
ar
X

iv
:2

11
0.

10
34

9v
2

 [
cs

.L
G

]
 2

 N
ov

 2
02

1
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. X, XXX 2022 1

Distributed Reinforcement Learning for

Privacy-Preserving Dynamic Edge Caching

Shengheng Liu, Member, IEEE, Chong Zheng, Student Member, IEEE,

Yongming Huang, Senior Member, IEEE, and Tony Q. S. Quek, Fellow, IEEE

Abstract—Mobile edge computing (MEC) is a prominent

computing paradigm which expands the application fields

of wireless communication. Due to the limitation of the

capacities of user equipments and MEC servers, edge

caching (EC) optimization is crucial to the effective uti-

lization of the caching resources in MEC-enabled wireless

networks. However, the dynamics and complexities of

content popularities over space and time as well as the

privacy preservation of users pose significant challenges

to EC optimization. In this paper, a privacy-preserving

distributed deep deterministic policy gradient (P2D3PG)

algorithm is proposed to maximize the cache hit rates of

devices in the MEC networks. Specifically, we consider the

fact that content popularities are dynamic, complicated

and unobservable, and formulate the maximization of

cache hit rates on devices as distributed problems under

the constraints of privacy preservation. In particular,

we convert the distributed optimizations into distributed

model-free Markov decision process problems and then

introduce a privacy-preserving federated learning method

for popularity prediction. Subsequently, a P2D3PG al-

gorithm is developed based on distributed reinforcement

learning to solve the distributed problems. Simulation re-

sults demonstrate the superiority of the proposed approach

in improving EC hit rate over the baseline methods while

preserving user privacy.

Index Terms—Edge caching, mobile edge computing,

privacy preservation, distributed reinforcement learning,

federated learning.

Manuscript received February 21, 2021; revised November 2, 2021;

accepted XXX XX, XXXX. Date of publication XXX XX, XXXX;

date of current version XXX XX, XXXX. This work was supported

in part by the National Natural Science Foundation of China under

Grant Nos. 62001103 and the National Key R&D Program of

China under Grant No. 2020YFB1806600. Part of this work has

been accepted for presentation at the IEEE Global Communications

Conference (GLOBECOM): Machine Learning for Communications

Symposium, Madrid, Spain, December 2021 [1]. (Corresponding

author: Y. Huang.)

S. Liu, C. Zheng, and Y. Huang are with the School of Information

Science and Engineering, Southeast University, Nanjing 210096,

China, and also with the Purple Mountain Laboratories, Nanjing

211111, China (e-mail: {s.liu; czheng; huangym}@seu.edu.cn).

T. Q. S. Quek is with the Information System Technology and

Design Pillar, Singapore University of Technology and Design,

Singapore 487372 (e-mail: tonyquek@sutd.edu.sg).

NOMENCLATURE

For ease of reading, at the top of next page, a

nomenclature of notations that will be later used

within the body of this paper is given.

I. INTRODUCTION

W ITH the rapid proliferation of advanced

wireless applications such as virtual reality

and Internet of vehicles (IoV), the demand of delay-

sensitive and computation-intensive data services

in mobile networks has been soaring at an un-

precedented pace [2]–[4]. Along with the advent

of beyond fifth-generation (B5G) communications,

the increasing speed of this demand will achieve a

further leap and pose significant challenges for the

computing and caching capabilities of wireless com-

munication systems. A promising network paradigm

to tackle this challenge is mobile edge computing

(MEC) [5], [6]. By equipping the processing servers

with the edge nodes (ENs), i.e., WiFi access point or

micro base station, MEC framework provides cloud-

computing/caching capabilities within the radio ac-

cess network in close proximity to terminal devices,

thereby greatly reducing the service latency as well

as mitigating the surging cache and computation

burden of the data centers [7]–[9]. Furthermore,

edge caching (EC) as one of the key techniques in

MEC networks can sufficiently exploit the caching

resources in edge networks to promote caching

efficiency of the ENs and user equipments (UEs)

[10] and further reduce the latency.

Recently, the explorations of optimal caching

placement policies of EC from the perspective of the

relationships among the contents, the ENs and the

cloud center have been investigated in many works,

i.e., [11]–[13]. In [11], the authors consider the

analysis and optimization of EC and multicasting

in a large-scale MEC-enabled wireless network. On

the basis of file combinations, an iterative numerical

http://arxiv.org/abs/2110.10349v2

2 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. X, XXX 2022

t Index of time slot.

I = {1, 2, · · · , I} Set of UE labels.

F = {F1, F2, · · · , FN} Set of all contents.

M0, Mi Storage capacities of the MEC server and UE-i, respectively.

C0(t), Ci(t) Content sets respectively cached in the MEC server and UE-i at time t.

F i(t) Content request generated by UE-i at time t.

λi (t) Content request’s arrival rate associated with UE-i at time t.

P
G(t) = [PG

n (t)]Nn=1, Pi
(
αi (t) , t

)
=

{
P i
n

(
αi (t) , t

)}N

n=1
Content popularities of the MEC server and UE-i at time t, respectively.

αi (t) Distribution parameter of UE-i’s popularity at time t.

Gi = {αi
gi
|gi = 1, 2, · · · , Gi} Parameters set that αi (t) evolves over time.

R
G(t) =

{
F i(t)

}I

i=1
Request information received by the MEC server at time t.

Cu
0(t), C

u
i (t) Sets of requested but not cached contents at MEC server and UE-i, respectively.

H0 (t), Hi (t) Realtime cache hit rates at MEC server and UE-i sides, respectively.

H
savg

i (t) Sliding average of Hi (t) over a period of time Th.

a0 (t)=
(
a
+
0 (t),a−

0 (t)
)
, ai (t)=

(
a+
i (t),a−

i (t)
)

Dynamic caching actions of the MEC server and UE-i at time t, respectively.

A0, Ai Collections of a0 (t) and ai (t), respectively, in each time slot t.

S0 = {s0 (t) | t = 0, 1, · · · }, S̃0 = {s̃0 (t) | t = 0, 1, · · · } State space and its renewed version at the MEC server side.

Si = {si (t) | t = 0, 1, · · · }, S̃i = {s̃i (t) | t = 0, 1, · · · } State space and its renewed version at the local UE-i side.

r0 (t), ri (t) Cumulative reward starting from time t at global and UE-i sides, respectively.

R
i(t) = [F i(t−H), · · · , F i(t)] Extractor of UE-i’s historical request information.

ΘG, Θi Parameters sets of global and local popularity prediction models.

ΘA, Θ
A

Trainable parameter sets of the online and target actor networks.

ΘC, Θ
C

Trainable parameter sets of the online and target critic networks.

π0, πi Dynamic caching policies of the MEC server and UE-i.

V π0 (·), V πi (·) Value function under policies π0 and πi, respectively.

πΘ
A

(·), Q
(
·|ΘC

)
Parameterized online actor and target networks.

n0 (t) Gaussian noise vector at time t.

Ω Replay buff for training at the MEC server.

L
(
ΘC

)
Training loss function of the online critic network.

Jβ (π) Performance objective function for the current policy evaluation.

χ Discount factor in cumulative reward.

Ψ Total episodes of training.

ϕ Step interval between online/target networks in parameter clone.

ν Soft-update coefficient.

algorithm is proposed in [11] to maximize the

successful transmission probability and obtain the

local optimal caching and multicasting design. By

leveraging social links between clients and ENs,

cooperative cache placement schemes are developed

to reduce client bandwidth overheads in [12]. Fur-

thermore, the cooperation between ENs and cloud

center is also studied in Li et al. [13]. The authors

in [13] proposed a capacity-aware EC framework

and formulated the average-download-time (ADT)

minimization problem as a multi-class processor

queuing process by allowing cooperation between

ENs and cloud center. However, the mentioned

works assumed that the content popularity is con-

stant during the service and is known a priori, which

is impractical. Generally, content popularity is time-

invariant and unavailable in advance regardless of

the caching policy used [14].

To consider time-varying content popularities, the

complicated, subjective and dynamic preferences of

users pose significant challenges to the effective

design and optimization of the EC policies. To this

end, dynamic caching replacement scheme which

continuously updates the cache under certain re-

placement policies during the services is investi-

gated to address these challenges [15], [16]. The

authors in [15] focus on the scenario where the

set of popular content is time-varying, hence they

investigate the online replenishment of the ENs

caches along with the delivery of the requested

files. To minimize the long-term normalized de-

livery time, online EC and delivery schemes as

well as the reactive and proactive online caching

schemes are proposed [15]. Liu et al. [16] leverages

the estimation of popularity to improve the dy-

namic caching performance. Specifically, an online

Bayesian clustering caching algorithm is introduced

for the cache provider to autonomously learn the

users’ interactive cache hit data in a collaborative

way while maintaining sustainable scalability. Nev-

ertheless, the popularity of each cluster has to be

a priori given in [16], which is still challenging in

LIU et al.: DISTRIBUTED REINFORCEMENT LEARNING FOR PRIVACY-PRESERVING DYNAMIC EDGE CACHING 3

practice.
On the other hand, privacy preservation in

privacy-sensitive applications tightens the interac-

tions among UES and servers in MEC systems to

enhance user and data security. To ensure a secure

EC in vehicle-to-vehicle based MEC network, Dai

et al. [17] propose a blockchain empowered dis-

tributed content caching framework where the con-

tent caching is performed in vehicles and the base

stations (BSs) do not execute the content caching

but just maintain permissioned blockchain to ensure

an secure content caching in vehicles. However,

the proposed blockchain-based EC scheme in [17]

sacrifices the cache capabilities of the BSs, which

are far more than that of vehicles. Moreover, the

time-varying characteristic of the content popularity

is not considered in [17]. In [18], the authors explore

the privacy preservation in EC from the perspective

of game theory, and propose a game theoretical

secure caching scheme to guarantee the integrity

of cached contents while preserving the privacy

of users. It can be observed that the EC problem

considering in [18] is still a static caching problem

where the cached content is locally encrypted on

UEs to prevent leakage. The MEC server just cache

the corresponding cryptograph for restoring original

content, which leads to the same waste of cache

resources as the scheme proposed in [17]. Recently,

machine learning (ML) has shown potential use-

fulness in privacy-preserving MEC systems [18],

[19]. In [20], the authors propose a mobility-aware

proactive caching scheme based on FL to dynam-

ically update cached contents in the MEC servers

according to the mobility and position information

of vehicles. However, the caching scheme proposed

in [20] centrally caches contents in the MEC servers

and ignores the abundant cache resources of the

terminal devices.
In this paper, we present a privacy-preserving

distributed deep deterministic policy gradient

(P2D3PG) algorithm to solve the distributed cache

hit rate maximization problems under the consid-

eration of time-varying and unobservable content

popularities as well as the constraints of user pri-

vacy preservation. Specifically, our contributions are

summarized as follows:

• We formulate a distributed optimization prob-

lem to maximize the cache hit rate of all the

cache entities in the MEC-enabled system and

design a dynamic caching replacement mecha-

nism to enhance the personalized utilization of

the cache resources in the system.

• With the constraints of privacy preservation

and dynamic content popularities, we convert

the distributed optimization problem into a

distributed model-free Markov decision pro-

cess (MDP) problem and further introduces a

privacy-preserving FL method to predict the

distributed popularities.

• A P2D3PG algorithm is developed to maximize

the EC hit rate of devices in the system in a dis-

tributed way without any privacy leakage. The

P2D3PG algorithm addresses the challenges

in extending the centralized deep deterministic

policy gradient method to a distributed manner.

The performance advantages in terms of the

cache hit rate are also presented in the numer-

ical results.

The remainder of this paper is organized as

follows. The system model is presented in Section

II. Then, Section III introduces the problem for-

mulation and analysis. In Section IV, the P2D3PG

algorithm is presented with details. In Section V,

simulation results are discussed. Finally, conclu-

sions are drawn in Section VI.

II. SYSTEM MODEL

In the following, we investigate the optimizations

of EC policy in the privacy-preserving MEC system.

Fig. 1 illustrates the wireless service scenario in a

privacy-preserving MEC network with I privacy-

sensitive UEs and one privacy-preserving EN, where

the MEC server and all the UEs have certain

computing and caching capabilities. For UE-i at

time t, once a content is requested but uncached

locally, UE-i will upload request information to

access this uncached content from the MEC server.

Limited by the caching capability, the MEC server

also occasionally access to the cloud through the

backhual link for absent contents if necessary. Due

to our privacy-preserving mechanism, each privacy-

sensitive UEs will protect its database of historical

requests from snooping by outsiders. Furthermore,

the privacy-preserving EN has no permission to

retain any historical information of any UEs, and

the current requests information from UEs at time t
must be immediately deleted from the MEC server

once the contents have been scheduled.

4 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. X, XXX 2022

MEC Server

Cloud Server

Backhual Link

Privacy-preserving EN
Wireless

links Privacy-sensitive UEs

…

Fig. 1. Hierarchical architecture of the privacy-preserving MEC

system under investigation.

A. Service Process

Let F = {F1, F2, · · · , FN} denote the set of all

contents and all these contents can be accessed from

the cloud. We consider that the caching entities

in the MEC server and each UE-i with limited

storage capacities of M0 and Mi contents respec-

tively, where ∀i ∈ I = {1, 2, · · · , I} is the set of

UE labels. Without loss of generality, we assume

that Mi ≪ M0 < N . At time t, each UE-i will

generate a content request F i(t) at an arrival rate

λi (t) which is considered time-varying to be more

closely aligned with reality and 0 ≤ λi (t) ≤ 1.

Let F i(t) ∈ ∅ denote that UE-i generate no con-

tent request at time t;otherwise F i(t) ∈ F when

F i(t) /∈ ∅. When F i(t) ∈ F , the probability of

each content Fn ∈ F requested by UE-i at time

t is assumed to follow a Zipf distribution [21],

defined as P
i (αi (t) , t) = {P i

n (α
i (t) , t)}

N

n=1. The

distribution parameter αi (t) evolves dynamically

over time in this paper and is relevant to the subject

interests of UE-i. If F i(t) is uncached in UE-i,
which is represented as F i (t) /∈ Ci(t) and Ci(t)
is the contents set cached in UE-i at time t, UE-

i will upload this request information to access the

absent content from the MEC server. Subsequently,

MEC server will search for the requested contents

from UEs in its current cache state C0(t). When

F i (t) /∈ C0(t) happens, the MEC server will further

access the absent contents from the cloud. Finally,

the absent contents of UEs will be sent back from

the MEC server. Note that, the content request F i (t)
can be directly satisfied by the local UE-i when

F i (t) ∈ Ci(t), and the request information will not

be uploaded to the MEC server at that time.

B. Local and Global Popularity

We introduce the local popularity and global

popularity to model the time-varying content pop-

ularities depicted in Fig. 2. The local popularity

of each UE depends on the subjective interests of

itself, and the global popularity reflects the com-

prehensive interest across the service region of the

MEC server. With regard to the local popularity,

we model the dynamics of αi(t) using a model-free

Markov chain with |Gi| states recorded in the set

Gi = {α
i
gi
|gi = 1, 2, · · · , Gi}, where the Gi as well

as the corresponding transition probabilities of Gi
are completely unavailable due to the complexity

and diversity of subjective interests [22]. Moreover,

instead of conventional independent and identically

distributed (IID) assumption, we assume less re-

strictive condition, i.e., the behaviors of UEs are

independent but not identically distributed. Specif-

ically in our model, the state set Gi of each UE-i
as well as the potential state transition probabilities

are different and independent. The global popularity

at the MEC server side at time t can be denoted as

P
G(t) = [PG

n (t)]Nn=1, where PG
n (t) is the probability

that content n is requested within the entire service

area at time t.

IE-IIE-i

User Side

Local

Popularities 1

1
a

1

1

g
a

1

2
a...

IE-1

...

1

i
a

2

i
a

i

i

g
a ...

1

I
a

2

I
a

I

I

g
a

G

1
P

G

2
P

G

3
P

G

4
P

MEC Server Side

Global Popularity

Content

requests

Fig. 2. Local and global popularity.

Remark 1: Note that if data are processed in an

insufficiently random manner, independence can be

easily violated due to spatiotemporal correlations.

On the other hand, non-identical user behaviors

alone can be categorized into many different types,

including feature/label distribution skew, concept

drift, quantity skew, etc. Additionally, UE and

data distributions can fluctuate over time, which

compounds the non-IIDness. Learning from highly

skewed non-IID data requires characterizing and/or

mitigating each of the above effects and even a mix-

ture of them. Although several solutions have been

proposed such as data-sharing and model traveling,

dealing with real-world non-IID user behaviors still

remains a open problem [30].

C. Dynamic Caching Mechanism

Assume that the MEC server received the request

information R
G(t) = {F i(t)}

I

i=1 from UEs at time

LIU et al.: DISTRIBUTED REINFORCEMENT LEARNING FOR PRIVACY-PRESERVING DYNAMIC EDGE CACHING 5

t, which is the stack of all the absent files at the user

side. Then, the MEC server will check its current

cache C0(t) and access to the cloud to get the absent

files Cu
0(t) = {F i (t) | i = 1, · · · I} − C0(t). C

u
0(t)

will be forwarded to the UEs from the cloud via

the server. Therefore, Cu
0(t) are the new input files

for the MEC server at every time t. Additionally,

Cu
0(t) could be an empty set when the cache hit rate

of MEC server at time t reaches 100% . It is worthy

to note that R
G(t) will be erased from the server

before the next time slot by the privacy-preserving

mechanism. In addition, to improve the utilization

of caching resource, we adopt the dynamic caching

policy presented in [23]. Let a−
0 (t) =

[
a−c0 (t)

]M0

c0=1

decide which files in C0(t) should be evicted from

MEC server at time t, where a−c0 (t) = 1 indi-

cates that file F 0
c0
(t) ∈ C0(t) should be deleted;

otherwise if a−c0 (t) = 0, it should continue to

be retained. Moreover, let a
+
0 (t) =

[
a+cu

0
(t)

]|Cu
0
(t)|

cu
0
=1

denote which files in Cu
0(t) should be preserved in

MEC cache at time t, where a+cu
0
(t) = 1 means

that file F 0
cu
0
(t) ∈ Cu

0(t) should be stored; otherwise

if a+cu
0
(t) = 0, it should be outright discarded.

To maximize the utilization of cache resource, we

assume that |C0(t)| = M0. As such, limited by the

cache capacity of the MEC server, we have

∑|Cu
0
(t)|

cu
0
=1

a+cu
0
(t) =

∑M0

c0=1
a−c0 (t) . (1)

It should be emphasized that the dimension of a+
0 (t)

is equal to |Cu
0(t)| which is a variable with respect

to time t. Under this dynamic caching mechanism,

the cache state of the MEC server is time-varying

and the update operation only happens when new

files arrive.

Similarly, this dynamic caching mechanism will

be executed in each UE. We define the cache

deletion of UE-i as a
−
i (t) =

[
a
−
ci
(t)

]Mi

ci=1
, where

a
−
ci
(t) = 1 indicates that file F i

ci
(t) ∈ Ci (t) should

de discarded from UE-i at time t; otherwise if

a
−
ci
(t) = 0 , it should be retained in memory.

Furthermore, we denote the new file entered into

UE-i at time t with Cu
i (t) = {F i (t)} − Ci(t).

Obviously, 0 ≤ |Cu
i (t)| ≤ 1. We can also obtain

the following cache capability constraint of UE-i

∑|Cu
i (t)|

cu
i=1

a+cu
i
(t) =

∑Mi

ci=1
a−ci (t) , (2)

where a+cu
i
(t) decides whether file F i

cu
i
(t) ∈ Cu

i (t)
should be preserved in UE-i at time t or not.

F i
cu
i
(t) should be stored when a+cu

i
(t) = 1; otherwise

a+cu
i
(t) = 0 means file F i

cu
i
(t) should be discarded

or |Cu
i (t)| = 0 happens. It is worth to mention

that the cache preservation indicator of UE-i is a

scalar resulting from 0 ≤ |Cu
i (t)| ≤ 1, denoted as

a+i (t) = a+cu
i
(t).

D. Realtime Cache Hit Rate

At each time t, the MEC server will received

a certain amount of requests from the UEs within

the service coverage, denoted as NR
0 (t) =

∣∣RG (t)
∣∣.

Considering the existence of λi (t) is a variable with

t and 0 ≤ λi (t) ≤ 1, we have NR
0 (t) ≤ I . Then

we define the global realtime cache hit rate at the

MEC server side as

H0 (t) = 1−
|Cu

0(t)|

NR
0 (t)

. (3)

For UE-i, we define the realtime cache hit rate as

Hi (t) = 1− |Cu
i (t)| . (4)

Considering that one UE only requests at most one

content in a single time slot, Hi (t) can only be equal

to 0 or 1. Here, the sliding average of Hi (t) over a

period of time Th is given by

H savg
i (t) =

1

Th

∑Th−1

th=0
Hi (t− th) . (5)

III. PROBLEM FORMULATION AND

ANALYSIS

A. Problem Formulation

To effectively leverage the limited caching re-

sources in the MEC system, we maximize the

distributed cache hit rate of all the devices by

optimizing the dynamic caching mechanism within

the constraint of privacy preservation. Furthermore,

we maximize the long-term cache hit rate over a

continuous period of time. Therefore, the underlying

optimization problem at the MEC side is formulated

as follows:

P1 : max
A0

lim
Γ→∞

∑Γ

τ=0
E[χτ

H0 (t + τ)], (6a)

s.t. (1), (6b)

|C0(t)| ≤ M0, (6c)

a−c0 (t)∈{0, 1}, ∀c0∈M0, (6d)

a+cu
0
(t)∈{0, 1}, ∀cu

0∈M
u
0 (t) , (6e)

6 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. X, XXX 2022

where A0=
{
a0 (t)=

(
a
+
0 (t), a−

0 (t)
)
| t=0, 1, 2,· · ·

}

represents the collection of dynamic caching ac-

tions at the MEC server side in each time slot t.
χ ∈ [0, 1] is the discount factor, and the expectation

is taken with respect to the measure included by

the decision variables as well as the system state.

Besides, Mu
0 (t) = {1, 2, · · · |Cu

0(t)|} and M0 =
{1, 2, · · · ,M0}. The constraint in (6c) reflects the

limitation of caching capability of the MEC server,

and (6b) ensures a balance in the size of the cached

files at the MEC server after the caching replace-

ment to keep the cache full but not overflowed.

At the local user side, the optimization problem of

arbitrary UE-i can be formulated as

P2 : max
Ai

lim
Γ→∞

∑Γ

τ=0
E[χτ

H
savg
i

(t + τ)], (7a)

s.t. (2), (7b)

|Ci(t)| ≤Mi, (7c)

a−ci (t)∈{0, 1}, ∀ci∈Mi, (7d)

a+cu
i
(t)∈{0, 1}, ∀cu

i ∈M
u
i (t) , (7e)

where Ai =
{
ai (t)=

(
a+i (t), a−

i (t)
)
| t=0, 1, 2,· · ·

}

is the collection of dynamic caching actions on

UE-i in each time slot t. Besides, Mu
i (t) =

{1, 2, · · · |Cu
i (t)|} and Mi = {1, 2, · · · ,Mi}.

The following facts and technical challenges of

problems (6) and (7) should be noted:

• The objective functions of the problems are

both accumulated over time rather than instan-

taneous functions.

• The solutions of problem (6) and (7) are both

dynamic strategy over time rather than a tran-

sient one. Moreover, the dimension of a+
0 (t) is

time-varying.

• The cache states and actions of the MEC server

and the UEs conform to contextual chain prop-

erty over time.

• The distributed problems formulated above are

interactional but the privacy-preserving mecha-

nism prevents the information exchange among

the problems.

B. Problem Recast

To overcome the first two technical challenges as

well as considering the fact of the chain property

mentioned in the third, we convert the underlying

optimization problem into a Markov decision pro-

cess (MDP) which consists of four components, i.e,

state space, action space, state transition probabil-

ities, and reward. Specifically, the MDP descrip-

tions of the problems (6) and (7) are denoted as

〈S0,A0,P0, R0〉 and 〈Si,Ai,Pi, Ri〉 respectively.

1) States: Considering the time variable

t, S0 and Si actually can be denoted

as S0 = {s0 (t) | t = 0, 1, 2, · · · } and

Si = {si (t) | t = 0, 1, 2, · · · } respectively.

According to the necessary information required

by the dynamic caching actions, we define

s0 (t) =
{
C0(t),R

G (t)
}

and si (t) = {Ci(t),R
i (t)},

where R
i(t) = [F i(t−H), · · · , F i(t)] is a extractor

of UE-i to extract its historical requests of

continuous H times before time t. H is the

observation window length of the extractor.

2) Actions: From the distributed problems for-

mulated above, we already have A0 and Ai, ∀i ∈ I.

3) State Transition: State transition probability

describes that the system transits from one state

to the next state under current actions. For prob-

lems (6) and (7), the state transition probability

can be respectively denoted as P
a0(t)
s0(t)→s0(t+1) and

P
ai(t)
si(t)→si(t+1). However in our problems, Ri (t) and

R
0 (t) depend on the local and global popularity

described in Section II-B, which results in the

transition probability unavailable.

4) Reward: The reward function assigns each

perceived state to a value associated with an explicit

goal. For an MDP, when an action is taken under

a state, the state will transfer to next state and

the environment will return an instantaneous reward

as a feedback immediately, which is respectively

derived as the cache hit rate H0 (t) and H savg
i (t) in

our problems. On this basis, the cumulative reward

starting from time t can be respectively given by

r0 (t) =
∑Γ

τ=0
χτH0 (t + τ) , (8)

ri (t) =
∑Γ

τ=0
χτH savg

i (t+ τ) , (9)

Specifically in our problems, the critical compo-

nent S0 of a MDP is unobservable under the privacy-

preserving mechanism. The reason is that, R
G (t)

as a component of s0 (t) is the privacy of the UEs

and must be immediately erased from the MEC

server in current time slot. Thus, the MEC server

cannot observe s0 (t) at any time t, which leads to

S0 unavailable. Therefore, the technical bottlenecks

from the fourth challenge still remain, especially for

the MDP problem converted from problem (6).

LIU et al.: DISTRIBUTED REINFORCEMENT LEARNING FOR PRIVACY-PRESERVING DYNAMIC EDGE CACHING 7

C. Privacy-Preserving Distributed Popularity Pre-

diction

To allow privacy preservation as well as help all

devices cache contents more effectively, we herein

introduce the local and global popularity into the

system states. In detail, we replace R
i (t) in si (t)

and R
G (t) in s0 (t) with the future contents popu-

larity P
i(αi(t+1), t+1) and P

G(t+1) respectively,

renewed as

s̃i (t) =
{
Ci(t),P

i
(
αi (t+ 1) , t+ 1

)}
, (10)

s̃0 (t) =
{
C0(t),P

G (t + 1)
}
. (11)

The state space can be accordingly rewritten

as S̃0 = {s̃0 (t) | t = 0, 1, 2, · · · } and S̃i =
{s̃i (t) | t = 0, 1, 2, · · · }

As clarified earlier, the variation of

P
i (αi (t+ 1) , t+ 1) and P

G (t + 1) depend

on the interests of UEs which is subjective

and complicated. Thus, P
i (αi (t+ 1) , t+ 1)

and P
G (t + 1) are unobservable especially

under the constraint of privacy preservation.

Here, we introduce a FL method to predict the

dynamic popularities while preserving user privacy.

Specifically, we deploy the prediction model with

the same architecture of neural network on each

device in the system. At the local user side, the

future popularity’s prediction of UE-i is based on

the historical requests reserved in its equipment

and the prediction can be denoted as

P̂
i(αi(t + 1), t+ 1) = fΘi

(Ri(t)), (12)

where fΘi

(·) is the local predictive model in UE-

i and Θi is the collection of trainable parameters.

P̂
i(αi(t + 1), t + 1) is the prediction of P

i(αi(t +
1), t + 1). At the MEC server side at time t, the

temporary R
G(t) can be used by the URFL method

for global prediction before the erase operation,

which can be denoted as

P̂
G(t+ 1) = fΘG

(RG(t)), (13)

where P̂
G(t) denotes the prediction of global pop-

ularity P
G(t + 1). fΘG

(·) is the global predictive

model in the MEC server. ΘG is the parameters set.

To train these prediction models under privacy

preservation, the FL framework is adopted. At the

local user side, the database formed by R
i(t) is used

for the local training of Θi and the connectivity

between UEs is not existing. At the MEC server

side, the parameters set ΘG is obtained by the

parameters aggregation based on the FL framework,

which can be denoted as

ΘG=
1

I

∑I

i=1
ωiΘ

i. (14)

where ωi is the aggregation weight and Θi is up-

loaded by the UE-i every a certain local training

step. Once a weight aggregation is complete, the

new parameters ΘG will be broadcast to all UEs

for a new round of local training until the models

converged. Because the local training is performed

alone on its local equipment and the interaction

between the local UEs and the MEC server only

involves the passing of prediction model parameters,

the user privacy, i.e., Ri(t), is thus preserved during

this training phase.

After the distributed popularity prediction, the

challenges posed by the unobservable state space

S0 has been addressed. Then, the optimal policy

π∗
0 and π∗

i for problem (6) and (7) can be respec-

tively derived as equations (15) and (16) based on

the Bellman’s equation, where V π0 (̃s0 (t+ 1)) =
r0 (t+ 1) is the value function under policy π0 at

sate s̃0 (t+ 1), and V πi (s̃i (t + 1)) = ri (t + 1) is

the value function under policy πi at sate s̃i (t+ 1).
Whereas, according to the local and global popu-

larity model in our system, it can be found that

the P
a0(t)
s̃0(t)→s̃0(t+1) and P

ai(t)
s̃i(t)→s̃i(t+1) still can not be

acquired even if we get the P̂
i(αi(t + 1), t + 1)

and P̂
G(t + 1). As such, traditional optimization

techniques such as dynamic programming cannot

effectively solve our problems, and we will pro-

pose a privacy-preserving distributed reinforcement

learning algorithm to solve this problems.

IV. P2D3PG FOR DYNAMIC EDGE

CACHING

Once P̂
G(t + 1) is predicted, certain EC pol-

icy should be subsequently determined and imple-

mented to maximize the EC hit rate of the entire

MEC system. In this work, we propose a P2D3PG

algorithm for this purpose, and the designed algo-

rithm framework is illustrated in Fig. 3.

A. MEC Server Side

First, the MEC server receives the requests in-

formation R
G (t) from UEs at the beginning of

each time slot t. Subsequently, RG (t) is fed into

8 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. X, XXX 2022

π∗
0 = argmax

a0(t)∈A0

∑
s̃0(t+1)∈S̃0

P
a0(t)
s̃0(t)→s̃0(t+1) (H0(t) + χV π0 (̃s0 (t+ 1))) , (15)

π∗
i = argmax

ai(t)∈Ai

∑
s̃i(t+1)∈S̃i

P
ai(t)
s̃i(t)→s̃i(t+1) (H

savg
i (t) + χV πi (s̃i (t + 1))) , (16)

Absent files

for UEs

Actor

A
Q

User side

UE-1 UE-2 UE-I... ...

()G tR

Deleted

Actor

A
Q

MEC Server
()

G

f Q ×

Global

predictive model Actor

A
Q

Critic

C
Q

()0
ta

Gˆ (1)t +P

0 ()tC

Actor
AQ

Local

predictive model Actor

A
Q

ˆ ((1), 1)i i t ta + +P

()
i

f Q ×

()i tC ()i ta

()i tR

UE-i

Absent files for MEC

server

Cloud

MEC Server

UE-i

Fig. 3. Framework of P2D3PG algorithm.

the global predictive model obtained by URFL to

predict the global popularity P̂
G(t+1) of next time

slot t + 1 based on equation (13). Meanwhile, the

absent files of UEs will be delivered to UEs while

the R
G (t) is immediately erased from the MEC

server in time slot t. Then combining P̂
G(t + 1)

with the current cache state of the MEC server

C0(t), the state s̃0 (t) can be obtained. Subsequently

s̃0 (t) is fed into the actor network, which is also a

neural network with several dense layers. The actor

network equals to a parameterized actor function

a0 (t) = πΘA

(s̃0 (t)) which specifies the current

policy by deterministically mapping states to a

specific action, where π represents a policy on pa-

rameters ΘA. In order for the agent to fully explore

the environment, exploration-exploitation method is

adopted. Different from the ε-greedy exploration

[24] which is effective for small or discrete action

space. In this work, we balance the exploration and

the exploitation by adding a gaussian noise vector

on the policy output, i.e

ã0 (t) = πΘA

(s̃0 (t)) + n0 (t)|n0(t)∼N (0,σ2) , (17)

where n0 (t) is the gaussian noise vector and n0 (t)
is the component following a gaussian distribution

with a mean of 0 and a variance of σ2. Then the

action ã0 (t) will be sent to the critic network which

is also a neural network containing several dense

layers together with the state s̃0 (t). Consequently,

the critic network will output the estimate of the

target-Q value Q
(
s̃0 (t+ 1) , ã0 (t + 1)|ΘC

)
which

is a step forward for estimating the Q-value defined

as (18).

Q
(
s̃0 (t) , ã0 (t)|Θ

C
)
=

Eπ0

[∑+∞

τ=0 χ
τH0 (t+ τ)

∣∣ s̃0 (t) , ã0 (t)
]
.

(18)

ΘC is the trainable parameters of the critic network.

After a further linear transformation, the output

Q
(
s̃0 (t + 1) , ã0 (t + 1)|ΘC

)
will be fed back to

the actor network while contributes to the loss

function of the actor. In addition, the cache state of

the MEC server C0(t) at time t will be updated to

the next cache state C0(t+1) following the guidance

of the action ã0 (t).
In practical training, the two networks πΘA

(·) and

Q
(
·|ΘC

)
are called online networks. Correspond-

ingly for a stabler and faster convergence, there

LIU et al.: DISTRIBUTED REINFORCEMENT LEARNING FOR PRIVACY-PRESERVING DYNAMIC EDGE CACHING 9

are two counterparts respectively called target actor

network πΘ
A

(·) and target critic network Q
(
·
∣∣∣ΘC

)

whose architectures and parameters are clone from

their online networks every a few steps.

Algorithm 1 P2D3PG for dynamic EC at the MEC

server.

1: Initialize: Initialize ΘA, ΘC and memory buff

Ω. Obtain the initial Θ
A

and Θ
C

by cloning ΘA

and ΘC.

2: For episode = 1, 2, · · · , Ψ MEC do:

3: Initialize cache state C0(0). Initialize R
G (0).

4: For t = 1, 2, · · · ,Υ do:

5: Receive R
G (t) from UEs. Then predict

P̂
G (t+ 1)

by (13) under the proposed URFL.

6: Observe the state s̃0 (t), and observe the

reward

feedback H0 (t) by (3).

7: Delete R
G (t) for privacy preservation.

8: Update C0(t) to C0(t + 1) under action

ã0 (t) by (17).

9: Store point

(s̃0 (t− 1) , ã0 (t) , H0 (t) , s̃0 (t)) in Ω.

10: Randomly sample a mini-batch of Ns

points from Ω.

11: Calculate y (tns
) by (21). Then update ΘC

by (20)

and ∇ΘCL
(
ΘC

)
. Update ΘA by (24).

12: Soft-update the target actor/critic every ϕ
steps:

{
Θ

C
← νΘC + (1− ν) Θ

C

Θ
A
← νΘA + (1− ν) Θ

A

13: End For

14: End For

During the train phase at the MEC server, we

adopt experience replay to enhance the stability of

the training. The dataset in the replay buff can be

denoted as

Ω = {(̃s0 (t), ã0 (t), H0 (t), s̃0 (t + 1))} . (19)

Specifically during the mini-batch training, Ns sam-

ples {(s̃0 (tns
), ã0 (tns

), H0 (tns
), s̃0 (tns

+ 1))} (ns ∈
{1, 2, · · · , Ns}) are randomly taken as a mini-batch

from the replay buffer Ω, where tns
is the random

sample point at time t. Then we train the actor

network and the critic network jointly. To let the

critic network Q
(
·
∣∣∣ΘC

)
approach the real Q value

function which will be further used to guide the

training of the actor, the training loss function of

the critic in the MSE sense can be defined as

L
(
ΘC

)
=

1

Ns

Ns∑

ns=1

(
y (tns

)−Q
(
s̃0 (tns

), ã0 (tns
)|ΘC

))2
,

(20)

where

y (tns
)=H0 (tns

)+χQ
(
s̃0 (tns

+1), a0 (tns
+1)|Θ

C
)
.

(21)

tns
is the random sample points over time. Thus,

we optimize ΘC by minimizing this MSE loss

and ΘC can be updated by ∇ΘCL
(
ΘC

)
. Conse-

quently, Q
(
s̃0 (tns

) , ã0 (tns
)|ΘC

)
will gradually ap-

proximate the real Q-value.

The actor is aimed at producing an optimal policy

by maximizing the Q-value, denoted as

πΘA

(s0) = arg max
a0

Q
(
s0, a0

∣∣ΘA
)
, (22)

Thus, a performance objective function for the cur-

rent policy evaluation is designed as

Jβ (π) = Es0∼ρβ

[
Q
(
s0, a0

∣∣ΘA
)]

, (23)

which estimates the expectation of Q
(
s0, a0

∣∣ΘA
)

under the state distribution s0 ∼ ρβ . Then, the actor

is updated by applying the chain rule to the expected

return from the start state distribution with respect

to the actor parameters ΘA:

∇ΘAJβ (π) =

Es0∼ρβ

[
∇a0

Q
(
s0, a0

∣∣ΘA
)∣∣

a0=πΘA(s0)
·∇ΘAπΘA

(s0)
]
.

(24)

During the practical training, y (tns
) is sent to the

actor network as current real Q-value according to

(21). Besides, a mini-batch Monte Carlo sampling

with a size of Nm is adopted to estimate the expec-

tation, which yields an unbiased estimation shown

in (25), where tnm
denotes the random sample point

at time instant t.

B. Local User Side

Furthermore, as illustrated in Fig. 3, the MEC

server then broadcasts the trained actor to the

UEs within its service coverage. For each UE-

i, the prediction of the future content popularity

10 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. X, XXX 2022

∇ΘAJβ (π) ≈
1

Nm

Nm∑

nm=1

(
∇a0

Q
(
s0(tnm

), ã0(tnm
)
∣∣ΘA

)∣∣
ã0(tnm)=πΘA(s0(tnm))+n0(tnm)

·∇ΘAπΘA

(s0(tnm
))
)
. (25)

Algorithm 2 P2D3PG for dynamic EC at the local

UEs.
1: Each UE-i ∈ I in parallel do:

2: Initialize cache state Ci(0) and extractor

R
i(0).

3: Receive the actor ΘA broadcasted from the

MEC server.

4: For t = 0, 1, · · · ,Υ do:

5: Get the historical requests by R
i(t).

6: Predict P̂i (αi (t + 1) , t+ 1) by (12)

7: Observe the state s̃i (t), and observe the

reward

feedback H savg
i (t) by (5).

8: Select action ai (t) and update Ci(t) to

Ci(t+ 1)
9: Made the new request F i(t+1)|Pi(αi(t),t).

10: End For

P̂
i(αi(t + 1), t + 1) should be firstly obtained by

feeding R
i(t) into the local predictive model shown

in Fig. 3. Then the state s̃i (t) consisting of Ci(t) and

P̂
i(αi(t+1), t+1) is fed to the actor which outputs

the action ai (t), denoted as

ai (t) = πΘA

(s̃i (t)) . (26)

Following ai (t), UE-i updates its cache state to

Ci(t+1) based on the uncached files Cu
i (t) which are

accessed from the MEC server. Finally, the request

of UE-i at time t is satisfied and a new request will

be generated subsequently. The overall process of

the proposed P2D3PG algorithm at the MEC server

and the local UEs is summarized in Algorithm

1 and Algorithm 2, respectively, where Ψ is the

total episodes, ϕ is the step interval between the

online/target networks in parameter clone, and ν is

the coefficient of the soft-update, which is normally

set to 0.001.

Based on the distributed framework of the pro-

posed P2D3PG algorithm, the computing resources

of UEs for training their actors can be saved.

Additionally, the replay buff Ω on the MEC server

does not contain any privacy information of UEs.

Remark 2: Note that while there are actor and

critic networks at the MEC server side, we only have

actor network at the user side. This arrangement is

determined by the function of the critic network in

the proposed P2D3PG algorithm. More specifically,

the critic network is used for guiding the gradient

descent of the actor network parameters during the

training phase. Since the entire training phase of the

proposed scheme is completed at the MEC server in

Algorithm 1, there is no need to deploy the critic

network at the user side.

V. NUMERICAL SIMULATIONS AND

ANALYSES

In the simulation, we set the number of total files

N = 24, and the window length of the extractor

H = 10. For all the local UEs, we assume their

cache capacity are equal, denoted as Mi = Mj ,

∀i, j ∈ I, i 6= j. In our simulation, the set Gi of

each local UE-i is randomly generated. Besides, the

transition probability matrix Pi =
[
P i
glgk

]Gi

gl,gk=0
is

also generated randomly, where P i
glgk

denotes the

transition probability from αi
gl

to αi
gk

. It should

be emphasized that the parameter set Gi and the

transition probability matrix Pi are both unknown

neither to the MEC server or UE-i itself. Adam

optimizer [25] is used to train the parameters ΘC

and ΘA with the same adaptive learning rate starting

from 10−4.

Fig. 4. Convergence and generalization of the proposed P2D3PG

methods in the dynamic edge caching.

LIU et al.: DISTRIBUTED REINFORCEMENT LEARNING FOR PRIVACY-PRESERVING DYNAMIC EDGE CACHING 11

(a) (b)

Fig. 5. Performance comparison of the proposed P2D3PG methods in terms of cache hit rate with I = 6. (a) MEC server side. (b) Local

user side of UserID 1.

Then, we evaluate the performance of the pro-

posed P2D3PG algorithm at the MEC server side

and the local user side respectively. There are five

baselines for comparison. Three popular methods

in distributed EC system including the least re-

cently used (LRU) [26] which discards the least

recently used contents, the least frequently used

(LFU) [27] which discards the least reference con-

tents in the cache, and the first input first output

(FIFO) which discards the initial contents in the

FIFO queue. These three methods realize the cache

update without privacy preservation. For LRU and

LFU, they both need to record the UEs’ request

information continually in order to count the con-

tents’ requested frequency. For FIFO, it needs to

maintain a queue of the request information which

contains UEs’ privacy. Additionally, we also set

a normalized advantage functions (NAF) method

[28] as another baseline. The NAF algorithm is

a deep reinforcement learning algorithm developed

based on the deep Q network algorithm [29] and

is applicable to the high-dimensional action control

problem. For the training of the NAF algorithm,

historical request information of UEs must to be

collected and stored in the MEC server without any

consideration of the privacy preservation. Lastly, in

the baseline of random method, the caching policy

is randomly formulated and a random action is

executed regardless of the current state.

From the perspective of convergent behavior of

the proposed P2D3PG, the training processes of

the proposed P2D3PG under different I and M0

are illustrated in Fig. 4. We can observe from Fig.

4 that the MEC server can achieve a stabilized

mean of the cache hit rate around 4000 episodes

under different number of UEs or different cache

capacity, which indicates that the agent at the MEC

server has acquired the inner knowledge within the

global region and the proposed P2D3PG algorithm

gradually converges. We also observe from Fig. 4

that, the P2D3PG algorithm can achieve basically

similar performance when the cache capacity of the

MEC server is fixed but the number of UEs within

the service coverage is changed. Besides, we can see

that the average cache hit rate of the MEC server

increases with increasing M0, since the larger cache

capacity can cache more effective contents for the

UEs.

At the MEC server side, the performance com-

parison among the proposed P2D3PG algorithm and

all the baseline methods versus the cache capacity

M0 from 6 units to 24 units are presented in Fig.

5(a). It can be seen from Fig. 5(a) that the proposed

P2D3PG algorithm outperforms all the other base-

line methods in terms of cache hit rate at the MEC

server side while ensuring privacy preservation.

When the extreme M0 = N = 24 happens, all the

considered methods can reach to 100% cache hit

rate. The reason is that the EC optimization aims at

utilizing the limited cache resources more effective.

When the MEC server can cache all the possible

contents of the service, there is no sense to optimize

the EC policy and all the requests can always be

satisfied. Furthermore, Fig. 5(a) also shows that

12 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. X, XXX 2022

P2D3PG LRU LFU NAF FIFO

Methods

0.2

0.3

0.4

0.5

0.6

0.7

C
a

c
h

e
 H

it
 R

a
te

 (
M

E
C

 S
e
r
v

e
r
 S

id
e
)

STD: 0.0138

STD: 0.0220

STD: 0.0207

STD: 0.0779
STD: 0.0165

(a)

P2D3PG FIFO LRU LFU

Methods

0.2

0.3

0.4

0.5

0.6

0.7

C
a

c
h

e
 H

it
 R

a
te

 (
L

o
c
a

l
U

se
r
 S

id
e
)

STD: 0.0324

STD: 0.0350

STD: 0.0330

STD: 0.0325

(b)

Fig. 6. Performance comparison in terms of standard deviation of the cache hit rate with I = 6, H = 10, and N = 24. (a) MEC server

side. (M0 = 9) (b) Local user side of UserID 1. (M1 = 5)

the advantage of the proposed P2D3PG method

becomes more significant as the cache capacity of

the MEC server decreases. This implies that the

proposed P2D3PG is more competitive with regard

to the cache hit rate especially when the cache

resource of the MEC server is limited. Specifically,

the cache hit rate of the proposed P2D3PG is about

60% when the cache capacity M0 = 6 is 25%
of the total contents’ size, which is nearly 14.4%
higher than the LRU and LFU methods, 46.6%
higher than the NAF and FIFO methods, and almost

73.1% higher than the random baseline methods.

Note that, the privacy preservation of the proposed

P2D3PG method is another advantage over the

baselines. The performance comparisons between

the proposed P2D3PG algorithm and all the baseline

methods versus the UE cache capacity Mi from

3 units to 11 units at the end side are presented

in Fig. 5(b). The evaluation of the local UEs is

represented by user with UserID 1. We can observe

from Fig. 5(b) that the proposed P2D3PG algorithm

still outperform all the other baseline methods in

terms of cache hit rate at the local user side while

realizes the privacy preservation.

As described earlier, in the proposed scheme, we

formulate an optimization problem to predict the

upcoming files which are going to be requested by

users. Henceforth, the cache hit rate is improved by

averaging over time. While the goal is to maximize

the average cache hit rate, it is also meaningful to

examine the standard deviation (SD) of cache hit

rate at both the MEC and the local user sides. At

the MEC server side, we test all the methods within

a period of 1024 continuous time slots with I = 6
and M0 = 9. We record all the testing results of the

cache hit rate H0 (t) to draw Fig. 6(a) and calculate

their SDs. We observe from Fig. 6(a) that, at the

MEC server side, the proposed P2D3PG algorithm

can achieve the lowest SD at 0.0138 while yielding

the highest cache hit rate compared to the baseline

methods. Regarding the local user side, we test all

the methods on UE-1 during 512 continuous time

slots with M1 = 5. Then, we also visualize the

results of H savg
i (t), which is given in Fig. 6(b).

Although at the local user side all the compared

methods obtain very close SDs, P2D3PG is still

superior as it achieves the highest cache hit rate as

well as preserves users’ privacy.

We further explore the effect of different window

length H on the cache hit rate. As H is a peculiar

parameter of P2D3PG, the curves of the baseline

methods are presented to examine if there exists a

certain set of model parameters such that the con-

ventional approaches works better or similar to the

proposed P2D3PG. We observe from Fig. 7(a) that,

with the increase of H , the cache hit rate at the MEC

server side first rises until reaching a certain point

and then gradually declines to a steady level. We

believe that this is because with an excessively long

window length, the algorithm will observe too much

redundant information from the historical requests;

while if the window is too short, the algorithm

can hardly observe sufficient information from the

historical requests. From Fig. 7(b), we can see that

LIU et al.: DISTRIBUTED REINFORCEMENT LEARNING FOR PRIVACY-PRESERVING DYNAMIC EDGE CACHING 13

2 4 6 8 10 12 14 16 18 20

Window Length (H)

0.40

0.45

0.50

0.55

0.60

0.65

C
a

ch
e

H
it

 R
a

te
 (

M
E

C
 S

er
v

er
 S

id
e)

(a)

2 3 4 5 6 7 8 9 10

Window Length (H)

0.4

0.5

0.6

0.7

0.8

C
a

c
h

e
 H

it
 R

a
te

 (
L

o
c
a

l
U

se
r
 S

id
e
)

(b)

Fig. 7. Impact of the window length H of the extractor on the cache-hit-rate performance with I = 10 and N = 24. (a) MEC server side.

(M0 = 9) (b) Local user side of UserID 3. (M3 = 9)

15 2� �� 3� �� 40 45 50

Total Number of Contents (N)

0��

�	

0.4

0.5

0.6

0.7

0.8

0.9

C
a

c
h

e
 H

it
 R

a
te

 (
M

E
C

 S
e
r
v

e
r
 S

id
e
)

(a)

15 �� � �� �� 40 45 50

Total Number of Contents (N)

���

���

0.4

0.5

0.6

0.7

0.8

0.9
C

a
c
h

e
 H

it
 R

a
te

 (
L

o
c
a

l
U

se
r
 S

id
e
)

(b)

Fig. 8. Impact of the number of total contents N on the cache-hit-rate performance with I = 10 and H = 10. (a) MEC server side.

(M0 = 9) (b) Local user side of UserID 1. (M1 = 9)

the conventional approaches achieve better cache hit

rate than the proposed P2D3PG when H ≤ 3, which

also confirms effect of excessively short window

length. To recap, unreasonable window length can

affect the feature extraction performance of the

predictive models and further reduces the prediction

accuracy of the popularities. This in turn leads to a

decrease of the cache hit rate.

Likewise, we provide the cache-hit-rate perfor-

mance comparison with respect to the number of

total contents N from 12 to 50. Fig. 8 indicates that

the proposed P2D3PG outperforms all the baseline

methods at both the MEC server and the local

user sides, while their individual cache hit rates

drop with an increasing N . We also note from

Fig. 8 that, the advantage of the proposed P2D3PG

method becomes less pronounced as the number of

total contents decreases, which reconfirms the our

speculation from Fig. 5.

Fig. 9(a) illustrates the performance evaluation of

the proposed P2D3PG method at the end side under

I = 6. In particularly, we picked UEs with user

identity document (UserID) 1 through 6 in the pre-

vious subsection. It can be found that the cache hit

rate of each UE increases with the cache capacity.

In addition, we observe that there are differences in

the cache hit rate of different UEs, which results

from the independent but not identically distributed

behaviors of UEs. For UEs whose variations of

popularities are more complicated, the challenges

14 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. X, XXX 2022

(a)

0 50 100 150 ��� ��� � !

Time Slot t

0

1

2

3

R
e
a
lt

im
e
 C

a
c
h
e
 H

it
 R

a
te

 (
H

6
(t

))

100 125 150 175 200

0

1

(b)

Fig. 9. Performance evaluation of the proposed P2D3PG method at the local user side. (a) Average cache hit rate of all the UEs. (b) Realtime

cache hit rate of UserID 6.

of the popularity predictions by the URFL method

are heavier. Thus the prediction accuracies of UEs

are different, which results in the different cache hit

rates among UEs. We further test the performance

of the proposed P2D3PG algorithm with respect to

realtime cache hit rate at the end side, which is

presented in Fig. 9(b). In Fig. 9(b), the UE with

UserID of 6 is taken as an example, the cache

capacity M6 is set at 5 units which is 20.8% of the

total contents size, and the time window length of

the observation is set as 300 time slots. According

to the equation (4), H0 (t) = 0 when the requested

content of UE 6 at time t is absent at its current

cache. Otherwise, H0 (t) = 1 when the requested

content of UE 6 at time t is cached in its local UE

in advance. On this basis, we find from Fig. 9(b)

that the realtime cache hit rate can stay at 100% for

the most time slots, which implies that the requested

content at most time can be directly satisfied by its

local cache. Fig. 9(b) again confirms the superiority

of the proposed P2D3PG algorithm on dynamic EC

while preserve UEs’ privacy.

VI. CONCLUSION

In this paper, the problem of distributed EC

hit rate maximization in an MEC-enabled wireless

communication system is formulated under time-

varying and unobservable content popularities. To

address the challenges of distributed problem under

the constraints of privacy preservation, a P2D3PG

algorithm is proposed to maximize the EC hit rates

in the MEC system. The superior performance of

the proposed methods compared to the baseline

methods are confirmed by numerical simulations.

Our future work will concentrate on more com-

plicated scenarios such as heterogeneous multiple

MEC nodes as well as further addressing the chal-

lenges brought from non-IID user behaviors.

REFERENCES

[1] C. Zheng, S. Liu, Y. Huang, and T. Q. S. Quek, “Privacy-

preserving federated reinforcement learning for popularity-

assisted edge caching,” in Proc. 40th IEEE Global Com-

mun. Conf. (GLOBECOM’21): Mach. Learn. Commun. Symp.,

Madrid, Spain, Dec. 2021, pp. 1–6.

[2] F. Hu, Y. Deng, W. Saad, et al., ”Cellular-connected wireless

virtual reality: Requirements, challenges, and solutions,” IEEE

Commun. Mag., vol. 58, no. 5, pp. 105–111, May 2020.

[3] W. Duan, J. Gu, M. Wen, et al., ”Emerging technologies for 5G-

IoV networks: Applications, trends and opportunities,” IEEE

Network, vol. 34, no. 5, pp. 283–289, Oct. 2020.

[4] A. A. Abdellatif, A. Mohamed, C. F. Chiasserini, et al., “Edge

computing for smart health: Context-aware approaches, oppor-

tunities, and challenges,” IEEE Network, vol. 33, no. 3, pp.

196–203, Jun. 2019.

[5] G. Faraci, C. Grasso, and G. Schembra, ”Design of a 5G

network slice extension with MEC UAVs managed with re-

inforcement learning,” IEEE J. Sel. Areas Commun., vol. 38,

no. 10, pp. 2356–2371, Oct. 2020.

[6] J. Du, F. R. Yu, G. Lu, et al., “MEC-assisted immersive

VR video streaming over terahertz wireless networks: A deep

reinforcement learning approach,” IEEE Internet Things J., vol.

7, no. 10, pp. 9517–9529, Oct. 2020.

[7] X. Xiong, K. Zheng, L. Lei, and L. Hou, “Resource allocation

based on deep reinforcement learning in IoT edge computing,”

IEEE J. Sel. Areas Commun., vol. 38, no. 6, pp. 1133–1146,

Jun. 2020.

[8] M. Du, K. Wang, Y. Chen, et al., “Big data privacy preserving

in multi-access eEdge computing for heterogeneous internet of

things,” IEEE Commun. Mag., vol. 56, no. 8, pp. 62–67, Aug.

2018.

LIU et al.: DISTRIBUTED REINFORCEMENT LEARNING FOR PRIVACY-PRESERVING DYNAMIC EDGE CACHING 15

[9] Z. Zhao, R. Zhao, J. Xia, et al., “A novel framework of three-

hierarchical offloading optimization for MEC in industrial IoT

networks,” IEEE Trans. Ind. Inf., vol. 16, no. 8, pp. 5424–5434,

Aug. 2020.

[10] X. Wang, C. Wang, X. Li, et al., ”Federated deep reinforcement

learning for internet of things with decentralized cooperative

edge caching,” IEEE Internet Things J., vol. 7, no. 10, pp. 9441–

9455, Oct. 2020.

[11] Y. Cui, D. Jiang, and Y. Wu, “Analysis and optimization of

caching and multicasting in large-scale cache-enabled wireless

networks,” IEEE Trans. Wireless Commun., vol. 15, no. 7, pp.

5101–5112, Jul. 2016.

[12] S. Nikolaou, R. V. Renesse, and N. Schiper, “Proactive cache

placement on cooperative client caches for online social net-

works,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 4, pp.

1174–1186, Apr. 2016.

[13] Q. Li, Y. Zhang, Y. Li, et al., “Capacity-aware edge caching in

fog computing networks,” IEEE Trans. Veh. Technol., vol. 69,

no. 8, pp. 9244–9248, Aug. 2020.

[14] Y. Jiang, M. Ma, M. Bennis, et al., “User preference learning-

based edge caching for fog radio access network,” IEEE Trans.

Commun., vol. 67, no. 2, pp. 1268–1283, Feb. 2019.

[15] S. M. Azimi, O. Simeone, A. Sengupta, and R. Tandon, “Online

edge caching and wireless delivery in fog-aided networks with

dynamic content popularity,” IEEE J. Sel. Areas Commun., vol.

36, no. 6, pp. 1189–1202, Jun. 2018.

[16] J. Liu, D. Li, and Y. Xu, “Collaborative online edge caching

with bayesian clustering in wireless networks,” IEEE Internet

Things J., vol. 7, no. 2, pp. 1548–1560, Feb. 2020.

[17] Y. Dai, D. Xu, K. Zhang, et al., “Deep reinforcement learning

and permissioned blockchain for content caching in vehicular

edge computing and networks,” IEEE Trans. Veh. Technol., vol.

69, no. 4, pp. 4312–4324, Apr. 2020.

[18] Q. Xu, Z. Su, Q. Zheng, et al., “Game theoretical secure caching

scheme in multihoming edge computing-enabled heterogeneous

networks,” IEEE Internet Things J., vol. 6, no. 3, pp. 4536–

4546, Jun. 2019.

[19] L. Xiao, X. Wan, C. Dai, X. Du, X. Chen, and M. Guizani,

“Security in mobile edge caching with reinforcement learning,”

IEEE Wireless Commun., vol. 25, no. 3, pp. 116–122, Jun. 2018.

[20] Z. Yu, J. Hu, G. Min, et al., “Mobility-aware proactive

edge caching for connected vehicles using federated learn-

ing,” EEE Trans. Intell. Transp. Syst., to be published, doi:

10.1109/TITS.2020.3017474.

[21] A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis, “Optimal

and scalable caching for 5G using reinforcement learning of

space-time popularities,” IEEE J. Sel. Top. Signal Process., vol.

12, no. 1, pp. 180–190, Feb. 2018.

[22] C. Zheng, S. Liu, Y. Huang, and L. Yang, “MEC-enabled

wireless VR video service: A learning-based mixed strategy for

energy-latency tradeoff,” in Proc. 18th IEEE Wireless Commun.

Netw. Conf. (WCNC’20), Seoul, South Korea, Apr. 2020, pp. 1–

6.

[23] C. Zheng, S. Liu, Y. Huang, and L. Yang, “Hybrid policy

learning for energy-latency tradeoff in MEC-assisted VR video

service,” IEEE Trans. Veh. Technol., vol. 70, no. 9, pp. 9006–

9021, Sept. 2021.

[24] R. Sutton and A. Barto, Reinforcement Learning: An Introduc-

tion, Cambridge, MA, USA: MIT press, 1998.

[25] D. Kingma and J. Ba, “Adam: A method for stochastic opti-

mization,” in Proc. 3rd Int. Conf. Learn. Represent. (ICLR’15),

San Diego, CA, USA, May 2015.

[26] A. Leff, J. L. Wolf, and P. S. Yu, “Efficient LRU-based buffering

in a LAN remote caching architecture,” IEEE Trans. Parallel

Distrib. Syst., vol. 7, no. 2, pp. 191–206, Feb. 1996.
[27] G. Ma, Z. Wang, M. Zhang, et al., “Understanding performance

of edge content caching for mobile video streaming,” IEEE J.

Sel. Areas Commun., vol. 35, no. 5, pp. 1076–1089, May 2017.

[28] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous

deep Q-learning with model-based acceleration,” in Proc. 33rd

Int. Conf. Mach. Learn. (ICML’16), New York, NY, USA, June

2016, pp. 2829–2838.

[29] M. Volodymyr, K. Koray, S. David, et al., “Human-level control

through deep reinforcement learning,” Nature, vol. 518, no.

7540, pp. 529–533, Feb. 2015.

[30] P. Kairouz, H. B. McMahan, B. Avent, et al., “Advances

and open problems in federated learning,” arXiv preprint

arXiv:1912.04977, 2019.

http://arxiv.org/abs/1912.04977

	I Introduction
	II SYSTEM MODEL
	II-A Service Process
	II-B Local and Global Popularity
	II-C Dynamic Caching Mechanism
	II-D Realtime Cache Hit Rate

	III PROBLEM FORMULATION AND ANALYSIS
	III-A Problem Formulation
	III-B Problem Recast
	III-B1 States
	III-B2 Actions
	III-B3 State Transition
	III-B4 Reward

	III-C Privacy-Preserving Distributed Popularity Prediction

	IV P2D3PG FOR DYNAMIC EDGE CACHING
	IV-A MEC Server Side
	IV-B Local User Side

	V NUMERICAL SIMULATIONS AND ANALYSES
	VI Conclusion
	References

