
Distributed Real-Time Specification for Java

A Status Report (Digest)

Jonathan S. Anderson
MITRE Corporation
202 Burlington Drive

Bedford, Massachusetts
andersoj@andersoj.org

E. Douglas Jensen
MITRE Corporation
202 Burlington Drive

Bedford, Massachusetts
jensen@real-time.org

ABSTRACT
The Distributed Real-Time Specification for Java (DRTSJ)
is under development within Sun’s Java Community Pro-
cess (JCP) as Java Specification Request 50 (JSR-50), lead
by the MITRE Corporation. We present the engineering
considerations and design decisions settled by the Expert
Group, the current and proposed form of the Reference Im-
plementation, and a summary of open issues. In particu-
lar, we present an approach to integrating the distributable
threads programming model with the Real-Time Specifica-
tion for Java and discuss the ramifications for composing
distributed, real-time systems in Java. The Expert Group
plans to release an initial Early Draft Review (EDR) for
previewing the distributable threads abstraction in the com-
ing months, which we describe in detail. Along with that
EDR, we will make available a demonstration application
from Virginia Tech, and a DRTSJ-compatible RTSJ VM
from Apogee.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer-
Communication Networks—Distributed systems; C.3.d
[Computer Systems Organization]: Special-Purpose and
Application-Based Systems—Real-time and embedded sys-
tems

General Terms
Design, Standardization, Reliability

Keywords
Distributed, Real-time, Java, Distributable thread, Thread
integrity, Distributed scheduling

1. INTRODUCTION
The Distributed Real-Time Specification for Java (DRTSJ)
is under development within Sun’s Java Community Pro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES ’06, October 11-13, 2006 Paris, France
Copyright 2006 ACM 1-59593-544-4/06/10 ...$5.00.

cess (JCP) by the membership of the JSR-50 Expert Group
(EG). This group, led by the MITRE Corporation, includes
representation from individual, academic, U.S. government,
defense, and industrial participants.[8]

The EG has settled on the following components as a min-
imum for the final specification:

Distributable Real-Time Threads, a proven program-
ming model for constructing sequential control flow appli-
cations with end-to-end timeliness properties in distributed
systems. The DRTSJ’s distributable threads are a real-time
generalization of Java’s Remote Method Invocation, as orig-
inally proposed in JSR-50 (and are a superset of the abstrac-
tion provided in the OMG Real-Time CORBA specification
1.2 [20];

A Distributable Thread Integrity Framework, into
which application designers may plug appropriate policies
for maintaining the health and integrity of distributable
threads in the presence of failures; and

A Scheduling Framework, into which application design-
ers may plug appropriate user space policies for scheduling
distributable and local threads.

In the Fall of 2006, the EG will release an technology
preview package called Early Draft Review #1 (EDR#1)
which will focus on the specification and implementation
of the distributable threads abstraction. Subsequent Early
Draft Reviews may be released to preview the distributable
thread integrity framework, and the scheduling framework.

2. GUIDING PRINCIPLES
FOR THE DRTSJ

The EG recognizes the enormous variety of potential prob-
lem and solution spaces represented by the terms “distrib-
uted” and “real-time,” and the variety of opinions on what
it could mean to construct distributed real-time systems in
the Java Programming Language. The JSR-50 proposal and
the EG deliberately scoped the DRTSJ to a subset of those
solution spaces and approaches to constructing distributed
real-time systems, by extending the JSR-1 Real-Time Spec-
ification for Java (RTSJ) in a natural and familiar way, es-
pecially for Java programmers. We seek in this digest to
briefly articulate this scope, summarize the work accom-
plished to date, and describe the intended products of the
JSR-50 specification effort.

Several key assertions were debated and articulated by the
EG in order to set the scope and define the relationship of
JSR-50 to other work. Many of these deliberately follow the

mastro
Text Box
Approved for Public Release; Distribution UnlimitedCase # 06-1161

assertions made by the RTSJ EG, upon whose work much of
the DRTSJ is predicated. [26, 13, 14] Here we highlight some
of these guiding principles, though we include by reference
those called out by the RTSJ EG in [3, Introduction].

Bring distributed real-time to Java, not bring Java
to traditional distributed real-time. [15, 11] It is the in-
tention of the JSR-50 EG to bring facilities required for
constructing the DRTSJ style of distributed real-time sys-
tems into the Java programming environment in a way that
is least disruptive to experienced Java programmers. For
instance, concurrent programming primitives such as the
synchronized keyword and the Thread and related classes
should remain familiar. Similarly, we build upon rather than
replace Java’s distributed object model as expressed in the
Java RMI specification. A corollary is that the DRTSJ is,
as its name indicates, specifically for Java, and is not in-
tended to be language agnostic (as, for example, CORBA is
more or less intended). The opposite approach of bringing
Java to distributed real-time could conceivably be performed
with a binding of the RTSJ to Real-Time CORBA, requir-
ing Java programmers to learn something about how to use
CORBA. Each approach is reasonable for some contexts,
and our choice for the DRTSJ is not intended to compete
with that alternative (should it eventually materialize), but
instead to complement it and provide the users two options
(at least).

Distributed objects and operations are distinguished
from local objects and operations, for the obvious reasons
of latency, partial failures, and concurrency control. [35]

Current Practice vs. Advanced Features: The DRTSJ
will address current real-time system practice as well as al-
low future implementations to include advanced features.
The EG has chosen to support this goal by providing a
specification which targets those technologies, techniques,
and interfaces which have been well-tested, subjected to re-
view, and successfully employed in the construction of non-
trivial distributed real-time systems. Additional promising
technologies under development by the research community
which fail to meet those specification criteria may be pro-
vided in versions of the DRTSJ Reference Implementation
(RI). Such versions of the RI serve as an active testing
ground for innovative technologies which may appear in fu-
ture versions of the specification.

Maintain the “flavor” of RTSJ: Java programmers who
have already made the leap to the RTSJ should find adap-
tation to the DRTSJ as natural as possible. RTSJ appli-
cations should run unmodified on DRTSJ-compliant JVMs,
with some caveats on their distributed behavior.

Do not dictate the use of an RTSJVM or real-time
transport: The DRTSJ allows (the inevitable) mixtures of
regular and RTSJ-compliant JVMs, and specifies the timeli-
ness behaviors that result. It also is deliberately silent on the
topic of the transport, which is regarded as a quality of im-
plementation issue. As with Real-Time CORBA, real-time
transports can be addressed in a subsequent specification.
[21]

Coherent support for end-to-end application prop-
erties: By definition, some multi-node behaviors in dis-
tributed real-time systems have end-to-end time constraints
which must be respected for the system to perform accept-

ably. Other end-to-end properties may also be required,
such as fault management, security credentials, serializa-
tion, etc. Traditionally these end-to-end properties have
been forced on the application designers who must create
bespoke and often ad-hoc mechanisms to attain them, typi-
cally at high recurring and non-recurring costs. The DRTSJ
must provide basic facilities for passing and acting upon
the required end-to-end context among the nodes partici-
pating in any given distributed behavior, in a manner that
respects both the end-to-end argument [28, 16] and the
counter-examples, particularly those found in real-time sys-
tems. Conventional message-passing models (e.g., JMS [29])
and publish/subscribe models (e.g., OMGs DDS [22]) tend
to disregard the common need for multi-hop interactions,
and hence make end-to-end properties the responsibility of
the users.

Based on these driving premises, the keystone elements of
the DRTSJ outlined in the introduction were selected. The
distributable threads model, discussed in detail in Section
3, provides a coherent, end-to-end abstraction for building
concurrent, sequential activities for distributed systems in a
manner familiar to Java and real-time programmers alike. In
particular, the presence of a distributed object model (RMI)
in the Java platform makes the distributable thread concept
a straightforward step for Java programmers into the world
of distributed real-time programming.

In non-trivial distributed systems, partial failures due to
changing network conditions, node failures or overloads, and
even regular maintenance must be considered as the common
case rather than the exception. Therefore, any distributed
system must provide facilities for detecting or masking these
failures, and presenting the relevant events to the appli-
cation. Again, the end-to-end argument and its counter-
examples must drive engineering solutions in which respon-
sibilities are assigned to different levels of any given system.
The concept and implementations of distributable thread in-
tegrity, described in Section 3.1, are the primary means for
meeting this requirement in the DRTSJ.

Finally, real-time — especially non-trivial distributed real-
time — systems have a unique need for flexible, application-
defined resource management. The RTSJ is extended in the
DRTSJ by providing a scheduling framework. Software de-
signers may provide user-level application-specific policies to
govern the local and distributed scheduling of activities in
the system. These policies may range from the RTSJ default
of priorities, to deadline-based policies (not only the familiar
“earliest deadline first,” but also ones widely used outside
the classical hard real-time community, such as “minimize
the number of missed deadlines,” “minimize mean tardi-
ness,” etc.), to time/utility function utility accrual based
policies [25].

The EG expects to release a series of Early Draft Review
(EDR) packages to share our emerging vision of the DRTSJ
with the JCP members and the wider community. We seek
feedback from researchers and practitioners to leverage their
perspectives on distributed real-time programming, and to
ensure that emphasis is placed on problems for which there
is a need for solutions.

3. DISTRIBUTABLE THREADS
Many distributed systems have a natural expression as a

collection of concurrent sequential flows of execution within
and among objects. The distributable thread programming

model supported in OMG’s recent Real-Time CORBA 1.2
standard (abbreviated here as RTC2) [23] provides such
threads as first-class abstractions. Distributable threads
first appeared as “distributed threads” in the Alpha OS ker-
nel [19, 12]. Subsequently the Alpha and Mach 3 microker-
nels were merged by the Open Software Foundation as the
basis for its MK7.3 OS [24], which (together with some other
research OSs) substituted the (less accurate) term “migrat-
ing threads.”

A distributable thread is a single thread of execution with
a globally unique identifier that extends and retracts through
local and remote objects. Thus, a distributable thread is an
end-to-end control flow abstraction, with a logically distinct
locus of control flow movement within and among objects
and nodes, that directly manifests the distributed behavior
of many systems. We will refer to distributable threads as
threads except as necessary for clarity.

Threads extend and retract across object boundaries by
performing remote procedure calls (RPCs). Therefore, the
distributable thread may be seen as a chain of local threads
(or segments) connected by intervening RPCs. A thread’s
stack is thus distributed across the set of nodes hosting seg-
ments at any given time. While the synchrony of a con-
ventional method invocation is often cited as a concurrency
limitation [27], a distributable thread is sequential rather
than synchronous (send/wait). It is always executing some-
where (unless it is “in-flight” during an RPC communica-
tion step), while it is the most eligible there – it is not doing
send/waits as with RPC. Each nodes processor is always
executing the most eligible distributable thread present; the
other distributable threads wait as they should. Remote in-
vocations and returns constitute scheduling events at both
source and destination nodes, and may be dealt with ac-
cordingly by the active scheduling policy.

Because Java is an aggressively multi-threaded language,
it is intuitive for programmers to express applications in
terms of this type of concurrency.

A distributable thread may have end-to-end time con-
straints. Typically, a time constraint is declared as a lexi-
cally scoped attribute of an action performed by a schedu-
lable entity (e.g., thread). While executing within the time
constraint scope, the thread might be said to be a “real-
time” one, and otherwise a “non-real-time” one. When a
remote invocation occurs, the platform causes a time con-
straint to be propagated to, and enforced on, any nodes
downstream of the declaration point.

3.1 Partial Failures
Non-trivial dynamic distributed systems must be presum-

ed always to be partially failed. At any given time, trans-
missions are being lost for a variety of reasons, nodes are
overloaded, failing, rebooting, joining, or departing the sys-
tem. Because distributable threads execute in an environ-
ment subject to partial failures typically not experienced
by nodal (e.g., operating system) threads, provisions must
be made to ensure the end-to-end integrity of distributable
threads in a manner that assigns responsibilities appropri-
ately between the particular system and its applications,
and can be reasoned about. (The Real-Time CORBA spec-
ification leaves this issue to be addressed as added value by
the ORB vendors.)

Several approaches to distributable thread integrity have
been demonstrated in prior work. The DRTSJ seeks to build

on this prior work 1) by providing example implementations
of those existing schemes; 2) by providing APIs allowing
applications to use their own integrity policies; and 3) by
providing a set of example implementations from the cutting
edge of research in this area, focused on thread integrity in
the increasingly important field of mobile, ad-hoc networks.

3.2 Implementation Implications
Implementers are able to implement distributable threads

with any transport infrastructures (RMI, SOAP, Real-Time
CORBA, etc.) that provides an interface comparable to
that of Java RMI’s programming model. The DRTSJ dis-
tributable threads abstraction is consciously very similar to
that of Real-Time CORBA 2, to facilitate application pro-
grammers’ ability to write distributed programs that use
both infrastructures, as has been requested by numerous
prospective DRTSJ users.

4. EARLY DRAFT REVIEW #1
SPECIFICATION

As mentioned above, the JSR-50 EG will release one or
more JCP 2.6 Early Draft Reviews for community feedback.
The initial EDR is focused on distributable threads. Some
details about EDR1 are below. The RI differs from (is more
speculative than) the specification document for the reasons
described earlier. Note that, per JCP 2.6 [33, Section 3.3],
an EDR does not necessarily constitute a commitment about
the eventual final specification.

4.1 Modifications to Java and RTSJ Classes
It is an explicit goal of the DRTSJ project to minimize

modifications to the syntax or semantics of Java or RTSJ
facilities. In some cases, modifications have been unavoid-
able. Furthermore, extensions which may not be entirely
natural have been made in order to minimize the effects on
the underlying platform. The DRTSJ is considered a su-
perset of the RTSJ specification, and therefore includes by
reference all modifications specified in the RTSJ Specifica-
tion [3, “Standard Java Classes”]. We summarize those
modifications here:

Marking Classes Serializable: The following classes have
been marked Serializable in order to facilitate distributed
behaviors: HighResolutionTime and PriorityParameters.
In addition, a subset of the exceptions introduced by the
RTSJ will be marked Serializable.

Behavior of Java Monitors: Java monitors must respect
distributable thread identity. It is left to the JVM imple-
menter to determine the best mechanism to enforce this; the
DRTSJ Reference Implementation relies on a 1:1 mapping
of distributable threads to local surrogate threads in order
to provide this behavior.

The consequence of this is that existing RMI style appli-
cations may exhibit different behavior. Deadlock situations
such as those described in [36, Section 5.3], [34], and [10] are
mitigated. Others have considered alternative approaches
such as bytecode manipulation [37].

Distributable Threads are not java.lang.Threads:
Thread.currentThread() and RealtimeThread’s equivalent
do not return the current DistributableThread. Rather,
they return the surrogate thread which represents the dis-
tributable thread’s current segment. The behavior of meth-

ods provided by the surrogate threads is currently undefined
in the context of a distributable thread; proxy methods are
provided by the DistributableThread class.

4.2 Scheduling
No additional specification is made regarding the imple-

mentation of particular schedulers in the DRTSJ. Like the
JSR-1 EG, we expect that distributed real-time systems de-
signers will require a variety of advanced scheduling algo-
rithms, and that vendors will provide them. The RTSJ EG
expressed its intent for Schedulables in [7]; we support this
requirement and provide a candidate scheduling framework
in the DRTSJ RI. A major difference is that the DRTSJ
RI scheduling framework allows user level scheduling algo-
rithms, not just algorithms supplied by a JVM vendor.

We extend RTSJ’s requirement for a PriorityScheduler

to accommodate RT CORBA’s Case 2 distributed schedul-
ing model. In the case of a thread whose scheduler is set
to the priority scheduler, a DRTSJ implementation must
propagate the currently-active PriorityParameters as the
thread extends and retracts through distributed objects.
This is identical to RT CORBA’s client propagated Priority
Model. In the event that a distributable thread attempts to
make a remote invocation with non-remote, non-serializable
scheduling parameters, an appropriate RemoteException is
raised.

No interfaces for conducting distributed scheduling are
defined, apart from the remote methods exposed by the
DistributableThread class.

4.3 Threads
The DRTSJ specifies a new class called Distributable-

Thread, which represents a thread (potentially) spanning
multiple nodes. This object is not descended from java.-

lang.Thread because it requires extended semantics which
would undermine the class definition. A Distributable-

Thread is a remote object, in the RMI sense. The imple-
mentation object must be created and exported on the dis-
tributable thread’s root node. The means by which muta-
tions to the object on the root node are propagated to other
segments of the thread is a quality of implementation issue
unless explicitly described in the specification.

As discussed above, distributable threads are subject to
partial failures as a consequence of their execution environ-
ment. Implementers must provide a thread integrity mech-
anism which seeks to ensure that they maintain consistent
state: that threads must have only one active head (execu-
tion point) at any given time; that portions of threads which
are deemed to have failed receive exceptions or other notifi-
cation which will allow the application to gracefully respond
and clean up from these conditions. The precise number and
nature of integrity mechanisms is left unspecified, however
the topic has been well studied by us and others [9, 6, 5] and
implementers will be able to draw on prior research and de-
velopment to make integrity mechanisms a key differentiator
for their products.

4.4 Memory Management
The DRTSJ Expert Group has investigated the utility of

remote memory areas and is of the opinion that such a fa-
cility is unlikely to be used. As such, EDR#1 includes no
facilities for providing control over remote memory – e.g., a
distributed way to name a scoped area from off the node.

In any case, it is difficult to make sense of this semantically.
EDR#1 is currently silent about how distributable threads

interact with memory management. The RTSJ community
seems not yet to have fully converged on solutions to is-
sues with RTSJ scoped memory, even in the latest versions
of the RTSJ. When consensus emerges there, we anticipate
addressing that viewpoint from a distributed system stand-
point.

4.5 Asynchrony
Semantically sensible approaches to distributed events are

still under investigation. The EG has made no commit-
ment yet about their appearance in the DRTSJ specifica-
tion document or RI. As such, no distributed extensions
of AsyncEvents will appear in EDR#1. However, asyn-
chronous events are heavily used in the local implementa-
tions of scheduling framework primitives. Implementation
experience so far leads us to believe that distributed events
will not prove to be a useful complement to the threads
model. Because RTSJ’s AsyncEventHandlers are intended
to be lightweight and failure-free, we propose that program-
mers who require distributed behaviors inside event han-
dlers spawn or signal a full thread to create the effect. A
low-level distributed events facility is expected to appear in
the DRTSJ RI for thread control, failure notification, time
constraint changes, and other state changes of interest to
thread heads (execution points). No decision has yet been
made regarding the visibility of this facility to application
code.

A thread’s “interruptible” status propagates along with
the thread’s head across node boundaries in a manner consis-
tent with that prescribed in the RTSJ specification, with the
caveat that primitives for distribution including all meth-
ods on instances of RemoteObject are not interruptible. In
EDR#1, no guarantee is specified about the timely delivery
of an interruption to the head of the target thread.

5. EARLY DRAFT REVIEW #1
SOFTWARE SUITE

The EDR#1 software suite consists of a modified RTSJ-
compliant J2ME virtual machine and a class library con-
sisting of modified RTSJ classes as well as new classes in
the javax.drealtime package. In addition, a tested real-
time Linux configuration and demonstration application are
provided.

5.1 Real-Time RMI
The DRTSJ RI provides a full Java Remote Method In-

vocation (RMI) stack, called RT-RMI, intended for use in
RTSJ virtual machines. RT-RMI is wire-protocol compati-
ble with Sun’s JDK1.4 RMI implementation, while provid-
ing extended wire protocols for invocations between DRTSJ-
compliant JVMs. A datagram-based RMI wire protocol
with application-level reliability mechanisms has been pro-
vided in order to demonstrate and test DRTSJ applications
in dynamic and mobile, ad-hoc networks where TCP is a
poor engineering solution.

RT-RMI has organic support for carrying arbitrary invo-
cation contexts across nodes, facilitating the construction of
distributable threads and potentially other end-to-end pro-
gramming abstractions. By default, invocations between
RT-RMI-capable nodes carry their execution context with

them. Behaviors analogous to Level 2 Integration as dis-
cussed in [36] are provided transparently across the system.

The Sun Microsystems RMI wire protocol specification
[31] relies heavily on Java Object Serialization [30]. How-
ever, other implementations such as RMI-IIOP [32] provide
their own object marshalling facilities. The EDR#1 spec-
ification requires the Java RMI programming model, but
has been decoupled from particular Java RMI implementa-
tions. Real-time object serialization and the accompanying
memory allocation behaviors are left as a quality of imple-
mentation issue.

RT-RMI as provided in EDR#1 defines several new ex-
ceptions subclassed from RemoteException and Runtime-

Exception to indicate failure conditions resulting from vi-
olations of end-to-end time constraints or thread integrity
events. These exceptions should be caught and dealt with
by application code; however the safety and consistency of
the distributed system is preserved even if the application
fails to deal with these events.

5.2 Distributable Threads
The DRTSJ implementation team has implemented dis-

tributable threads capable of interoperating with various
JVMs and transport infrastructures. These threads are ca-
pable of traversing nodes with standard, RTSJ, and DRTSJ
virtual machines, yielding the best available timeliness be-
havior feasible on each participant. Invocations and returns
are presented to the programmer in a manner congruent
with the RMI programming model, but have been decoupled
from particular RMI implementations to the extent possible.

5.3 Thread Integrity
The DRTSJ RI provides: example implementations of

prior art integrity (e.g., orphan detection and elimination)
policies; APIs allowing applications to provide their own in-
tegrity policies; example implementations of new research
focused on thread integrity in mobile, ad-hoc networks. We
refer to the class of thread integrity protocols implemented
to date as thread maintenance and repair (TMAR) proto-
cols.

The following protocols have been implemented and will
appear in the preliminary DRTSJ RI:

• Thread Polling, a protocol originally implemented in
the Alpha research OS kernel

• A fast failure detector (FFD) driven TMAR, which
detects link failures immediately and triggers orphan
cleanup in the event of down/upstream failures. This
policy provides best-effort ordered orphan cleanup1 if
requested

• TPR, an approach which provides deterministic detec-
tion and cleanup times for failed distributable threads
with failure handlers [6]

• D-TPR, an evolving algorithm and protocol for pre-
dictable detection and cleanup times in wireless and
dynamic networks [5]

1There is some confusion regarding the definition of best-
effort. Here we use it in the conventional sense: The TMAR
protocol attempts to provide ordered cleanup within a rea-
sonable time constraint, but no guarantees are made to the
application.

• W-TPR, an evolving algorithm and protocol for pre-
dictable detection and cleanup times in wireless and
dynamic networks [5]

In addition, we expect to implement Node-Alive [9], a
more conservative approach targeted for local area networks
and very high reliability.

5.4 Pluggable Scheduling
Implementations of example distributed real-time applica-

tions and high-quality thread integrity mechanisms require
support from scheduling policies. To facilitate experimen-
tation and the construction of an acceptable RI, the im-
plementation team has included an optional Metascheduler
component, allowing arbitrary user-defined scheduling disci-
plines to be defined. While the RTSJ does specify interfaces
which schedulers and schedulable objects must meet, it does
not provide the primitives necessary to implement schedul-
ing policies without the cooperation of the RTJVM vendor
[7, 38].

The Metascheduler implements an abstract
scheduling framework intended to support pluggable sched-
ulers consistent with the RTSJ vision. While EDR#1 does
not yet offer a proposed API, the framework and Metasched-
uler are included in the RI.

A variety of scheduling disciplines have been implemented,
ranging from simple, traditional (e.g., fixed priority, EDF),
to Time-Utility Function/Utility-Accrual (TUF/UA) poli-
cies. In particular, we demonstrate a combined TUF/UA
scheduling and thread integrity mechanism for providing
bounded-time, end-to-end thread failure detection and re-
covery. [6]

The scheduling framework and Metascheduler is inspired
primarily by prior work in scheduling frameworks in the
Alpha research OS kernel [4], the Open Group Research
Institute Mk7.3a OS integrated Alpha/Mach kernel [24],
and in particular the local [18] and distributed threads [17]
Metascheduler work at Virginia Tech.

5.5 The DRTSJ RI Distribution
The DRTSJ RI and TCK will be delivered in two forms:

First, traditional tarball and JAR files appropriate for cross-
platform evaluation and use by JCP members; second, be-
cause of the complexity and inherent dependencies, a set of
Debian packages is being maintained to streamline the “get-
ting started” process. A package repository containing the
DRTSJ core libraries, with references to all required depen-
dencies will be provided, and constructing a test system will
simplified to a single Debian “apt-get” command.

It is possible to compose and interact with DRTSJ appli-
cations without a DRTSJ-compliant JVM. The distributable
threads abstraction will run atop a vanilla JVM using java.-

lang.Thread sections, and the programmer may specify if
transitions should be made to full, real-time Distributable-
Thread sections upon arrival in DRTSJ-compliant JVMs.

The DRTSJ EDR#1 RI consists of

• a set of class libraries implementing the DRTSJ APIs

• a set of external dependencies, including the Apache
build environment and a Debian Linux system with
Linux Kernel 2.6, patched with the most recent real-
time extensions

The JSR-50 proposal reserved the right to require modest
changes to underlying RTJVMs. While the implementa-
tion team is not certain what changes will be required by
the final DRTSJ, the current EDR#1 RI does require spe-
cific changes. These changes are included in an off-the-shelf
binary DRTSJ-compatible JVM product from Apogee Soft-
ware, Inc., included as part of the EDR#1 suite.

5.6 Demonstration Application
Virginia Tech has written a demonstration application [1]

to help prospective users better understand the DRTSJ. The
demonstration application is also providing essential feed-
back to the team designing and implementing the DRTSJ
and RI. That work was performed in an ONR-funded Ad-
vanced Wireless Integrated Navy Network (AWINN) project
at Virginia Tech. [2] Both the AWINN project and MITRE’s
DRTSJ focuses are on mobile, ad hoc wireless networks
(MANETs) with end-to-end time constraints.

The demonstration consists of a coastal air defense simu-
lation, a non-trivial application written on the EDR#1 Ref-
erence Implementation, using distributable threads as the
end-to-end programming and scheduling abstraction. The
application consists of a collection of distributed components
for managing on-board sensors, fighter/interceptors, track-
ing systems, and command and control C2 operations in a
multi-ship naval warfare simulation. The simulation testbed
includes thirteen nodes comprising a scenario generator, a
MANET/dynamic network simulator, and four communica-
tions/routing nodes, and seven application nodes running
DRTSJ application code atop Linux 2.6 with real-time ex-
tensions. Novel approaches to enforcing distributable thread
integrity are demonstrated and evaluated against mission
metrics.

The demonstration currently exercises TMAR protocols
and accompanying scheduling algorithms which provide
probabilistic timing assurances for end-to-end thread be-
havior in the presence of application- and MANET-induced
run-time uncertainties. These uncertainties include those in-
duced by workloads, node/link failures, message losses, and
node membership changes (previously open problems).

This demonstration application will be provided with the
EDR#1 RI in order to aid first-time users and illustrate how
a non-trivial system may be constructed using the DRTSJ.

5.7 Virtual Machine Support
Apogee Software, Inc. has agreed to incorporate DRTSJ

EDR#1-specific changes into their RTSJ-compliant Aphe-
lion Java runtime environment product. These changes in-
clude modifications to the class library in support of the
DRTSJ specification as well as more aggressive changes to
support experimental work on advanced pluggable and dis-
tributed scheduling policies in the RI.

For example, the modified version of Apogee’s Aphelion
RTJVM has hooks for notifying user-space schedulers of
state changes in Java object monitors. This is a key en-
abler for implementations of RTSJ Scheduler implementa-
tions in pure Java. While the trial implementation is not yet
performant, it is sufficient for demonstrating the behaviors
required for accurate and safe scheduling of distributable
real-time threads.

6. THE WAY AHEAD
Work on JSR-50 is focused on delivering Early Draft Re-

lease #1 by late Fall of CY2006. The current implementa-
tion schedule has two primary goals: first, the delivery of a
JSR-50 submission; second, the research and development
needs of the team members at MITRE and Virginia Tech.
The development schedule is always subject to change due to
staffing conflicts (students academic responsibilities always
have highest priority, and MITREs sponsor needs always
have highest priority) and other unforeseen circumstances.

The DRTSJ project is currently understaffed – our imme-
diate objective is to reach a first Early Draft Release for a
document and RI (plus a compatible JVM) that meets our
own needs, and – very importantly – is sufficient to engage
additional contributors to further the concepts and imple-
mentation. The schedule and content of future draft releases
and the final submission depend on the quality and quantity
of design and especially implementation participation from
the broader community.

7. ACKNOWLEDGEMENTS
The work described herein has been sponsored by the

MITRE Corporation, the US Air Force Electronic Systems
Center, the US Navy Office of Naval Research through the
AWINN grant program, and Virginia Polytechnic and State
University. Particular thanks are due Apogee Software for
their generous donation of engineering support for their
DRTSJ-compliant Aphelion Real-Time JVM.

8. REFERENCES
[1] J. Anderson and B. Ravindran. AWINN task 2.2 final

demonstration: A coastal air defense scenario.
[Presentation to USN Office of Naval Research,
August 2006], August 2006.

[2] Advanced Wireless Integrated Navy Network
(AWINN) homepage. http://awinn.ece.vt.edu.

[3] G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling,
D. Hardin, M. Turnbull, R. Belliardi, D. Holmes, and
A. Wellings. The real-time specification for Java
(version 1.0.2). Specification JSR-1, Java Community
Process, 2006. Available:
http://www.rtsj.org/specjavadoc/book index.html.

[4] R. K. Clark, E. D. Jensen, and F. D. Reynolds. An
architectural overview of the Alpha real-time
distributed kernel. In Proceedings of the USENIX
Workshop on Microkernels and Other Kernel
Architectures, April 1992.

[5] E. Curley. Integrity assurances for distributable
real-time threads in dynamic networks. Master’s
thesis, Virginia Polytechnic and State University,
September 2006. [Anticipated].

[6] E. Curley, J. Anderson, B. Ravindran, and E. D.
Jensen. Recovering from distributable thread failures
with assured timeliness in real-time distributed
systems. In Proceedings of the 2006 SRDS, October
2006. [To Appear] Available:
http://www.real-time.ece.vt.edu/srds06.pdf.

[7] P. Dibble and A. Wellings. The real-time specification
for Java: Current status and future work. In
Proceedings of the Seventh IEEE International
Symposium on Object-Oriented Real-Time Distributed
Computing, pages 71–77, May 2004.

http://awinn.ece.vt.edu
http://www.rtsj.org/specjavadoc/book_index.html
http://www.real-time.ece.vt.edu/srds06.pdf

[8] DRTSJ public web site. http://drtsj.org.

[9] J. Goldberg, I. Greenberg, R. K. Clark, E. D. Jensen,
K. Kim, and D. M. Wells. Adaptive fault-resistant
systems (chapter 5: Adaptive distributed thread
integrity). Technical Report csl-95-02, Computer
Science Laboratory, SRI International, Menlo Park,
CA., January 1995.
http://www.csl.sri.com/papers/sri-csl-95-02/.

[10] B. Haumacher, T. Moschny, J. Reuter, and W. F.
Tichy. Transparent distributed threads for Java. In
Proc. 5th International Workshop on Java for Parallel
and Distributed Computing in conjunction with the
International Parallel and Distributed Processing
Symposium (IPDPS 2003), 2003.

[11] E. D. Jensen. Rationale for the direction of the
distributed real-time specification for Java panel
position paper. In Proceedings of the Fifth IEEE
International Symposium on Object-Oriented
Real-Time Distributed Computing, 2002, pages
258–259, 2002.

[12] E. D. Jensen and J. D. Northcutt. Alpha: A
non-proprietary operating system for large, complex,
distributed real-time systems. In IEEE Workshop on
Experimental Distributed Systems, pages 35–41, 1990.

[13] JSR-1 Expert Group. JSR-1 proposal: Real-time
specification for Java. http://jcp.org/en/jsr/detail?id=1.

[14] JSR-282 Expert Group. JSR-282 proposal: Real-time
specification for Java version 1.1.
http://jcp.org/en/jsr/detail?id=1.

[15] JSR-50 Expert Group and E. D. Jensen. JSR-50
proposal. http://jcp.org/en/jsr/detail?id=1.

[16] B. W. Lampson. Hints for computer system design. In
SOSP ’83: Proceedings of the ninth ACM symposium
on Operating systems principles, pages 33–48, New
York, NY, USA, 1983. ACM Press. Available: http://

research.microsoft.com/∼lampson/33-Hints/WebPage.html.

[17] P. Li, B. Ravindran, H. Cho, and E. D. Jensen.
Scheduling distributable real-time threads in Tempus
middleware. In IEEE Conference on Parallel and
Distributed Systems, pages 187 – 194, July 2004.

[18] P. Li, B. Ravindran, et al. A formally verified
application-level framework for real-time scheduling
on POSIX real-time operating systems. IEEE Trans.
Software Engineering, 30(9):613 – 629, Sept. 2004.

[19] J. D. Northcutt. Mechanisms for Reliable Distributed
Real-Time Operating Systems — The Alpha Kernel.
Academic Press, 1987.

[20] Object Management Group. Dynamic scheduling
real-time CORBA 2.0 (joint revised submission), 2001.
orbos/2001-04-01 ed.

[21] Object Management Group. Extensible transport
framework specification – final adopted specification,
2004. ptc/04-03-03 ed.

[22] Object Management Group. Data distribution service
for real-time systems, v1.1, 2005. formal/2005-12-04.

[23] OMG. Real-time CORBA 2.0: Dynamic scheduling
specification. Technical report, Object Management
Group, September 2001. OMG Final Adopted
Specification, http://www.omg.org/docs/ptc/01-08-34.pdf.

[24] Open Group Research Institute’s Real-Time Group.
MK7.3a Release Notes. The Open Group Research

Institute, Cambridge, Massachusetts, October 1998.
Available:
http://www.real-time.org/docs/RelNotes7.Book.pdf.

[25] Virginia Tech real-time laboratory publications site.
http://www.real-time.ece.vt.edu/papers.html.

[26] RTSJ public web site. http://rtsj.org.

[27] U. Saif and D. J. Greaves. Communication primitives
for ubiquitous systems or RPC considered harmful. In
21st International Conference on Distributed
Computing Systems Workshops (ICDCSW ’01), 2001.

[28] J. H. Saltzer, D. P. Reed, and D. D. Clark.
End-to-end arguments in system design. ACM Trans.
Comput. Syst., 2(4):277–288, 1984.

[29] Sun Microsystems. JavaTMmessage service
specification final release 1.1, April 2002. Available:
http://java.sun.com/products/jms/.

[30] Sun Microsystems. JavaTMobject serialization
specification. Technical report, Sun Microsystems,
4150 Network Circle, Santa Clara, CA, November
2002. [Revision 1.4.4] Available:
http://java.sun.com/j2se/1.4/pdf/serial-spec.pdf.

[31] Sun Microsystems. JavaTMremote method invocation
specification. Technical report, Sun Microsystems,
4150 Network Circle, Santa Clara, CA, November
2002. [Revision 1.9, JavaTM2 SDK SE, v.1.4.2]
Available:
http://java.sun.com/j2se/1.4/pdf/rmi-spec-1.4.2.pdf.

[32] Sun Microsystems. JavaTMRMI over IIOP technology
documentation home page. Technical report, Sun
Microsystems, 4150 Network Circle, Santa Clara, CA,
November 2002. [From J2SDK 1.4.2 Release Notes]
Available: http:

//java.sun.com/j2se/1.4.2/docs/guide/rmi-iiop/index.html.

[33] Sun Microsystems. Jcp2: Process document, v2.6,
March 2004. Available:
http://jcp.org/en/procedures/jcp2.

[34] E. Tilevich and Y. Smaragdakis. Portable and efficient
distributed threads for Java. In Conf. Proc.
Middleware’04 conference, October 2004.

[35] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A
note on distributed computing. Note SMLI TR-94-29,
Sun Microsystems Laboratories, Inc., 2550 Garcia
Avenue, Mountain View, VA 94043, November 1994.

[36] A. Wellings, R. K. Clark, E. D. Jensen, and D. Wells.
A framework for integrating the Real-Time
Specification for Java and Java’s remote method
invocation. In Proc. of the 5th IEEE International
Symposium on Object Oriented Real-Time Distributed
Computing, April 2002. Available:
http://www.real-time.org/docs/isorc02 v41.pdf.

[37] D. Weyns, E. Truyen, and P. Verbaeten. Distributed
threads in Java. In Proceedings of the International
Symposium on Distributed and Parallel Computing,
ISDPC 2002, 2002.

[38] A. Zerzelidis and A. J. Wellings. Getting more flexible
scheduling in the rtsj. In Proceedings 9th IEEE
ISORC, pages 3–10. IEEE Computer Society TC on
Distributed Processing, IEEE Computer Society, April
2006.

http://drtsj.org
http://www.csl.sri.com/ papers/sri-csl-95-02/
http://jcp.org/en/jsr/detail?id=1
http://jcp.org/en/jsr/detail?id=1
http://jcp.org/en/jsr/detail?id=1
http://research.microsoft.com/~lampson/33-Hints/WebPage.html
http://research.microsoft.com/~lampson/33-Hints/WebPage.html
http://www.omg.org/docs/ptc/01-08-34.pdf
http://www.real-time.org/docs/RelNotes7.Book.pdf
http://www.real-time.ece.vt.edu/papers.html
http://rtsj.org
http://java.sun.com/products/jms/
http://java.sun.com/j2se/1.4/pdf/serial-spec.pdf
http://java.sun.com/j2se/1.4/pdf/rmi-spec-1.4.2.pdf
http://java.sun.com/j2se/1.4.2/docs/guide/rmi-iiop/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/rmi-iiop/index.html
http://jcp.org/en/procedures/jcp2
http://www.real-time.org/docs/isorc02_v41.pdf

	Introduction
	Guiding Principlesfor the DRTSJ
	Distributable Threads
	Partial Failures
	Implementation Implications

	Early Draft Review #1 Specification
	Modifications to Java and RTSJ Classes
	Scheduling
	Threads
	Memory Management
	Asynchrony

	Early Draft Review #1Software Suite
	Real-Time RMI
	Distributable Threads
	Thread Integrity
	Pluggable Scheduling
	The DRTSJ RI Distribution
	Demonstration Application
	Virtual Machine Support

	The Way Ahead
	Acknowledgements
	References

