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Abstract— The performances in cooperative communications
depend on careful resource allocation such as relay selection
and power control, but traditional centralized resource allocation
needs considerable overhead and signaling to exchange the
information for channel estimations. In this paper, we propose a
distributed buyer/seller game theoretic framework over multiuser
cooperative communication networks to stimulate cooperation
and improve the system performance. By employing a two-level
game to jointly consider the benefits of source nodes as buyers
and relay nodes as sellers, the proposed approach not only helps
the source smartly find the relays at relatively better locations
and buy optimal amount of power from them, but also helps
the competing relays maximize their own utilities by asking the
reasonable prices. The game is proved to converge to a unique
optimal equilibrium. From the simulation results, the relays in
good locations can play more important roles in increasing source
node’s utility, so the source would like to buy more power from
these preferred relays. On the other hand, the relays have to
set the proper prices to attract the source’s buying because of
competition from other relays and selections from the source.
Moreover, the distributed game resource allocation can achieve
comparable performance compared with the centralized one.

I. INTRODUCTION

Recently, cooperative communication has gained many at-

tentions as an emerging transmit strategy for future wireless

networks [1] [2]. The basic idea is that the relay nodes can help

the source node’s transmission by relaying the replica of the

information. The cooperative communications efficiently take

advantage of the broadcasting nature of wireless networks, as

well as exploit the inherent spatial and multiuser diversities.

The performances in cooperative communications depend

on careful resource allocation such as relay selection and

power control. In [3], the power allocation was optimized

to satisfy the outage probability criterion. The authors in [4]

provided analysis on symbol error rate and optimum power

allocation for decode and forward cooperation protocol in

wireless networks. The energy-efficient broadcast problem in

wireless networks has also been considered in [5]. In [6], the

authors evaluated cooperative diversity performance when the

best relay is chosen according to the average SNR, and the out-

age probability of relay selection based on the instantaneous

SNR. In [7], the authors proposed a distributed relay selection

scheme that requires limited network knowledge and is based

on instantaneous SNRs. In [8], the relay assignment problem

is solved for the multiuser cooperative communications. In [9],

the cooperative resource allocation for OFDM is studied. The

authors in [10] presented centralized power allocation schemes

assuming all relay nodes help and based on this proposed a

selection forward protocol to choose only one ‘best’ relay node

to assist transmission, in order to further minimize the system

outage behaviors and improve the average throughput.

However, most existing work focuses on resource allocation

by means of centralized fashion. This kind of schemes requires

that complete channel state information (CSI) or at least chan-

nel statistics be available, which brings considerable overhead

and signaling of information about channel estimations. For

distributed resource allocations, there are two main questions

over multiuser cooperative wireless networks: First, among all

the distributed nodes, who can help relay and improve the

source’s link quality better; Second, for the selected relay

nodes, how much power they need to transmit.

To answer these two questions, game theory is a natural,

flexible and rich tool which studies how the autonomous

nodes interact and cooperate with each other. For game theory

literature in the wireless networking, in [11], the behaviors of

selfish nodes in the case of random access and power control

were examined. In [12] static pricing policies for multiple-

service networks were proposed to offer the needed incentives

for each node to choose the service that best matched its

needs, thereby discouraging over-allocation of resources and

improving social welfare. In [13] an incentive mechanism

to stimulate forwarding in multihop cellular networks was

proposed, which was composed of resource delegation to

reduce the cost associated with forwarding and pricing-based

rewards to create further forwarding incentive. The authors in

[14] proposed a pricing game that stimulated cooperation via

reimbursements to the relay assuming nodes were selfish and

aimed to maximize their own utilities. In [15], the authors

employed cooperative game for single-cell OFDMA resource

allocation.

In this paper, we employ a buyer/seller (Stackelberg) game

[16] to jointly consider the benefits of source nodes and relay

nodes in cooperative communications. The game is divided

into two levels of hierarchy: the source node plays the buyer-

level game and the relay nodes play the seller-level game.

Each player is selfish and wants to maximize its own benefit.

Specifically, (1) the source acts as a buyer and aims to get most

benefits at the least possible payment. We analyze how many

relay nodes would be selected by the source to participate

in the sale process after they announced their optimal prices.

In addition, we optimize how much service amount (such as

power) the source should buy from each relay node. (2) Each

relay acts as a seller and aims to earn the payment which

can not only cover their forwarding cost but also gain as

much extra profit as possible. Each relay node needs to set

the optimal price per unit of the service so as to maximize its
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own benefit.

Then we derive the expressions to the proposed game

outcomes, prove the concavity of the utility functions, and

show that the solution we derived is the unique optimal

equilibrium. From the simulations, because of competition

from other relays and selections from the source, the relays

have to set the proper prices to attract the source’s buying

so as to optimize their utility values. The source optimally

selects the relays and their relaying power, while the relays

set the prices that can maximize their utilities. Specifically,

relays closer to the source can play a more important role in

increasing source’s utility, so the source would like to buy

more power from these preferred relays. Meanwhile, in order

to attract more consumption from the source, the relay might

adopt ‘low-price, high-market’ policy to further increase its

utility value. If the total number of available relays increases,

the competitions among relays become more severe and the

average price the relays ask will decrease. This will result

in a larger utility value to the source and a smaller average

payment to the relay. We finally show that the distributed

game theoretic resource allocation can achieve comparable

performance compared with the centralized one [10].

This paper is organized as follows: Section II describes the

system model, and formulates the cooperative optimization

as a buyer/seller game. We construct distributed implemen-

tation of multiuser cooperation transmission, and provide the

solutions in Section III. Simulations are shown in Section IV.

Finally, Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first derive the expression of the maximal

achievable rate/capacity considering multiple relays help the

source node’s transmission. Then we formulate the optimiza-

tion problem using a buyer/seller game theoretic framework.

We employ the amplify-and-forward (AF) cooperation pro-

tocol [2] as our system model; other protocols can be consid-

ered in a similar way. The cooperative transmission consists

of two phases.

At phase one, the signal-to-noise ratio (SNR) that results

from direct transmission from the source s to the destination

d can be expressed by

Γs,d = PsGs,d/σ2, (1)

where Ps represents the transmit power, Gs,d is the channel

gain, and σ2 is the noise variance. The rate at the output of

direct transmission is

Rnc
s,d = W log2 (1 + Γs,d) . (2)

Without loss of generality, we assume that the noises in

different channels are i.i.d.. We also assume the channels are

stable over each power control interval.

At phase two, we consider the SNR at the destination that

results from relay ri relaying source s’s data to the destination.

By assuming that Xs,ri
is the broadcasted signal from source

s to relay ri, the received signal at relay ri is

Ys,ri
=

√
PsGs,ri

Xs,ri
+ ηs,ri

, (3)

where ηs,ri
∼ N(0, σ2) and σ2 is the noise variance. Relay

ri amplifies Ys,ri
and relays it to the destination in which the

received signal is

Yri,d =
√

Pri
Gri,dXri,d + ηri,d, (4)

where
Xri,d = Ys,ri

/|Ys,ri
| (5)

is the transmitted signal from relay ri to the destination that is

normalized to have unit energy. Substituting (3) into (5), we

can rewrite (4) as

Yri,d =

√
Pri

Gri,d(
√

PsGs,ri
Xs,ri

+ ηs,ri
)√

PsGs,ri
+ σ2

+ ηri,d. (6)

Using (6), the relayed SNR for the source s, which is helped

by relay ri, is given by:

Γs,ri,d =
Pri

PsGri,dGs,ri

σ2(Pri
Gri,d + PsGs,ri

+ σ2)
. (7)

Therefore, by (2) and (7), we have the rate at the output of

maximal ratio combining with relay ri helping in AF as

Rs,ri,d = γiW log2 (1 + Γs,d + Γs,ri,d) , (8)

with γi = 1
2 because 2 phases are used for transmission.

If the relays available to help the source at a certain time

consist a set, say L = {r1, . . . , rN}, where N is the total

number of relays, then

Rs,r,d = γLW log2

(
1 + Γs,d +

∑
ri∈L

Γs,ri,d

)
, (9)

where γL is the bandwidth factor. According to different

network applications, γL can have different definitions. For

the network with limited bandwidth, the bandwidth should be

divided for the source and relays. In our case, if N ′ out of N
relays are selected by the source, N ′ ≤ N , then γL = 1

N ′+1 .

For the network that is more energy constrained, γL is set to

1, which will be adopted in this paper. We will omit the γL

in the expression of the source node’s utility to be seen in the

following.

To explore the cooperative diversity for multiuser system,

from (9), two fundamental questions need to be answered:

First, which relay nodes should be included; second, what is

the optimal power Pri
. To answer the questions, we employ

Stackelberg game for buyers and sellers as the following

formulated problem.

(1) Source/Buyer: The source can be modeled as a buyer

and it aims to get most benefits at the least possible payment.

So the utility function of the source can be defined as

Us = aRs,r,d − M, (10)

where Rs,r,d denotes the achievable rate with the relay nodes

helping transmission, a denotes the gain per unit of rate

achievement at the MRC output, and

M =
∑

ri∈L

piPri
= p1Pr1

+ p2Pr2
+ · · · + pNPrN

(11)

represents the total payment paid by the source to the relay

nodes. In (11), pi represents the price per unit of power selling

from relay node i to the source s, and Pri
denotes how much

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings. 

 

545



power the source would like to buy from relay ri when the

prices are announced from the relays.

Suppose the relays helping the source consist a set, still

denoted by L = {r1, · · · , rN}, then the optimization problem

for the source or buyer’s game can be formulated as:

max
{Pri

, M}
Us = aRs,r,d − M, s.t. {Pri

} ≥ 0, ri ∈ L. (12)

(2) Relays/Seller: Each relay ri can be seen as a seller

and aims to earn the payment which not only covers their

forwarding cost but also gain as much extra profit as possible.

We introduce one parameter ci, ‘the cost of power for relaying

data’, in our formulation to correctly reflect relays’ consider-

ation about whether they can actually get profit by the sale.

Then relay ri’s utility function can be defined as

Uri
= piPri

− ciPri
= (pi − ci)Pri

, (13)

where ci is the cost per unit of power in relaying data, pi

has the same meaning as in (11), and Pri
is the source’s

decision by optimizing Us described in (12). It is obvious

that to determine the optimal pi depends not only on each

relay’s own channel condition to the destination but also on

its counterpart relays’ prices. So in the sellers’ competition,

if one relay asks a higher price than what the source expects

about it after jointly comparing all relays’ prices and their

potential contribution to the cooperative transmission rate, the

source will buy less from that relay or even disregard that relay.

On the other hand, if the price is too low, the profit obtained

by (13) will be unnecessarily low. So there is a tradeoff for

setting the price.

Then the optimization problem for relay ri or the seller’s

game is:
max

{pi}>0
Uri

= (pi − ci)Pri
, ∀i. (14)

If under optimal asking price p∗i , the resulting utility of ri is

such that U∗
ri

≤ 0, then ri will quit the seller’s game since it

can not cover the basic cost by selling power to the source.

Therefore, the ultimate goal of the above game is to decide

the optimal pricing pi to maximize relays’ profits Uri
, the

actual number of relays who will finally get selected by

the source and the corresponding optimal power consumption

Pri
to maximize Us. Notice that the only signaling required

to exchange between the source and relays are the price

pi and the information about how much power Pri
to buy.

Consequently, the proposed two-level game approach can have

distributed resource allocation for the cooperative communi-

cation networks. The outcome of the games will be shown in

details in the following section.

III. ANALYSIS OF BUYER/SELLER GAME

We will first analyze the buyer/seller game in details and

obtain the closed form solutions to the game outcomes. Based

on this, we will further prove the solution is the unique optimal

equilibrium. Then we design a price update function for relay

nodes and prove its convergence to the unique equilibrium.

Finally we compare the performance of our distributed scheme

with the centralized one.

A. Source/Buyer Level Analysis

From the definition in (10), we know

∂Us

∂Pri

= a
∂Rs,r,d

∂Pri

− pi, i = 1, · · · , N. (15)

When Prj
= 0, j = 1, · · · , N , if for relay node ri, pi satisfies

pi < a
∂Rs,r,d

∂Pri

, then we have ∂Us

∂Pri

> 0, meaning the source

node will obtain a larger Us by increasing Pri
.

Then a question is how each relay node ri asks its price pi

at the beginning. Since in a distributed implementation, each

relay node does not know the other relay nodes’ prices, it

is possible to first tentatively set pi = ci, which makes sure

that the utility is not negative. If under these lowest initial

prices, the source node would choose not to buy any power

from some relay node ri, then ri will not participate in the

seller-level game because Uri
= 0.

Now assume the number of relays is N and at first the

source tentatively choose Pri
= 0, i = 1, · · · , N , if for some

relay, say rj , it holds that cj ≥ (a
∂Rs,r,d

∂Prj

)|Prj
=0, then rj will

not be selected by the source and Prj
= 0. For the remaining

relays ri’s, which consist a set Lh = {r1, · · · , rN0
}, by the

first order optimality condition, the following equations must

hold at the optimal point:

∂Us

∂Pri

= 0, ri ∈ Lh. (16)

Solving (16), we can get its solution in the following lemma.

Lemma 1: The optimal power consumption from each relay

node is

P ∗
ri

=

√
AiBi

pi

Y +
√

Y 2 + 4XW ′

2X
− Bi, (17)

where W ′ = aW
ln 2 , X = 1 +

∑
rj∈Lh

Aj , Y =
∑

rj∈Lh

√
pjAjBj , Ai =

PsGs,ri

(σ2+PsGs,d) , and Bi =
PsGs,ri

+σ2

Gri,d
.

Proof: See Appendix A.

After the source announces the above P ∗
ri

to the relays in

Lh, they will gradually increase the prices pi to get possibly

more benefit round by round. This will lead the source to

buy decreasing amount of P ∗
ri

. To ensure that the power

consumption is feasible/nonnegative, when the source feeds

the P ∗
ri

to the relays, the expression in (17) should be modified

as
(Pri

)+ = max (P ∗
ri

, 0). (18)

In this way the relay can correspondingly ask a proper price

to earn maximal utility instead of being disregarded by the

source and the resulting P ∗
ri

will be positive.

The solution above can also be verified by Karush-Kuhn-

Tucker (KKT) condition [17].

Lemma 2: The optimal power consumption {(Pri
)+}N

i=1 is a

global optimal solution to (12).

Proof: See Appendix B.

B. Relay/Seller Level Analysis

Substituting (17) into (14), we have

max
{pi}>0

Uri
= (pi − ci)P

∗
ri

(p1, . . . , pi, . . . , pN0
). (19)
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Note this is a noncooperative game by the relay, and there

exists a tradeoff between the price pi and relay’s utility Uri
.

If the relay in a better channel condition asks for a relatively

lower price pi at first, the source would be glad to buy more

power from the cheaper seller and Uri
will increase as pi

grows. When pi keeps growing and exceeds some certain

value, the source would think it is no longer profitable to buy

power from the relay even though the relay may be in very

good channel condition. In this way Pri
will shrink hence

result in a decrement of Uri
. Therefore there is an optimal

price for each relay to ask for, depending on the relays’

channel conditions. And the optimal price is also affected by

other relays’ prices since the source only chooses the most

beneficial relays among all the relays.

From the analysis above, by the first order optimality

condition, it follows that

∂Uri

∂pi

= P ∗
ri

+ (pi − ci)
∂P ∗

ri

∂pi

= 0, ri ∈ Lh. (20)

Expand (20), we can get the following equation arrays,
√

AiBi

pi

Y +
√

Y 2+4XW ′

2X
− Bi + (pi − ci) ×

√
AiBi

pi

×Y +
√

Y 2+4XW ′

2X
×

(
− 1

2
1
pi

(
1 −

√
piAiBi√

Y 2+4XW ′

))
= 0,

(21)
Solving them for the unknowns pi, we have

p∗i = p∗i (σ
2, {Gs,ri

}, {Gri,d}), ri ∈ Lh. (22)

The solution (18) and (22) is an equilibrium (Stackelberg

Equilibrium), since for each ri ∈ Lh, any p̃i and any

P̃ri
, Uri

(p∗1, · · · , p̃i, · · · , p∗rN0

) ≤ Uri
(p∗1, · · · , p∗i , · · · , p∗rN0

),

where N0 = |Lh|, and Us(P
+
r1

, · · · , P̃ri
, · · · , P+

rN
) ≤

Us(P
+
r1

, · · · , P+
ri

, · · · , P+
rN

), where N is the total number of

available relays.

So finally we can get the optimal pricing p∗i to maximize

relays’ utilities Uri
, the actual number of relays which will get

selected by the source and the corresponding optimal power

consumption P ∗
ri

to maximize Us. The convergence of the
problem can be proved in a similar way as in [18], and we

will give the proof in the following subsections.

C. Properties of the Equilibrium

In this subsection, we prove the existence of the Stackelberg

Equilibrium (SE) and conditions for the SE to be optimal by

the following properties.

Property 1: The utility function of the source Us is concave

in {Pri
}N

i=1, where Pri
≥ 0, ∀i, when each relay’s price pi is

announced.

Proof: See Appendix C.

Property 2: The optimal power consumption P ∗
ri

is decreas-

ing with pi when other relays’ prices are some fixed values.

Proof: See Appendix D.

Property 3: The utility function of each relay Uri
is concave

in its own asking price pi, when its power consumption is the

optimized purchase amount from the source as calculated in

(17) and other relays’ prices are some fixed values.

Proof: See Appendix E.

Theorem 1: The {P ∗
ri
}N

i=1 and {p∗i }N0

i=1 solved in Section

III-A and III-B is the SE for this buyer/seller game, where

SE means the strategy profile that serves best each type of

players, given the strategies of the other players.

Proof: See Appendix F.

In practical implementation, the relays will try relatively

low asking prices at the beginning, e.g. the cost ci, and

then gradually increase the price according to optimal power

purchase of the source. As Property 1 shows, the Us is

concave in Pri
, so if all relays’ prices finally approach to the

optimal values, then the source will also optimally pick the

most beneficial power consumptions. Therefore, these iterative

procedures will stop until all relays’ prices converge to the

optimal values to get the maximal utilities, i.e. the SE. In the

following we will show the convergence of the relays’ prices

by constructing a simple update function.

D. Convergence of Distributed Price Update Function

From the explanation in the above, the relays will increase

their utilities by increasing their prices from reasonable lower

values, say ci, the cost of power for relaying data, to the

optimal ones. That means,
∂Uri

∂pi
changes from positive to

zero. Starting from this, we can design an update function for

relay’s price as follows. In each round of price update until

convergence occurs, it holds that

∂Uri

∂pi

=
∂

∂pi

[(pi − ci)P
∗
ri

] = P ∗
ri

+ (pi − ci)
∂P ∗

ri

∂pi

≥ 0. (23)

By Property 2,
∂P∗

ri

∂pi
< 0, after re-arranging (23), we have

pi ≤ Ii(p)
△
= ci −

P ∗
ri

∂P ∗
ri

/∂pi

. (24)

It’s worth noting that the value of
∂P∗

ri

∂pi
here is negative before

pi grows to p̂i such that P ∗
ri

< 0. However, based on utility

maximization consideration, the relay will adjust price before

pi touches p̂i according to the (Pri
)+.

Then the relays’ prices update requirements can be de-

scribed by a vector inequality of the form

p ≤ I(p), (25)

where p = (p1, · · · , pN0
), with pi denoting relay ri’s price;

I(p) = (I1(p), · · · , IN0
(p)), with Ii(p) representing the price

competition constraint to ri from the other relay nodes. A price

vector p ≥ 0 is feasible if it satisfies the constraints in (25).

For a set Lh of N0 relays with competition constraints (25),

the iterations of the price update algorithm can be expressed

as
p(t + 1) = I(p(t)). (26)

We will show next that the convergence of the iteration in

(26) by proving I(p) is a standard function [18].

Definition: A function I(p) is standard if for all p ≥ 0 the

following properties are satisfied [18]:

• Positivity: I(p) > 0,

• Monotonicity: If p ≥ p′, then I(p) ≥ I(p′),
• Scalability: For all α > 1, αI(p) > I(αp).

Corollary 1: The price update function I(p) is standard.
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Fig. 1. Optimal price and power of the relay in different locations

Due to limit of space, we will omit detailed proof proce-

dures of Corollary 1 here.

In [18], a proof has been given that starting from any fea-

sible initial power vector p, the power vector In(p) produced

after n iterations of the standard power control algorithm

gradually converges to a unique fixed point. Therefore, we

can conclude that starting from a feasible initial price vector

c = (c1, · · · , cN0
), where ci is the cost per unit of power

for relay node ri, the iteration of the standard price updating

produces a non-decreasing sequence of price vectors In(c) that

converges to a unique fixed point p∗.

It is worth mentioning that although the closed-form solu-

tions {P ∗
ri
}N

i=1 in (17) and {p∗i }N ′

i=1 in (22) are functions of

the channel-state information, in practical implementation of

the game, the only signallings between the relay nodes and the

source node are the instant prices and corresponding powers.

Due to Property 1, after the source node first tentatively

chooses Pri
= 0, where i ∈ Lh, once the relays inform the

source of their price information pi, the source can find the

optimal power P ∗
ri

by gradually increasing Pri
until Us reaches

its maximum. While for each relay, by gradually increasing pi

it will get feedback of P ∗
ri

and ∂P ∗
ri

/∂pi from the source, then

it can update pi using Ii(p) in (24) until pi converges to p∗i .

Therefore, the proposed game achieves its equilibrium in a

distributed way with local information.

E. Comparison with Centralized Optimal Scheme

In order to compare the performance of our proposed

buyer/seller game scheme and the conventional centralized

optimal power allocation problem in collaborative communi-

cation, we will briefly summarize a centralized problem for-

mulation and give the closed form solutions in this subsection,

then we will show the numerical comparison of performances

in Section IV. Also here we will mainly focus the performance

of the AF protocol and other protocols can be generalized in

a similar way. Suppose the system resources are shared by all

available N relay nodes, which can help the source transmit

data in orthogonal channels, say TDMA. By [2] and [10], we

can model the goal as allocating power among relay nodes
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x axis

U
r

Optimal U
r

−2 −1 0 1 2 3
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Fig. 2. Optimal utilities of the relay and the source in different locations

to maximize Rs,r,d defined in (9) as an optimization problem

under both sum and individual power constraints.

max
W

N + 1
log2

(
1 + Γs,d +

∑

ri∈L

Γs,ri,d

)
, (27)

s.t.
∑

i

Pri
≤ P tot

r , 0 ≤ Pri
≤ Pmax

ri
∀i.

Because log2(1 + x) is a strictly increasing function of x,

reorganizing the objective function of (27), we can get an

equivalent optimization problem as in [10],

min

N∑

i=1

P 2
s a2

i + Psai

Psai + Pri
bi + 1

(28)

s.t.
∑

i

Pri
≤ P tot

r , 0 ≤ Pri
≤ Pmax

ri
∀i,

where ai =
Gs,ri

σ2 and bi =
Gri,d

σ2 .

The solution of (28) can be solved as

Pri
=




√
P 2

s a2
i + Psai

bi

λ − Psai + 1

bi




P max
ri

0

, (29)

where λ is a constant chosen to meet the total power constraint

and (x)u
l = l(x < l), x(l ≤ x ≤ u), u(x > u).

However, the centralized optimal power allocation scheme

requires that complete channel state information (CSI), i.e.,

Gs,d, Gs,ri
and Gri,d be available at the destination node to

coherently decode the signal. This needs considerable over-

head and signaling. In Section IV, we will show our proposed

distributed scheme can achieve comparable performance while

the needed signaling between source and relays is only the

information of price and power consumption amount.

IV. SIMULATION RESULTS AND ANALYSIS

To evaluate the performances of the proposed scheme and

decide what price each relay should ask for and how much

power the source should buy from each relay, we performed

simulations for multiple relay systems. In what follows, the

simulation results for a 1-relay case, for a 2-relay case, and
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for a multiple-relay case are shown. Finally we provided

performance comparison of our proposed approach with the

centralized optimal scheme.

A. 1-Relay Case

We set simulations of the first part as follows. There are

1 source-destination pair and 1 relay in the network. The

destination was located at coordinate (0, 0), and the source

was located at coordinate (1, 0). We fixed the y coordinate

of the relay at 0.25 and the x coordinate varied within the

range of [−2, 3]. The propagation loss factor was set to 2.

The noise level was σ2 = 10−4, W = 1, the gain per unit of

rate increment a = 1 and cost per unit of power ci = 0.05,∀i.
In Figure 1, we show the optimal price the relay should

ask for and the optimal power bought by the source. In this

simulation, the relay moves along a line. We observe that when

the relay is close to the source at (1, 0), it can more efficiently

help the source transmit, so the relay would reduce the price to

attract the source to buy more service. When the relay moves

close to the destination at (0, 0), it can use very small amount

of power to relay the source’s data, so it will set a very high

price in order to get more profit by selling this small power.

When the relay keeps moving away from the destination, the

source would stop buying service because the relay is in such

a bad location that asking it to help will be no longer beneficial

to the source. Similarly when the relay moves in the opposite

direction and locates very far away from the source, the source

would not buy service either.

In Figure 2, we show the optimal utility the source and the

relay can get using the proposed scheme. When the relay is

located close to the source, both the relay and the source can
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get the maximal utility. The reason is that around this location,

the relay can most efficiently help the source increase its

utility, and the optimal price of the relay is very low compared

with that when the relay is at other locations. So the source

would like to buy more power, resulting in high utility to the

relay. It is worth mentioning that the x-axis represents nodes’

channel conditions by using locations, so the questions what

price the relay should ask for and how much utility both game-

players can achieve can be clearly illustrated. If channel effects

such as shadowing and fading are considered, the x-axis can

be channel conditions and is not related to the distances.

B. 2-Relay Case

We set up 2-relay simulations to test the proposed scheme.

In our simulations, the coordinates of the source and the

destination are (1, 0) and (0, 0) respectively. Relay 1 is fixed

at the coordinate (0.5, 0.25) and relay 2 moves along the line

from (−2, 0.25) to (3, 0.25). Other settings are the same as

the 1-relay case.

In Figure 3 we show the optimal price that each relay

should ask to maximize its profit. We can observe that even

though only the relay 2 moves, the prices of both relays

change accordingly. This fact is because two relays compete

and influence each other in the proposed Stackelberg games.

When relay 2 is close to the destination at (0, 0), it can use

very small power to relay the source’s information. So relay

2 can set very high price hoping to get more profit by selling

small power. When relay 2 is close to the source at (1, 0), relay

2 is more suitable to help source transmit. Consequently, in

order to attract the source to buy its service, relay 1 has to

reduce the price. When relay 2 is faraway, its price will drop
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because it is less competitive compared to relay 1 at location

(0.5, 0.25). When the utility is less than 0, relay 2 will quit

the competition. At that moment, relay 1 can slightly increase

the price since there is no competition. But it cannot increase

too much, otherwise relay 2 will rejoin the competition.

As shown in Figure 4, the source will smartly buy different

amount of power from the two relays. When relay 2 moves

away from the source, P ∗
r2

gradually decreases. When relay

2 moves too far away from the source or the destination,

the source will not choose relay 2. When relay 2 is close

to the destination, its price shown in Figure 3 is too high,

so that the source would not buy much power from relay

2. When relay 2 quits the competition, relay 1 will increase

its price, but the source will buy slightly less. This fact also

suppresses the incentive of relay 1 to ask for arbitrarily high

price in the absence of competition. Note that when relay 2

moves to (0.5, 0.25), the same location as relay 1, the power

consumptions and prices of both relays are the same. This is

because the source is indifferent for the two relays locating

together and treats them equally.

In Figure 5, we show the optimal utility of two relays. When

relay 2 is close to the source, its utility is high, while relay

1’s utility drops. The utility of relay 2 is zero after it quits

the competition, while the utility of relay 1 is smooth at the

transition points. In Figure 6, we show the optimal utility of

the source and the total payment to the relays. When relay

2 is close to the source, the channel conditions are the best

in relaying source’s data, therefore the relays should get the

highest profits and both values reach their maxima.

We also study the convergence of the price update algorithm

for a 2-relay case, where relay 2 is at (0.3, 0.25) and relay 1

is at (0.5, 0.25). In Figure 7, we can see that when a = 1, the

price updating algorithm converges to the set of the SE with

about 12 iterations; when a = 0.2, the convergence only takes

about 6 iterations. The fast convergence of the price updating

algorithm shows that the distributed implementation only

requires a small overhead in exchanging the price information

between the source node and the relay nodes. Also note that

a change in the value of the gain factor a does not affect the

convergence to the SE, however, the achieved SE is affected.

The reason is explained as follows. When a is large, the source

node cares the achievable rate more than its payments to the
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relay nodes, so it likes to buy more power. Thus, the relay

nodes can set relatively higher prices to earn more benefits.

On the other hand, if a is small, the source node cannot afford

high power consumption; hence, the relay nodes can only set

relatively lower prices.

C. Multiple-Relay Case

We then set up multiple-relay simulations to test the pro-

posed scheme. In these simulations, the coordinates of the

source and the destination are (1, 0) and (0, 0) respectively,

and the relays are randomly located within the range of [−2, 3]
in x-axis and [−2, 2] in y-axis. From Figure 8, we can observe

that as the total number of available relays increases, the

source will get a higher utility. However, in this way, the

competitions among relays become more severe, which leads

to less average payment from the source.

D. Comparison with Centralized Optimal Scheme

To compare the performance of the distributed resource

allocation scheme with the centralized one, we finally set up

simulations as follows. Fix one relay at coordinate (0.5, 0.25)
and the other at (0.6, 0.25) and (0.4, 0.25) respectively. As

defined in (27), set Pmax
ri

= 1, and let P tot
r vary within the

range of [0.5, 1]×∑
i Pmax

ri
. Then we can solve the curve of

the maximal achievable rate versus total power consumption

constraint. For distributed scheme, by varying a, the gain of

total achievable rate, we can also get the different total power

consumption and corresponding maximal achievable rate. In

Figure 9, we can observe that the distributed scheme can

achieve approximately the same rate as the centralized optimal

power allocation.

V. CONCLUSION

In this paper, we proposed the game theoretic approach for

the distributed resource allocation over multiuser cooperative

communication networks. We target to answer two questions:

who will be the relays and how much power for relaying in

the amplified-and-forward cooperative scenario. We employ a

buyer/seller (Stackelberg) game to jointly consider the benefits

of different types of nodes. The proposed scheme can not only

help the source smartly choose relays at better locations but

can also help the competing relays ask a reasonable price to

maximize their utilities. From the simulation results, relays

close to the source can play a more important role in increasing
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source utility, so the source would like to buy power from these

preferred relays. In order to attract more consumption from the

source, the relay might adopt ‘low-price, high-market’ policy

to further increase its utility value. If the total number of

available relays increases, the source can obtain a larger utility

value and the average payment relays can earn will shrink,

due to more severe competitions among relay nodes. It’s also

shown that the distributed resource allocation can achieve

comparable performance to the centralized one but with less

overhead and signaling of channel estimation information. It

is also easy to use the current structures as building blocks in

large-scale wireless ad hoc networks to stimulate cooperation

among nodes.
APPENDIX

A. Proof of Lemma 1

For simplicity, define C = 1 +
PsGs,d

σ2 , W ′ = aW
ln 2 . By (9)

and (2) we get the first term of Us when applying AF protocol

as
aRs,r,d = aW log2(C +

∑

ri∈Lh

Γs,ri,d)

= W
′ ln

[
1 + ∆SNR

′

tot

]
+ W

′ ln C,

(30)

where
∆SNR

′

tot =
∑

ri∈Lh

Γ′

s,ri,d (31)

and

Γ
′

s,ri,d
=

Γs,ri,d

C
=

Ai

1 + Bi

Pri

=
AiPri

Pri
+ Bi

(32)

with Ai =
PsGs,ri

(σ2+PsGs,d) and Bi =
PsGs,ri

+σ2

Gri,d
.

Substituting (11) and (30) into (16), we have

∂Us

∂Pri

=
W ′

(
1 +

∑
rk∈Lh

AkPrk

Prk
+Bk

) AiBi

(Pri
+ Bi)

2 − pi = 0, (33)

i.e.,
W ′

(
1 +

∑
rk∈Lh

AkPrk

Prk
+Bk

) =
pi

AiBi

(Pri
+ Bi)

2
. (34)

Since the left-hand side of (34) is the same for any relay i on

the right-hand side, it follows that

pi

AiBi

(Pri
+ Bi)

2
=

pj

AjBj

(
Prj

+ Bj

)2
, (35)

then

Prj
=

√
piAjBj

pjAiBi

(Pri
+ Bi) − Bj . (36)

Substitute the above Prj
into (32) and simplify, then we have

Γ′
s,rj ,d =

Aj

1 +
Bj

Prj

= Aj −
√

pjAiBi

piAjBj

AjBj

(Pri
+ Bi)

, (37)

then (31) can be reorganized as

∆SNR
′

tot =

[
A1 −

√
p1AiBi

piA1B1

A1B1

(Pri
+ Bi)

]
+ · · ·

+

[
Ai −

AiBi

Pri
+ Bi

]
+ · · · +

[
AN0

−

√
pN0

AiBi

piAN0
BN0

AN0
BN0

(Pri
+ Bi)

]

=
∑

rj∈Lh

Aj −

√
AiBi

pi

1

Pri
+ Bi

∑

rj∈Lh

√
pjAjBj .

(38)

Substituting (38) into (34), after some manipulation we can

have a quadratic equation of Pri
as

(1 +
∑

rj∈Lh

Aj)

[√
pi

AiBi

(Pri
+ Bi)

]2

−
∑

rj∈Lh

√
pjAjBj

[√
pi

AiBi

(Pri
+ Bi)

]
− W

′ = 0,

(39)

and its solution is as shown in Lemma 1.

B. Proof of Lemma 2

Let Pr = (Pr1
, · · · , PrN

), where N = |L| is the number

of total available relays, define f = −Us(Pr) : RN → R

and gi = −Pri
: RN → R for i = 1, · · · , N . Consider the

problem (12) to minimize f(Pr) subject to gi(Pr) ≤ 0 for

i = 1, · · · , N . As explained by the solution procedures in

Section III-A, P∗
r = (P ∗

r1
, · · · , P ∗

rN
) is a feasible solution.

Define ∇ = ∂
∂Pr

, the following equations hold at P∗
r :

∇f(P∗
r) +

N∑

i=1

ui∇gi(P
∗
r) = 0, (40)

where uigi(P
∗
r) = 0, ui ≥ 0, for i = 1, . . . , N. So P∗

r is a

KKT solution to (12). Moreover f and gi are differentiable

and quasiconvex at P∗
r , then P∗

r is a global optimal solution.

C. Proof of Property 1
Taking the second order derivatives we can get

∂2Us

∂P 2
ri

= −
W ′

(
1 +

N∑
k=1

AkPrk

Prk
+Bk

)2

(
AiBi

(Pri
+ Bi)

2

)2

− 2
W ′

(
1 +

N∑
k=1

AkPrk

Prk
+Bk

) AiBi

(Pri
+ Bi)

3

, (41)

and

∂2Us

∂Pri
∂Prj

= −
W ′

(
1 +

N∑
k=1

AkPrk

Prk
+Bk

)2

×
AiBi

(Pri
+ Bi)

2

AjBj(
Prj

+ Bj

)2

. (42)

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings. 

 

551



For each relay, by definition, W ′ > 0, Ai > 0, Bi > 0,

also Pri
≥ 0, so ∂2Us

∂P 2
ri

< 0, and ∂2Us

∂Pri
∂Prj

< 0. It’s also

straightforward to verify that ∂2Us

∂P 2
ri

∂2Us

∂P 2
rj

− ( ∂2Us

∂Pri
∂Prj

)2 > 0,

∀i 	= j. Moreover Us is continuous in Pri
, so when Pri

≥ 0,

Us is strictly concave in each {Pri
}N

i=1, and jointly concave

as well.

D. Proof of Property 2

Taking the first order derivative we have

∂P ∗

ri

∂pi

=

√
AiBi

pi

Y +
√

Y 2 + 4XW ′

2X
×

(
−

1

2

1

pi

(
1 −

√
piAiBi

√
Y 2 + 4XW ′

))
< 0,

(43)

which means P ∗
ri

is decreasing with pi. This makes sense

because when one relay individually increases its price while

the others keep the same prices as before, the source will buy

less from this relay.

E. Proof of Property 3

P ∗
ri

is a continuous function of pi, so Uri
is continuous in

pi too. Taking derivatives we can get

∂Uri

∂pi

= −Bi +

√
AiBi

pi

Y +
√

Y 2 + 4XW ′

2X
×

(
1 −

pi − ci

2pi

(
1 −

√
piAiBi

√
Y 2 + 4XW ′

))
,

(44)

and further

∂2Uri

∂p2
i

=

√
AiBi

pi

Yi

2X

(
1 −

√
piAiBi

√
Y 2 + 4XW ′

) (
−pi − 3ci

4p2
i

)

+

√
AiBi

pi

8Xp2
i

(√
Y 2 + 4XW ′

)3

×
[(

Y
2

i + 2Yi

√
piAiBi + 4XW

′

)2

(−pi − 3ci)

+ piAiBi

(
Y

2
i + 2Yi

√
piAiBi

)
(−pi − 3ci)

+ piAiBi4XW
′ (−4ci)

]
,

(45)

where Yi = Y −√
piAiBi. Since Ai, Bi, pi, Yi, ci, X , W ′ > 0,

∂2Uri

∂p2

i

< 0. So Uri
is concave with respect to pi.

F. Proof of Theorem 1

When the relays feedback their decision variables {pi}N
i=1

to the source, by the procedures described in Section III-A,

Lemma 1 and Property 1, Us({P ∗
ri
}N

i=1) ≥ Us({Pri
}N

i=1), i.e.,

{P ∗
ri
}N

i=1 is the optimal response strategy for the source. From

the analysis in Property 3, if relay i gets selected by the source,

by the concavity of Uri
, it can always find its optimal price

p∗i ∈ (ci,∞), and in this case Uri
> 0. While it locates badly,

the source will not choose relay i to help, so actually in this

case pi will not affect the source’s decision and Uri
= 0.

Therefore, at the optimal point p∗i , Uri
(p∗i ) ≥ Uri

(pi). So the

following equations hold

U∗
s ({P ∗

ri
}) = sup

{Pri
}≥0

Us({Pri
}), (46)

U∗
ri

(p∗i ) = sup
pi>ci

Uri
(pi), ri ∈ Lh, (47)

meaning the {P ∗
ri

, p∗i } is the the SE in the buyer/seller game.

REFERENCES

[1] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity,
Part I: System description,” IEEE Transactions on Communications, vol.
51, no. 11, pp. 1927-1938, Nov. 2003.

[2] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity
in wireless networks: efficient protocols and outage behavior,” IEEE

Transactions on Information Theory, vol. 50, no. 12, pp. 3062-3080,
Dec. 2004.

[3] M. O. Hasna and M.-S. Alouini, “Optimal power allocation for relayed
transmissions over Rayleigh fading channels,” in Proc. IEEE Vehicular

Technology Conference, vol. 4, pp. 2461-2465, Jeju, Korea, Apr. 2003.
[4] W. Su, A. K. Sadek, and K. J. R. Liu, “SER performance analysis and

optimal power allocation for decode-and-forward cooperation protocol
in wireless networks,” in Proc. of IEEE Wireless Communications and

Networking Conference, pp. 984-989, New Orleans, LA, Mar. 2005.
[5] I. Maric and R. D. Yates, “Cooperative multihop broadcast for wireless

networks,” IEEE Journal on Selected Areas in Communications, vol. 22,
no. 6, pp. 1080-1088, Aug. 2004.

[6] J. Luo, R. S. Blum, L. J. Greenstein, L. J. Cimini, and A. M. Haimovich,
“New approaches for cooperative use of multiple antennas in ad hoc
wireless neworks,” in Proc. IEEE Vehicular Technology Conference, vol.
4, pp. 2769-2773, Los Angeles, CA, Sep. 2004.

[7] A. Bletsas, A. Lippman, and D. P. Reed, “A simple distributed method
for relay selection in cooperative diversity wireless networks, based
on reciprocity and channel measurements”, in Proc. IEEE Vehicular

Technology Conference, vol. 3, pp. 1484-1488, Stockholm, Sweden, May
2005.

[8] A. K. Sadek, Z. Han, and K. J. R. Liu, “An efficient cooperation protocol
to extend coverage area in cellular networks”, in Proc. IEEE Wireless

Communications and Networking Conference, vol. 3, pp. 1687-1692,
Las Vegas, NV, Apr. 2006.

[9] Z. Han, T. Himsoon, W. Siriwongpairat, and K. J. R. Liu, “Energy
efficient cooperative transmission over multiuser OFDM networks: who
helps whom and how to cooperate”, in Proc. IEEE Wireless Communica-

tions and Networking Conference, vol. 2, pp. 1030-1035, New Orleans,
LA, Mar. 2005.

[10] Y. Zhao, R. S. Adve, and T. J. Lim, “Improving amplify-and-forward
relay networks: optimal power allocation versus selection”, in Proc.

IEEE International Symposium on Information Theory, Seattle, WA, Jul.
2006.

[11] A. B. MacKenzie and S. B. Wicker, “Game theory and the design
of self-configuring, adaptive wireless networks,” IEEE Communications

Magazine, vol. 39, no. 11, pp. 126-131, Nov. 2001.
[12] L. A. DaSilva, D. W. Petr, and N. Akar, “Static pricing and quality of

service in multiple service networks,” in Proc. 5th Joint Conference on

Information Sciences, vol. 1, pp. 355-358, Atlantic City, MD, Feb. 2000.
[13] M. Lindstrom and P. Lungaro, “Resource delegation and rewards to stim-

ulate forwarding in multihop cellular networks,” Proc. IEEE Vehicular

Technology Conference, vol. 4, pp. 2152-2156, May 2005.
[14] N. Shastry and R. S. Adve, “Stimulating cooperative diversity in

wireless ad hoc networks through pricing”, in Proc. IEEE International

Conference on Communications, vol. 8, pp. 3747-3752, Istanbul, Turkey,
Jun. 2006.

[15] Z. Han, Z. Ji, and K. J. R. Liu, “Fair multiuser channel allocation
for OFDMA networks using Nash bargaining and coalitions”, IEEE

Transactions on Communications, vol. 53, no. 8, pp. 1366-1376, Aug.
2005.

[16] Wikipedia, http : //en.wikipedia.org/wiki/Stackelberg game
[17] M. S. Barzaraa, Nonlinear programming: theory and algorithms, 2nd

ed., John Wiley & Sons, 1993.
[18] R. Yates, “A framework for uplink power control in cellular radio

systems”, IEEE Journal on Selected Areas in Communications, vol. 13,
no. 7, pp. 1341-1348, Sep. 1995.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings. 

 

552


