. PTIDES Code Generation and Analysis Workflow

design environment is an extension of the Ptolemy II frame-

work, which supports modeling, simulation, and design of

systems using mixed models of computation. The physical part

of the system can be modeled in the continuous domain. The

simulation can be instantiated with different ODE solvers that

suit diverse time scales present in the model. PTIDES models

define the functional and temporal interaction of distributed

software components, the networks that bind them together,

sensors, actuators, and physical dynamics. Simulation can be

done on such models, such that functionality and timing can be

tested. In particular, to get a picture of the temporal behavior

of a particular implementation of a model, each actor can

be endowed with a platform-dependent execution time, and

simulation can be performed to determine whether real-time

deadlines can be met for a given set of inputs.

As we will discuss in detail in the next section, PTIDES

has a formal operational semantics, and the corresponding

domain in Ptolemy II defines a suitable graphical syntax.

PTIDES defines the interaction between components called

actors, but the detailed functionality of the actors is not

given in PTIDES. It is given instead either in a conventional

programming language (typically C for embedded systems) or

as a submodel. Thus, PTIDES is a coordination language [22].

Our implementation of PTIDES leverages the Ptolemy II

code generation framework to generate target-specific glue

code from the PTIDES model. The generated executable

integrates a lightweight real-time microkernel that we call

PtidyOS. Its real-time scheduler implements PTIDES seman-

tics and therefore preserves the timed semantics given in the

PTIDES model. Like TinyOS [18], PtidyOS is a set of C

libraries that glues together application code, which then runs

directly (“bare-metal”) on the hardware platform. Currently,

our code generation framework supports a Luminary Micro

board as our target platform. It is of course possible to realize

a PTIDES execution environment on top of a conventional

operating system or a real-time operating system (RTOS). As

of this writing, we have done this only on a real-time variant of

Java [31]. In fact, there is no impediment to having a PTIDES

deployment that mixes bare metal, RTOS, and conventional

IEEE PROCEEDINGS, VOL. XXX, NO. YYY, DATE 3

OS platforms, although overall system tolerances (like clock

synchronization precision) may end up being determined by

the worst case platforms.

The goal of PTIDES timed semantics is to capture system

timing requirements. It is then necessary to check that the

generated code running on the target platform will be able

to meet these requirements. There are several approaches to

answer this schedulability question. One approach is detailed

in the workflow diagram, which shows schedulability analysis,

the goal of which is to statically determine whether all

deadlines can be met. This analysis requires platform-specific

information such as worst-case execution time (WCET) for

each actor and an event model for each sensor and network

input (i.e., the rate and pattern of event streams arriving

at sensors and network input ports). The values of these

parameters are not always known definitively, so schedulability

analysis may be approximate. In fact, it is easy to show that

the schedulability analysis problem is undecidable in general,

so approximations will be necessary.

In this paper, we describe a co-simulation approach to

schedulability analysis. The programmer annotates each actor

with a WCET (which may be approximated using program

analysis tools [23], [24]) and specifies the input event models.

Simulation then lends insight into the real-time behavior of the

system, building confidence in the design. Deadline misses

are recorded during simulation. GAMETIME, a systematic

measurement-based approach to execution time analysis [24],

[25], [26], can be used not only for predicting the WCET, but

also to generate test cases that are reasonably comprehensive

for use in simulation.

Though we have carried out modeling, simulation, and

implementation of a number of small examples using the

PTIDES simulator and PtidyOS, in this paper we only focus

on the modeling and simulation aspects in order to illustrate

how one can program distributed cyber-physical systems using

explicit timing constraints.

B. Model Time and Physical Time

PTIDES is based on discrete-event (DE) systems [3] [28],

which provide a model of time and concurrency. We specify

DE systems using the actor-oriented approach [14]. In this

case, the actors are concurrent components that exchange time-

stamped events via input and output ports. The time in time

stamps is a part of the model, playing a formal role in the

computation. We refer to this time as model time. It may or

may not bear any relationship to time in the physical world,

which in this paper we will call physical time. In basic DE

semantics, each actor processes input events in time-stamp

order. There are no constraints on the physical time at which

events are processed. We assume a variant of DE that has been

shown to integrate well with models of continuous dynamics

[17]. The purpose of this paper is not to study its rigorous and

determinate semantics. For that an interested reader is referred

to [19] and [13].

PTIDES extends DE by establishing a relationship be-

tween model time and physical time at sensors, actuators,

and network interfaces. Whereas DE models have tradition-

ally been used to construct simulations, PTIDES provides a

programmer’s model for the specification of both functional

and temporal properties of deployable cyber-physical systems.

There are three key constraints that define the relationship

between model time and physical time: 1) sensors produce

events with timestamp τ at physical time t ≥ τ ; 2) actuators

receive events with timestamp τ at physical time t ≤ τ , and 3)

network interfaces act as actuators when sending messages and

as sensors when receiving them. We explain these constraints

in detail below.

The basic PTIDES model is explained by referring to Figure

2, which shows three computational platforms (typically em-

bedded computers) connected by a network and having local

sensors and actuators. On Platform 3, a component labeled

Local Event Source produces a sequence of events that drive

an actuator through two other components. The component

labeled Computation4 processes each event and produces an

output event with the same time stamp as the input event

that triggers the computation. Those events are merged in

time stamp order by a component Merge and delivered to a

component labeled Actuator1.

In PTIDES, an actuator component interprets its input

events as commands to perform some physical action at a

physical time equal to the time stamp of the event. The

physical time of this event is measured based on clocks

commensurate with UTC or a local system-wide real-time

clock. This interpretation imposes our first real-time constraint

on all the software components upstream of the actuator. Each

event must be delivered to the actuator at a physical time

earlier than the event’s time stamp to meet deadlines. Either

PtidyOS or the design of the actuator itself ensures that the

actuation affects the physical world at a time equal to the event

time stamp. Therefore the deployed system exhibits the exact

temporal behavior specified in the design to within the limits

of the accuracy of clock synchronization between platforms

and the temporal resolution of the actuators and clocks.

In Figure 2, Platform 3 contains an actuator that is affected

both by some local control and by messages received over

the network. The local control commands are generated by

the actor Local Event Source, and modified by the component

Computation4. The Merge component can inject commands to

the actuator that originate from either the local event source or

from the network. The commands are merged in order of their

time stamps. Notice that the top input to the Merge component

comes from components that get inputs from sensors on the

remote platforms. The sensor components produce on their

output ports time-stamped events. Here, the PTIDES model

imposes a second relationship between model time stamps and

physical time. Specifically, when a sensor component produces

a time-stamped output event, that time stamp must be less than

or equal to physical time, however physical time is measured.

The sensor can only tell the system about the past, not about

the future.

The third and final relationship refers to network interfaces.

In this work we assume that the act of sending an event via a

network is similar to delivering an event to an actuator; i.e., the

event must be delivered to the network interface by a deadline

equal to the time stamp of the event. Consider Platform 1 in

Figure 2 as an example. When an event of time stamp τ is to

IEEE PROCEEDINGS, VOL. XXX, NO. YYY, DATE 4

Fig. 2. Prototypical CPS

be sent into the network fabric, the transmission of this event

needs to happen no later than physical time τ . In general,

we could set the deadline to something other than the time

stamp, but for our purposes here, it is sufficient that there

be a deadline, and that the deadline be a known function of

the time stamp. We discuss options for this function in the

following subsection.

C. Event Processing in PTIDES

Under benign conditions [13], DE models are determinate in

that given the time-stamped inputs to the model, all events are

fully defined. Thus, any correct execution of the model must

deliver the same time-stamped events to actuators, given the

same time-stamped events from the sensors (this assumes that

each software component is itself determinate). An execution

of a PTIDES model is required to follow DE semantics,

and hence deliver this determinacy. It is this property that

makes executions of PTIDES models repeatable. A test of

any “correct” execution of a PTIDES model will match the

behavior of any other correct execution.

The key question is how to deliver a “correct” execution.

For example, consider the Merge component in Figure 2. This

component must merge events in time-stamp order for delivery

to the actuator. Given an event from the local Computation4

component, when can it safely pass that event to the actuator?

Here lies a key feature of PTIDES. The decision to pass the

event to the actuator is made locally at run time by comparing

the time stamp of the event against a local clock that is tracking

physical time. This strategy results in decentralized control,

removing the risks introduced by a single point of failure, and

making systems much more modular and composable.

There are two key assumptions made in PTIDES. First,

distributed platforms have real-time clocks synchronized with

bounded error. The PTIDES model of computation works

with any bound on the error, but the smaller the bound, the

tighter the real-time constraints can be. Time synchronization

techniques such as IEEE 1588 [9] can deliver real-time clock

precision on the nanosecond order.

Second, PTIDES requires that there be a bound on the

communication delay between any two hardware components.

Specifically, sensors and actuators must deliver time-stamped

events to the run-time system within a bounded delay, and a

network must transport a time-stamped event with a bounded

delay. Bounding network delay is potentially more problematic

when using generic networking technologies such as Ethernet,

but bounded network delay is already required today in the

applications of interest here. This has in fact historically

forced deployments of these applications to use specialized

networking techniques (such as time-triggered architectures

[12], FlexRay [20], and CAN buses [27]). One of the goals of

our research is to use PTIDES on less constraining networking

architectures, e.g. to allow more flexibility in processing

aperiodic events. In the time-triggered architectures, all actions

are initiated by the computer system at known time instants. In

our approach, events coming from the environment are allowed

and are treated deterministically. Here it is sufficient to observe

that these boundedness assumptions are achievable in practice.

Since PTIDES allows detection of run-time timing errors, it is

possible to model responses to failures of these assumptions.

Once these two assumptions (bounded time synchronization

error and communication delays) are accepted, together with

deadlines for network interfaces and actuators, local decisions

can be made to deliver events in Figure 2 without compromis-

IEEE PROCEEDINGS, VOL. XXX, NO. YYY, DATE 5

ing DE semantics. Specifically, in Figure 2, notice that the top

input to the Merge comes from Sensor1 and Sensor2 through

a chain of software components and a network link. Static

analysis of these chains reveals the operations performed on

time stamps. In particular, in this figure, assume that the only

components that manipulate time stamps are the components

labeled model time delay di. These components accept an input

event and produce an output event with the same data but with

a time stamp incremented by di.

Assume we have an event e with time stamp τ at the bottom

input of Merge, and that there is no other event on Platform

3 with an earlier time stamp. This event can be passed to

the output only when we are sure that no event will later

appear at the top input of Merge with a time stamp less than

or equal to τ . This will preserve DE semantics. When can we

be sure that e is safe to process in this way? We assume that

events destined to the top input of Merge must be produced

by a reaction in Computation3 to events that arrive over the

network. Moreover, the outputs of Computation3 are further

processed to increment their time stamps by d2. Thus, we are

sure e is safe to process when no events from the network

will arrive at Platform 3 with time stamps less than or equal

to τ − d2. When can we be sure of this? Let us assume

a network delay bound of n and a clock synchronization

error bound of s between platforms. By the network interface

assumption discussed above, we know that all events sent by

Platform 1 or Platform 2 with time stamps less than τ − d2

will be sent over the network by the physical time τ − d2.

Consequently, all events with time stamp less than or equal

to τ − d2 will be received on Platform3 by the physical time

τ − d2 + n + s, where the s term accounts for the possible

disagreement in the measurement of physical time. Thus when

physical time on Platform 3 exceeds τ − d2 + n + s, event e

will be safe to process. In other words, to ensure that the

processing of an event obeys DE semantics, at run time,

the only test that is needed is to compare time stamps to

physical time with an offset (in the previous example, the

offset is −d2 + n + s). This operation, thus, takes constant

time per event. Notice, if we assume the model is static

(components are not added during runtime and connections are

not changed); minimum bounds on model time delays (di’s)

for components are known statically; and the upper bounds

for sensor processing times, network delays, and network

synchronization errors are known, then the offsets can be

calculated statically using a graph traversal algorithm which

takes linear time in the number of model actors.

The expression presented in the previous paragraph was

derived under the assumption that the deadline at a network

interface for the transmission of an event with time stamp τ

is equal to the time stamp, D(τ) = τ . However, given the

PTIDES program with known model time delay values for all

actors, there is actually a range of possible network interface

deadlines, where the range is defined by constraints imposed

at sensor-actuator boundaries. The lower bound of this range

is determined by the constraint that sensor events are produced

at physical time greater than the time stamp. In particular, in

Figure 2, the network interface deadline of an event with time

stamp τ at the output of the Computation1 actor cannot be

lower than Dl(τ) = τ−d4, because this is the earliest physical

time a sensor event with time stamp τ − d4 can be detected

at Sensor1. This bound assumes zero execution time of the

Computation1 actor. The upper bound of the network interface

deadline range is determined by the constraint that actuator

events are received at physical time smaller than the time

stamp. In Figure 2 this upper bound for the network interface at

the output of the Computation1 actor is determined by Actua-

tor1 on the receiving platform Platform3 and the network delay

bound n and clock synchronization error bound of s. This

bound is Du(τ) = τ+d2−n−s because an event at the output

of the Computation1 actor with time stamp τ1 = τ −d2 could

become available at the upper input of the Merge actor no later

than at physical time Du(τ1)+n+s = Du(τ −d2)+n+s =
((τ − d2) + d2 − n − s) + n + s = τ , which is the upper

bound on physical time an event with time stamp τ should be

received by Actuator1. This bound assumes zero execution

time of Computation3 actor. So, the theoretical bounds on

network interface deadline in this case are Dl(τ) = τ − d4

and Du(τ) = τ + d2 − n − s. Our assumption that the

deadline equals the time stamp τ makes the analysis in next

subsections particularly simple, so for the purposes of this

paper we proceed with that. A possible consequence of this

assumption on performance will be addressed in our future

work.

Notice, the safe-to-process expression presented in the

above paragraphs only determines whether an event can be

causally affected by another event from outside of the plat-

form. However, there might exist another event inside the

platform that can render the event of interest unsafe. A simple

solution for this problem is to maintain an ordered queue for

all system events. We then enforce that only the event of

the smallest timestamp can be processed. Since for any other

event within the platform to render the event of interest unsafe,

that other event must have smaller timestamp. By using this

scheme, combined with the safe-to-process expression earlier,

the safe-to-process scheduling analysis is complete. Notice this

algorithm is the same as Strategy C defined in [32]. That work

formally presents PTIDES execution model together with a

general strategy. This strategy takes time that is linear in the

number of events in the queue.

Note that the distributed execution control of PTIDES

introduces another valuable form of robustness in the system.

For example, in Figure 2, if, say, Platform 1 ceases functioning

altogether, and stops sending events on the network, that fact

alone cannot prevent Platform 3 from continuing to drive its

actuator with locally generated control signals. This would

not be true if we preserved DE semantics by conservative

techniques based on the work by Chandy and Misra [4]. It is

also easy to see that PTIDES models can include components

that monitor system integrity. For example, Platform 3 could

raise an alarm and change operating modes if it fails to get

messages from Platform 1. It could also raise an alarm if

it later receives a message with an unexpectedly small time

stamp. Time synchronization with bounded error helps to give

such mechanisms a rigorous semantics.

As long as events are delivered on time and in time-stamp

order to actuators, the execution will look exactly the same

IEEE PROCEEDINGS, VOL. XXX, NO. YYY, DATE 6

to the environment. This makes PTIDES models much more

robust than typical real-time software, because small changes

in the (physical) execution timing of internal events are not

visible to the environment (as long as real-time constraints are

met at sensors, actuators and network interfaces). Moreover,

since execution of a PTIDES model carries time stamps at

run time, run time violations of deadlines at actuators can

be detected. PTIDES models can be easily made adaptive,

changing modes of operation, for example, when such real-

time violations occur. In general, therefore, PTIDES models

provide adequate runtime information for detecting and react-

ing to a rich variety of timing faults.

III. TEMPORAL SEMANTICS IN PTIDES

PTIDES semantics is fully described in [29] and [32], and

is based on a tagged-signal model [15]. For this discussion the

important point is that actors define a functional relationship

between a set of tagged signals on the input ports and a set of

tagged signals on the output ports of the actor, Fa : SI → SO.

Here, I is a set of input ports, O is a set of output ports, and

S a set of signals. The signals s ∈ S are sets of (time stamp,

value) pairs of the form (τ, v) ∈ T × V where the time set T

represents time and V is a set of values (the data payloads) of

events. For simulation, the most common use of DE modeling,

time stamps typically have no connection with real time, and

can advance slower or faster than real time [28].

Actors are permitted to modify the time stamp and most

commonly will modify the model time member, i.e. the time

stamp, to indicate the passage of model time. For example,

a delay actor has one input port and one output port and its

behavior is given by Fδ(s) : S → S where for each s ∈ S

we have Fδ(s) = {(t + δ, v) | (t, v) ∈ s}. That is, the output

events are identical to input events except that the model time

is increased by δ, a parameter of the actor.

Consider the simple sensor, actor, actuator system of Figure

3. In this example we assume Fa(s) = {(t, 2 ∗ v) | (t, v) ∈ s};

i.e., the output is the same as the input but with its value scaled

by a factor of 2. Both variants (a) and (b) of this figure show

a serial combination of a sensor, delay, scaling, and actuator

actors. The sensor actors produce an event (25 seconds, 15

volts) where the time stamp 25 seconds is the physical time

at the time of sensing. The delay actor increments the model

time by 10 and the scale actor doubles the value from 15 volts

to 30 volts. In both cases the actuator receives an event (35

seconds, 30 volts), which it interprets as a command to the

actuator to instantiate the value 30 volts at a physical time

of 35 seconds. As long as deadlines at the actuators are met,

all observable effects with models (a) and (b) are identical,

regardless of computation times and scheduling decisions.

As mentioned earlier, the Ptides simulator allows the simu-

lation of execution time. The model in Fig. 3 is simulated and

a visualization of the physical times at which system events

occur is presented in Figure 4. Events that occur in the top

actor paths are plotted on top, and the one on the bottom

bottom. A connected line indicates one actor on that path is

executing during that period of time, and a dot indicates that

an event is produced at that physical time.

Fig. 3. Linear combination of actors

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

25 26 27 28 29 30 31 32 33 34 35

Event Execution Trace

Physical time, in micro−seconds

E
v
e

n
t

P
a

th
s

To
p

b
o
tt
o
m

Fig. 4. Visualization of the Physical Times at which Events Occur

Both paths receive inputs at physical time 25secs. Recall the

Ptides scheduler schedules by the order of event’s timestamps.

If there are multiple events with the same timestamp, then it

randomly picks one to process. In this case, the one on the

bottom path is processed first. The execution time of both Fa

actors are set to 4secs. Thus the bottom Fa actor executes

from 25secs − 29secs, and produces an event at 29secs.

Immediately following that, the time delay actor on the top

path fires. This actor introduces a model time delay of 10,

while taking 0secs physical time to execute. Thus we see

an output of timestamp 35 on the top path at physical time

29secs. Then the bottom time delay actor fires. This actor

performs the same functionality as the delay actor on top, and

it produces an output event of timestamp 35 at physical time

29secs (Note two events are produced at this physical time,

but only one dot is shown in the figure). Fa on the top path

then fires, produces an event with timestamp 35 at physical

time 33secs. Finally, since deadlines are met at both actuators,

actuation events are produced at physical time 35. Notice the

processor is idle from time 33secs − 35secs, since no other

sensor events have occurred, and the actuator is simply waiting

to actuate when physical time equals the events’ timestamps.

Modal Models. The use of modal models is well established

both in the literature, for example Statecharts [8], UML,

and in commercial products such as Simulink/Stateflow from

The MathWorks. Here, the term modal refers to “modes of

operation,” where modal models extend finite-state machines

by associating with each state of an FSM a behavior given by

a submodel. The semantics of modal models, and particularly

their handling of temporal behavior, is described in [16].

IEEE PROCEEDINGS, VOL. XXX, NO. YYY, DATE 7

Fig. 5. General pattern of a modal model with two modes, each with its
own refinement

The time-centric modal models discussed here are particularly

useful for the specification of modes of operation in a CPS

as we explain in section IV-A. Our style for modal models

follows the pattern shown in Figure 5. A modal model is an

actor, shown in the figure with two input ports and one output

port. Inside the actor is a finite state machine (FSM), shown

in the figure with two states, labeled mode1 and mode2. The

transitions between states have guards and actions, and each

state has a refinement that is a submodel. The meaning of

such a modal model is that the input-output behavior of the

ModalModel actor is given by the input-output behavior of the

refinement of the current state.

Modal models introduce additional temporal considerations

into a design. This is especially true for modal models that

modify the time stamp of a signal. While the Ptolemy II

environment provides several modal model execution options

such as a preemptive evaluation of guards prior to execution

of a state refinement, the principal features critical to the

discussion of the examples in this paper are as follows. A

modal model executes internal operations in the following

order:

• When the modal model reacts to a set of input events

with time stamp τ , it first presents those input events to

the refinement of the current state i. That refinement may,

in reaction, produce output events with time stamp τ .

• If any of input events have an effect within the refinement

at a later time stamp τ ′ > τ , that effect is postponed. The

modal model is invoked again at time stamp τ ′, and only

if the current state is still i will the effect be instantiated.

• The guards of all transitions originating from the current

state are evaluated based on the current inputs, state

variables, and outputs of the current state refinement with

the same time stamp τ as the current inputs.

• If one of the guards evaluates to true, the transition and

any associated actions are executed, and the new current

state i′ becomes that at the destination of the transition.

Thus all phases of the execution of a modal model occur

in strict time stamp order in accordance with DE semantics.

Fig. 6. Simple time-sensitive modal model

While straightforward, these rules can yield surprises particu-

larly when one or more of the refinements modify the model

time of a signal.

For example consider the simple modal model of Figure 6.

The two inputs to this state machine are mode and sensor.

The two outputs are signalOut and flag. For this example, it

is assumed that the guards are never both true. Suppose a

sensor event (t, v) = (10, 30) is received while the FSM is in

state gain 2. The refinement of this state generates an output

(17, 60). If no state transition occurs before time t = 17 then

at that time the postponed signalOut event (17, 60) will be

produced. However suppose that at time t = 12 a mode event

(12, true) occurs. This will cause a transition to state gain 3

at time t = 12. In this case the postponed signalOut event

(17, 60) is not produced. While in state gain 3 a sensor event,

say (15, 3), will result in a signalOut event (15, 9). The event

is not postponed since the refinement does not contain a delay

actor.

Similarly, suppose sensor events (5, 1) and (9, 2) are re-

ceived with the FSM in state gain 2. The refinement of this

state generates output events (12, 2) and (16, 4) which must

be postponed until times t = 12 and t = 16 respectively.

Following the rules above, at time t = 12, a signalOut event

(12, 2) occurs. At t = 16 the FSM again executes to handle

the postponed event (16, 4). The first thing that happens is the

instantiation of the signalOut event (16, 4). Next, the guards

on the FSM are evaluated and a transition occurs at t = 16
to the state gain 5. A subsequent sensor signal (17, 1) then

results in a signalOut event (17, 5). These examples illustrate

that careful attention must be paid to the temporal semantics

of the modal models to ensure that the desired application

behavior results.

IV. APPLICATION STUDY

PTIDES can be used to integrate models of software,

networks, and physical plants. This is achieved by adopting the

IEEE PROCEEDINGS, VOL. XXX, NO. YYY, DATE 8

fixed-point semantics that makes it possible to mix continuous

and discrete-event models [17]. A practical consequence is

to enable CPS co-design and co-simulation. It also facilitates

hardware in the loop (HIL) simulation, where deployable

software can be tested (at greatly reduced cost and risk) against

simulations of the physical plant. The DE semantics of the

model ensures that simulations will match implementations,

even if the simulation of the plant cannot execute in real time.

Conversely, prototypes of the software on generic execution

platforms can be tested against the actual physical plant.

The model can be tested even if the software controllers

are not fully implemented. This (extremely valuable) property

cannot be achieved today because the temporal properties of

the software emerge from an implementation, and therefore

complete tests of the dynamics often cannot be performed until

the final stages of system integration, with the actual physical

plant, using the final platform.

The inclusion of a network into an embedded system intro-

duces three principal complications in the design of embedded

systems:

• To preserve DE semantics and the resulting determinism

system wide, it is necessary to provide a common sense

of time to all platforms. As noted in section II this is

often based on a time-slotted network protocol but can

also be based on a clock synchronization protocol such

as IEEE 1588 [9].

• The design of model delays must now account not only

for execution time within an actuation platform, e.g. the

platform containing an actuator causally dependent on

signals from other platforms, but must include network

delay as well as execution time in platforms providing

signals via the network to the actuation platform.

• To ensure bounded network delay it is usually necessary

to enforce some sort of admission control explicitly

controlling the time that traffic is introduced onto the

network.

The introduction of timed reactions further complicates the

design and analysis of system temporal semantics, particularly

when these reactions must be synchronized across a multi-

platform system. PTIDES is well suited in managing these

multi-platform design issues. The remainder of this section

illustrates the following features of the PTIDES design envi-

ronment:

• The use of time-based models of the plant in testing

controller implementations of power plants.

• The use of a modal model to specify the temporal

behavior of the operational modes of a device.

• The use of time-based detection of missing signals, based

on local clocks, to drive mode changes in the operation

of power plants.

• The use of timed sequences of operations to define

startup, normal, shutdown, and emergency sequencing of

the power supplies in a test and measurement system.

• The use of synchronized clocks in a multi-platform

system to allow FSMs and other actors in each platform

to enforce system-wide temporal behavior.

• The enforcement of correspondence between model and

Fig. 7. Model of a small power plant. This model can be opened, run, and
even modified by clicking on the figure above (if you are reading this on
a computer), or by going to http://ptolemy.org/PowerPlant on a Java-capable
machine.

physical time at sensors and actuators to ensure that such

timing specifications are realized

• The enforcement of deadlines for sending events over

the network to ensure correct (w.r.t. DE semantics) event

processing on receiving platforms.

A. Power Plant Control

The design of the control systems for large electric power

stations is interesting in that the physical extent of the plant

requires a networked solution. The two critical design issues

of interest here are the precision of the turbine speed control

loop and the system reaction time to failures. The loop time

is relatively long but for serious failures the fuel supply to the

turbine must typically be reduced within a few milliseconds.

PowerPlant.htm
http://ptolemy.org/PowerPlant

IEEE PROCEEDINGS, VOL. XXX, NO. YYY, DATE 9

A typical power plant can involve sampling of up to 3000

nodes comprising monitoring equipment separated by several

hundred meters. Since the purpose of the monitored data is

to make decisions about the state of the physical plant, it

is critical that the time at which each measurement is made

be known to an accuracy and precision appropriate to the

physics being measured. The PTIDES design system allows

these measurement times to be precisely specified and time-

stamped with respect to the synchronized real-time clocks in

the separate platforms.

Figure 7 illustrates a model of a power plant that is

hopefully readable without much additional explanation. The

model includes a Generator/Turbine Model, which models

continuous dynamics, a model of a communication network,

and a model of the supervisory controller. The details of these

three components are not shown. Indeed, each of these three

components can be quite sophisticated models, although for

our purposes here we use rather simple versions. The model

in Figure 7 also includes a local controller, which is expanded

showing two main components, a Heartbeat Detector and

Plant Control block. A power plant, like many CPS, can be

characterized by several modes of operation each of which can

have different time semantics. This is reflected in the design of

the Plant Control block that is implemented with a four state

modal model based on the discussion of section III . The Down

state represents the off state of the power plant. Upon receipt of

a (time-stamped) startup event from the supervisory controller,

this modal model transitions to the Startup state. When the

measured discrepancy between electric power output and the

target output gets below a threshold given by errorThreshold,

the modal model transitions to the Normal state. If it receives a

(time-stamped) emergency event from the Heartbeat Detector,

then it will transition to the Shutdown state, and after achieving

shutdown, to the Down state. Each of these states has a

refinement (not shown) that uses input sensor data to specify

the amount of fuel to supply to the generator/turbine. The

fuel amount is sent over the network to the actuators on the

generator/turbine. Because both the controller sensor input

data and the resulting fuel control signal sent to the actuators

are time stamped, the designer is able to use PTIDES construct

to precisely specify the delay between sensors and actuators.

Furthermore as described earlier executable code generated

from the PTIDES models shown here, forces these time

stamps to correspond to physical time at both sensors and

actuators thus ensuring deterministic and temporally-correct

execution meeting the designed specifications even across

multiple platforms linked by a network.

To further aid the designer these models are executable.

For example, the plots generated by the two Plotter actors in

Figure 7 are shown in Figure 8 for one simulation. In this

simulation, the supervisory controller issues a startup request

at time 1, which results in the fuel supply being increased and

the power plant entering its Startup mode. Near time 7.5, a

warning event occurs and the supervisory controller reduces

the target output level of the power plant. It then reinstates the

higher target level around time 13. The power plant reaches

normal operation shortly before time 20, and around time 26, a

warning and emergency occur in quick succession. The power

electricOutput
operatingTarget

fuel

0

1

2

3

4

5

0 5 10 15 20 25 30 35 40

Plant Input (fuel), Output, and Operating Target

state
sensor
clock

emergency
warning

-4

-3

-2

-1

0

1

2

3

0 5 10 15 20 25 30 35 40

Heartbeat and Plant State Display

time

Warning Emergency

Down

Startup
Normal

Shutdown

Down

Fig. 8. Power plant output and events

Fig. 9. Heartbeat detector that raises alarms

plant enters its Shutdown state, and around time 33 its Down

state. Only a startup signal from the supervisory controller can

restart the plant.

The time stamps not only give a determinate semantics

to the interleaving of events, but they can also be explicitly

used in the control algorithms. This power plant control

example illustrates this point in the way it uses to send

warning and emergency events. As shown in Figures 7 and

8, the Generator/Turbine Model sends (time-stamped) sensor

readings over the network to the Local Control component.

These sensor events are shown with “x” symbols in Figure 8.

Notice that just prior to each warning event, there is a gap

in these sensor events. Indeed, this Local Control component

declares a warning if between any two local clock ticks it fails

to receive a sensor reading from the Generator/Turbine Model.

If a second consecutive interval between clock ticks elapses

without a sensor message arriving, it declares an emergency

and initiates shutdown.

The mechanism for detecting the missing sensor reading

messages is shown in Figure 9 and illustrates another use of the

IEEE PROCEEDINGS, VOL. XXX, NO. YYY, DATE 10

modal model temporal semantics of section III. In that figure,

the monitoredSignal input provides time-stamped sensor read-

ing messages. The localClock input provides time-stamped

events from the local clock. The MissDetector component is a

finite state machine with two states. It keeps track of whether

the most recently received event was a sensor message or a

local clock event. This is possible because PTIDES guarantees

that this message will be delivered to this component in time-

stamp order, even when the messages and their time stamps

originate on a remote platform elsewhere in the network.

This MissDetector component issues a missed event if two

successive local clock events arrive without an intervening

sensor event. The missed event will have the same time stamp

as the local clock event that triggered it.

The second component, labeled StatusClassifier, determines

how to react to missed events. In this design, upon receiving

one missed event, it issues a warning event. Upon receiving a

second consecutive missed event, it issues an emergency event.

Note that this design can be easily elaborated, for example

to require some number of missed events before declaring

a warning. Also note that it is considerably easier in this

framework to evaluate the consequences of design choices

like the local clock interval. Our point is not to defend this

particular design, but to show how explicit the design is.

If the generated code correctly performs a comparison

between timestamp and physical time, as explained in section

II-C, it is guaranteed that the implementation will behave

exactly like the simulation, given the same time-stamped

inputs. Moreover, it is easy to integrate a simulation model

of the plant, thus evaluating total system design choices well

before system integration.

A detailed discussion of the design issues illustrated in

this example for an actual commercial power plant control

system is found in [6]. In the following section, we discuss

other PTIDES applications such as power supply shutdown

sequencing. In many distributed systems such as high speed

printing presses, when an emergency shutdown signal is

received, one cannot simply turn off power throughout the

system. Instead, a carefully orchestrated shutdown sequence

needs to be performed. During this sequence, different parts

of the system will have different timing relationships with the

primary shutdown signal. As presented below, this relationship

is easily captured in the timed semantics of PTIDES.

B. Shutdown Sequences

A common application requirement is for a single primary

event to spawn a sequence of events which have a specific time

relationship to the primary event. Often this primary event

is some sort of system or component fault condition which

may occur or be detected at M multiple points in the system

and the spawned events may likewise occur at N multiple

locations each with a different time relationship to the primary

event. Whereas the power-plant example focused on detecting

the absence of regular, expected events, in this section we

focus on sporadic or unpredictable events and the chain of

events triggered by them. PTIDES is equally well suited to

specifying such chains of events and precisely controlling the

timing between them, even across a networked system.

Fig. 10. Power supply controller FSM

Shutdown

triggered by
overcurrent

15 volt supply

Load resistance decreased

Time units

Time units

P
o

w
e
r

s
u

p
p

ly
 o

u
tp

u
t
v
o

lt
a
g

e
s

(a) Power supply output voltages

(b) Output current of 15 volt supply

O
u

tp
u

t
c
u
rr

e
n

t

-2 volt supply

5 volt supply

Fig. 11. Power supply system outputs

For these M × N applications, a multicast or pub-

lish/subscribe model is appropriate since this allows events

with the same name to be detected and published from more

than a single location and permits the interpretation to vary by

recipient. If precise timing is required then the inclusion of the

primary event time stamp in the message enables the recipients

to meet the timing requirements independent of network and

local delay and jitter, provided causality is not violated.

An example is illustrated in Figures 10 and 11.

In many test systems, and probably in operational systems,

IEEE PROCEEDINGS, VOL. XXX, NO. YYY, DATE 11

the failure of a power supply, or another device, can cause

serious damage to instrumentation and operational systems. In

many cases system specifications require that in the event of

such a failure that other equipment in the system be shut down

in a specific order and with specific time constraints relative to

the time of the failure event. This is a very common problem

and typically quite expensive to implement since the solution

must be embedded in the primary application without undue

degradation of primary application function or timing. Indeed

it is common practice to implement the failure response by

means of dedicated circuits and cables between components

to avoid introducing complicating software into the system.

This problem can be solved by the use of a named event,

possibly with an attribute indicating the source, and with a

time stamp indicating the time the failure was detected. The

detecting device, e.g. the power supply that experienced the

fault, multicasts or publishes this event. Recipient devices are

preprogrammed with the correct reaction to such an event with

the reaction possibly depending on the time stamp and identity

attributes.

The modal model of Figure 10 illustrates a typical design

for a controller that implements a typical system. This design

illustrates another use of the modal model of section III and the

modification of model time stamps using the delay actor The

shutdown and startup inputs typically are generated either by

a front panel or via the network from a supervisory controller.

The voltageMonitor signal is generated elsewhere in the power

supply and represents the actual output voltage of the supply.

The trigger input is connected externally to the FSM via

a feedback loop to the triggerRequest output of the FSM.

The triggerRequest output is generated during selected state

transitions as shown and serves to generate an execution cycle

of the modal model refinements.

The key inputs for the failure response mechanism discussed

here are the fault or overcurrent signal inputs, which initiate

an immediate start to the shutdown sequence from either

the steady state or powerup states. The overcurrent signal is

generated internal to the supply and is also transmitted via

a multicast transmission to the fault input of other power

supplies in the system.

Note that in the refinements of both the powerup and

shutdown states the output of the appropriate powerOut signal,

indicating the desired output voltage of the supply, are delayed

by amounts that allow each supply to be configured to meet the

sequence timing requirements. From the temporal semantics

rules of section III it is clear that if a shutdown, fault or

overcurrent input arrives at the FSM with a model time t

earlier than the model time of the powerOut event of the

powerup state, that this output will not occur, and the transition

to the shutdown state will be initiated. Otherwise the transition

to the shutdown state will occur while the power supply

is reaching final voltage or is in steady state, thus meeting

the stated application requirements. This also illustrates how

the temporal semantics of an application can be adjusted or

changed by placing a model delay inside a modal model, as

shown in Figure 10, in which case the output can be preempted

by a mode change as discussed, or outside the modal model,

in which case the output will occur, at the specified model

time irrespective of the state of the modal model at that time.

The operation of this controller is illustrated in Figure 11.

Figure 11 (a) shows the actual output voltages from the 15, 5,

and -2 volt power supplies in the system. Figure 11 (b) shows

the output current of the 15 volt supply. The delay actors in the

powerup state refinements of the FSMs of the supplies delay

the turn on of the supplies after receipt of a startup signal by

10, 8, and 6 time units respectively for the 15, 5, and -2 volt

supplies. The corresponding delays after a transition to the

shutdown state are 5, 7, and 9 respectively. In this example

a startup is received by all supplies at 10 time units and a

shutdown is received at 40 time units. As expected the times

at which the various supplies begin to turn on are 16, 18, and

20 time units for the -2, 5, and 15 volt supplies. The supplies

turn off in the reverse order at 45, 47, and 49 for the 15, 5,

and -2 volt supplies respectively.

Following this sequence a second startup is received at

time 60 with the resulting sequence of turn on times shown.

However in this case the 15 volt supply experiences double

the expected output current as shown in Figure 11 (b) resulting

in an overcurrent signal at approximately time 72. As noted

this signal is transmitted to the FSM of the 15 volt supply and

as a fault signal to all other supplies. The resulting shutdown

sequence is shown where again the supplies turn off in the

reverse order from the turn on sequence.

V. CONCLUSION

This paper has described modeling techniques for several

important aspects of CPS design and deployment, specifically

focusing on the PTIDES model for distributed real-time sys-

tems and on modal models for multi-mode system behavior.

The timed semantics of PTIDES allows us to specify the inter-

action between the control program and the physical dynamics

in the system model, largely independent of underlying hard-

ware details. Because of this independence, PTIDES models

are more robust than typical real-time software, because small

changes in the physical execution timing of internal events are

not visible to the environment, as long as real-time constraints

are met at sensors, actuators and network interfaces.

Of course, in any real system, these constraints may be

violated due to unanticipated events or system faults. Hence,

although PTIDES removes a great deal of uncertainty, it

does not eliminate the need to make systems adaptive. By

combining PTIDES with modal models, we have illustrated

timed mode transitions, which can be used to build in adaptive

behaviors. For example, modal models enable time-based

detection of missing signals, which could be due to system

faults, and mode changes to adapt to those faults.

In order to deploy PTIDES, certain requirements must be

met. On a distributed platform, clocks must be synchronized

so that there is a known bound on the clock error. That is,

they cannot have unbounded drift. If the bound on the error

is large, then the latency from a sensor on one platform to an

actuator on another will be increased. This tradeoff between

latency and clock synchronization precision is quantified by

PTIDES. In addition, networks must have bounded latencies,

and the bounds must be known. The safe-to-process analysis

IEEE PROCEEDINGS, VOL. XXX, NO. YYY, DATE 12

of PTIDES gives us a rigorous way to evaluate the tradeoff

between sensor-to-actuator latencies and network latencies. In

particular, this analysis gives us a precise measure of the cost

of network variability, as measured by increased latency from

sensors to actuators. Because PTIDES provides determinate

semantics, variability in clock synchronization and network

latencies has no visible effect in the physical part of a CPS.

Only the bound has an effect, and that effect is a static end-

to-end latency between sensors and actuators.

PTIDES can be implemented entirely in software with off-

the-shelf sensors and actuators. To take full advantage of

PTIDES, however, and to reduce latencies to smallest achiev-

able, requires hardware support. Network time synchronization

can be made much more precise with hardware assistance

than with pure software implementations. Moreover, if sensor

hardware puts time stamps onto measurements, these time

stamps can be much more precise than what we would get

if the time stamps are added in software. As a consequence,

much tighter tolerances and lower end-to-end latencies become

realizable.

Considerable work remains to be done on the PTIDES

framework. For example, PTIDES relies on software compo-

nents providing information about model delay that they intro-

duce. This information is captured by causality interfaces [30],

and causality analysis is used to ensure that DE semantics is

preserved in an execution. The precise causality analysis when

modal models are allowed is undecidable in general, but we

expect that common use cases will yield to effective analysis.

Another challenge is to provide schedulability analysis for a

broad class of models. This would allow for a static analysis of

the deployability of a given application on a set of resources.

Our prototype implementation of PTIDES is also incomplete

as of this writing. The simulator supports models of distributed

systems, but our code generator and runtime kernel (PtidyOS)

so far only support single-platform interactions with a plant.

REFERENCES

[1] G. Berry. The effectiveness of synchronous languages for the devel-
opment of safety-critical systems. White paper, Esterel Technologies,
2003.

[2] S. Bliudze and J. Sifakis. The algebra of connectors: structuring
interaction in bip. In EMSOFT, pages 11–20. ACM, 2007.

[3] C. G. Cassandras. Discrete Event Systems, Modeling and Performance

Analysis. Irwin, 1993.

[4] K. M. Chandy and J. Misra. Distributed simulation: A case study in
design and verification of distributed programs. IEEE Transaction on

Software Engineering, 5(5), 1979.

[5] P. Derler, E. A. Lee, and S. Matic. Simulation and implementation of
the ptides programming model. In IEEE International Symposium on

Distributed Simulation and Real Time Applications (DS-RT), Vancouver,
Canada, 2008.

[6] J. C. Eidson. Measurement, Control, and Communication Using IEEE

1588, pages 194–200. Springer, London, 2006.

[7] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-
dorffer, S. Sachs, and Y. Xiong. Taming heterogeneity—the Ptolemy
approach. Proceedings of the IEEE, 91(2):127–144, 2003.

[8] D. Harel. Statecharts: A visual formalism for complex systems. Science

of Computer Programming, 8:231–274, 1987.

[9] IEEE Instrumentation and Measurement Society. 1588: IEEE standard
for a precision clock synchronization protocol for networked measure-
ment and control systems. Standard specification, IEEE, July 24 2008.

[10] M. Jersak. Timing model and methodology for autosar. In Elektronik

Automotive. Special issue AUTOSAR, 2007.

[11] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-
integrated development of embedded software. Proceedings of the IEEE,
91(1):145–164, 2003.

[12] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings

of the IEEE, 91(1):112–126, 2003.
[13] E. A. Lee. Modeling concurrent real-time processes using discrete

events. Annals of Software Engineering, 7:25–45, 1999.
[14] E. A. Lee, S. Neuendorffer, and M. J. Wirthlin. Actor-oriented design of

embedded hardware and software systems. Journal of Circuits, Systems,

and Computers, 12(3):231–260, 2003.
[15] E. A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing

models of computation. IEEE Transactions on Computer-Aided Design

of Circuits and Systems, 1998.
[16] E. A. Lee and S. Tripakis. Modal models in Ptolemy. In 3rd

International Workshop on Equation-Based Object-Oriented Modeling

Languages and Tools (EOOLT), volume 47, pages 11–21, Oslo, Norway,
2010. Linköping University Electronic Press, Linköping University.
Available from: http://chess.eecs.berkeley.edu/pubs/700.html.

[17] E. A. Lee and H. Zheng. Leveraging synchronous language principles for
heterogeneous modeling and design of embedded systems. In EMSOFT,
Salzburg, Austria, 2007. ACM.

[18] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo,
E. Brewer, and David C. The emergence of networking abstractions and
techniques in tinyos. In First USENIX/ACM Symposium on Networked

Systems Design and Implementation (NSDI 2004), 2004.
[19] X. Liu and E. A. Lee. CPO semantics of timed interactive actor

networks. Theoretical Computer Science, 409(1):110–125, 2008.
[20] R. Makowitz and C. Temple. FlexRay-a communication network for

automotive control systems. In 2006 IEEE International Workshop on

Factory Communication Systems, pages 207–212, 2006.
[21] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and cooperation

in networked multi-agent systems. Proceedings of the IEEE, 95(1):215–
233, 2007.

[22] G. Papadopoulos and F. Arbab. Coordination models and languages.
In M. Zelkowitz, editor, Advances in Computers - The Engineering of

Large Systems, volume 46, pages 329–400. Academic Press, 1998.
[23] R. Wilhelm et al. The determination of worst-case execution times —

overview of the methods and survey of tools. ACM Transactions on

Embedded Computing Systems (TECS), 7(3), 2008.
[24] S. A. Seshia and A. Rakhlin. Game-theoretic timing analysis. In

Proc. IEEE/ACM International Conference on Computer-Aided Design

(ICCAD), pages 575–582, 2008.
[25] S. A. Seshia and A. Rakhlin. Quantitative analysis of systems using

game-theoretic learning. ACM Transactions on Embedded Computing

Systems (TECS), 2011. To appear.
[26] S. A. Seshia and J. Kotker. GameTime: A toolkit for timing analysis of

software. In Proceedings of Tools and Algorithms for the Construction

and Analysis of Systems (TACAS), pp. 388–392, March 2011.
[27] K. Tindell, H. Hansson, and A.J. Wellings. Analysing real-time commu-

nications: Controller area network (CAN). In Proceedings 15th IEEE

Real-Time Systems Symposium, pages 259–265. Citeseer, 1994.
[28] B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of Modeling and

Simulation. Academic Press, 2nd edition, 2000.
[29] Y. Zhao, E. A. Lee, and J. Liu. A programming model for time-

synchronized distributed real-time systems. In Real-Time and Embedded

Technology and Applications Symposium (RTAS), Bellevue, WA, USA,
2007. IEEE.

[30] Y. Zhou and E. A. Lee. Causality interfaces for actor networks.
ACM Transactions on Embedded Computing Systems (TECS), 7(3):1–35,
2008.

[31] J. Zou, J. Auerbach, D. Bacon, and E. A. Lee. Ptides on flexible task
graph: Real-time embedded system building from theory to practice. In
Conference on Languages, Compilers, and Tools for Embedded Systems

(LCTES), Dublin, Ireland, 2009. ACM.
[32] J. Zou, S. Matic, E. A. Lee, T. H. Feng, and P. Derler. Execution

strategies for PTIDES, a programming model for distributed embedded
systems. In Real-Time and Embedded Technology and Applications

Symposium (RTAS), pages 77–86, San Francisco, CA, USA, 2009. IEEE.
[33] Jia Zou. From ptides to ptidyos, designing distributed real-time

embedded systems. PhD Dissertation Technical Report UCB/EECS-
2011-53, UC Berkeley, May 13, 2011 2011. Available from: http:
//www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-53.html.

http://chess.eecs.berkeley.edu/pubs/700.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-53.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-53.html

IEEE PROCEEDINGS, VOL. XXX, NO. YYY, DATE 13

John Eidson received his BS and MS degrees from
Michigan State University and his PhD. Degree from
Stanford University, all in electrical engineering. He
has worked at the Central Research Laboratories at
Varian Associates, the Hewlett-Packard Company,
and Agilent Technologies. He has worked on a va-
riety of projects including analytic instrumentation,
electron beam lithography, and instrumentation sys-
tem architectures and infrastructure. He was heavily
involved in the IEEE 1451.2 and IEEE 1451.1 stan-
dards and was an active participant in the standards

work of the LXI Consortium. He is the chairperson of the IEEE 1588 standards
committee. He is a life fellow of the IEEE, a recipient of the 2007 Technical
Award of the IEEE I&M Society, and a co-recipient of the 2007 Agilent
Laboratories Barney Oliver Award for Innovation. He is currently a visiting
scholar at the University of California at Berkeley.

Edward A. Lee is the Robert S. Pepper Distin-
guished Professor and former chair of the Electrical
Engineering and Computer Sciences (EECS) depart-
ment at U.C. Berkeley. His research interests center
on design, modeling, and simulation of embedded,
real-time computational systems. He is a director of
Chess, the Berkeley Center for Hybrid and Embed-
ded Software Systems, and is the director of the
Berkeley Ptolemy project. He is co-author of six
books and numerous papers. He has a BS from Yale
University (1979), SM from MIT (1981), and PhD

from UC Berkeley (1986). From 1979 to 1982 he was a member of technical
staff at Bell Labs. He is a co-founder of BDTI, Inc., where he is currently a
Senior Technical Advisor.

Slobodan Matic is a Postdoctoral Scholar with
the Electrical Engineering and Computer Sciences
department at U.C. Berkeley. His research interests
are primarily in the area of Distributed and/or Real-
Time Systems. He holds BS degree from University
of Belgrade and PhD from UC Berkeley.

Sanjit A. Seshia is an Associate Professor in
the Electrical Engineering and Computer Sciences
(EECS) department at U.C. Berkeley. His research
interests center on automated formal methods with
applications to embedded systems, electronic design
automation, and computer security. He is co-author
of a textbook on embedded systems and numerous
papers. He has a B.Tech. from IIT Bombay (1998),
and an M.S. (2000) and Ph.D. (2005) from Carnegie
Mellon University.

Jia Zou received a Ph.D. in 2011 from the EECS
department of the University of California, Berkeley.
He received his bachelor’s degree from the Univer-
sity of Minnesota, Twin Cities in 2006, after which
he joined the Center for Hybrid and Embedded
Software System (CHESS) under the supervision of
Professor Edward A. Lee at Berkeley. His research
interest mainly focuses on the design and implemen-
tation of distributed real-time embedded systems.

	Introduction
	Design Environment
	PTIDES Workflow
	Model Time and Physical Time
	Event Processing in PTIDES

	Temporal Semantics in PTIDES
	Application Study
	Power Plant Control
	Shutdown Sequences

	Conclusion
	References
	Biographies
	John Eidson
	Edward A. Lee
	Slobodan Matic
	Sanjit A. Seshia
	Jia Zou

