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Abstract

Forging new memories for facts and events, holding critical details in mind on a moment-to-

moment basis, and retrieving knowledge in the service of current goals all depend on a complex 

interplay between neural ensembles throughout the brain. Over the past decade, researchers have 

increasingly leveraged powerful analytical tools (e.g., multi-voxel pattern analysis) to decode the 

information represented within distributed fMRI activity patterns. In this review, we discuss how 

these methods can sensitively index neural representations of perceptual and semantic content, and 

how leverage on the engagement of distributed representations provides unique insights into 

distinct aspects of memory-guided behavior. We emphasize that, in addition to characterizing the 

contents of memories, analyses of distributed patterns shed light on the processes that influence 

how information is encoded, maintained, or retrieved, and thus inform memory theory. We 

conclude by highlighting open questions about memory that can be addressed through distributed 

pattern analyses.
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Introduction

There is broad consensus that the represented contents of a person’s memories, as well as 

the cognitive processes that facilitate the formation, storage, and retrieval of these memories, 

depend on the coordinated activity of neural ensembles that are distributed across numerous 

cortical and subcortical brain regions (e.g., Eichenbaum & Cohen 2001; Fuster 2009; 

Jonides et al. 2008; Martin & Chao 2001; McClelland et al. 1995; McClelland & Rogers 

2003; Schacter et al. 2007; Simons & Spiers 2003). Functional neuroimaging techniques, 

with their privileged capability of simultaneously measuring correlates of neural activity 
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throughout the brain, have been productively applied to the study of learning and memory, 

supplementing and often extending the insights derived from lesion studies and 

neurophysiological recordings. The vast majority of this work has focused on localizing and 

functionally characterizing brain areas that support distinct aspects of our multi-faceted 

mnemonic abilities (e.g., Badre & Wagner 2007; Binder et al. 2009; Carr et al. 2010; 

Davachi 2006; Ranganath 2006; Rugg & Yonelinas 2003; Wagner et al. 2005). While this 

research approach has shed considerable light on the differential contributions of distinct 

neural structures and networks to specific mnemonic operations, the past decade has 

witnessed the emergence of a powerful new approach for interrogating human brain function 

with functional neuroimaging. In particular, researchers have increasingly gained 

appreciation for the insights that can be gleaned by characterizing distributed activation 

patterns, rather than concentrating exclusively on peak regional effects. By leveraging novel 

statistical analysis techniques to extract the representational content of information-rich 

brain patterns (Haynes & Rees 2006; Norman et al. 2006), this approach has already 

advanced understanding of the neural and psychological mechanisms supporting memory, 

and it sets the stage for future discoveries.

This review aims to highlight ways in which pattern-based analyses of functional magnetic 

resonance imaging (fMRI) data have been utilized to capture and characterize the distributed 

neural representations that support human memory, as well as how leverage on these 

distributed representations has supported progress in addressing mechanistic questions about 

the workings of memory. We begin by reviewing key neuroimaging findings that suggest 

that while particular categories and concepts often preferentially engage specific cortical 

regions over others, their neural representations are likely distributed and overlapping. We 

discuss how the ability to characterize elements of these distributed neural codes with fMRI 

has paved the way for a richer understanding of the cortical organization of perceptual and 

conceptual knowledge. Critically, these representations form the foundation of semantic 

memory—our database of accumulated factual knowledge about the world—and provide the 

building blocks for episodic memories—the contextually detailed records we store of 

specific life events. The ability to track the moment-to-moment activation state of such 

representations has proven a vital new tool with which to test theories of memory.

Given that theoretical accounts of memory generally posit an essential role for attentional 

control in the regulation of memory encoding, maintenance, and retrieval (e.g., Awh & 

Jonides 2001; Badre & Wagner 2007; Chun & Turk-Browne 2007; Mecklinger 2010), we 

next review empirical demonstrations that an individual’s goal state can serve to modulate 

the activation of distributed cortical representations associated with task-relevant and 

irrelevant perceptual features or object categories. Many of the same general mechanisms 

that facilitate the top-down modulatory control of perception are likely central to the flexible 

goal-directed engagement of mnemonic processes (e.g., Rissman et al. 2009). We discuss 

recent experimental findings demonstrating that distributed neural populations in early 

visual processing areas are recruited in a targeted fashion to support the transient 

maintenance of relevant visual features, consistent with the hypothesis that short-term 

maintenance of perceptual content relies on the persistent activation of the same neural 
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ensembles that support the perception of that content (e.g., Cowan 1993; Postle 2006; 

Ruchkin et al. 2003).

An analogous theoretical framework holds that long-term storage of episodic memories 

ultimately involves plastic changes in many of the same neural ensembles that were engaged 

during the initial processing of a given episode, with subsequent retrieval of episodic 

memories involving the reinstatement of these distributed neural codes, aided by the pattern 

competition mechanisms of the medial temporal lobe (for review, see Danker & Anderson 

2010; Rugg et al. 2008). We consider how distributed pattern analyses have been exploited 

to (a) measure the activation of specific representational elements of an event memory, (b) 

track the cortical reinstatement of these representations during retrieval, (c) examine the 

intricate interplay between reactivation and subjective mnemonic experience, remembering 

and forgetting, and memory-based decision-making, and (d) test how the similarity of 

cortical patterns during encoding relates to later memory performance. This emerging line of 

research has helped elucidate the cascade of neural events that allow past experiences to 

influence present and future behavior. We conclude by highlighting open questions about 

the nature of memory that may be profitably examined through distributed pattern analyses.

Distributed cortical representations of categories and concepts

Because our memories for events are partially built upon pre-existing cortical 

representations of perceptual and semantic features, we begin by selectively reviewing what 

functional neuroimaging has revealed about how such information is represented in the 

brain, emphasizing advances stemming from the application of analytical techniques for 

capturing the rich information represented within distributed blood oxygenation level-

dependent (BOLD) fMRI activity patterns.

Characterizing the cortical activation topography of visual object categories

The field’s efforts to use fMRI to examine putative distributed cortical representations began 

with a series of innovative studies by James Haxby and colleagues that provided evidence 

suggesting that the neural representations of stimuli from discrete visual object categories 

are more distributed and overlapping than previously thought (Haxby et al. 2001; Ishai et al. 

1999, 2000). Haxby and colleagues hypothesized that, while certain patches of ventral 

temporal cortex (VTC) respond preferentially to individual visual categories, such as faces, 

houses, and chairs (see also, Aguirre et al. 1998; Epstein & Kanwisher 1998; Kanwisher et 

al. 1997; Malach et al. 1995; Puce et al. 1995), the magnitude of the BOLD response 

observed in any given VTC voxel likely carries information about the degree to which the 

features represented by neurons within that voxel are present in the stimulus (for related 

data, see Martin & Chao 2001; Tanaka 1993). Accordingly, so long as exemplars within a 

category share more features with each other than they do with exemplars from different 

categories, then each visual category should have its own ‘neural signature’ – a distributed 

VTC activation pattern that reflects the mean feature weightings for stimuli from the 

category. This framework allows for the existence of a virtually infinite number of category-

specific cortical representations without the need to posit modularized cortical 

representations of individual categories.
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Consistent with the distributed coding hypothesis, Haxby and colleagues (2001) 

demonstrated that by comparing the spatial correlation between VTC activity patterns 

measured during the perception of eight individual visual object categories, the category 

being viewed by an observer could be decoded with considerable accuracy. Importantly, 

decoding could succeed even when voxels with strong category preferences were excluded 

from analysis, indicating that information diagnostic of visual category is present in VTC 

well beyond focal category-selective regions. In addition, analyses restricted to voxels that 

responded maximally to a single category or a select group of categories also supported 

robust classification of the non-preferred categories, suggesting that even focal regions that 

appear to show functional specialization for a given stimulus class may in fact contribute to 

the representation of other classes of visual stimuli (although see Spiridon & Kanwisher 

2002 for an alternative perspective). Together, these results not only provided fMRI 

evidence for the distributed nature of visual object representations, but also served to foster 

appreciation for the rich, complementary information that can be garnered by characterizing 

activation ‘landscapes’, relative to assessing the peaks and valleys of an activity map.

It did not take long before researchers began to apply more sophisticated multivariate pattern 

classification algorithms to the analysis of fMRI data –– an approach that has become 

known as multi-voxel pattern analysis or MVPA (see Sidebar 1; Carlson et al. 2003; Cox & 

Savoy 2003; Haynes & Rees 2006; Mitchell et al. 2004; Norman et al. 2006). For example, 

Cox and Savoy (2003) used a support vector machine classifier to achieve robust 

classification of the visual category of individual object stimuli, and further demonstrated 

that the neural signatures of distinct categories are stable across scans collected more than a 

week apart. As with Haxby et al., Cox and Savoy also observed that the distributed activity 

patterns associated with certain visual object categories are more similar, and hence more 

readily confusable, with those of certain other categories; O’Toole et al. (2005) 

demonstrated that shared image-based attributes are a factor driving such neural similarity. 

Beyond distinguishing visual object categories, more recent studies have shown that activity 

patterns in the lateral occipital complex (LOC), an object-selective visual area just posterior 

to VTC, can facilitate classification of within-category exemplars, with these exemplar-level 

LOC representations generalizing across changes in stimulus size, location, and viewpoint 

(Cichy et al. 2010; Eger et al. 2008). Other work has related distributed activation patterns in 

LOC to participants’ judgments about the identity (Hsieh et al. 2010), category membership 

(Walther et al. 2009; Williams et al. 2007), or perceptual similarity (Haushofer et al. 2008; 

Weber et al. 2009) of viewed stimuli. Collectively, these studies illustrate how distributed 

pattern analyses provide a means to uncover neural representational structure and to relate 

neural representations to perception (see also, Kriegeskorte et al. 2008).

Predicting neural representations of perceptual and semantic content

While decoding-based MVPA classification approaches have offered insight into the types 

of stimulus attributes that might be represented in distributed activity patterns (e.g., 

Kriegeskorte et al. 2008; O’Toole et al. 2005), they are inherently limited in their ability to 

characterize the underlying feature space. Moreover, despite their ability to infer aspects of a 

person’s current experience from observed activity, decoding models typically lack the 

capacity to predict the activity patterns that should be associated with perceptual or 
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cognitive experiences on which the classifier was not trained. Fortunately, the canonical 

MVPA-based decoding framework can be flipped around to allow for construction of 

theoretically guided forward prediction models (see Naselaris et al. 2009 for review). 

Generative classification approaches capture the relevant representational variables that 

mediate the mapping between stimuli and evoked activity patterns. Rather than simply 

decoding a finite set of states from a finite set of observed activity patterns, neural encoding 

models seek to learn the specific features represented within each voxel, and, in so doing, 

allow for the generative prediction of future activity patterns that should be associated with a 

potentially infinite number of stimuli.

Two recent studies of visual processing illustrate the power and potential of neural encoding 

models. In the first, Kay and colleagues (2008) developed a predictive model of early visual 

encoding based on extant evidence that early visual areas represent at least three low-level 

visual dimensions––spatial position, spatial frequency, and orientation. Given that any visual 

stimulus, however complex, can be compactly represented as a set of Gabor wavelets that 

together reflect the stimulus’ attributes along these three dimensions (Daugman 1985), Kay 

et al. trained a classifier to learn the mapping between this Gabor wavelet feature space and 

fMRI activity levels, estimating the Gabor feature weightings for each voxel in early visual 

cortex as participants viewed over a thousand randomly selected natural images. The 

resulting model’s predictive power was evidenced by its remarkably accurate ability to 

forecast patterns of fMRI activity associated with viewing individual natural image stimuli 

that were not part of the training set. In the second, Naselaris and colleagues (2009) went a 

step further, demonstrating that they could reconstruct the image being viewed from the 

brain activity pattern it elicits. Again, their generative model operated on an intermediate, or 

latent, feature space, rather than on the manifest Cartesian space of the 2D images 

themselves (see also, Brouwer & Heeger 2009; c.f., Miyawaki et al. 2008; Thirion et al. 

2006). Importantly, it characterized the responses of (a) early visual cortex according to a 

structural encoding model (i.e., Gabor wavelets) and (b) higher-level visual regions 

according to a semantic encoding model, thus incorporating explicit priors regarding the 

structure and semantic content of natural images. The semantic model, based on a category-

level designation of each image, explained over half the variance in the voxel activity levels 

observed in anterior occipital cortex, and its inclusion dramatically improved the likeness of 

the reconstructed images to the observed images.

Generative classifier models have also been applied to characterize more abstract conceptual 

representations. For instance, the neuroscientific study of lexical semantics has centered on 

understanding the brain’s scheme for interpreting what the words of a language denote. In a 

pioneering study, Mitchell and colleagues (2008) trained an encoding classifier to learn the 

mapping between whole-brain fMRI activity patterns associated with a set of concrete nouns 

and a latent feature space derived from the semantic properties of the nouns. In particular, 

guided by empirical and theoretical work suggesting that semantic representations of 

concrete entities are heavily linked to their sensorimotor attributes (Barsalou 2008; Farah & 

McClelland 1991; Martin & Chao 2001), Mitchell and colleagues constructed their model’s 

semantic feature space around 25 verbs of perception and action. Each noun was then 

assigned a set of semantic feature weights based on the frequency of its textual co-
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occurrence with each verb. Impressively, by learning the neural correlates of these 

intermediate semantic features, the model could predict the future activation patterns elicited 

by test nouns. Moreover, the large-scale brain activity patterns that characterized each of the 

semantic features illustrated the highly distributed nature of conceptual representations, 

while also revealing a number of focal regions that appeared to play a differential role in the 

representation of specific features (e.g., an area of right superior temporal sulcus often 

associated with the processing of biological motion was strongly linked to the semantic 

features for the verb “run”, whereas a putative gustatory cortex area was associated with 

“eat”). In a subsequent study, Just and colleagues (2010) used a “bottom-up” factor analysis 

approach to reveal the semantic feature space (rather than relying on a preselected set of 

verb-based features), parsimoniously accounting for the multidimensional structure of noun-

related activity patterns. They found that a classifier model trained on fMRI activity patterns 

from one group of participants could predict the activity patterns elicited by novel nouns 

read by another group of participants, suggesting that the neural organization of course-level 

semantic representations is partially shared across individuals (see also, Chang et al. 2010; 

Pulvermüller et al. 2009; Shinkareva et al. 2008, 2011).

Taken together, the studies reviewed thus far illustrate how aspects of a person’s perceptual 

experience and semantic cognition can be reliably decoded, or even reconstructed, from 

distributed fMRI activity patterns. We next consider how distributed pattern analyses have 

been used to test theories of attention and working memory.

Attention, working memory, and distributed cortical representations

During everyday experiences, we frequently find ourselves bombarded with many more 

stimuli than we can simultaneously process. To be effective, we often must selectively 

attend to the subset of stimuli or stimulus features that are most relevant to our goals, using 

top-down control to regulate the processing of environmental stimuli based on current 

attentional priorities. At the neural level, considerable evidence indicates that the cortical 

representations of goal-relevant stimuli or stimulus features are up-regulated and/or 

sharpened, while representations of irrelevant stimuli/features are suppressed (e.g., 

Desimone & Duncan 1995; Kastner & Pinsk 2004). In addition to regulating stimulus 

processing, top-down attentional processes also support the generation and maintenance of 

“mental images”, with mental imagery serving to activate many of the same cortical regions 

that are involved in bottom-up stimulus processing (e.g., Kosslyn 2005; O’Craven & 

Kanwisher 2000). Likewise, the ability to maintain recently encountered stimuli in working 

memory (WM) is thought to depend on cortical regulation by top-down attentional control. 

In this section, we review some of the methodological strategies and key results that have 

emerged from research on the goal-directed attentional modulation of distributed fMRI 

activity patterns, beginning with the effects of attention during on-line stimulus processing 

and mental imagery, and then turning to studies of WM. Because the encoding and retrieval 

of representations in episodic memory are also modulated by top-down control (e.g., Race et 

al. 2009), many of the findings reviewed here are directly relevant to our later discussion of 

distributed representations in episodic memory.
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Attentional influences on distributed cortical patterns

In the first fMRI study to apply MVPA techniques to examine the influence of goal-directed 

attention on distributed sensory representations, Kamitani and Tong (2005) examined 

whether the focus of attention—directed toward one of two superimposed oriented line 

gratings—could be decoded from distributed brain activity patterns measured from early 

visual areas (see also, Haynes & Rees 2005). They reasoned that if different line orientations 

are associated with distinct neural signatures, then it should be possible to track the 

activation state of neural ensembles associated with a given line orientation and use this 

information to infer the degree to which an observer is allocating attention to that particular 

orientation. Indeed, Kamitani and Tong (2005) demonstrated that when subjects viewed a 

single oriented line grating the elicited activity patterns in individual visual areas, including 

areas V1-V4, contained sufficient information to facilitate orientation decoding. 

Subsequently, to evaluate the influence of attention on these distributed neural 

representations, participants were scanned while viewing a “plaid” stimulus composed of 

two overlapping orthogonally oriented line gratings, one of which was cued to be task-

relevant. Critically, an MVPA classifier initially trained to differentiate the neural signatures 

of the two line orientations when each was presented alone was also able to decode which of 

the two line orientations was being attended when the stimuli were concurrently displayed. 

Distributed information about the attended orientation was present even at the earliest 

cortical level of visual processing (V1). Thus, despite equivalent bottom-up input, 

attentional signals served to bias neural patterns in favor of the task-relevant stimulus/

feature (see Sidebar 2).

Subsequent studies have documented the attentional modulation of distributed cortical 

patterns across a variety of low-level and high-level stimulus materials, ranging from 

simultaneously presented motion fields (Kamitani & Tong 2006; Liu et al. 2011) to 

simultaneously presented visual objects (Macevoy & Epstein 2009; Reddy & Kanwisher 

2006). Moreover, it is not only possible to decode which of multiple stimuli is currently 

being attended, but also what aspect of a given stimulus is being attended. For instance, 

distributed fMRI patterns across face-selective voxels in the fusiform and occipital cortices 

can be used to decode whether participants are preferentially attending to the race or the 

gender of a face (Chiu et al. 2010). Taken together, these studies provide powerful evidence 

that attentional priorities and expectations sculpt the distributed neural representations of 

visual stimuli, even at very early stages of cortical processing.

Researchers have also leveraged MVPA methods to decode the subjective contents of visual 

imagery, with initial results largely supporting prior univariate fMRI studies that 

demonstrate that self-generated mental images depend on the recruitment of the same neural 

populations that support stimulus perception (Kosslyn 2005). For instance, after training an 

MVPA classifier to differentiate the distributed cortical patterns associated with perception 

of the letters “X” and “O”, Stokes and colleagues (2009) showed that the classifier could 

also succeed at decoding participants’ imagery of these particular letters. Likewise, the 

category of imagined objects can be decoded from the same VTC voxel patterns that are 

engaged during the perception of stimuli from these categories (Cichy et al. 2011; Reddy et 

al. 2010), and MVPA techniques can even reconstruct a course visual representation of what 
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a participant is currently imagining based on fMRI activity patterns in retinotopic cortex 

(Thirion et al. 2006). Collectively, these studies of attention and mental imagery shed light 

on the specificity with which distributed cortical representations that support stimulus 

perception can be modulated by top-down attentional signals in a goal-directed fashion. This 

insight has provided powerful leverage on the nature of mnemonic representations and a 

means to exploit these representations to test mechanistic models of working memory.

Distributed representations in working memory

One critical way in which memory serves as bridge between our past and present is through 

the transient maintenance of just experienced or just retrieved stimuli. By allowing 

behaviorally relevant representations to remain active across brief intervals of time, WM 

facilitates a host of complex cognitive abilities (Baddeley 1992). From one theoretical 

perspective, recently dubbed the sensory recruitment model of WM (Serences et al. 2009), 

WM does not depend on neural systems specialized for transient memory maintenance; 

rather WM is an emergent product of sustained interactions between top-down control 

signals and neural representations of perceptual, conceptual, linguistic, affective or other 

stimuli (e.g., Cowan 1993; D’Esposito 2007; Postle 2006; Ruchkin et al. 2003). In this 

model, the sustained allocation of attention to the neural ensembles (or a subset thereof) that 

are engaged during the neural encoding of encountered or retrieved stimuli serves to actively 

maintain these representations. The sensory recruitment model contrasts with the influential 

theoretical proposal that short-term maintenance involves the transfer of relevant stimulus 

representations to one or more dedicated storage buffers, putatively in prefrontal and/or 

parietal cortices (e.g., Baddeley 1992). From this WM systems perspective, the actively 

maintained neural representations of stimuli are distinct from those encoded during initial 

stimulus processing.

Some empirical support for the sensory recruitment model derives from demonstrations that 

during WM delay-periods there is persistent firing of stimulus-selective VTC neurons (e.g., 

Fuster & Jervey 1981; Miyashita & Chang 1988) and sustained fMRI activation in sensory 

cortical areas thought to differentially represent the maintained stimuli (e.g., Postle et al. 

2003). Other data also suggest that the transient maintenance of neural representations in 

sensory regions involves top-down support from prefrontal and/or parietal cortices, 

presumably in the form of active neural communication between these regions (e.g., Fuster 

2009; Gazzaley et al. 2004). That said, many fMRI studies that have reported sustained 

BOLD activity in sensory cortex during the delay-period of WM tasks have documented 

relatively weak signal levels in these regions compared to the strong signals evoked during 

the stimulus encoding and decision stages of the tasks. While low-amplitude BOLD activity 

during WM delays does not necessarily rule out a role for sensory areas in short-term 

maintenance of visual representations (see Rissman et al. 2004), traditional univariate fMRI 

analyses have been limited in their ability to relate delay-period BOLD activity in sensory 

areas to the maintenance of specific stimuli or features.

The ability of MVPA techniques to sensitively index the activation state of distributed 

neural representations of specific stimuli in sensory cortex has caught the attention of 

researchers interested in delineating the structure and neural substrates of WM. For example, 
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two contemporaneous fMRI studies exploited MPVA methods to directly test the sensory 

recruitment model of WM (Harrison & Tong 2009; Serences et al. 2009; Figure 1). In 

Harrison and Tong’s (2009) study, each WM trial began with the sequential presentation of 

two distinct orientation gratings, followed by a cue indicating whether the task was to 

maintain the first or the second grating across a subsequent 11-s delay. Following the delay, 

participants were presented a third unique grating and judged which direction it was rotated 

relative to the maintained grating. Strikingly, while BOLD signal levels in visual cortex fell 

dramatically after stimulus encoding, analyses of the activity patterns in V1-V4 during the 

delay-period revealed that there was sufficient information, within each visual region and 

temporally extended across the entire delay-period, to accurately decode the content of WM. 

Importantly, since participants were cued as to which grating they should maintain only after 

both gratings had offset, the diagnostic brain activity patterns measured during the delay-

period were not attributable to residual hemodynamic responses evoked during stimulus 

encoding. That is, top-down influences of attention must have acted upon a stimulus-specific 

neural representation, maintaining the representation over the delay. Moreover, a classifier 

trained on fMRI data that captured purely stimulus-driven neural responses to each grating 

was subsequently able to successfully generalize its orientation predictions when applied to 

the delay-period data from the WM task, providing further support for the sensory 

recruitment model.

Serences and colleagues (2009) also demonstrated that the orientation of a maintained line 

grating could be reliably decoded from delay-period activity patterns in early visual cortex. 

In their experiment, the orientation gratings were presented on colored backgrounds, with 

task cues indicating whether the grating or the color hue should be maintained. MVPA 

revealed that delay-period activity patterns only contained diagnostic information about the 

relevant stimulus dimension––when orientation was relevant, the classifier achieved above-

chance decoding of orientation but not of color, with the converse being true when color was 

relevant. Moreover, delay-period decoding was more robust when based on voxel patterns 

from V1, relative to from later visual areas, suggesting that maintenance-related delay-

period activity can manifest itself at the earliest cortical stage of visual processing (though 

the experimental design left open the possibility that classification was partially based on the 

residual hemodynamic effects of attentional modulation that took place during stimulus 

encoding).

Harrison and Tong’s (2009) and Serences and colleagues’ (2009) data provide powerful 

demonstrations that, despite low signal amplitudes, sustained BOLD activity patterns 

associated with WM maintenance resemble the activity patterns associated with the bottom-

up perception of the same stimuli, suggesting that the neural representations that support on-

line sensory processing are also actively maintained in WM over delays (rather than being 

transferred to a separate WM buffer). Further extending this conclusion, Ester and 

colleagues (2009) showed that the orientation of lateralized gratings can be decoded not only 

from delay-period activity in contralateral visual areas involved in the initial perception of 

the gratings, but also from ipsilateral visual areas. This suggests that sensory recruitment 

during visual WM maintenance may extend well beyond the retinotopic representation of 

the stimulus, with involvement of ipsilateral cortices potentially serving to bolster the 
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fidelity of the maintained representation by incorporating additional feature-selective neural 

ensembles into the total pool of neurons operating in support of stimulus retention.

MPVA has also been used to investigate the active maintenance of distributed 

representations of content retrieved from long-term memory (Lewis-Peacock & Postle 

2008). In this study, participants initially learned arbitrary cue-associate pairings of stimuli 

from three visual categories (faces, locations, and common objects), and were then scanned 

while recalling the learned associate of a given cue and maintaining this representation over 

an 11-s delay-period. Critical associative pairs consisted of stimuli from two distinct classes 

(e.g., a face-location association), and MVPA examined BOLD activity patterns relating to 

neural representations of the presented cue and the retrieved associate. Importantly, when a 

classifier trained (on independent data) to differentiate between the neural patterns 

associated with the three stimulus categories was subsequently tested on the delay-period 

data, it revealed relatively sustained activation of cortical patterns tied to the visual classes 

of both the cue and the retrieved associate, as compared with patterns tied to the third 

(irrelevant) stimulus class. The presence of sustained associate-related neural patterns 

documents the maintenance of internally generated (i.e., retrieved) representations that 

prospectively anticipate future events (Bar 2009; Schacter et al. 2007). Moreover, this study 

revealed that stimulus category-selective cortical patterns were widely distributed, extending 

from sensory cortical areas to prefrontal cortex (PFC). However, despite the presence of 

diagnostic voxels in PFC, the classifier achieved similar success when PFC voxels were 

excluded, but failed to yield above-chance decoding when exclusively trained on PFC 

voxels. These data further suggest that WM representations are not exclusively maintained 

within a PFC-mediated storage buffer. Rather, WM appears to depend on the targeted and 

sustained activation of cortical representations tied to the distinguishing features of the 

relevant memoranda.

It is important to note that no study to date has established a direct link between the 

sustained engagement of stimulus-selective cortical activity patterns and WM behavioral 

performance. To the extent that distributed cortical representations of stimuli are actively 

maintained to support goal-directed behavior that bridges short delays between perception 

and action (e.g., Fuster 2009), then one would expect the fidelity of these cortical 

representations to be closely related to participants’ accuracy and/or response times on the 

WM tasks. Future studies, perhaps using challenging WM tasks that are structured to 

provide sensitive behavioral assays of performance (e.g., Curtis et al. 2004), may ultimately 

provide compelling evidence that delay-period activity patterns support behavior, ruling out 

the possibility that they are an epiphenomenal consequence of back-propagating neural 

feedback from higher-level areas.

Decoding putative top-down control signals in frontoparietal cortex

The studies of attention and WM discussed thus far have primarily been concerned with 

documenting the consequences of top-down control processes on the activation state of 

neural ensembles within posterior perceptual cortices. MVPA techniques can also be 

leveraged to gain insights into the putative frontoparietal sources of these regulatory control 

signals. For instance, information about an individual’s current attentional priorities can be 
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extracted from fMRI activity patterns within dorsal regions of the frontal and parietal lobes. 

Whereas these regions have been commonly associated with the control of spatial attention 

and action intention (e.g., Bisley & Goldberg 2010; Corbetta & Shulman 2002), recent 

MVPA results have suggested that these areas may also support nonspatial feature-based 

attention, such as specifying which color or which motion direction happens to be relevant 

on a given trial (Liu et al. 2011), or specifying whether the processing of a face’s gender 

should be prioritized over its race (Chiu et al. 2010). The role of these frontoparietal 

structures may also extend to the specification and maintenance of more abstract task sets, 

such as representing which stimulus-response mapping scheme (Bode & Haynes 2009; 

Woolgar et al. 2010), perceptual categorization rule (Li et al. 2007), or mathematical 

operation (Haynes et al. 2007) should be applied at a given moment in time.

Beyond examining the degree to which frontoparietal activity patterns reflect the neural 

coding of specific attentional priorities and/or task set configurations, researchers have used 

MVPA to identify activity patterns associated with the act of shifting one’s attention 

between aspects of environmental stimuli or between representations held in WM (Esterman 

et al. 2009; Greenberg et al. 2010; Tamber-Rosenau et al. 2011). Although several frontal 

and parietal lobe structures exhibited activity patterns that could decode select types of 

attentional shifts, these studies converged in implicating the medial superior parietal cortex 

as playing a domain-general role in the transient reconfiguration of one’s attentional set. We 

anticipate that further applications of MVPA to the study of attentional control and WM will 

serve to strengthen mechanistic understanding of how frontal and parietal cortical regions 

interact to specify current attentional priorities, to update these priorities as needed, and 

ultimately to modulate the activation state of neuronal ensembles that represent goal-

relevant (or irrelevant) features.

Information coding within the human medial temporal lobe

As the preceding sections illustrate, MVPA techniques have provided unique leverage on the 

cortical representations of sensory features, perceptual categories, semantic content, and 

other higher-level cognitive states. With respect to memory theory, application of distributed 

pattern analyses has yielded compelling evidence in favor of the sensory recruitment model 

of WM. Given the demonstrated power of these techniques for revealing characteristics of 

neural representations, recent work has extended MVPA to test hypotheses regarding 

information coding in the human medial temporal lobe (MTL). By acquiring fMRI data with 

a higher spatial resolution than that afforded by standard whole-brain imaging parameters 

(see Carr et al. 2010), extant studies have attempted to characterize fine-grained voxel 

activity patterns within the specific anatomical subregions that comprise the MTL, including 

the hippocampus (dentate gyrus, CA1, CA3, and subiculum) and surrounding MTL cortical 

areas (parahippocampal cortex (PHC), perirhinal cortex (PRC), and entorhinal cortex 

(ERC)). Much as researchers have investigated the representational structure of specific 

visual areas by determining the types of features that can be decoded from each area’s 

distributed fMRI activity patterns, the application of MVPA methods to high-resolution 

MTL data has begun to yield insights into how event content is coded in distinct MTL 

subregions.
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Illustrative of the approach, Diana and colleagues (2008) used MVPA to evaluate the 

hypothesis that certain MTL regions––specifically, the hippocampus and PHC––are 

selectively tuned to the representation of spatial information (Burgess et al. 2002; Epstein & 

Kanwisher 1998; O’Keefe & Nadel 1978), whereas other MTL regions––specifically, 

PRC––are selectively tuned to the representation of complex visual objects (Bussey & 

Saksida 2007). In their fMRI study, pattern classification analyses were applied to 

hippocampal, PHC, and PRC data acquired while participants viewed stimuli from five 

categories (scenes, faces, toys, other common objects, and abstract shapes). Given that 

visual scenes inherently contain more spatial features than stimuli from the other four 

categories, neural structures that are highly specialized for topographical representation of 

space should differentiate scene from non-scene stimuli, while showing minimal sensitivity 

to the distinctions between the non-scene categories. In contrast to this prediction, however, 

Diana et al. observed that PHC activity patterns reliably distinguished between all five 

stimulus categories, and that, even when scenes were excluded from analysis, above-chance 

decoding of the four non-scene visual categories was achieved. Beyond PHC, above-chance 

decoding was not observed when analyzing activity patterns in the hippocampus or PRC. 

While these latter null results should be cautiously interpreted (see Preston et al. 2010 for hr-

fMRI data demonstrating face and scene novelty and subsequent memory effects in PRC), 

the successful decoding of visual categories based on PHC activity patterns suggests that 

distributed neural representations within PHC carry information that distinguishes between 

multiple visual categories. At the same time, it should be emphasized that the features coded 

by PHC neural ensembles remain a subject of debate (Bar et al. 2008; Epstein 2008).

Although Diana et al. were unable to decode the viewing of complex scenes relative to other 

visual categories from hr-fMRI activity patterns in human hippocampus, recent hr-fMRI 

data indicate that it is possible to decode which of two complex scenes is being viewed 

based on distributed BOLD signals in the hippocampus (as well as in ERC and PHC) 

(Bonnici et al. 2011). Moreover, extensive neurophysiological data in rodents (Moser et al. 

2008) and recent intracranial electrocorticography data in humans (Ekstrom et al. 2003) 

have revealed and characterized hippocampal ‘place cells’ that are selectively tuned to 

specific environmental locations. While the prevailing view from non-human animal work is 

that place cells are uniformly distributed throughout the hippocampus, without local 

anatomical asymmetries in location-selective tuning (e.g., Redish et al. 2001), Hassabis and 

colleagues (2009) examined whether it is possible to predict an individual’s location within 

a virtual-reality environment based on distributed hr-fMRI activity patterns from human 

MTL. In this study, participants navigated two unique rooms, each consisting of four target 

positions. Decoding analyses were conducted using a searchlight analysis approach 

(Kriegeskorte et al. 2006), whereby a series of MVPA classifiers were serially trained and 

tested on the activation patterns within small spherical clusters of voxels, allowing 

evaluation of the representational content of relatively focal brain regions. The analyses 

revealed activation clusters within the posterior hippocampus that supported above-chance 

classification of an individual’s location within a room, and activation clusters within PHC 

that supported differentiation between the two rooms. Univariate analyses, on the other 

hand, failed to reveal activity differences associated with specific locations or rooms. From 

these results, the authors suggested that the ability of the hippocampus to discriminate 
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individual locations within a room may reflect its role in the representation of an allocentric 

cognitive map of the room’s layout, whereas PHC may extract contextual information from 

each room. Moreover, it was argued that the ability to decode spatial location from hr-fMRI 

data challenge the proposal that place cells are uniformly distributed, raising the possibility 

that location-selective hippocampal neurons in the human have sufficient consistency in 

their anatomical distribution to permit reliable location preferences to emerge at the voxel 

level.

It should be noted, however, that Hassabis et al. did not directly evaluate whether hr-fMRI 

was critically necessary to successfully decode location from MTL activity patterns, and 

thus it is unclear whether their analyses exploited fine-scale irregularities in the distribution 

of location-selective neurons or whether information about a person’s location was coded at 

a courser scale. Bearing on this issue, a recent fMRI study by Rodriguez (2010), which also 

used a virtual navigation task, revealed that standard-resolution fMRI activity patterns in the 

hippocampus could be used to predict in which of four locations a participant was currently 

located. Given the increased coarseness with which hippocampal BOLD activity was 

sampled in the Rodriguez study, it is possible that location decoding in both studies relied 

not on hippocampal maps of allocentric space, but rather on more abstract hippocampal 

representations of the visuo-semantic qualities and/or internally generated verbal labels 

associated with each goal location in the virtual environments. Future work will be needed 

to critically examine whether hr-fMRI affords advantages for location-based decoding, and 

if so, what this indicates about the nature of the underlying MTL representations.

Taken together, the preceding studies highlight ways in which MVPA techniques provide 

leverage on the nature of information coding in specific MTL subregions. At the same time, 

these studies do not address whether distributed MTL patterns can be used to differentiate 

between complex individual events. Promising new data from Chadwick and colleagues 

(2010) suggest that distributed analyses of hr-fMRI data from the MTL may ultimately 

enable decoding of rich episodic memories. In this experiment, participants recalled one of 

three brief movie clips on each retrieval trial (each clip had been viewed prior to scanning); 

the resulting fMRI data were submitted to searchlight classification analysis. Impressively, 

activity patterns within the hippocampus, ERC, and parahippocampal gyrus each 

independently supported above-chance decoding of the retrieved episode, demonstrating 

that, with sufficient variance in the perceptual and/or semantic content of events, MTL voxel 

patterns contain information that differentiates between complex episodes (Figure 2). While 

it remains to be seen whether the decoding of rich, multi-attribute event memories is further 

facilitated by simultaneously considering MTL activation patterns along with distributed 

patterns in cortical and subcortical structures beyond the MTL, Chadwick et al.’s findings 

suggest content-based biases in the distributed coding of event memories in the MTL.

Given these initial successes in information decoding from human MTL, it is important to 

emphasize that future work is needed to determine whether and how distributed MTL 

activity patterns are linked to behavioral performance on tasks requiring category 

discrimination and spatial navigation, as well as those assaying memory encoding, 

consolidation, and retrieval. We also anticipate that MVPA techniques will ultimately 

provide leverage on the role of hippocampal subregions in pattern separation (i.e., creating 
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distinctive neural codes for highly similar events) and pattern completion (i.e., retrieving 

multiple event details associated with a partial cue). For instance, using MVPA to quantify 

the representational similarity of neural patterns elicited by pairs of events (e.g., 

Kriegeskorte et al. 2008) could provide a measure of how the two events are represented 

within distinct components of the hippocampal circuit, such as the CA3 and CA1 subfields 

(for initial MVPA findings bearing on pattern separation within MTL, see Bonnici et al. 

2011).

Distributed representations in episodic memory

Beyond providing leverage on information coding within the MTL, distributed pattern 

analyses have yielded new insights into the psychological and neural processes supporting 

the encoding and retrieval of episodic memories. In this section we review how distributed 

pattern analyses have been used to (a) measure the activation of specific representational 

elements of an event memory, (b) track the cortical reinstatement of these representations 

during retrieval, and (c) examine the intricate interplay between reactivation and subjective 

mnemonic experience, remembering and forgetting, and memory-based decision-making. 

MVPA methods have also shed light on how the similarity of across-event encoding patterns 

relate to later memory performance. As we emphasize, the ability of distributed analyses to 

quantify the strength of cortical representations, as well as the similarity between 

representations, has provided novel purchase on central theoretical questions.

Cortical reinstatement and event recollection

In the first MVPA study of episodic memory, Polyn and colleagues (2005) tested two 

critical predictions of the contextual reinstatement hypothesis of memory retrieval (Tulving 

& Thompson 1973)—namely that the act of recalling an event from memory involves the 

targeted reactivation of stored representations of the properties (attributes) of the event, 

which, in turn, serve as additional cues that guide and constrain subsequent mnemonic 

searches. Some support for the first prediction has come from fMRI studies, implementing 

univariate analyses, demonstrating that the cortical regions active during episodic retrieval 

tend to mimic those active during event encoding, suggesting that retrieval is associated with 

the reinstatement of cortical representations that were present during event encoding (e.g., 

Danker & Anderson 2010; Kahn et al. 2004). For instance, regions of auditory and visual 

sensory cortex are respectively reactivated during the cued retrieval of auditory and visual 

memories (Nyberg et al. 2000). Polyn and colleagues expanded upon this earlier work, using 

MVPA to index the engagement of content-sensitive cortical activation patterns during 

encoding, and then examining the reemergence of these cortical patterns during recall. 

Importantly, to the extent that the reactivation of encoding-related activity patterns 

constitutes neural evidence for the psychological construct of contextual reinstatement, 

Polyn and colleagues further predicted that cortical reactivation would temporally precede 

the recall of items from memory. In their experiment, participants were scanned while 

encoding famous faces, famous locations, and common objects, and subsequently freely 

recalling the names of as many items as possible. Based on the fMRI encoding data, a 

classifier was trained to characterize the activity patterns that distinguished the three 

stimulus categories; subsequently, the classifier quantified the re-engagement of these 
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category-sensitive activity patterns during recall. Strikingly, the results indicated that the 

cortical activity pattern associated with the encoding of a particular stimulus category was 

reactivated prior to participants’ behavioral expressions that they had successfully retrieved 

an exemplar from the category (see Gelbard-Sagiv et al. 2008 for related single-unit 

neurophysiology data). While these results do not specify what attributes were reinstated, 

nor whether reinstatement depended on strategic processes, the temporal dynamics of the 

observed cortical reactivation is consistent with the hypothesis that subsequent retrieval 

depends upon the internal generation of effective retrieval cues.

Given the demonstration that cortical reinstatement accompanies event recall, Johnson and 

colleagues (2009) sought to determine whether reinstatement is a specific marker of event 

recollection or whether reinstatement also occurs during familiarity-based recognition 

decisions. To do so, participants were scanned as they encoded visual words under one of 

three orienting task contexts. During a subsequent recognition test, participants indicated 

whether they “remembered” details surrounding each word’s encoding presentation or, 

absent the experience of “remembering”, participants indicated their confidence that the 

item was old or new; the latter responses were argued to reflect recognition decisions based 

on gradations in item familiarity (e.g., Yonelinas et al. 2005). During analysis, a classifier 

was trained to distinguish the activity patterns associated with each of the three encoding 

contexts, and then applied to the retrieval data. Consistent with Polyn et al., Johnson and 

colleagues observed robust cortical reinstatement during “remembered” items, as revealed 

by the classifier’s ability to decode the item’s encoding context from the retrieval data. 

Importantly, the classifier also demonstrated above-chance context decoding for test items 

recognized as old but for which participants were unwilling to respond “remembered”.

Based on this latter finding, Johnson et al. argued that the cortical reinstatement of 

contextual details is not sufficient to produce the subjective experience of recollection, 

which could have important implications for psychological and neural theories of 

recognition memory (Eichenbaum et al. 2007; Mayes et al. 2007; Wixted & Mickes 2010; 

Wixted & Squire 2011; Yonelinas et al. 2010). For example, it has been argued that 

recollection-based recognition depends on pattern completion processes, whereas 

familiarity-based recognition depends on pattern matching between retrieval cues and stored 

representations (e.g., Gonsalves et al. 2005; Norman & O’Reilly 2003). However, to the 

extent that cortical reinstatement subserves familiarity-based recognition, this would suggest 

that familiarity also depends, at least in part, on pattern completion. It should be noted, 

though, that subjective reports of the bases for recognition decisions likely depend on a 

signal-detection decision process, whereby the amount of recollected event details is 

weighed relative to an internally calibrated decision threshold (Dunn 2008; Rotello et al. 

2004; Wixted & Mickes 2010). While Johnson et al. encouraged participants to adopt a 

lenient threshold for warranting a “remembered” response, it is possible that participants 

subjectively experienced some amount of recollection even on those trials for which they 

ultimately reported recognition in the absence of “remembering”. While future work is 

needed to determine whether cortical reinstatement contributes to pure familiarity-based 

recognition decisions, Johnson et al. illustrate how MVPA methods, by providing an index 

of cortical reinstatement, can provide unique leverage on pressing, and long-debated, 
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theoretical issues. Their approach also sets the stage for investigating the ways in which 

frontoparietal circuits “read out” retrieved mnemonic evidence, integrating this evidence to 

guide memory-based decisions (e.g., Dobbins et al. 2002; Donaldson et al. 2010; Wagner et 

al. 2005).

Decoding mnemonic states

While the preceding studies focused on measuring cortical reinstatement during retrieval, 

other studies have used MVPA techniques to characterize the neural signatures of distinct 

cognitive states associated with memory retrieval. For instance, Quamme and colleagues 

(2010) examined the neural processes that support the psychological construct of “listening 

for recollection”—an internally directed attentional state posited to promote recollection of 

event details and bias mnemonic decision-making toward the reliance on recollected details 

over perceived familiarity. To this end, a classifier was trained to distinguish between neural 

signatures of familiarity-oriented versus recollection-oriented retrieval, and was then used to 

index the relative engagement of the two retrieval orientations during individual trials from 

an independent retrieval task. The latter task required participants to differentiate old items 

from highly similar lures (e.g., a plural version of a word that had initially been studied in 

the singular form; Hintzman et al. 1992), and thus emphasized the recollection of event 

details, since targets and similar lures would both elicit familiarity. Strikingly, a searchlight 

MVPA approach revealed a region of right inferior parietal cortex that exhibited a pre-

stimulus activity profile consistent with a putative role in “listening for recollection”. 

Moreover, increased engagement of this recollection-related activity pattern was associated 

with reduced false recognition of the similar lures, suggesting that this region plays a role in 

promoting detailed episodic retrieval or in biasing attention toward recollected content 

during decision-making. While right-lateralized parietal activation is not commonly reported 

in univariate fMRI studies of episodic retrieval (e.g., Wagner et al. 2005), Quamme et al.’s 

innovative methodological approach highlights a promising avenue for investigating how 

goal-specific attentional states gate retrieval and influence the weighing of evidence during 

memory-based decisions.

Quamme et al.’s study is grounded by a rich behavioral literature documenting the active 

nature of episodic retrieval. Indeed, extensive evidence indicates that retrieval goals can 

render certain features of a past experience more relevant than others, with attentional 

processes serving to enhance the processing of prioritized content (e.g., Jacoby et al. 2005). 

For example, during source memory retrieval, people can adopt single-agenda or multi-

agenda source monitoring strategies (Johnson et al. 1993)––the former emphasize 

monitoring of a single source detail (e.g., deciding whether a stimulus was studied in a 

particular source context), whereas the later emphasize monitoring of multiple potential 

sources. Recently, McDuff et al. (2009) had participants perform a source retrieval task that 

emphasized either single- or multi-agenda monitoring; in both conditions, a particular source 

was defined as the “target” source to which participants were to respond “yes”. When a 

classifier that had been trained to differentiate between three distinct encoding contexts was 

applied to the retrieval data, cortical reinstatement of the target source context was revealed 

to be more robust during single- relative to multi-agenda source monitoring. This outcome 

suggests that retrieval processes were focused on recovering information related to the target 
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source. In contrast, cortical reinstatement of the actual source context (i.e., when it diverged 

from the target source), although robust in both conditions, was selectively associated with 

participants’ behavioral performance during multi-agenda monitoring. Along with Quamme 

et al.’s data, these findings indicate that a person’s retrieval goals influence the probability 

that cortical representations of encoded details will be reinstated, as well as the manner in 

which reinstated details are weighed during mnemonic decision-making.

In related work, Rissman and colleagues (2010) used MVPA to examine whether the 

mnemonic states of recollection, graded item familiarity, and perceived novelty are 

associated with distinguishable activity patterns, and whether the emergence of these 

patterns depends on retrieval orientation (explicit vs. implicit). Using fMRI data from a face 

memory task, separate MVPA classifiers were trained to identify activity patterns associated 

with subjective recognition states (irrespective of memory accuracy), as well as activity 

patterns that might reveal an item’s true old/new status (irrespective of subjective 

recognition). Analyses revealed a remarkably accurate ability to classify whether a given 

face was subjectively experienced as old or new, as well as whether recognition was 

associated with vivid recollection, or a strong vs. weak sense of familiarity (Figure 3). 

Perhaps most strikingly, a participant’s subjective memory state could be decoded from 

her/his brain patterns even when using a classifier that had been trained on brain patterns 

from other participants, suggesting a high degree of neuroanatomical consistency across 

individuals and a relatively course coding of the cortical patterns associated with perceived 

oldness and novelty. In contrast to this robust classification of subjective memory states, the 

ability to decode whether or not a particular face had been previously experienced was 

rather limited (when controlling for subjective memory state or when participants adopted 

an implicit retrieval orientation); for example, discrimination between true and false 

recognition was only modestly above chance. Moreover, whereas distributed activity 

patterns in frontal, parietal, and MTL areas provided highly diagnostic information about 

subjective memory states, the ability to distinguish true from false recognition was limited to 

perceptual cortical regions (e.g., fusiform cortex), consistent with univariate data suggesting 

that true and false memories often differ most in their perceptual qualities (Schacter & 

Slotnick 2004).

Rissman et al.’s results have implications for memory theory and for possible forensic 

extensions of fMRI-based MVPA memory decoding. First, from a neuroscientific 

perspective, classifier-derived “importance maps” revealed that widely distributed and 

coarsely coded neural patterns in frontal, parietal, occipitotemporal, and MTL regions 

putatively underlie the subjective experiences of novelty, familiarity, and recollection. 

Second, the finding that mnemonic classification performance was substantially diminished 

when test probes were processed under an implicit retrieval orientation (i.e., when 

participants were not instructed to interrogate their memories for the faces) further 

emphasizes the profound influence that goal states exert on mnemonic retrieval processes. 

Third, from a forensic perspective, these data highlight the potential power of distributed 

fMRI analyses for decoding a person’s recognition of specific stimuli, while raising 

concerns about whether these methods are adequate to uncover a person’s true experiential 

history.
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Beyond single event memory

Memory for the past is often reinstated during the encoding and retrieval of subsequent 

events that share attributes (i.e., overlap) with the past event (O’Reilly & McClelland 1994). 

Recently, such reinstatement has been argued to foster the building of integrative multi-

event representations that support across-event generalization (Shohamy & Wagner 2008) 

and protect memories from interference-driven forgetting (Kuhl et al. 2010). Exploiting the 

ability of MVPA techniques to measure content-specific cortical reactivation, Kuhl and 

colleagues (2011) examined the behavioral consequences of reinstating neural 

representations of competing (past) memories during the attempted retrieval of subsequently 

acquired target memories. In this experiment, participants initially encoded and recalled a 

set of arbitrary associations between words and pictures of either famous faces or scenes 

(“A-B” associations). Subsequently, for a subset of the words, participated encoded a new 

(“C”) associate, drawn from the opposite category as the old (“B”) associate. Thus, when 

participants were later challenged to recall the most recent (“C”) associate of each word, the 

relative degree of face- or scene-related reactivation in VTC served as a quantitative index 

of the selectivity with which participants were able to bring the target associate back to 

mind. This classifier-derived measure of reactivation fidelity was found to predict both 

overall retrieval success as well as the phenomenological experience of remembering 

specific event details, with the fidelity of reactivation substantially diminished during 

competitive retrieval trials (Figure 4). Moreover, lower-fidelity reactivation of target (“C”) 

memories was associated with a greater likelihood of later remembering the competing 

(“B”) events, raising the possibility that the failure to selectively reactivate VTC 

representations associated with the target memory reflected the retrieval of both the target 

and its competitor (activation in frontoparietal cortical regions independently supported this 

conclusion). As such, Kuhl et al.’s data indicate that one consequence of reinstating older 

memories when attempting to remember newer memories is reduced forgetting of the past 

(i.e., reduced retroactive interference). Future research, exploiting MVPA approaches, 

promises to further reveal whether failures of selective retrieval result in the encoding of 

integrated multi-event representations that confer additional benefits (e.g., fostering 

mnemonic consolidation) as well as costs (e.g., fostering across-event memory blending that 

gives rise to memory errors and distortion).

Distributed activity during event encoding

In addition to providing leverage on the psychological and neural mechanisms subserving 

episodic retrieval, MVPA methods also have utility for testing hypotheses about event 

encoding. For example, following in the tradition of numerous fMRI studies that have used 

univariate analyses to examine the relationship between encoding activity in frontoparietal 

and MTL regions and later memory behavior (for recent meta-analyses of such studies, see 

Kim 2011; Uncapher & Wagner 2009), Watanabe and colleagues (2011) demonstrated that 

multi-voxel patterns within MTL are predictive of whether visually presented pseudowords 

will be subsequently recognized or forgotten. From these data alone, it is unclear whether 

the predictive value of the classifier was driven by diagnostic information contained within 

distributed activity patterns per se, or whether it capitalized on the fact that many MTL 

voxels tended to show greater BOLD signal on trials associated with later recognition. 

Indeed, a voxel-wise univariate analysis of the data (liberally thresholded) revealed greater 
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parahippocampal activity during the encoding of subsequently remembered items. Future 

studies are needed to assess whether MVPA analyses offer increased sensitivity for 

documenting neural signatures of memory formation within the MTL and beyond. If so, then 

distributed pattern analyses may provide novel leverage on pressing issues, such as how to 

characterize the differential computations subserved by the hippocampus and MTL cortical 

regions during encoding (e.g., Brown & Aggleton 2001; Davachi et al. 2003; Eichenbaum et 

al. 2007; Mayes et al. 2007; Wixted & Squire 2011).

Approaching episodic encoding from a theory-driven perspective, Jenkins and Ranganath 

(2010) examined whether MVPA methods can predict subsequent recall of the temporal 

context of a given event memory. The ability to remember when an event occurred is 

thought to depend, at least in part, on the fact that contextual cues inevitably drift from one 

moment to the next, a phenomenon that allows successively encoded events to each be 

associated with a partially unique temporal context (see Polyn et al. 2009 for a recent 

instantiation of this model). In Jenkins and Ranganath’s experiment, participants were 

scanned while encoding visual objects and later were asked to estimate the approximate time 

at which each stimulus had been presented. Univariate analyses revealed that regions of the 

PFC and hippocampus exhibited greater activity immediately following the encoding of 

stimuli for which participants subsequently provided the most accurate estimates of the time 

of encounter. MVPA was then used to test the hypothesis that memory for temporal context 

would be most accurate when neural activity patterns associated with temporally adjacent 

stimuli were maximally distinctive. This prediction was motivated by theory suggesting that 

increased trial-to-trial drift in temporal context would result in individual events being 

associated with a greater number of trial-unique temporal context cues, thus allowing 

participants to more accurately estimate the time of encounter. In support of this hypothesis, 

activity patterns within a region of left rostrolateral PFC (RLPFC) showed a greater degree 

of trial-to-trial distinctiveness for items that later received an accurate estimate of temporal 

occurrence than those that received an inaccurate estimate. In other words, when the RLPFC 

activity pattern observed during a given trial was compared to the activity patterns observed 

during the trials that preceded or followed it, the multivariate distance between these 

patterns was found to progressively increase with temporal lag, with the overall magnitude 

of pattern dissimilarity predicting subsequent temporal memory. Importantly, this finding 

held even when activity patterns from RLPFC were mean-centered, indicating that this 

putative neural correlate of temporal context indexed the pattern itself and not temporal drift 

in the overall BOLD signal. Jenkins and Ranganath speculated that the RLPFC’s 

representation of temporal context might be tied to its proposed role in continuously 

updating high-level rule representations that specify which items and relationships are 

relevant in a given behavioral context; this in turn might serve to segment ongoing 

experience into discrete episodes. Regardless of whether this interpretation turns out to be 

correct, this study highlights how MVPA approaches can assess mechanistic theories of 

episodic memory. Future studies should examine whether temporally drifting multi-voxel 

patterns can also account for serial position effects in free recall behavior, given that the 

development of the temporal context model has been heavily influenced by free recall output 

patterns (Howard & Kahana 2002).
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The effects of representational similarity during encoding on later memory were also 

examined by Xue and colleagues (2010). Rather than focus on context, this study evaluated 

whether the degree of neural pattern similarity across multiple encounters with a given item 

is predictive of later memory for the item. These authors sought to test the encoding 

variability hypothesis (e.g., Bower 1972), which posits that repeated exposures to a given 

stimulus will benefit subsequent memory to the extent that the features encoded during each 

exposure are non-redundant with those encoded during other exposures. At the neural level, 

this hypothesis might predict that the less similar the distributed cortical pattern is across an 

item’s encoding exposures, the higher the likelihood the item will be later remembered (e.g., 

Wagner et al. 2000). In apparent contradiction to this prediction, Xue and colleagues 

observed that later remembered stimuli were associated with more similar distributed 

activity patterns across study encounters than were later forgotten stimuli. This positive 

relationship between neural pattern similarity and subsequent memory was observed in 

many brain regions, including areas of the prefrontal, parietal, occipitotemporal, and MTL 

cortices. These findings raise the possibility that when common attributes are attended 

across successive encounters with an item, the mnemonic representation of the item is 

strengthened. This conclusion would appear to stand in conflict with leading computational 

theories of memory, which demonstrate that, at least with respect to context, greater 

encoding variability gives rise to superior subsequent remembering (e.g., Howard & Kahana 

2002; Raaijmakers & Shiffrin 1992).

Given the centrality of encoding variability in models of memory, including its role in 

explaining empirically robust behavioral phenomena, such as the spacing effect, it seems 

likely that Xue et al.’s findings will motivate follow-up studies that more fully examine the 

circumstances in which increased neural variability may help or hinder memory 

performance. As such, this study is the latest to illustrate how analyses of distributed activity 

patterns are affording leverage on increasingly more precise mechanistic hypotheses, leading 

to novel theoretical advances. We expect the coming years will bring considerable progress 

in delineating how encoding computations relate to later memory performance, with much 

of this progress stemming from the use of distributed analyses to quantify the similarity 

between cortical representations of encoded events, as well as between cortical 

representations of retrieval cues and of encoded stimuli.

Conclusions and Future Directions

As we have sought to highlight, functional neuroimaging research over the past decade has 

been revolutionized by use of machine learning techniques to extract the representational 

content of distributed brain activity patterns. While traditional univariate statistical analysis 

approaches have informed, and will continue to inform, our understanding of the functional 

contributions of specific brain regions, MVPA approaches have opened new avenues for 

experimentation and have begun to offer fresh insights into the psychological and neural 

underpinnings of human cognition. Our goal in this review has been to discuss and critically 

evaluate some of the ways that researchers have applied MVPA methods to investigate the 

mechanisms of human memory. While use of these methods to gain leverage on the 

workings of memory is at a relatively early stage, we believe their promise is clear, as 

evidenced by the many insights derived from their application over the past decade. Below 
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we summarize some of these key insights, and we conclude by highlighting open questions 

that can be profitably addressed through future applications of distributed pattern analyses.
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MVPA multi-voxel pattern analysis
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Sidebar 1; Multi-voxel pattern analysis

MVPA typically begins with the division of each participant’s fMRI data into training 

and test patterns, where “patterns” refer to brain activity measures extracted from those 

segments of fMRI data that one wishes to classify (e.g., individual time points or trial/

block-specific activity estimates). Each training pattern is labeled as an example of a 

particular class. From the training patterns, the classifier formulates a model that can then 

be used to predict whether a new pattern (i.e., a test pattern) is likely to be an example of 

one class or another. In the model, some voxels are weighted more strongly than others, 

owing to their differential value in informing the classifier’s predictions. To achieve 

stable results, the process of training and testing the classifier is typically repeated with 

different subsets of the total data set in an iterative fashion, known as cross-validation. 

The accuracy of the classifier’s predictions provides an index of how robustly examples 

from different classes can be distinguished. Classification accuracy is often improved by 

limiting the number of voxels fed into the classifier (i.e., feature selection), since the 

inclusion of noisy or uninformative features can disrupt the classifier’s ability to capture 

diagnostic patterns in the data.
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Sidebar 2: Decoding cortical columns or larger-scale maps?

Kamitani and Tong (2005) hypothesized that orientation decoding capitalizes on slight 

biases in the distribution of orientation-tuned cortical columns within each voxel. The 

seemingly random spatial variance in fine-scale columnar architecture and its supporting 

micro-vasculature was posited to lead individual voxels in visual cortex to exhibit weak 

but consistent orientation-tuning, which could be exploited by a pattern classifier 

supplied with activation states from many such voxels. This conjecture has been 

challenged by data indicating that V1 contains a topographic map of orientation at a 

much coarser spatial scale than previously realized (Freeman et al. 2011). This may 

explain why modest spatial smoothing of V1 activity patterns has little detrimental effect 

on orientation decoding (Freeman et al. 2011; Op de Beeck 2010; but see Kriegeskorte et 

al. 2010; Swisher et al. 2010). Moreover, the close correspondence between cortical maps 

of orientation and radial position could imply that previous demonstrations of orientation 

decoding were in fact capturing neural correlates of observers’ preferential attention to 

positions along the long-axis of oriented gratings. Nevertheless, the fact that information 

regarding an attended stimulus can be reliably extracted from early visual cortex activity 

patterns provides a means to investigate the neural substrates of attention and WM.
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SUMMARY POINTS

1. MVPA techniques offer a powerful means for characterizing and quantifying the 

strength of information representation in the brain.

2. Cortical representations of stimuli are often highly distributed. By identifying 

the ‘neural signatures’ of particular stimuli or classes of stimuli, MVPA can 

evaluate how the brain carves up the sensory world, how frontoparietal 

mechanism subserve the representation and implementation of attentional 

priorities, as well as how moment-to-moment fluctuations of attention affect 

stimulus processing and memory.

3. The transient maintenance of information in working memory involves 

recruitment of the same cortical ensembles that mediate the perceptual 

representation of the information.

4. Activity patterns within subregions of the medial temporal lobe carry 

information about attributes of an observer’s environment, allowing neural 

decoding of the observer’s spatial location and the category of viewed stimuli.

5. Recalling a past event often involves the reinstatement of cortical activity 

patterns that were elicited during the initial encoding of the event. Through 

measuring cortical reinstatement, MVPA methods are beginning to shed new 

light on the psychological and neural processes underlying free recall, source 

monitoring, the subjective experience of recollection and familiarity, and 

competition-laden retrieval.

6. Retrieval goals substantially influence the pattern of cortical activity elicited by 

a retrieval cue. Retrieval oriented towards recollection of particular attributes of 

past experience fosters cortical reinstatement of those event details; cortical 

patterns that differentiate old and new stimuli vary depending upon whether 

memory is probed explicitly or implicitly.

7. Encoding-related distributed activity patterns in neocortex and the medial 

temporal lobe are informative predictors of subsequent memory performance. 

The similarity of distributed neural patterns across events influences later 

retrieval success.

8. Extant studies highlight how MVPA techniques can test mechanistic models of 

memory, as well as how these methods can elucidate factors promoting 

remembering, or alternatively, increasing the likelihood of forgetting.
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FUTURE ISSUES

1. Generative classification approaches offer an exciting avenue for future research 

into the neural mechanisms of working memory and episodic retrieval. The 

utilization of a latent feature space circumvents the need to train a classifier on a 

pre-defined set of stimuli or contexts, allowing for the interrogation of a far 

greater range of internally represented mnemonic content (and potentially even 

facilitating a rudimentary reconstruction of individual memories).

2. Because MVPA techniques can provide a neural metric of inter-stimulus 

similarity, they offer a means of drawing on neural data to test computational 

models of memory (e.g., how experience drives representational differentiation 

in semantic memory; how item-item similarity gives rise to memory errors; how 

subregions of the hippocampus support pattern separation).

3. The utility of memory often rests in its ability to guide subsequent thought and 

behavior. By quantifying the strength of mnemonic evidence elicited by a 

retrieval cue, distributed pattern analyses pave the way for researchers to 

examine how such evidence is monitored and accumulated in the service of 

decision-making and action. Such an approach may also reveal the presence of 

nonconscious mnemonic evidence that unknowingly shapes our interpretations 

of the world.

4. Progress in understanding future thinking (simulating possible future events and 

actions; Schacter et al. 2007) and prospective memory (remembering to initiate 

a planned behavior at some point in time; McDaniels & Einstein 2007) may 

come from efforts to decode the contents of simulated events and intended 

actions (e.g., Haynes 2011).

5. A complex interplay between midbrain, striatal, and medial temporal lobe 

structures is thought to support the enhanced encoding of motivationally salient 

events (Lisman & Grace 2005; Shohamy & Adcock 2010). Future research can 

exploit the ability of MVPA to decode neural representations of reward value 

(Kahnt et al. 2010) and of experienced or perceived affective states (Peelen et al. 

2010; Rolls et al. 2009) to relate trial-to-trial variance in these dimensions of 

stimulus salience to neuromodulation and memory outcomes.

6. MVPA could potentially provide an assay of memory replay during sleep 

(O’Neill et al. 2010). By relating the replay of specific representational content 

within the hippocampus and neocortex to subsequent memory outcomes, 

distributed pattern analyses may provide a unique window onto consolidation 

processes.

7. It is possible to decode aspects of an individual’s mental state using a classifier 

trained exclusively on the data from other individuals (Clithero et al. 2010; 

Davatzikos et al. 2005; Just et al. 2010; Poldrack et al. 2009; Rissman et al. 

2010; Shinkareva et al. 2008, 2011). Such observations raise the possibility that 

classifiers can be used to identify individuals who deviate from the group in 
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some fundamental way––e.g., processing strategy, stage of neural development, 

or neurological health.
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Figure 1. 
Recruitment of feature-specific visual representations during working memory maintenance. 

(A) Data illustrating that the orientation of a to-be-remembered line grating can be decoded 

from multi-voxel activity patterns measured from visual areas V1-V4 throughout the entire 

duration of the working memory delay-period. The diagram below the graph depicts the 

presentation times of the two sample gratings, the ensuing cue (indicating which of the two 

gratings should be maintained), and the final test grating (upon which participants make 

their memory-based judgment). The classifier’s ability to decode which orientation was 

maintained in working memory (green circles) was statistically indistinguishable from its 

ability to decoded the orientation of a perceived grating that was presented throughout the 

entire trial (red triangles). Adapted from Harrison & Tong (2009). (B) Delay-period activity 

patterns from V1 contain sufficient information to decode which of two orientations a 

participant was maintaining in working memory (on trials in which participants were cued to 

remember orientation), as well as to decode which of two colors participants were 

maintaining (on trials in which participants were cued to remember color). In both cases, 

decoding performance was at chance for the irrelevant stimulus dimension. Adapted from 

Serences et al. (2009).
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Figure 2. 
Decoding the content of episodic retrieval from medial temporal lobe activity patterns. (A) 
Selected frames from one of three movie clips viewed by participants prior to scanning. 

During each trial of the scanning session, participants closed their eyes and attempted to 

recall one of the three clips as vividly as possible. (B) Illustration of the spherical searchlight 

analysis approach. High-resolution fMRI data were collected from the MTL, and 

classification analyses were run on the data from small spherical cliques of voxels to 

evaluate the accuracy with which local activity patterns could be used to decode which 

episode was recalled on each trial. (C) Frequency heat maps for the left and right 

hippocampi illustrating the number of participants (out of 10) for whom searchlights 

centered at each voxel showed above-chance mnemonic decoding performance. High 

across-participant consistency was observed in bilateral anterior and right posterior 

hippocampus. (D) Comparison of classification performance within the hippocampus (HC), 

entorhinal cortex (ERC) and parahippocampal gyrus (PHG) revealed above-chance (dashed 

line: 33%) classification in all three ROIs, with decoding accuracy being significantly higher 

within the HC. Adapted from Chadwick et al. (2010) and Hassibis et al. (2009).
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Figure 3. 
Decoding the mnemonic status of individual stimuli. (A) Classifier performance, as indexed 

by the mean area under the receiver operating characteristic curve (AUC), is plotted for 

MVPA models trained to differentiate: recognized studied faces (hits) from unrecognized 

novel faces (correct rejections; CRs), hits associated with subjective reports of contextual 

recollection from those for which participants only indicated a strong feeling of familiarity, 

and hits associated with strong versus weak familiarity. Neural discriminability was well 

above chance (dashed line) for each classification; individual participant classification 

results are indicated by the black dots. (B) Group mean importance maps highlight lateral 

frontoparietal and medial temporal lobe voxels wherein greater activity drove the classifier 

toward a Class A prediction (green) or Class B prediction (violet). Comparisons across the 

importance maps suggest that bilateral hippocampus (orange arrows) and left angular gyrus 

(blue arrow) were associated with the classifier’s prediction of Recollection, whereas these 

regions were less important for the classification of Strong vs. Weak Familiarity. Rather, 

classification of item recognition strength appeared to depend on dorsal posterior parietal 

cortex (yellow arrows) and left lateral PFC regions (white arrows) that were also observed 

for the Hits vs. CRs classification. (C) Results from a second fMRI experiment reveal that a 

classifier’s ability to discriminate old faces from new faces was dramatically diminished 

when recognition was probed implicitly (participants made male/female judgments rather 

than memory judgments), relative to old/new decoding performance during explicit retrieval 

conditions. Adapted from Rissman, Greely, & Wagner (2010).
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Figure 4. 
Selective cortical reinstatement of content-specific activity patterns scales with the 

specificity of episodic retrieval, diminishes with interference from competing memories, and 

predicts subsequent memory outcomes. (A) Receiver operating characteristic curves depict 

the ability of an MVPA classifier, trained to discriminate face-vs. scene-related activity 

patterns measured from ventral occipitotemporal cortex during event encoding, to index the 

reinstatement of these patterns during cued associative retrieval. The degree of neural 

reinstatement tracked participants’ phenomenological retrieval experience, such that 

decoding performance was most robust when participants reported recalling the specific face 

or scene associated with a given cue word (Specific Recollection; AUC = 0.83), 

significantly lower when they only were able to recall the generic category (General 

Recollection; AUC = 0.75), and no better than chance when participants reported that they 

could not recall whether the associate was a face or scene (Don’t Know; AUC = 0.54). (B) 
Neural evidence for selective reactivation of the target category was diminished during 

competitive retrieval (AC trials) relative to non-competitive retrieval (AB trials). Histograms 

depict the mean distribution of trial-specific estimates of target category reinstatement and 

illustrate that the classifier’s predictions were less heavily skewed towards the target 

category when interference was present from an overlapping association. (C) Weaker 

reactivation of the C term (i.e., the target associate) during AC retrieval was linked to an 

increased likelihood that the competing AB associate would later be remembered in a post-

scan memory test. This subsequent memory effect, which was observed regardless of 

whether AC retrieval yielded Specific or General Recollection, suggests that lower fidelity 

(i.e., less selective) reactivation during AC retrieval may in fact reflect the coactivation of 

both the target (C term) and competing (B term) associations. Adapted from Kuhl et al. 

(2011).
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