Distrib. Comput. (2004) 17: 171-189
Digital Object Identifier (DOI) 10.1007/s00446-003-0103-y

DISTIRIBUTED;
COMRUIMING

Distributed reconfiguration of metamorphic robot chains *

Jennifer E. Walter', Jennifer L. Welch2, Nancy M. Amato?

! Department of Computer Science, Vassar College, Poughkeepsie, NY 12604-0351, USA (e-mail: walter @cs.vassar.edu)
2 Department of Computer Science, Texas A&M University, College Station, TX 77843-3112, USA (e-mail: {welch,amato} @cs.tamu.edu)

Received: October 28, 2002 / Accepted: October 31, 2003
Published online: March 1, 2004 — (©) Springer-Verlag 2004

Abstract. The problem we address is the distributed reconfig-
uration of a planar metamorphic robotic system composed of
any number of hexagonal modules. After presenting a frame-
work for classifying motion planning algorithms for meta-
morphic robotic systems, we describe distributed algorithms
for reconfiguring a straight chain of hexagonal modules to
any intersecting straight chain configuration. We prove our al-
gorithms are correct, and show that they are either optimal or
asymptotically optimal in the number of moves and asymptot-
ically optimal in the time required for parallel reconfiguration.

Keywords: Metamorphic robots — Distributed reconfigura-
tion

1 Introduction

A topic of recent interest in the field of robotics is the develop-
ment of motion planning algorithms for robotic systems com-
posed of a set of modules that change their position relative
to one another, thereby reshaping the system. Shape chang-
ing in these composite systems is envisioned as a means to
accomplish various tasks, such as bridge building, satellite re-
covery, or tumor excision [24]. This paper builds on the work
of several researchers in the field of robotics, including [7,12,
15,17,24,37]. A robotic system that changes its shape due to
individual module motion has been called self-reconfigurable
[15] or metamorphic [7].
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A self-reconfigurable robotic system is a collection of in-
dependently controlled, mobile modules, each of which has
the ability to adhere to, disconnect from, and move around
adjacent modules. Metamorphic robotic systems, a subset of
self-reconfigurable systems, possess the following additional
properties [6]:

e Each module is identical in structure, motion constraints,
and computing capabilities.

e Modules are space filling polygons or polyhedra [20] that
can be packed densely, i.e., packed so that gaps between
modules are as small as possible, allowing these systems
to form two and three dimensional solids [1].

In the systems we consider, modules achieve locomotion by
moving over a substrate composed of other modules. The me-
chanics of locomotion depend on the hardware and can include
module deformation to crawl over neighboring modules [10,
24] or to expand and contract to slide over neighbors [28].
Alternatively, moving modules may be constrained to rigidly
maintain their original shape, requiring them to roll over or
lift themselves around neighboring modules or other surfaces
[14,17-19,29,32,39,42].

Metamorphic robotic systems are being widely studied
because their shape changing abilities make them potentially
useful for a larger set of tasks than conventional robotic sys-
tems. Since metamorphic robotic systems are intended to be
composed of a large number of duplicate modules, they can
potentially tolerate multiple processor failures and may be
useful in environments that are not amenable to direct human
observation and control (e.g., interplanetary space, undersea
depths). Such systems can also be self-repairing [20], allow-
ing damaged modules to be replaced by identical working
counterparts.

The motion planning problem for a metamorphic robotic
system is to determine a sequence of module motions required
to change a given initial configuration (1) to a desired goal
configuration (G). In this paper, we present algorithms and
lower bound proofs for particular cases of this reconfigura-
tion: collinear and non-collinear chain-to-chain metamorpho-
sis. Figure 1 illustrates the reconfiguration cases presented.

Developers of existing self-reconfigurable robotic sys-
tems, e.g., [5,7,9,12,13,15,17,24,28,30,31,37] have devised
motion planning strategies specific to the hardware constraints
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Fig. 2a—d. Application of straight chain reconfiguration algorithms

— scaffold to bridge structure. Execution progresses in time from (a)
to (d). Stationary modules are white and moving modules are black

of their prototype robots. Many existing motion planning
strategies rely on centralized motion planning algorithms to
plan and supervise the motion of the system components [4,
7,15,21,24,28,37]. Others, such as [16,17,19,29,33,39-42],
use distributed approaches that rely on heuristic approxima-
tions and/or require message passing between modules to co-
ordinate module actions in each step of the reconfiguration
process.

The chain-to-chain reconfiguration algorithms presented
in this paper are substrate [4], or space filling [20] reconfigu-
rations, where individual modules move between points on a
lattice composed of identical modules. Our approach should
not be confused with the closed-chain [4], or linear string [20]
approaches used in [4,12,13,16,20,22,29,38], where a serial
chain of heterogenous modules forms a multijoint robot.

We consider a deterministic distributed motion planning
strategy for the configurations shown in Fig. 1, given the as-
sumption of initial global knowledge of G. We focus on a
system composed of planar, hexagonal robotic modules as de-
scribed in [7]. Our distributed approach offers the benefits of
localized decision making and the potential for greater system
fault tolerance. Additionally, our algorithms require no inter-
module message passing during reconfiguration and ensure
collision- and deadlock-free execution.

The algorithms described in this paper are intended as
building blocks, to be used for the reconfiguration of the sys-
tem into arbitrary shapes. Figure 2 depicts an example of a
scaffold to bridge reconfiguration, realized by sequences of
straight chain reconfigurations. Figure 3 is an aerial view of
a bridge to corral reconfiguration that uses a series of straight
chain reconfigurations. In these examples, the modules would
need to have global knowledge of the initial and goal config-
urations.

Unoccupied cell in G
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Fig. 1. Robot chain reconfiguration
scenarios considered in this paper

(a) (b) (c)
Fig. 3a—c. Application of straight chain reconfiguration algorithms —

bridge to corral structure. Execution progresses in time from (a) to
(c). Stationary modules are white and moving modules are black

In our recent work [35,36], we have extended these chain
reconfiguration algorithms to allow the transformation of a
straight chain of modules to an admissible goal configura-
tion. Informally, an admissible goal configuration has arbitrary
shape with the restriction that the goal columns are composed
of contiguous cells in some orientation and that the goal con-
tains a bisecting chain (called an admissible substrate path)
of cells that can be filled in and traversed by modules without
collision or deadlock. The reconfiguration of a straight chain
I to an admissible substrate path is a direct application of
the chain-to-chain algorithm presented in this paper. A more
formal definition of an admissible goal configuration can be
found in [35] and is beyond the scope of this paper.

1.1 Problem definition

Reconfiguration algorithms for metamorphic robotic systems
cause the modules to move from an initial configuration, I,
in the plane to a goal configuration, G. In this section we
classify these algorithms according to particular properties
they possess and by constraints they operate under.

We classify reconfiguration algorithms according to the
following kinds of properties:

e Hardware properties: module shape and motion con-
straints.

e Configuration properties: feasible shapes, connectivity,
and other requirements on / and G, presence of obstacles
in the reconfiguration space.

o Communication and control properties: centralized versus
distributed, synchronous versus asynchronous, communi-
cation versus contact-only information.

o Algorithmic properties: deterministic versus probabilistic,
global connectivity requirements, stopping conditions.

Hardware properties: Reconfiguration algorithms have been
developed for metamorphic robotic modules of various shapes,



Distributed reconfiguration of metamorphic robot chains

including hexagons, squares, cubes, and rhombic dodecahe-
dra'. The algorithms are particular to the motion constraints
of the modules. In some cases, the modules are deformable,
compressing or elongating to facilitate movement and then
returning to their original resting shape. In other cases, the
modules are rigid and do not change shape during movement.
In general, deformable modules have less restrictive motion
constraints than their rigid counterparts because deformable
modules are able to squeeze through smaller gaps in the lattice.

Reconfiguration algorithms differ in the assumptions they
make on the capability of the component modules. Modules
may be “individually mobile” (IM), i.e., have the capacity to
move only themselves over a lattice of other, identical mod-
ules. In other systems, an individual module is capable of push-
ing or carrying a subset of modules besides itself, in which case
we say modules are “other movable” (OM). The former set is
a proper subset of the latter IM C OM). The advantage of
modules being OM is that many modules can move in a single
time step under the power of one module. The disadvantage
of OM systems is that each module needs additional power to
lift, carry, or push adjacent modules. The effects of friction-
generated heat on module contact surfaces is also a concern
in systems with OM modules.

Definitions of feasible traversal surfaces also vary. Mod-
ules may be limited to moving over other modules or they may
be able to move over arbitrary surfaces and obstacles. Move-
ment of modules may be possible only on the perimeter of a
configuration or modules may be designed to “tunnel through”
a mass composed of other identical modules.

Configuration properties: The reconfiguration space is gen-
erally divided into discrete units that are identical to the size
and shape of the modules.

Reconfiguration algorithms often place restrictions on the
relative positions of I and G, e.g., I and G may be required
to overlap or have particular shapes and orientations. When [
and G overlap, some of the modules in G may be treated as a
“fixed base”, meaning that none of these modules move dur-
ing the reconfiguration. In general, restrictions on the relative
positions of I and G limit the number of situations in which
the algorithm is useful.

Requirements may be placed on feasible shapes of I and
G for successful reconfigurations, e.g., “holes” or narrow tun-
nels in I and G may be disallowed. Most approaches require
an exact description of the shape and position of G. However,
other reconfiguration approaches do not define an exact po-
sition, requiring only the final shape of G to match a-priori
specifications or specifying only a particular goal cell or cells
that must be reached. Others do not define an exact shape
for G and aim instead at creating a structure with the correct
morphology required to achieve some task.

Ideally, a reconfiguration algorithm should place no re-
strictions either on the shapes or relative positions of I and
G. However, the problem of finding the optimal sequence of
moves from I to G, both of arbitrary shape, has been shown
to take time that is exponential in the number of modules [8].
Therefore, either heuristics are used to find a near-optimal

! A rhombic dodecahedron is a polygon with twelve identical faces,
each of which is a rhombus [2].
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probabilistic solution, or the shapes of I and G are restricted
to allow a successful deterministic approach. The former strat-
egy suffers from the possibility that the reconfiguration will
not be successful, and the latter from lack of generality and
extra time spent in pre-processing.

Since modules in a metamorphic system are homoge-
neous, it is generally not the case that modules need to fill
particular “labeled” positions in GG, except possibly for cells
that overlap 7 and G. Systems that do impose requirements
on individual module positions in G have more limited possi-
bilities for module movement during reconfiguration and are
generally composed of heterogenous module types.

The presence of obstacles in the reconfiguration space is
another variable property considered in some reconfiguration
strategies.

Communication and control properties: In centralized recon-
figuration strategies, movements of individual modules are
calculated using global knowledge of the system state through-
out reconfiguration. Centralized strategies suffer from the ex-
istence of a single point of failure as well as from the necessity
of maintaining a global view of the system.

Distributed reconfiguration algorithms allow modules to
use only local information and possibly message passing to
determine moves that will accomplish global reconfiguration.
Distributed algorithms allow as many modules as possible to
move in parallel and can provide greater fault tolerance due to
the lack of a single point of failure. On the other hand, these
algorithms may fail to prevent collision and deadlock and may
therefore not accomplish the complete reconfiguration. As in
any distributed system, modules may or may not have unique
identifiers. Also, these strategies vary according to the initial
knowledge each processor has of the system. For example,
prior to execution, each module may know any or all of the
following:

— the total number of modules,
— the coordinates of all cells in the goal configuration, or
— the coordinates of all cells in the initial configuration.

Algorithms differ in the amount of inter-module commu-
nication that is required during reconfiguration. Certain algo-
rithms use no communication because each module contains
the full implementation of the reconfiguration process, so the
entire state of the system is known by each module at all points
in the execution. At the other extreme are systems in which
modules need to use extensive message passing in order to
carry out the reconfiguration. An intermediate approach, like
our own, requires modules to know the initial coordinates of
G and the ability to dynamically sense on which sides they
contact other modules. In this approach, no message passing
is needed, and only local knowledge is necessary at each mod-
ule during reconfiguration. Inter-module message passing can
facilitate reconfiguration with less pre-processing and fewer
restrictions on the initial configurations of I and G. Message
passing can also provide the coordination necessary for asyn-
chronous module movement without collision. The advantage
of restricting inter-module message passing during reconfigu-
ration is that less module energy needs to be spent generating
and processing messages and reconfiguration is less subject to
outside interference in the form of message blocking. How-
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ever, more pre-processing is generally necessary when com-
munication is limited.

Distributed reconfiguration algorithms may move mod-
ules in rounds, since coordination of movement is necessary
to prevent module collision when multiple modules can move
concurrently. These rounds of movement may be synchronized
according to a global clock, or they may be interspersed with
one or more communication phases. Alternatively, movement
may be coordinated locally, allowing for asynchronous mod-
ule movement. Synchronized reconfiguration requires more
hardware overhead (e.g., synchronized clocks) and therefore
tends to be more difficult to ensure in a distributed system.
On the other hand, asynchronous systems tend to need more
communication to ensure no collision or deadlock occurs.

Algorithmic properties: Deterministic planners provide mo-
tion plans that avoid module collision and can guarantee suc-
cessful reconfiguration, given that the shape of I and G meet
certain pre-defined characteristics. The main disadvantage of
deterministic planners is that they generally impose restric-
tions on the shapes of I and G, thereby limiting the situations
in which they are useful.

Probabilistic motion planners generally use a stochastic
process to drive the reconfiguration, relying on local message
passing to ensure two modules do not attempt to move into
the same cell at the same time. Successful completion of gen-
eral reconfigurations sometimes cannot be guaranteed with
probabilistic planners due to blocking problems and module
deadlock arising from the random nature of module move-
ment.

Complete planners are both deterministic and are able to
reconfigure the system into any arbitrary shape.

Reconfiguration algorithms may also enforce other prop-
erties on the execution. We define two of these below:

e In an always-connected reconfiguration algorithm, the
modules form a single connected component at all times.
This property is often motivated by the practical constraint
that there must be a fixed power source for the modules.
For most metamorphic robotic systems, the motion con-
straints on the modules require them to move over an im-
mobile substrate composed of other identical modules. In
such systems, a subset of the modules must be static during
each round.

o A goal-stopping reconfiguration algorithm does not allow
any module occupying a goal position to move. Because
any module in [ can fill any goal cell in G, reaching a
goal cell is a convenient, locally detectable stopping point
for a module executing its local copy of a reconfiguration
algorithm.

Both the goal-stopping and the always-connected proper-
ties listed above impose restrictions on the algorithms that can
result in less efficient reconfiguration, as we show in Sect. 5.
However, these properties have the advantage of being en-
forceable on the local level by individual modules.

The complexity measures of interest for these reconfigu-
ration algorithms include the number of module movements,
the number of rounds or overall time used, the number of mes-
sages, and the computation time for motion planning.
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1.2 Related work

In this section, we briefly survey related work on metamorphic
robots. We consider the class of two- and three-dimensional
systems known as space filling [20] or substrate [4] systems,
where individual modules can move over a lattice composed of
other modules to accomplish reconfiguration. Our discussion
is organized by module type and communication and con-
trol modes. Table 1 summarizes the distinguishing properties
of algorithms that reconfigure systems of metamorphic robots.

HEXAGONAL METAMORPHIC ROBOTS

Upper and lower bounds on reconfiguration, feasibility of
reconfiguration:

Chirikjian and Pamecha [8] present upper and lower bounds
on the number of moves for general reconfiguration. They
show an upper bound on the minimal number of moves that
is a function of the distance along the perimeter of the initial
and final configurations, the maximum perimeter distance
possible in a connected configuration of n modules, and the
overlap between the initial and final configurations. General
lower bounds are obtained by finding a perfect matching
between modules in I and positions in G such that the sum
of the distances between pairs is minimized.

Dumitrescu et al. [11] present upper and lower bounds on the
speed of locomotion for particular formations of hexagonal
robots and provide results on the number of rounds needed
for any module in one of these formations to reach a particular
target cell in a goal configuration.

In [21], Nguyen et al. analyze the number of moves nec-
essary for specific shapes of I and G. They show that the
absence of a single excluded class of initial configurations
is sufficient to guarantee the feasibility of motion planning
for a system composed of a single connected component.
These authors define specific motion constraints and feasi-
ble configurations based on the rigid nature of their modules
and use knowledge about the initial configuration to plan the
reconfiguration process.

Centralized reconfiguration algorithms:

Chirikjian and Pamecha [10] and Pamecha et al. [24] present
algorithms that use the distance between all modules in I and
cells in G to drive the reconfiguration. This distance metric
is applied to system self-reconfiguration using a simulated
annealing technique to drive the process towards completion.
Distributed reconfiguration algorithms:

Murata et al. in [17] present an approach in which each mod-
ule senses its own connection type and classifies itself by the
finite number of modules that it physically contacts. This ap-
proach uses random local motions to converge toward the
goal configuration, a slow process that appears impracti-
cal for large configurations. This scheme ignores the con-
sequences of module collision and does not distinguish the
relative location of I and G in the plane, i.e., two configura-
tions are the same if the modules composing them have the
same connections.

SQUARE METAMORPHIC ROBOTS

Upper and lower bounds on reconfiguration:

Dumitrescu et al. [11] present upper and lower bounds on
the speed of locomotion for particular formations of square
robots.
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Centralized reconfiguration algorithms:

Chiang and Chirikjian [6] present bisecting techniques used
to find intermediate configurations between any given initial
and final configurations. They combine these techniques with
the simulated annealing algorithm of Pamecha et al. [24] to
reconfigure the system.

Distributed reconfiguration algorithms:

The rigid square modules developed by Hosokawa et al. [14]
move as a result of being lifted, sliding, and pivoting over
other rigid square modules by built-in rotatable arms. These
algorithms use interactions between neighboring modules to
generate specific global formations.

CUBIC METAMORPHIC ROBOTS

Centralized reconfiguration algorithms:

Rus and Vona [28] present algorithms to plan the reconfig-
uration of a system of compressible cubic modules that can
expand and contract, resulting in the sliding movement of
a module over its neighbors. Feasible configurations of I
and G are specific to the alignment of the cubic modules or-
ganized into meta-modules called “grains”. Reconfiguration
algorithms are presented for feasible configurations. In these
algorithms, internal modules can contract and pull surface
modules inward or expand to push surface modules outward.
Distributed reconfiguration algorithms:

A set of distributed motion planning algorithms for com-
pressible cubic modules is presented by Butler et al. in [3].
These algorithms allow modules to move asynchronously
after a planning phase that requires extensive inter-module
communication. The reconfiguration algorithm also involves
message passing to ensure correctness. The definition of fea-
sible configurations of I and G is similar to that given in [28].
In [41], Yoshida et al. present a distributed reconfiguration
algorithm for a system of rigid skeletal cubes that move in
temporary pairwise collaborations, with one module in a pair
rotating the other module in the pair into a new position. This
algorithm features a stochastic relaxation process that allows
the system to converge toward a particular goal configura-
tion by locally searching for a proper unit motion over many
degrees of freedom.

RHOMBIC DODECAHEDRAL METAMORPHIC ROBOTS

Distributed reconfiguration algorithms:

Yim et al. [39] present a probabilistic motion planning strat-
egy in which each module uses local information about its
own state (the number and location of its current neighbors)
and information about the state of its neighbors to make
progress toward the goal configuration. While this algorithm
allows parallel motion of modules, it does not consider the
consequences of a module moving over another moving mod-
ule in the same time step, an occurrence which could possibly
violate specified motion constraints by causing a partition in
the system.

Zhang et al. [42] present several heuristic approximation al-
gorithms which can potentially decrease the distance from
the initial to the goal configuration. In this two phase ap-
proach, modules use neighbor-to-neighbor communication
to achieve a semi-global view of the initial configuration, us-
ing as many rounds as necessary to avoid violation of module
motion constraints prior to each round of movement.
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Bojinov et al. [1,2] describe distributed probabilistic algo-
rithms to control the reconfiguration of systems of rhombic
dodecahedra into arbitrary target configurations that have
properties required for a specific task.

GENERAL SELF-RECONFIGURABLE MODULES

Many self-reconfigurable robotic systems are composed of
modules that do not strictly adhere to the definition of meta-
morphic robots and are therefore not included in Table 1. For
example, the self-reconfiguring molecule [15], moves over a
cubic lattice, but the basic modules are not regular polyhedra
and are therefore not space filling. Also, the individual com-
ponents of these molecules are not identical, being composed
of male and female counterparts.

As mentioned previously, the closed-chain [4] reconfig-
urable systems CEBOT [12], CONRO [29], Tetrobot [13,16],
and I-Cube [32] use reconfiguration strategies that apply to
strings of modules, not individual modules, and are not read-
ily comparable to our motion planning algorithms.

In meta-module systems [21,26,28,33], each unit in the
lattice is composed of a number of individual modules, moving
in formation or breaking up to accomplish “tunneling” recon-
figurations. The reconfiguration tasks in these meta-module
systems are simplified [21,33], and therefore the motion plan-
ning problem is not as hard as the one for individual mod-
ules. Since we are concentrating on classifying algorithms for
modules that most closely resemble our own, we therefore do
not include meta-module systems in our classification in Ta-
ble 1. Vassilvitskii et al. [33] present a complete, parallel mo-
tion planning algorithm for a system composed of Telecubes,
metamodules formed from eight cubic metamorphic modules
similar in design to those developed by Rus et al. [28]. It is
interesting to note that completeness of the reconfiguration
space can be guaranteed in these metamodule systems, but
not by any of the algorithms listed in Table 1.

1.3 Our approach

This paper will examine distributed motion planning strate-
gies for a planar metamorphic robotic system undergoing a
very simple reconfiguration, from a straight chain to any in-
tersecting straight chain.

We consider two dimensional, hexagonal modules like
those described by Chirikjian in [7], using their definition of
lattice distance between modules in the plane. We refer the
reader to [7,25,27,30] for discussions of the systems issues
involved with metamorphic modules, since these issues are
beyond the scope of this paper.

We believe one contribution of our work is how our sys-
tem model abstracts from specific hardware details about the
modules. Our proposed scheme uses a new classification of
module types based on connected edges similar to the classifi-
cation presented by Murataet al. in [17] for connected vertices.
In the algorithms presented in this paper, each module inde-
pendently determines whether it is in a movable state based
on the cell it occupies in the plane, the locations of cells in the
goal configuration, and on which sides it contacts neighbors.
Modules move from cell to cell and modify their state as they
change position. Since the modules know the coordinates of
the goal cells, each of them can independently choose a motion
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Table 1. Summary of existing algorithms for metamorphic system reconfiguration using the categories described in Sect. 1.1.
RD = rhombic dodecahedra, IM = independently mobile, OM = module movable by other modules

ALGORITHM HARDWARE =~ COMMUNICATION AND  CONFIGURATION ALGORITHMIC
CONTROL

Chirikjian et al. [10] hexagons, I arbitrary, G arbitrary,

Pamecha et al. [24] deformable, centralized I and G overlap, probabilistic
M G position fixed
hexagons, I feasible, GG chain,

Nguyen et al. [21] rigid, centralized I and G overlap, deterministic
™M G position not fixed
hexagons, distributed, 1 arbitrary, G arbitrary,

Murata et al. [17] rigid, asynchronous, overlap unnecessary, probabilistic
M message passing G position not fixed
squares, I arbitrary, G arbitrary,

Chiang and Chirikjian [6]  rigid, centralized I and G overlap, probabilistic
M G position fixed
squares, distributed, 1 arbitrary, G arbitrary,

Hosokawa et al. [14] rigid, asynchronous, overlap unnecessary, probabilistic
oM message passing G position not fixed
cubes, I feasible, GG feasible,

Rus and Vona [28] deformable, centralized overlap unnecessary, deterministic
OM G position fixed
cubes, distributed, 1 feasible, G feasible,

Butler et al. [3] deformable, asynchronous, overlap unnecessary, deterministic
OM message passing G position not fixed
cubes, distributed, I arbitrary, G arbitrary,

Yoshida et al. [41] rigid, asynchronous, overlap unnecessary, probabilistic
OM message passing G position not fixed
RD, distributed, I arbitrary, GG arbitrary,

Bojinov et al. [1,2] rigid, asynchronous, overlap unnecessary, probabilistic
M message passing G position not fixed
RD, distributed, I arbitrary, GG arbitrary,

Yim et al. [39] rigid, asynchronous, overlap unnecessary, probabilistic
M message passing G position not fixed
RD, distributed, I arbitrary, GG arbitrary,

Zhang et al. [42] rigid asynchronous, overlap unnecessary, probabilistic
M message passing G position fixed

Our approach hexagons, distributed, 1 straight chain, G straight chain,

(this paper) deformable, synchronous, I and G overlap, deterministic
M no message passing G position fixed
hexagons, distributed, 1 straight chain, G admissible,

Walter et al. [35] deformable, synchronous, I and G overlap, deterministic
M no message passing G position fixed

plan that avoids module collision. Modules in our system are
completely interchangeable and it should be noted that the cor-
rectness of our algorithms is not guaranteed if modules must
fill particular positions in G. We analyze our algorithms in
terms of number of module movements and number of rounds
used.

The major differences between our approach and those of
other researchers are summarized below:

e Our algorithms use minimal communication. In our algo-
rithms, robots are identical, but act as independent agents,
making decisions based on their current position and the
sensory data obtained from physical contacts with adja-
cent robots. Our purpose is to seek an understanding of
the necessary building blocks for reconfiguration, starting
with algorithms in which no messages need to be passed be-
tween participating robots during reconfiguration. We show

that reconfiguration in scenarios like the ones presented in
this paper can be accomplished using algorithms that do
not require any message passing. Therefore, our algorithms
are more communication efficient than the distributed ap-
proaches of [3,17,39—42]. One of our future goals is to
determine how complex the configuration shapes can be
before message passing is required during reconfiguration.
Our algorithms are deterministic. Unlike the probabilistic
approaches of [17,39-42], our motion planning strategy
will always produce the intended reconfiguration, provided
I and G are straight chains.

Our algorithms are particular to the motion constraints
of planar, hexagonal modules. Our algorithms are distin-
guished from many other planners such as [3,33,39,42] by
the shape of the modules and the constraints on module
movement we consider.
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Fig. 4. Coordinates in a system of hexagonal cells

Outline: In Sect. 2 we describe the system assumptions.

Section 3 presents and analyzes a distributed algorithm for
a chain-to-chain reconfiguration for the case where I and G
lie on the same straight line in the plane (i.e., are collinear)
and intersect in one cell.

The result for collinear intersecting / and G is not applica-
ble to all non-collinear intersecting straight chain configura-
tions of I and G. Since one of our goals is to identify surfaces
that can be traversed without collision or deadlock in a system
of hexagonal robots, we also provide algorithms for all possi-
ble orientations of intersecting straight chains. Extensions to
generalize the collinear algorithm when [ and G are straight
chains that occur in any initial relative intersecting orientations
are presented in Sect. 4.

In Sect. 5 we present lower bounds on the number of moves
and time required for the reconfiguration algorithms.

Section 6 provides a discussion of our results and future
work.

2 System model
2.1 Coordinate system

The plane is partitioned into equal-sized hexagonal cells,
which are arranged in a lattice and labeled using the coordinate
system presented in [7], as shown in Fig. 4.

Given the coordinates of two cells, ¢c; = (x1,y1) and c5 =
(x2,y2), the lattice distance [ 7], LD, between them is defined
as follows: Let Az = 21 — x5 and Ay = y; — y2. Then

_ | max(|Az|,|Ay]) if Az - Ay <0,
LD(cy,c2) = { |Az| + |Ay| otherwise.

The lattice distance is the minimum number of moves a
module would need to move from cell ¢; to cell cs.

2.2 Assumptions about the modules

Our model provides an abstraction of the hardware features
and the interface between the hardware and the application
layer.

e Each module is identical in computing capability and runs
the same program.

e Each module is a hexagon of the same size as the cells of
the plane and always occupies exactly one of the cells.

e Each module knows at all times:
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(b)

Fig. 5. Before (a) and after (b) module movement: M is moving, S
is substrate, C'1, C2, and C3 are empty cells

— 1its location (the coordinates of the cell that it currently
occupies) 2

— its orientation (which edge is facing in which direc-
tion)?, and

— which of its neighboring cells is occupied by another
module.

Modules move according to the following rules.

Modules move in synchronous rounds.

e Inaround, amodule M is capable of moving to an adjacent
cell, Oy, iff

— cell (' is currently empty,

— module M has a neighbor S that does not move in the
round* (called the substrate) and S is also adjacent to
cell (1, and

— the neighboring cell to M on the other side of C; from
S, Cy, is empty. See Fig. 5 for an example.

e Only one module tries to move into a particular cell in each
round.’
e Modules do not carry other modules.

3 Collinear algorithm (Case 0)

In this section, we develop a distributed reconfiguration algo-
rithm for a particular configuration of the system described
in Sect. 2. We focus on reconfiguring a straight-line chain of
modules in I to an intersecting straight-line chain of modules
in G, where I overlaps G in exactly one module. Our algorithm
is always-connected and goal-stopping.

We classify modules according to their possible connec-
tions during an execution of our algorithm in a new classifi-
cation based on edge contacts. This classification is similar to
the one presented by Murata et al. in [17], which is based on
vertex contacts. In Fig. 6 modules are classified into three cat-
egories (trapped, free, and other) based on the number and ori-
entation of their contact and non-contact edges. Non-contact

2 Initial coordinates could be determined using current GPS tech-
nology, broadcast to modules via wireless transmission, and recalcu-
lated individually as modules move.

3 Initial orientation information could be broadcast to modules via
wireless transmission and recalculated individually as modules move.

* If the algorithm does not ensure that each moving module has an
immobile substrate, then the results of the round are unpredictable.

5 If the algorithm does not ensure that there are no collisions, then
the results of the round are unpredictable.
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Fig. 6. Configuration types possible in collinear algorithm

edges are those on which the module is adjacent to an empty
cell and contact edges signify that the adjoining cell is oc-
cupied by another module. This classification applies to any
rotation of a module. Modules in the trapped category do not
have sufficient adjacent non-contact edges to satisfy hardware
constraints on movement (see Sect. 2.2). Modules classified as
free are required to move in our algorithm. The other category
includes modules whose movements are not allowed by our
algorithm because it enforces the always-connected property.
Even though the movement of modules in the other category
would not violate hardware constraints, such movement might
cause the configuration to become disconnected.

3.1 Collinear reconfiguration algorithm

3.1.1 Algorithm assumptions

e Each module knows the total number of modules in the
system, n, and the coordinates of all goal cells in G.

e Initially, one module is in each cell of I.
I and G are collinear and overlap in exactly one cell.

e [ is composed of a single connected component.

3.1.2 Overview of algorithm

The algorithm works in synchronous rounds. Initially, each
module calculates whether it will be moving clockwise (CW)
or counter clockwise (CCW). A module calculates its position
in I and uses the parity of its distance (i.e., even or odd lattice
distance) from the cell in which I and G overlap to decide
direction of movement.

Modules can determine locally from their initial contact
pattern if they are part of a straight chain of modules and any
module initially detecting a contact pattern that is inconsistent
with a straight chain configuration can abort the reconfigura-
tion in a pre-processing phase. Modules can calculate the po-
sition of GG from the coordinates of the cells in G, information
they receive during a pre-processing phase.

The algorithm instructs modules initially in positions with
even distance from the overlap to rotate CCW and those with
odd distance to rotate CW. Once a module calculates its rota-
tion direction, it continues to rotate in that direction throughout
the execution. In each round, each module calculates whether
it is free (cf. Fig. 6) and moves if it is free in the direction
calculated initially. Modules in G' do not move.

J.E. Walter et al.

3.1.3 Data structures at each module

e contacts: Boolean array indicating on which edges a mod-
ule has neighboring modules. Assumed to be automati-
cally updated at each round by some lower layer.
myCoord: The coordinates of the module in the plane.

e goalCell: Array of all coordinates of cells € G listed in
decreasing order of y coordinate.

e d: Variable containing the direction of movement, CW or
CCw.

e flips: Counter used to determine whether the module is
free.

The collinear reconfiguration algorithm is shown in Fig. 7.

Code for each module ¢ G:

Initially: // find movement direction
1. if ((n — LD (myCoord, goalCell[1])) is even)
2. d= CCW
3. else d= CW

In round r=1,2,... : // move
4. if (isFree())
5. move d
Procedure isFree() :
6. Mips 0
7. for (=0 to 5) do
8. if (contacts[i] # contacts[ (i + 1) % 6])
9. Aips++
10. return (flips == 2)

Fig. 7. Pseudocode for collinear reconfiguration algorithm.
LD(c1,c2) is the lattice distance between cells ¢; and c2

In Fig. 8 we depict an execution of the collinear recon-
figuration algorithm when n = 4. For purposes of analysis,
modules are labeled 1 through 4. Nine rounds are required for
this reconfiguration.

3.2 Analysis of reconfiguration algorithm

All the results in this section, Theorems 1-3, are based on the
assumptions of Sect. 3.1.1. In particular, the cost analysis in
Theorem 3 relies on I and G overlapping in only one cell.
When the overlap is greater than one cell, the cost decreases
as shown in Corollary 1.

Without loss of generality, assume that / and G run
north-south and I is north of G. Number the cells in I and G
from 1 through 2n — 1 from north to south. We will refer to
the module originally in cell ¢ as module i, 1 < ¢ < n. Figure
9 shows a snapshot during an execution of the reconfiguration
algorithm, where modules retain the labels of their initial cell
designation. We will refer to a cell’s neighboring cells as north
(N), northeast (NE), southeast (SE), south (S), southwest
(SW), and northwest (NW). We refer to the column of cells
containing I and G as the central column and to the columns
of cells to the east and west of the central column as the outer
columns.

Theorem 1. The collinear reconfiguration algorithm is cor-
rect.
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Fig. 9. Configuration at end of round 2k — 1, k is even

Proof. We show that the following properties I1-13 are in-
variant throughout the execution. For each i, 1 < ¢ < n, and
each round S > 1, at the end of round S,

I1: if S < 2i — 1, then module 7 is in cell 4,
2: ifS=2i—1445,0<j<n-1,
a) if ¢ is odd, then module 7 is SE of cell 7 + 7,
b) if 7 is even, then module ¢ is SW of cell ¢ + j,
and
I13: if S > 2¢{ — 1 + n, then module 7 is in cell 7 + n.

We proceed by induction on the number of rounds, S, in
the execution. The basis is .S = 0 (i.e., just before round 1.)
In the initial state, /2 and I3 are not applicable and I1 is true
by assumption.

For the inductive hypothesis, assume that the invariants
hold for round S — 1, S > 0. Figure 9 illustrates the configu-
ration at the end of round 2k — 1.

Choose i to be even (without loss of generality.)

Casel: S<2i—1.
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Thus, S —1 < 2§ — 2.
By I1, module i — 1 isin cell ¢ — 1 and module 7 + 1 is in
cell 7 + 1 at the end of round S — 1. Therefore, module 7
does not move in round S because it will have contacts on
sides N (with module 7 — 1) and S (with module i+ 1), and
possibly on sides NW and SE or sides NE and SW, due
to the staggered spacing of the cells in the outer columns.
These contacts will be non-contiguous, so module ¢ will
not be free in round .S. Referring to Fig. 9, module k + 2
has contacts that correspond to those described for module
i.
By I1, module i is in cell 4 at the end of round S — 1, so
it is still in cell 4 at the end of round S.
Case2: S=2i—1+jforsomej,0<j<n-—1
Thus, S —1=2i—14+(j—-1)=2(i—-1)+j+1

7 =0: Then Il implies module ¢ is in cell ¢ at the end
of round S — 1 and 72 implies module ¢ — 1 is SE
of cell ¢ at the end of round S — 1, since S — 1 =
2(i — 1) + 0 + 1. Then module i is free at the end of
round S — 1 because it has contacts only on its S and SE
sides. So module ¢ moves CCW, by the code, to be SW
of cell 4 in round S. In Fig. 9, module k corresponds to
the position described for module ¢ and module k£ — 1
corresponds to the position described for module ¢ — 1
in round S.

j > 0: Then I2 implies that module ¢ is in the cell SW
of cell i + (j — 1) at the end of S — 1. Module ¢ will
be free at the end of round S — 1 because ¢ will have
contacts only on its NE and SE edges, due to the spacing
of the cells in the outer columns. Therefore, module ¢
will move CCW in round S to be SW of cell 7 + j.
Referring to Fig. 9, module k£ — 2 is in a position like
that described for module 4 at the end of round S — 1.

Case3: S>2i—1+n.

IfS=2i—1+4n,thenS—1=2i—14+n—1=2i—2+n.
By I3, module i — lisincelli+mn — 1 inround S — 1, so
module ¢ — 1 will not move in round S — 1 or any round
after that, by the code. By 12, module ¢ is in the cell SW of
cell 7+mn —1 at the end of round S — 1. Therefore, module
1 is free at the end of round S — 1 because it has only one
contact, on its NE side, with module ¢ — 1. Module 7 has
no other neighbors in round S — 1 due to the staggered
nature of the modules in the outer columns and due to 13,
which says that if module ¢ — 1 is in cell ¢ + n — 1, then
modules 7 — 2,7 — 3, ..., 1 must have ceased movement
before round S — 1. So in round S, module ¢ moves into
cell i + n in a CCW direction and stops moving in this
round by the code. In Fig. 9, module k£ — 4 is in a position
like that described for module 7, and module k£ + 4 is in
a position like that of module ¢ — 1 at the end of round
S—1.
If S > 2¢ — 1 + n, then, since at the end of round S,
module 7 is already in cell 7 +n by I3, then it s still in cell
1 4+ n in every round after S. By the code, once a module
is in a goal position, it does not move.

These invariants imply that the modules only use three
columns. Initially, modules are all in the center column and,
during the execution, modules in outer columns are spaced or
staggered such that there is an empty cell between any two
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modules. Invariant I3 implies that, after round 3(n — 1), all
modules are in goal positions. ad

Theorem 2. The collinear algorithm is goal-stopping and
always-connected.

Proof. The algorithm is goal-stopping because modules in G
do not run the pseudocode in Fig. 7, and therefore do not move
in any round.

The proof of Theorem 1 shows that, during execution of
the collinear reconfiguration algorithm, modules in the outer
columns move over a substrate of connected modules in the
center column. It follows from the arguments about the po-
sitions of modules during execution of this algorithm that no
intermediate configuration is partitioned. Therefore, the algo-
rithm maintains the always-connected property. a

Theorem 3. The collinear reconfiguration algorithm takes
3(n — 1) rounds and makes n?® — 1 module movements.

Proof. Invariants 11 through I3, from the proof of Theorem 1,
imply that the reconfiguration takes 3(n—1) rounds. Invariants
12 and 13 show that n — 1 of the modules originally in / make
n + 1 moves each, resulting in n? — 1 module movements for
the whole reconfiguration. ad

The proof of Theorem 3 can be used to prove the following
corollary for variable-sized overlap between [ and G.

Corollary 1. When there is an overlap of size h in the modules
of I and the positions of G, the algorithm takes (n—h)(n+1)
moves and 2(n — h) + n — 1 rounds.

4 Non-collinear chain algorithms

We have developed extensions to the collinear reconfiguration
algorithm to allow the reconfiguration of an initial chain to
an overlapping final chain that may intersect the initial chain
in any orientation. These extensions also do not require any
message-passing communication between modules, but use
counting techniques combined with knowledge of goal posi-
tions to determine the final position of each module.

4.1 Non-collinear chain reconfiguration algorithms

4.1.1 Algorithm assumptions

For our presentation of the non-collinear algorithms, we as-
sume:

I is oriented in a north-south fashion,

G is oriented in a “southwest-northeast” fashion,

the northernmost module in I is not in G,

if there are cells in I on both the north and south sides of

the intersection of I and G, then there are goal cells on

the east side of I,

e if there are cells in I on both the north and south sides of
the intersection of I and GG and cells in GG on both the east
and west sides of I, then the north segment of [ is at least
as long as the west segment of G, and

e as in Sect. 3.1.1, initially, each module knows the total

number of modules in the system and the coordinates of

the goal cells and one module is in each cell of I.

J.E. Walter et al.

Case 3

<:> Non-goal cell occupied by module. Unoccupied goal cell

Numbers indicate

<:> Goal cell occupied by module nelicate
module positions in I

Fig. 10. Cases for calculating rotation direction and delay

4.1.2 General chain reconfiguration cases

The cases for non-collinear chain-to-chain reconfiguration are
shown in Fig. 10. Note that if a particular orientation of in-
tersecting chains / and G does not satisfy assumptions 1-5,
the coordinates can be flipped horizontally and/or vertically
so that the assumptions are satisfied. For example, in Fig. 10,
the variant of case 4 with G slanted to the SW instead of NE
of I can be obtained from the case 4 shown by a horizontal
and a vertical inversion.

Throughout the remainder of this paper, we will refer to
the numbers of the modules in I shown in Fig. 10 as module
positions in I. As depicted in Fig. 10, the variable N (resp., S)
refers to the set of positions in [ that are north (resp., south)
of the goal cells and the variable £ (resp., W) refers to the set
of positions in G that are east (resp., west) of the cells in I.

4.1.3 Overview of algorithms

The number of possible configuration types is larger in the
general case than it was in the collinear case, as shown in
Fig. 11. The modules labeled trapped are unable to move due to
hardware constraints and those labeled free represent modules
that must move in our algorithm, possibly after some initial
delay. The modules in the other category are restricted from
moving by our algorithm, not by hardware constraints.

As in the collinear case, modules can determine locally
from their initial contact pattern if they are part of a straight
chain of modules during a pre-processing phase. Modules cal-
culate the position of G using the coordinates of cells in G,
information they receive during a pre-processing phase. Note
that the initial coordinates of I and its intersection with G
could be determined by message passing, but in this approach,
modules would still need to discover the exact coordinates of
G through additional inter-module communication. We avoid
the necessity of inter-module message passing by assuming
modules are given the coordinates of G during pre-processing
(e.g., through a broadcast wireless transmission from a base
station.)
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Fig. 11. Configuration types possible in general chain cases

Code for module ¢ G:

Initially numW = numE = 0.

e In round r =1,2,... prior to module’s first move:
if in N:
e if N cell is occupied or newly vacated, then
— if NW cell is newly occupied, then numW++
— if NE cell is newly occupied, then numE++
e if N cell is newly vacated, then
— calculate direction and delay using numW and numE

if in S§:
e if S cell is occupied or newly vacated, then
— if SW cell is newly occupied, then numW++
— 1if SE cell is newly occupied, then numE++
e if S cell is newly vacated, then
— calculate direction and delay using numW and numE

e In round r =1,2,...:
if isFree() :
— if delay = 0 then move direction
— else delay——

Procedure isFree() :

1 flips = 0

2 for (¢=0 to 5) do

3. if (contacts[i] # contacts[ (i + 1) % 6])
4 fips++

5 return ((flips == 2) and (contacts[i] < 5))

Fig. 12. Non-collinear chain reconfiguration schema

The algorithms for cases 1 through 5 are similar to that for
the collinear case. The differences are the way modules

e determine themselves to be free,

e calculate the direction in which to move, and

e calculate the delay, i.e., how long to wait after becoming
free until beginning to move.

The isFree() procedure presented in Sect. 3 must be modi-
fied to take into account the increased number of configuration
types available (cf. Fig. 11). The modified version is included
along with the algorithm schema in Fig. 12. Modules calcu-
late direction and delay by counting modules with lower initial
positions as they pass. The progress made on filling in goal
cellsin £ and W is determined locally by maintaining separate
tallies for modules passing on the east and west side. In this
pseudocode, a cell ¢ is newly vacated inround ¢ (¢ > 1) if it is
vacant in round ¢ and it was occupied in round 7 — 1. A cell ¢
is newly occupied in round 7 (¢ > 1) if it is occupied in round
¢ and it was vacant in round ¢ — 1.
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The goals for the choice of direction and delay at a module
are to

1. avoid collisions and
2. avoid deadlock (a situation where the module is not free
but not in a goal position).

We define the following patterns of rotation for a mod-
ule in position 7, ¢ > 1. These patterns will be used in the
presentation of our reconfiguration algorithms for cases 1-5:

e unidirectional: Module ¢ rotates in the same direction as
module 7 — 1.

e bidirectional: Module ¢ rotates in the opposite direction as
module 7 — 1.

Since modules can only move into cells that are empty,
there must be at least one empty cell between all modules
moving in the same direction over modules in / toward G. For
modules rotating toward the acute angle intersection, there
must be at least 2 empty cells between all modules moving
in the same direction over modules in I toward G to avoid
deadlock in the corner.

The rotation and delay patterns for cases 0 through 2 of
chain-to-chain reconfiguration are given in Fig. 13. For cases
1 and 2, we present two algorithms, one that conserves rounds
(round-conserving) and another that conserves moves (move-
conserving). For completeness, we include the collinear re-
configuration algorithm, case 0.

The rotation and delay patterns for cases 3 through 5 chain-
to-chain reconfiguration are given in Fig. 14. It should be noted
that the two entries for case 5 in Fig. 14 are due to the fact that
in the first case listed, all modules can rotate toward an obtuse
angle and, in the second case, some of the modules must rotate
toward an acute angle.

4.2 Analysis of non-collinear chain reconfiguration
algorithms

The correctness of the non-collinear chain reconfiguration al-
gorithms can be shown with an inductive argument like that
used in the proof of Theorem 1. We omit these proofs in this
paper because they are straightforward.

We analyze the running time and number of total moves in
Theorems 4 through 8. These results are summarized in Tables
2 and 3 in Sect. 5.

Theorem 4. The round-conserving case 1 reconfiguration al-
gorithm takes 3(n — 1) rounds and makes n* — 2 module
movements if n is even and takes 3(n — 1) rounds and makes
n? — 1 moves if n is odd.

Proof. In a case 1 reconfiguration, the last module to reach its
designated goal cell is in position n — 2 (see Fig. 15, parts (a)
and (b)). The module in position 1 starts moving in round 1
and modules 2 through n — 1 start moving 2 rounds after their
north neighbor begins moving. The last module to stop moving
in the execution is the module initially in position n — 2. This
module begins moving in round 1 + 2(n — 3) and moves in
n + 2 additional rounds after its first move, resulting in a total
of2n —5+4+n+2 =3n—3 = 3(n — 1) rounds.

For even n (see Fig. 15(a)), module 1 moves n spaces,
modules in even positions move n + 3 spaces each, modules
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move—conserving

Case n Position Pattern of rotation & delay
g 1 CW, delay = 0
0 g any
| 2ton-1 bidirectional, delay = 0
1 CW, delay = 0
odd
1 it 2ton-1 bidirectional, delay = 0
. 1 CCW, delay = 0
round—conserving even
2ton-1 bidirectional, delay = 0
1 8 1 CCW, delay =0
e any
N 2 ton—1 unidirectional, delay = 1

g 1
2 o
e any

CW, delay = 0

Fig. 13. Rotation and delay by module po-
sition in I for cases O through 2. In con-
figurations shown in column 1, goal cells

move—conserving

round—conserving 2ton-1 bidirectional, delay = 1
CW, delay = 0
2 g . any 1
2 to n—1 unidirectional, delay = 2

are shaded and occupied cells have dark
borders. Module positions are as shown
in Fig. 10

in odd positions > 1 move n — 1 spaces each, and the module
in position n moves 0 spaces. So the total number of moves is

n+((n_2) -(n—1))+<(";2> -(n+3)>

2
_ (n?-3n+2) (n>+n-6)
=n+ 5 5
=n+(n*—n-2)
=n?—-2.

For odd n (see Fig. 15(b)), modules in even positions move
n+ 3 spaces each, modules in odd positions move n — 1 spaces
each, and the module in position n moves 0 spaces. So the total
number of moves is

(7 o)« (B )

(n?-2n+1) (n?>+2n-3)
2 2
_ 2
=n"—1. 0

Theorem 5. The move-conserving case 1 reconfiguration al-
gorithm takes 4(n — 1) — 2 rounds and makes n*> — n module
movements.

Proof. The module rotation directions for the case 1 move-
conserving algorithm are shown in Fig. 15(c). Because of the
constraints on module movement and the way the modules
determine themselves to be free, when modules in case 1 all
rotate CCW toward the obtuse angle bend, each module in I
(in position > 1) must wait 3 rounds after its north neighbor

begins moving prior to its first move. The module in position
n— 1 (the last module to stop moving) begins moving in round
1 + 3(n — 2) and moves in n — 1 additional rounds. When
all modules rotate CCW, this is also the last module to stop
moving, resulting in a total of (3n —5)+(n—1) =4n—6 =
4(n — 1) — 2 rounds for the execution.

Each of n — 1 modules move n spaces each, resulting in

n? — n module movements. O

Theorem 6. The round-conserving algorithm for case 2 uses

4(n — 1) + 1 rounds and n® — & — 3 moves for odd n, and

4(n — 1) — 1 rounds and n*® — ¥ — 1 moves for even n.
Proof. Refer to Fig. 16(a) and (b). In case 2 reconfigurations,
each module in [ in a position > 1 waits 3 rounds to move
after its north neighbor begins moving. For odd n, (Fig. 16(b)),
the module in position n — 1 is the last module to reach its
final goal position. Module n — 1 starts moving in round 1 +
3(n —2) = 3n — 5 and takes an additional n + 2 rounds.
Therefore, the number of rounds used in such an execution
is3n—5+n+2=4n—-3 =4(n— 1)+ 1. For even n
(Fig. 16(a)), the module in position n — 2 is the last module
to reach its final goal position. Module n — 2 starts moving in
round 1 + 3(n — 3) = 3n — 8 and takes an additional n + 3
rounds. Therefore, the number of rounds in such an execution
is3n—8+n+3=4n—-5=4(n—-1)—1.

For the number of moves, we need to consider how many
moves are used by each module in . For odd n, the module in

position 1 makes n — 1 moves, the module in position n — 1
makes n + 3 moves, the "2;3 modules in even positions 2

through n — 2 make n + 4 moves each, and the ”T’?’ modules
in odd positions 3 through n — 2 make n — 3 moves each. This
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Set Position Pattern of rotation & delay
1 Toward acute angle, delay = 0
N 2 to |E| unidirectional, delay = 2
[E|+1 Toward obtuse angle, delay = 0
|E|+2 to n—1 unidirectional, delay = 1
S 1 Toward obtuse angle, delay = 0
2to |S| unidirectional, delay = 1
N 1 Toward acute angle, delay = (3*|S[) — IN| + 1
2 to [N] bidirectional, delay = 1
S 1 Toward obtuse angle, delay = 0
2to S| unidirectional, delay = 1
N 1 Toward obtuse angle, delay = 0
2 to N| unidirectional, delay = 1
P 1 Toward obtuse angle, delay = 0
2to |S| unidirectional, delay = 1
1 Toward acute angle, delay = (3*S[) — [N] + 1
N if (/E/E/ f;/) (|>E|7_| sh unidirectional, delay = 2
(E[-ISp + 1 Toward obtuse angle, delay = 0
(|E|-[S])+2 to n—1 unidirectional, delay = 1

Fig. 14. Rotation and delay by module position in [ for cases 3 through 5. In configurations shown in column 1, goal cells are shaded gray,
occupied cells have dark borders, and sets NV, S, £, and W are labeled

results in

(n—1)+(n+3)+(@-(n+4))+<

- (n® +n—12) (n® — 6n +9)
s () (M)

(n—-3)

72n27n+1 1

= 5

2. n 1 23

=n’-3+3 4% 63

e n-3)

module movements. For even n, the module in position 1
makes n — 1 moves, the module in position n — 1 makes n — 2
moves, the "T_Q modules in even positions 2 through n — 2
make n+4 moves each, and the ”T"l modules in odd positions

3 through n — 3 make n — 3 moves each. This results in
(n—2)

(n71)+(n72)+< 5 -(n+4))+((";4) ~(n73)>

_ (n? 4 2n — 8) (n? — Tn 4+ 12)
,%,M( : )+( k )

(") Occupied non—goal cell
{©) Occupied goal cell

Unoccupied goal cell

Number in an occupied cell indicates
module position in I

Number in an unoccupied cell indicates
that module originally in that position

ends up in this cell.

Fig. 15. Round-Conserving case 1 rotations for even (a) and odd (b)
n. Move-conserving case 1 rotations (c)
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O Occupied non—goal cell
O Occupied goal cell

Unoccupied goal cell

Number in occupied cell indicates
module position in I

Number in an unoccupied cell indicates

that module originally in that position

ends up in this cell.

Fig. 16. Round-Conserving case 2 rotations for even (a) and odd (b)
n. Move-conserving case 2 rotations (c)

2
= nz _r_ 1
2
module movements. O

Theorem 7. The move-conserving algorithm for case 2 uses
n? — 3n + 4 moves and 5(n — 2) + 1 rounds.

Proof. Consider part (c) of Fig. 16. To get to its final position,
module 1 makes n — 1 moves. Module n — 1 also makes
n — 1 moves. Module n makes 0 moves. The remainder of the
modules make n — 2 moves each. This gives us

2(n—1)4+ (n—3)(n—2)
=2 —24n%>—5n+6
=n?—3n+4

module moves.

Since all modules are moving CW toward the acute angle
bend and because moving modules must be separated by 2
empty cells to avoid deadlock in the corner, each module in
I in position > 1 must wait 4 rounds after its north neighbor
begins moving prior to its first move. The module in position
n — 1 is the last module to start and the last to stop moving,
as shown in Fig. 16(c). This module begins moving in round
144(n—2) and moves in n — 2 additional rounds. This results
inatotal of dn —7+n —2 = 5n—9 = 5(n — 2) + 1 rounds.

O

Theorem 8. Cases 3 through 5 use ©(n?) module movements
and take ©(n) rounds.

Proof. Theorem 8 follows from the fact that the reconfigura-
tion algorithms for cases 3 through 5 are combinations of case
1 and 2 reconfiguration algorithms.

Case 3 uses the move-conserving case 2 algorithm with
modules rotating toward the acute angle to fill the goal cells in
£ and uses the move-conserving case 1 algorithm with mod-
ules rotating toward the obtuse angle to fill the goal cells in
W. Since one of W and & is at least 5 while the other is at
most %, this result follows from Theorems 5 and 7.

Case 4 begins with the move-conserving case 1 algorithm
for the modules in S and ends with the round-conserving case
2 algorithm for modules in AV In this case, one of A" and S is
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at least % while the other is at most %, so this result follows
from Theorems 5 and 6.

Incase 5, if [N'| = |W)|, the reconfiguration uses the move-
conserving case 1 algorithm for modules in both A and S.
If IN| > |W] in case 5, the modules in S use the move-
conserving case 1 algorithm and the modules in A/ start with
the move-conserving case 2 algorithm and end with the move-
conserving case 1 algorithm. One of A/ and S is at least & while
the other is at most 5 and one of W and £ is at least 5 while
the other is at most % Therefore, the number of moves and
rounds used follows from Theorems 5 and 7. O

Theorem 9. The algorithms presented for cases 1 through 5
are goal-stopping and always-connected.

Proof. The algorithms are goal-stopping because modules in
G do not run the pseudocode in Fig. 12, and therefore do not
move in any round. A proof similar to the ones for Theorems
1 and 2 can be given to show that these algorithms maintain
the always-connected property. a

Simple extensions to the algorithms allow the reconfigu-
ration of a chain in any initial location to a chain in any final
location by calculating intermediate configurations that lead
to eventual intersection and then running one of the algorithms
described in this section. To calculate intermediate configura-
tions for non-intersecting I and G, project a line through the
center of some module in I along the NW-SE, SW-NE, or
N-S axis so that the line intersects the center of some cell in
G. If necessary, use one of the non-collinear chain reconfig-
uration algorithms to reorient [ so that it is collinear to this
projected line and then use the collinear chain reconfiguration
algorithm to move [ so that it intersects G. After / and G in-
tersect, choose one of the chain reconfiguration algorithms to
complete the reconfiguration process.

4.2.1 Non-goal-stopping, round-conserving algorithms
for reconfiguration in cases 3 and 5

For cases 3 and 5, we can conserve rounds if the algorithm
does not require all modules to stop when they reach a goal
position. Figure 17 shows the positions of I and G for case 3
(part (a)) and for case 5 when |[A| > |W| (part (b)). In these
cases, modules in N rotating CCW cut through the darker
shaded goal cell to fill in goal cells in &, allowing modules
to move bidirectionally and therefore increasing parallelism.
This slight modification to the algorithms allows modules in A/
to start out using the round-conserving case 2 algorithm. These
algorithms use ©(n) rounds and ©(n?) moves as did the other
algorithms for these cases. Even though this strategy does not
change the asymptotic bounds, it improves the constant hidden
in the asymptotic notation, especially if £ > W and N’ > S.

5 Lower bound proofs

The problem of finding bounds for the number of moves
needed to reconfigure a metamorphic system was addressed
for general configurations by Chirikjian and Pamecha in [8].
We show a larger lower bound on the number of moves re-
quired for a collinear (case 0) reconfiguration when the algo-
rithm is goal-stopping and we show this bound is tight. For
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Numbers in modules indicate

module positions in I

<:> Occupied non—goal cell
<:> Occupied goal cell

Unoccupied goal cell

Unoccupied goal cell used by

certain modules moving CCW from N to

"cut through" to reach goal cells in E
Fig. 17. Configurations for non-goal-stopping algorithms for cases 3
(a) and 5 (b)

case 1 goal-stopping algorithms, we show that the lower bound
given in [8] is tight and we show the bounds given in [8] are
asymptotically tight for goal-stopping algorithms in cases 2
through 5.

In the second part of this section, we consider the lower
bound for the total elapsed time of reconfiguration, a measure
that was not addressed in [8]. Our bounds are asymptotically
tight in this measure.

5.1 Lattice distance sum

In [23], Pamecha and Chirikjian show that a key concept for
the lower bounds on the number of moves used during recon-
figuration is that of the initial lattice distance sum, which we
denote as Dy. For given initial and goal configurations, let Dy
be the minimum, over all choices for the locations of the mod-
ules in the goal configuration, of the sum, over all modules ¢,
of the lattice distance between ¢’s initial position and ¢’s final
position. In Theorems 10, 11, and 12, we derive specific D
values for each of the chain reconfiguration cases.

As shown below, the lower bounds for both the number of
moves and the number of rounds used during reconfiguration
are functions of Dy, the initial lattice distance sum.

Theorem 10. For cases 0 and 1, Dy = n? — n.

Proof. Number the cells in the initial configuration / from 1 to
n and the cells in the goal configuration G from n to 2n—1. Let
v; be the lattice distance between module ¢’s initial position,
cell ¢, and its final position, cell g;, for 1 < ¢ < n. For both
case 0 and case 1, this lattice distance is g; — ¢. Note that g;
through g,, form a permutation of n through 2n — 1. Thus

n

Dozivi:Z(gi—i):nQ—n.
i=1

i=1
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Theorem 11. For case 2, Dy = (n? —n)/2.

Proof. Number the cells in the initial configuration I from 1
to n. The shortest distance between module n — ¢ and any goal
cellisi, 1 <7 <mn—1.Thus

n—1

Dy = Z(n—z) = (n? —n)/2.

i=1

Theorem 12. For cases 3 through 5, Dy = 2(n?).

Proof. Referring to Fig. 10, for case 3, Theorems 10 and 11
imply that Dy is at least

For case 4, the implication is that Dy is at least

For case 5, Dy is at least

(WP = IND |, (ISP ~1SD)
2 + 2

Since one of W and £ is at least % while the other is at
most g and similarly for V" and S, the theorem follows. 0O

5.2 Number of module movements

The following theorem is a result of Chirikjian and Pamecha

[8]:

Theorem 13. Any algorithm to reconfigure a metamorphic
system under the system assumptions given must cause at least
Do module movements.

For a goal-stopping algorithm to reconfigure a collinear
chain (case 0), we show that the lower bound is larger than Dy
from Theorem 10.

Theorem 14. Any goal-stopping algorithm to reconfigure a
metamorphic system under the system assumptions given must
cause at least n?> — 1 module movements in case 0.

Proof. Note that the module initially in position n never
moves, since it starts in a goal cell and the algorithm is goal-
stopping. Thus, each of the remaining n — 1 modules must
make an additional move out of the main column to go around
that module. Adding n — 1 to the n2 — n bound from Theorem
10 produces a lower bound of n? — 1. O

The lower bound from Theorem 14 matches the number
of moves taken by our case 0 algorithm (cf. Theorem 2), and
therefore this bound is tight for goal-stopping algorithms.

For case 1 reconfiguration, the number of moves used by
the move-conserving algorithm is n? — n (cf. Theorem 5).
This matches the lower bound in Theorem 10, and therefore
the lower bound for case 1 is tight.
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Table 2. Upper and lower bounds on number of module moves for
chain-to-chain reconfiguration algorithms. All algorithms are goal-

stopping

Reconfiguration
Algorithm Lower Bound Upper Bound
Case 0 if goal-stopping n?—1

n?—1

if not goal-stopping

n?—n

Case 1 n2—n n2—n
2

Case 2 (n”—n) n? —3n+4
Case 3 e(n?) e(n?)
Case 4 o(n?) 6(n?)
Case 5 o(n?) e(n?)

Recall the number of moves for the move-conserving al-
gorithm for case 2 is n? — 3n + 4 (cf. Theorem 7). Comparing
this to the ”Z)T_” bound from Theorem 11, we see that this
bound is asymptotically tight.

For cases 3 through 5, the number of moves taken by mod-
ules executing each of our algorithms is ©(n?) (cf. Theorem
8). From Theorem 12, we can see that this bound is asymptot-
ically tight.

5.2.1 Summary of bounds on number of module movements

Table 2 shows the upper and lower bounds on the number of
module moves using Dy for each case from Sect. 5.1.

5.3 Number of rounds

We now show lower bounds on the number of rounds required
for reconfiguration.

Theorem 15. Any algorithm to reconfigure a metamorphic
system in case 0 under the system assumptions given must

take at least 2 rounds.
Lg"J

Proof. Clearly, at the end of the reconfiguration, the lattice
distance between each module’s current and final position is
zero. Note that, in each round, each module can decrease its
lattice distance to its final position by at most one.

Claim. The maximum number of processors that can decrease
their lattice distance to their final position in one round in case

0 under the system assumptions given is | J |.

Proof of claim: The maximum number of modules that can
move in one round is L%nj . To see why, consider that a single
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Numbers indicate net change
in lattice distance for group 0 0

of 4 modules.

Fig. 18. Possible moves of three modules over one substrate (S)

substrate module S has 6 sides and at most 6 neighbors. The
constraints on module movement require each moving module
to move into an unoccupied cell. Therefore, 3 out of every 6
sides surrounding .S must be unoccupied in order for 3 modules
to move over S. We argue below that in case 0, at most two
out of every four modules can decrease their lattice distance
to their final position during a single round.

Figure 18 shows an exhaustive listing of all possible moves
of three modules over one substrate, along with the net change
in lattice distance (assuming [ and G are aligned as in case 0)
below each figure. In this figure, moving modules are shaded
and the unshaded cell marked S is occupied by a non-moving
substrate module. To see that this listing is exhaustive, con-
sider the 6 sides of a module (where the sides are numbered
consistently) as a binary string, where if a side is connected
to a neighbor, it has a 1 in that binary digit and a 0 otherwise.
There are 20 possible combinations of three 0’s and three 1’s
in this list of binary strings. However, all three 1’s (or 0’s)
cannot be contiguous, since this would correspond to the case
where a module moves into a cell that was occupied during the
previous round. This restriction excludes 6 of these 20 com-
binations. Of the 14 possible combinations remaining, 2 can
be represented twice (with modules rotating in opposite di-
rections), resulting in the 16 configurations shown. Since the
largest net decrease for any group of modules moving over
one stationary module is 2, the claim follows. O

By Theorem 13, at least Dy moves are needed to recon-
ﬁ%ure. Thus the number of rounds needed in case O is at least
0

[In]" 0

Theorem 16. Any algorithm to reconfigure a metamorphic
system in cases 1 through 5 under the system assumptions
given must take at least L?—T"” rounds.

4

Proof. Because at most L%n] modules can move in one round
due to assumptions on module movement, at most L%nj mod-
ules can decrease their lattice distance to their final position
during that round in cases 1 through 5. O

5.3.1 Algorithms that do not maintain
the always-connected property

For the collinear (case 0) reconfiguration, we can obtain an
upper bound that is closer to the lower bound on the number
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Numbers indicate
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Fig. 19a-h. Snapshots during execution of collinear reconfiguration
algorithm when 7 is even and algorithm does not obey goal-stopping
and always-connected properties. Time is progressing from part (a)
to (h)

of rounds if we do not require that the algorithm maintains the
always-connected property. Here is an algorithm that does not
maintain the always-connected property when n is even:

1. Inrounds 1 and 2, modules 1, 5, 9, ... rotate CCW and
modules 3, 7, 11, ... rotate CW, with module 1 using
module 2 for a substrate, module 3 using module 4 for a
substrate, and so on.

2. Inround 3, modules 2, 6, 10, . . . rotate CW using modules
1,5,9, ... as substrates, and modules 4, 8, 12, ... rotate
CCW using modules 3,7, 11, ... as substrates.

3. Inround4, modules 1, 5,9, ... rotate CCW using modules
2,6, 10, ... as substrates, and modules 3, 7, 11, ... rotate
CW using modules 4, 8, 12, ... as substrates.

4. Repeat step 2 in odd-numbered rounds and step 3 in even-
numbered rounds until modules with even position num-
bers are in goal positions n — 2 spaces south of their orig-
inal positions.

5. In the last two rounds, modules 1, 5, 9, ... rotate CCW
and modules 3, 7, 11, ... rotate CW into goal positions.

Figure 19 depicts an execution of the above reconfigura-
tion algorithm for case 0 when the algorithm is not required to
be goal-stopping or always-connected and when n is even. Part
(a) is a snapshot of the initial configuration and parts (b)—(h)
are snapshots of the first 7 rounds of the execution.

When n is odd, we cannot break the modules evenly into
moving pairs, as we did for the case when n is even. So mod-
ules 1 to 3 move to their goal positions in a connected group
of three modules.

1. Modules 1 through 3 run the case 0 goal-stopping algo-
rithm, beginning with module 1 rotating in the CW direc-
tion.

187

g & a,

(b) © (d

Rec

(€] (@

oD -
coo: & G
O

—~
4
~

Unoccupied goal cell
(O Occupied cell
{O Occupied goal cell

© &

Numbers indicate
module positions.

) (k) 0]
Fig. 20a—k. Snapshots during execution of collinear reconfiguration
algorithm when n is odd and algorithm does not obey goal-stopping
or always-connected properties. Time is progressing from part (a) to

()

N

In rounds 1 and 2, modules 4, 8, 12, . . . rotate CCW using
modules 5, 9, 13, ... as substrates and modules 6, 10, 14,
... rotate CW using modules 7, 11, 15, ... as substrates.
In round 3, modules 5, 9, 13, . . . rotate CW using modules
4,8, 11, ... as substrates, and modules 7, 9, 13, ... rotate
CCW using modules 6, 8, 12, ... as substrates.

. Inround 4, modules 4, 8, 12, . . . rotate CW using modules
5,9, 13, ... as substrates and modules 6, 10, 14, ... rotate
CCW using modules 7, 11, 15, . .. as substrates.

5. Repeat step 3 in odd-numbered rounds and step 4 in even-
numbered rounds until modules 5, 7, 9, . . . are in the goal
cell n — 2 spaces south of their initial positions, modules
4,8, 12, ... are in the cell NW of the goal cell n spaces
south of their original position, and modules 6, 10, 14, . ..
are in the cell NE of the goal cell n spaces south of their
original position.

6. In the last round, modules 4, 8, 12, ... rotate CCW and

modules 6, 10, 14, ... rotate CW into goal positions.

W

~

Figure 20 depicts an execution of the above reconfigura-
tion algorithm for case O when the algorithm is not required to
be always-connected and when n is odd. Part (a) is a snapshot
of the initial configuration and parts (b)—(k) are snapshots of
the first 10 rounds of the execution.

When n is even, two rounds are required for modules in odd
positions to move into place as substrates for even modules
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Table 3. Upper and lower bounds on number of rounds for chain-to-
chain reconfigurations

Reconfiguration
Algorithm Lower Bound Upper Bound
Case 0 2(n —1) if always-connected
3(n—1)
if not always-connected
2n —1 n even
2n n odd
Case 1 2(n—1) 3(n—1)
Case 2 %(n -1 4n—5 n even
4n — 3 n odd
Case 3 2(n) O(n)
Case 4 2(n) O(n)
Case 5 2(n) O(n)

in the outer columns on the east and west sides of the goal
column. Modules in even positions move n — 2 spaces at a rate
of 1 space every 2 rounds after the first move, beginning in
round 3 and arriving in their goal positions in round 2n—3. Two
additional rounds are required for modules in odd positions
to arrive in their goal positions, so the running time for the
algorithm is 2n — 1. This comes within one round of matching
the lower bound given in Theorem 15.

When n is odd, two rounds are required to get modules
in even positions > 4 into position as substrates for modules
in odd positions > 4 in the outer columns. After this, even
modules > 4 move n — 2 spaces at a rate of 1 space every 2
rounds. One final move puts even modules in even positions
> 4 into their goal positions. Since modules in odd positions
> 4 take less time to arrive in their goal positions, this gives us
2+4+2(n—2)+1 = 2n — 1 rounds for all modules in positions
> 4 to reach goal positions. Module 1 takes 4 rounds to move
to position 4. After this, modules 1 through 3 advance by one
module in the central column every 2 rounds for n — 2 more
rounds. This gives us 4+2(n—2) = 2n rounds for the running
time in this case.

5.3.2 Summary of bounds on number of rounds

Table 3 contains the upper and lower bounds on the number
of rounds using Dy for each case of the chain-to-chain recon-
figuration.

While the number of rounds used by our algorithms do not
match exactly the lower bounds presented in Table 3, these
bounds are asymptotically tight in all cases. We conjecture
that the upper bounds for algorithms that do not maintain the
always-connected property may more closely match the lower
bounds in cases 1 through 5, just as they did in case O.
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6 Conclusions and future work

The algorithms presented in this paper rely on total knowledge
of the goal configuration. Additionally, each module precom-
putes all aspects of its movement once it has sufficient in-
formation to reconstruct the entire initial configuration. We
believe that a more flexible approach will be helpful in de-
signing reconfiguration algorithms for more irregular config-
urations, asynchronous systems, and those with unknown ob-
stacles. Part of such a flexible approach will include the ability
for modules to detect and resolve collisions and deadlock situ-
ations when they occur, rather than precomputing trajectories
that avoid them. We have some initial ideas for ways to deal
with collision and deadlock on the fly, which we are currently
testing and refining.

The reconfiguration algorithms described in this paper are
simplistic, applying only to a narrow range of reconfiguration
options. On the other hand, the algorithms are distributed, re-
quiring no communication between modules. The algorithms
were shown to be optimal or asymptotically optimal in terms
of number of movements and asymptotically optimal in the
reconfiguration time used. We showed that the collinear algo-
rithm that does not maintain the always-connected property is
optimal in the number of rounds used for even n and nearly
optimal for odd n. We conjecture that algorithms better match-
ing the lower bounds can be found for cases 1 through 5 if the
always-connected property is not maintained.

The chain-to-chain reconfiguration algorithms presented
in this paper have served as building blocks for the devel-
opment of reconfiguration algorithms for more arbitrary goal
configurations. In our follow-up work to the chain-to-chain re-
configurations, we have developed algorithms to accomplish
the distributed reconfiguration of robot chains into simple “ad-
missible” goal configurations [35,36]. Our latest work focuses
on developing algorithms to perform the reconfiguration from
chains to “admissible” configurations efficiently [34].

The goal of our future work is to develop more complex
distributed reconfiguration strategies from building blocks like
the ones presented in this paper. During this development pro-
cess, we hope to further refine our system model by discover-
ing which assumptions are sufficient and necessary to recon-
figure such a system.

Acknowledgements. We thank the anonymous reviewers of an earlier
version of this paper for helpful comments.
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