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Distributed Receding Horizon Kalman Filter

J. M. Maestre, P. Giselsson and A. Rantzer

Abstract— In this paper a distributed version of the Kalman
filter is proposed. In particular, the estimation problem is
reduced to the optimization of a cost function that depends
on the system dynamics and the latest output measurements
and state estimates which is distributed among the agents by
means of dual decomposition. The techniques presented in the
paper are applied to estimate the position of mobile agents.

I. INTRODUCTION

In recent years the proliferation of small microcontrollers

with wireless communication capabilities has made possi-

ble the implementation of advanced control and estimation

strategies in a distributed way. As a consequence, there has

been a growing interest of the control community in the

research of distributed systems to face the new challenges

that appear [17], [9]. Issues such as the communicational

burden of the different distributed architectures play a very

important role. For example, the battery life of motes depend

specially on the time the radio is on and on the number of

messages sent [10].

Behind the concept of distributed systems there is a very

basic idea: to divide the overall system into several smaller

subsystems, each governed by a different agent which may or

may not share information with the rest. Examples of these

situations are large scale systems or networked systems such

as traffic, water or power networks [11]. In this situation

it becomes very important to have schemes that allow the

distributed estimation of the state.

The most common approach to estimate the state of

stochastic systems is the Kalman filter [7], developed in

1960 and named after his discoverer. The Kalman filter is

the optimal state estimator for unconstrained linear systems

subject to gaussian state and output noise. It is not possible

to apply directly the centralized Kalman filter to a multiagent

problem unless there is a node in the network that receives

all the information. For example in [14], it can be seen how

a central agent gathers the information from the moving

devices and then distributes the position estimation back to

them. An alternative is to calculate a decentralized version of

the Kalman filter that takes into account the communications

restrictions[6], [14].

In this paper we follow a different approach to solve

the estimation problem in a distributed manner. First, the

Kalman filter is posed as a dynamic programming problem
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[3]. Then, the resulting optimization problem is distributed

among the agents using dual decomposition. This idea has

been successfully applied to distributed control in [12] and

[4]. Given that the observation problem is the dual of the

control problem, it is natural to apply and enhance the

techniques presented in these papers to deal with the state

estimation problem.

In this context, the application of state estimation schemes

to problems in which the state represents the position of an

object is very attractive [1], [6]. The localization of moving

entities, such as robots or people, is important for many

applications. Military applications in which the goal is to

track a target that moves in a distributed sensor environment

are the typical examples. Other examples in which these

techniques play an important role would be smart homes

[8], in which it is basic to know where the inhabitants of the

house are in order to control the heating and the lights and

traffic and speed control. For this reason, they constitute good

applications for the distributed state estimation algorithm that

we present.

The outline of the paper is as follows. In section II

the problem is formulated. Section III explains how dual

decomposition can be used to distribute the problem among

the agents involved. In section IV the techniques presented

in the previous sections are applied in a simulation example.

Finally, conclusions and future work are presented.

II. PROBLEM FORMULATION

In this section we present a moving horizon estimation

strategy that solves approximately the Kalman filter. Let us

consider the following uncertain distributed linear system

xi(τ + 1) = Aiixi(τ) + wi(τ)

yi(τ) =
J∑

j=1

Cijxj(τ) + vi(τ)
(1)

where xi(τ) ∈ R
ni , yi(τ) ∈ R

qi , wi(τ) ∈ R
ni and

vi(τ) ∈ R
qi are the state, measurable output, state noise

and measurement noises of the i-th subbsytem respectively.

The state and measurement noises are characterized by a

normal distribution with zero mean and variances Qi and

Ri respectively; that is, wi(τ) is a N(0, Qi) and vi(τ) is a

N(0, Ri). From a centralized point of view the system is

x(τ + 1) = Ax(τ) + w(τ)
y(τ) = Cx(τ) + v(τ)

(2)



where

x(τ) = [x1(τ) x2(τ) . . . xJ (τ)]
T ∈ R

n

y(τ) = [y1(τ) y2(τ) . . . yJ(τ)]
T ∈ R

q

w(τ) = [w1(τ) w2(τ) . . . wJ(τ)]
T ∈ R

n

v(τ) = [v1(τ) v2(τ) . . . vJ(τ)]
T ∈ R

q

n =
∑

i

ni, q =
∑

i

qi.

Note that w(τ) is a N(0, Q) with Q = diag(Qi) for i =
1, . . . , J and v(τ) is a N(0, R) with R = diag(Ri) for i =
1, . . . , J .

From the point of view of probability theory, a state

estimator attempts to reconstruct the a posteriori distribution

p(x̂(τ)|Y (0 : τ)), which is the probability that the state

of the system is x̂(τ) given measurements Y (0 : τ) =
{y(0), . . . , y(τ)}. It is also possible to calculate the joint

probability for a trajectory of state values, for example

p(X̂(0 : τ)|Y (0 : τ)). It is clear that if the distribution

can be calculated then it is possible to obtain an estimate

that maximizes it. The purpose of this paper is to build a

distributed version of the Kalman filter, which is the optimal

state estimator for unconstrained, linear systems subject to

normally distributed state and measurement noise. In this

case, the problem of obtaining an estimate that maximizes

these probability density functions can be reduced to a

dynamical programming problem. See [1] or [13] to obtain

more details. In particular, the maximization of p(X̂(τ−N :
τ)|Y (τ − N : τ)) is equivalent to the minimization of a

quadratic programming problem that will be presented in

this section, but first let us define the quadratic function:

V N (X̂(τ −N : τ)) =
τ∑

k=τ−N+1

1
2 (y(k)− Cx̂(k))TR−1(y(k)− Cx̂(k))

+
τ−1∑

k=τ−N

1
2 (x̂(k + 1)−Ax̂(k))TQ−1(x̂(k + 1)−Ax̂(k))

+Φ(x̂(τ −N)),
(3)

where Φ(x̂(τ − N)) is a term to weight the uncertainty of

the first state estimated in the window. Note that, with a

small abuse of notation, V N is a function only of X̂(τ −
N : τ) because the terms given by y(k) are measurements

whose values are available and not variables that have to be

calculated.

Remark 1: Note that equation (3) can expressed as the

sum of a stage cost for each estimate but the last one, which

value is calculated through the terminal cost. According to

this,

V N (X̂(τ −N : τ)) =
τ∑

k=τ−N+1

l(x̂(k)) + Φ(x̂(τ −N)).

(4)

Remark 2: The terminal cost in equation (3) is com-

monly referred as the arrival cost. This term summarizes

the information not considered in the horizon at time τ . In

the case that we have, that is, linear model and gaussian

noises, this term would simply become Φ(x̂(τ − N)) =

‖x̂(τ −N)−m‖
2
P−1(τ−N) [13], where P−1(τ −N) is the

inverse of the covariance matrix of the estimation error and

m is the mean of x(τ −N). Nevertheless, it is not practical

in a distributed dynamic programming problem to keep track

of P−1(τ−N) and approximations are needed. One possible

choice is to use the steady state covariance matrix to weight

the estimation at the beginning of the window. In this paper

the problem will be relaxed assuming that x(τ − N) takes

the value calculated in its latest estimation x̂(τ − N). This

assumption works well as long as the previous estimates are

correctly estimated. Actually, in the case that the trajectory

of estimated states out of the estimation window were all

exact (which, of course, is highly improbable) then this ap-

proximation would become just an application of Bellman’s

principle of optimality [2].

The optimal estimation for the trajectory of states X̂∗(0 :
τ) = {x̂∗(0), . . . , x̂∗(τ)} is obtained solving the following

minimization problem

X̂∗(0 : τ) = arg min
X̂(0:τ)

V τ (X̂(0 : τ)) (5)

subject to (2) and taking Φ(x(0)) = ‖x(0)−m(0)‖
2
P−1(0).

This problem is equivalent to the Kalman filter [3] but it has

a major drawback: the computational burden of (5) grows

with τ as more measurements become available. We use an

approximate moving horizon estimation approach [5] to fix

the computational cost. The estimation we make is X̂(τ−N :
τ) = {x̂(τ − N), . . . , x̂(τ)} and can be calculated solving

the following QP problem:

X̂∗(τ −N : τ) = arg min
X̂(τ−N :τ)

V N (X̂(τ −N : τ)) (6)

subject to (2) and x(τ −N) = x̂(τ −N).
Remark 3: Note that the state equation in (2) allows to

determine the noise trajectory once the state trajectory has

been calculated. This relationship can be used in the opposite

way so that the QP problem can also be solved minimizing

with respect the noise trajectory w(τ −N), .., w(τ − 1).
Taking into account the duality between the control and

observation problem, a possible interpretation for the mini-

mization alternative is that the term wi(τ) is used to control
the estimation.

III. DUAL DECOMPOSITION

The ultimate goal of the paper is to distribute the estima-

tion problem between all the agents present in the system.

Under certain assumptions, in [4] dual decomposition was

used to distribute the optimization problem corresponding to

a MPC controller between several agents. As the problem of

estimation is the dual of the control problem, and we have

reduced the estimation to the optimization of a cost function,

the same methodology will be applied.

It can be seen in equation (1) that the outputs of the

subsystems are coupled through the states. The coupling

term represents the effect of the rest of the subsystems

in the measurements of agent i. We will define di(τ) =



∑

i6=j Cijxj(τ) to denote this effect. This allow to rewrite

the subsystem model as

xi(τ + 1) = Aiixi(τ) + wi(τ)
yi(τ) = Ciixi(τ) − di(τ) + vi(τ)

(7)

subject to the constraint di(τ) = −
∑

i6=j Cijxj(τ).
Dual decomposition can be used to distribute the cen-

tralized problem (6) between the agents. The introduction

of Lagrange multipliers pi in the cost function allows the

distribution of the cost function (3). First, we define the

Lagrange extended cost function as

V N,p(X̂(τ −N : τ), D(τ −N : τ), P (τ −N : τ)) =
J∑

i=1

{
τ−1∑

k=τ−N

‖x̂i(k + 1)−Ax̂i(k)‖
2
Q

−1

i
(k)

+
τ∑

k=τ−N

‖−Ciix̂i(k) + yi(k) + di(k)‖
2
R

−1

i
(k)

+
τ∑

k=τ−N

pTi (k)(di(k) +
∑

i6=j Cij x̂j(k))}

(8)

where pi(τ) ∈ R
qi is the lagrange multiplier corresponding

to the constraint induced by di(τ) ∈ R
qi , which is now

a free variable. Their corresponding centralized vectors are

respectively p(τ) = [p1(τ) p2(τ) . . . pJ(τ)]
T ∈ R

q and

d(τ) = [d1(τ) d2(τ) . . . dJ (τ)]
T ∈ R

q . Finally, we

denote the sequences of these vectors in time as P (τ −N :
τ) = {p(τ − N), . . . , p(τ)} and D(τ − N : τ) = {d(τ −
N), . . . , d(τ)}.

If we take Q−1
i (τ) = 0 in 8 we can reduce the two

summations to one. Then, if we rearrange the lagrangian

multipliers it is possible to rewrite the extended cost function

as:

V N,p(X̂(τ −N : τ), D(τ −N : τ), P (τ −N : τ)) =
J∑

i=1

τ∑

k=τ−N

[‖x̂i(k + 1)−Ax̂i(k)‖
2
Q

−1

i
(k)

+ ‖−Ciix̂i(k) + yi(k) + di(k)‖
2
R

−1

i
(k)

+pTi (k)di(k) + x̂i(k)
T
∑

i6=j C
T
jipj(k)]

=
J∑

i=1

V
N,p
i (X̂i(τ −N : τ), Di(τ −N : τ), P (τ −N : τ))

The quadratic problem can be distributed among the agents

because the local extended cost functions V
N,p
i (X̂i(τ −N :

τ), Di(τ − N : τ), P (τ − N : τ)) are decoupled. From a

centralized point of view the problem that is solved at each

time sample is

max
P (τ−N :τ)

J∑

i=1

min
X̂i(τ −N : τ),
Di(τ −N : τ)

V
N,p
i





X̂i(τ −N : τ),
Di(τ −N : τ),
P (τ −N : τ)





Remark 4: If we define the stage cost at the time sample

k as

li(x̂i(k), di(k)) = ‖−Ciix̂i(k) + yi(k) + di(k)‖
2
R

−1

i
(k)

+ ‖x̂i(k + 1)−Ax̂i(k)‖
2
Q

−1

i
(k)

Then, the extended local cost function can be posed as

V
N,p
i (X̂i(τ −N : τ), P (τ −N : τ)) =

τ∑

k=τ−N

[li(x̂i(k), di(k))

+pTi (k)di(k) + x̂i(k)
T
∑

i6=j C
T
jipj(k)]

The local stage cost can also be extended to include the

terms due to the lagrangian prices l
p
i (x̂i(k), di(k), P (k)) =

li(x̂i(k), di(k)) + pTi (k)di(k) + x̂i(k)
T
∑

i6=j C
T
jipj(k),

which allows to write the extended local cost function as:

V
N,p
i (τ) =

τ∑

k=τ−N

l
p
i (x̂i(k), di(k), P (k)) (9)

Remark 5: After the introduction of dual variables, and

assuming that the prices of the neighbors are given, it is

possible to interpret the distributed optimization procedure in

economic terms. Each agent behavior can be represented as

a two player game. The first player objective is to minimize

the price-extended stage cost

τ∑

k=τ−N

l
p
i (x̂i(k), di(k), P (k)),

which is composed of three elements that are interpretable

as

l
p
i (x̂i(k), di(k), P (k)) =

li(x̂i(k), di(k))
︸ ︷︷ ︸

local cost

+

neighbor help cost
︷ ︸︸ ︷

pTi (k)di(k) + x̂i(k)
T
∑

i6=j

CT
jipj(k)

︸ ︷︷ ︸

incomes due to required help

.

The second player chooses the prices pi(τ−N), . . . , pi(τ)
to maximize

pTi (k)(di(k) +
∑

i6=j

Cij x̂j(k)).

This game is repeated iteratively. First, an estimate is

calculated according to the given prices. Then, the prices

are updated and the cycle starts again. As a result of

the repeated interaction of both players in each node the

prices evolve until a maximum is reached. The consequence

of this standard Lagrangian optimization procedure is that

the minimum for the cost function (6) is attained and the

constraints are satisfied when the price gradient is zero.

The algorithm that is followed by the agents in the system

can be summarized as:

• Step 1: Each agent i estimates his own current state

trajectory {x̂i(τ −N), x̂i(τ −N +1), .., x̂i(τ)} solving

the optimization problem given in (9) for a set of given

prices pi i = 0, . . . , J .

• Step 2: Once the state trajectory has been calculated

then the prices of agent i are updated by a gradient

step as follows.

pk+1
i (τ) = pki (τ) + γk

i [di(τ) +
∑

i6=j

Cij x̂j(k)] (10)



Convergence of such gradient algorithms has been

proved under different type of assumptions on the step

size sequence γk
i . See for example [15]. Note that in

order to update the prices the agents must communicate.

• Step 3: If the precision obtained with the estimation is

enough then there is no need to continue iterating. In

the next section precise conditions are given. If enough

precision is not attained and the number of iterations K

exceeds a given threshold maxiter, then the algorithm

also stops. In other case then the process is repeated

from step 1 for K = K + 1.

A. Coordination alternatives for the price update

It can be seen that the calculation of the estimate x̂i(t) for

t = τ−N, . . . , τ is completely decentralized once that prices

are given. Therefore it is mandatory for an agent to keep the

track of its neighbor prices. Nevertheless, in order to update

the prices, coordination among the agents is necessary. The

agents send their estimates x̂i(τ) to their neighbors so that

equation (10) can be applied. For some systems it could

be desirable not to share the state information with their

neighbors. To avoid the exchange of the state estimates we

propose two alternatives:

• Decentralized approach: The need for the shared in-

formation comes from term
∑

i6=j Cij x̂j(k) in equa-

tion equation (10). According to the dynamics of the

subsystems
∑

j 6=i

Cijxi(τ) = yi(τ) − Ciixi(τ) − vi(τ),

and thus it could be approximated by
∑

j 6=i

Cij x̂i(τ) ≈

yi(τ) − Ciix̂i(τ).
• Market approach: This alternative consists on changing

the way in which prices are updated. To understand

better this approach it is convenient to use the behavior

model that represents each agent as a two player game.

Then, it is possible to think on the centralized problem

as a game with 2J players. The objective of the first

player in each node is to minimize his own cost ac-

cording to the given prices. However, the second player

in each node bargains with the the rest of the second

players to maximize (9) with respect to the prices. The

second players can be seen as market makers that fix

the prices of the help services that the agents provide

each other according to the offer and demand of such

services. To do so, a gradient optimization of the cost

function (9) is implemented. Each update is based on

the addition of contributions of the different agents. The

contribution of agent i is

∇pki (τ) =















x̂i(k)
TCT

1ip1(k)
...

x̂i(k)
TCT

i−1,ipi−1(k)
di(k)

x̂i(k)
TCT

i+1,ipi+1(k)
...

x̂i(k)
TCT

JipJ(k)















Theorem 1: The price update mechanism defined in

the market approach provides the same results than the

one presented in equation (10).

Proof:

It is straight forward to check that both methods provide

the same centralized price vector. It is enough to sum

the contribution ∇pki (τ) for all i

pk+1(τ) = pk(τ) + γ
∑

i

∇pki (τ).

Then it can be seen that the price for agent i is just

pk+1
i (τ) = pki (τ) + γk

i [di(τ) +
∑

i6=j

Cij x̂j(k)]

�

If we move back to the agents and forget the game

theory interpretation, it can be seen that under the

market approach agents update their prices and also

the prices of their neighbors and therefore there is no

need to exchange the state estimate. All the public

information needed are the prices and their updates. The

estimation of the agents through the different iterations

bring increments or decrements in the prices until

equilibrium prices are reached. However, there is a price

to pay in terms on the amount of model information that

agents have. With this price mechanism it is needed

that agent i has knowledge of the terms Cji. In other

words, agents have knowledge of the collateral effects

they induce in their neighbors.

Remark 6: From an economic point of view, the situ-

ation can be interpreted as a market of help services.

The price pi(τ) is the unit price that agent i has to

pay to his neighbors for them to change their current

contribution to his output. The fact that neighbors of an

agent i change their estimates affects to his price in such

a way that it reflects how costy is for his neighborhood

to help him after the estimate update. On the other hand

helping his neighbors is rewarded in (9). Taking all of

this into account, agents are both service offerers and

demanders. All of them behave selfishly according to

the prices fixed by the market, that is, the distributed

price mechanism proposed in this approach.

Remark 7: In welfare economics, under certain as-

sumptions such as the absence of externalities in trans-

actions, it is proved that market prices guarantee that,

despite of agents selfish behavior, a Pareto optimum

is achieved [16]. In the optimization problem that we

have, unfortunately we have to deal with the presence

of externalities, taking this term in a wide sense. That

is, decisions taken by agent i also affect other agents.

In order to overcome this problem and still reach a

Pareto optimum while keeping selfish, i.e. decentralized,

behavior in the agents, some modifications have to be

introduced in the market: first, all the agents behave as

price takers as they were in a competitive market when



they really have power to modify the prices and, second,

prices are updated globally according to the proposed

mechanism.

IV. EXAMPLES

The problem of estimating the position of a moving

object can be faced using different approaches. For outdoor

applications in which the precision requirements are low GPS

estimation is the most used choice. Radar measurements help

to improve the quality of the estimation. When it comes to

indoor applications the problem of localization is normally

solved by means of a sensor network. In cases in which low

precision is needed some it may be enough with a network of

presence detectors. If more precision is required then more

sophisticated techniques have to be used. In the case that

the application is executed in a very controlled scenario, it

is possible to use cameras to estimate the position. Infrared

or ultrasonic sensors also provide a greater accuracy than

the presence detectors. In the last years the use of the link

quality between wireless transceivers has been used too for

this kind of applications [8].

A. Application to mobile robot localization

This subsection is based on the simulation scenario pro-

posed in [6].

Let us consider a system consisting a set of µ = {1, ..,M}
reference nodes or beacons and a set η = {1, .., J} of mobile

devices. In this example we will consider M = 6 beacons

and J = 8 mobile devices, which are located in the positions

depicted in figure 1.

The goal is to estimate the position of the moving devices.

If the sample time is assumed to be low enough, it is possible

to simplify the dynamics considering that the devices move

at every sample time a bit with respect their position. The

equations for each device are:

xi(τ + 1) = xi(τ) + ∆xi(τ) ∀i ∈ η = {1, .., J}

with xi(0) = x0
i . The beacon position is fixed so that

xi(K + 1) = xi(0) ∀i ∈ µ = {1, ..,M}. The distance

between the nodes and the mobile devices can be calculated

using

d2ij = (xi − xj)
T (xi − xj) ∀i, j ∈ η, µ.

The distance can be linearized around the steady state

positions xi using a first order Taylor approximation, which

leads to

d2ij = d
2

ij + 2(xi − xj)
T (xi − xj) + 2(xi − xj)

T (xi − xj)

with d
2

ij = d2ij(xi, xj). Now, system variables can be

introduced for all the mobile devices such that:

xi(τ) = xi(τ)− xi ∀i ∈ η

yji(τ) = d2ij − d
2

ij ∀i ∈ η, ∀j ∈ η, µ

Cji = 2(xi − xj) ∀i ∈ η, ∀j ∈ η, µ.

Fig. 1: Initial situation of the devices.

So each moving device’s output provides information

about the distance with respect the other moving devices

and the beacons. If white gaussian additive noise is assumed

in the state and output then each device can be modeled

according to equation (1).

In order to make the situation more realistic it can be

assumed that only devices and beacons within a range can

communicate. Thus a communication radius ρ is defined. In

general two devices i and j can communicate if dij < ρ. A

communication graph can be defined to reflect what devices

can communicate at each sample time. The communication

graph at initial time is given by the following matrices:

A
η
0 =















1 1 0 0 1 1 0 0
1 1 1 0 0 1 1 0
0 1 1 0 0 1 1 1
0 0 0 1 1 1 1 0
1 0 0 1 1 1 0 0
1 1 1 1 1 1 1 0
0 1 1 1 0 1 1 1
0 0 1 0 0 0 1 1















A
µ
0 =















1 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 1 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 1















where A
η
0(i, j) = 1 if the mobile device i is able to

communicate with the mobile device j and A
µ
0 (i, j) = 1 if

the mobile robot i is able to communicate with the beacon

j.

The simulations have been done considering a dynamic

graph, that is, a situation where the movement of the devices

is big enough to guarantee that the communication graph

changes with the relinearization of the system. At each time

in which the system is relinearized it is necessary not only

to update the equations but the information about the last

samples that is kept in the agents. Let us assume that in

time τ there is a change of linearization point of the system.

Then,
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Fig. 2: Robots’ state evolution with noise model mismatch.
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Fig. 3: Robots’ trajectories with noise model mismatch.

xi(t) = x̄i(t) + xi(t)− x̄i(τ) ∀t ∈ [τ −N, τ ]
yi(t) = Ci(τ)x̂i(t) ∀t ∈ [τ −N, τ ]

This change of coordinates in the state estimates and the

outputs allow to compute the distributed problem without

suffering estimation disturbances after the change of lin-

earization point.

The system has been simulated for 40 time samples with

a state noise stronger than the original one. The first 10

samples a centralized Kalman filter is working and the

second 20 the distributed strategy. In t = 20 and t = 30
the system is relinearized. The window size used for the

estimation was 4. In blue it is depicted the real trajectory

and in red the estimation.

The results for the estimation of the position of the mobile

devices can be seen in figure 2.

The overall picture is shown in figure 3. The quality of the

estimation depends on several parameters. For example, the

more iterations are made the better the estimation gets. In

this figure it can be seen that the estimation is very precise

for most agents.

V. CONCLUSIONS

A distributed version of the Kalman filter based on dy-

namic programming has been developed in this paper. The

use of dual decomposition allowed the problem distribution.

In the simulations presented promising results of the future

applications of these techniques are shown.

It will be important for future work some kind of sub-

optimality bounds to determine the precision obtained in the

estimation after a number of iterations. Practical experiments

will be developed too to see how the distributed estimation

works in real application.
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