
Distributed Representations of Tuples for Entity Resolution

Muhammad Ebraheem Saravanan Thirumuruganathan Shafiq Joty† Mourad Ouzzani Nan Tang
Qatar Computing Research Institute, HBKU, Qatar †Nanyang Technological University, Singapore
{mhasan, sthirumuruganathan, mouzzani, ntang}@hbku.edu.qa, srjoty@ntu.edu.sg

ABSTRACT

Despite the efforts in 70+ years in all aspects of entity res-
olution (ER), there is still a high demand for democratizing
ER – by reducing the heavy human involvement in label-
ing data, performing feature engineering, tuning parameters,
and defining blocking functions. With the recent advances
in deep learning, in particular distributed representations of
words (a.k.a. word embeddings), we present a novel ER sys-
tem, called DeepER, that achieves good accuracy, high effi-
ciency, as well as ease-of-use (i.e., much less human efforts).
We use sophisticated composition methods, namely uni- and
bi-directional recurrent neural networks (RNNs) with long
short term memory (LSTM) hidden units, to convert each
tuple to a distributed representation (i.e., a vector), which
can in turn be used to effectively capture similarities be-
tween tuples. We consider both the case where pre-trained
word embeddings are available as well the case where they
are not; we present ways to learn and tune the distributed
representations that are customized for a specific ER task
under different scenarios. We propose a locality sensitive
hashing (LSH) based blocking approach that takes all at-
tributes of a tuple into consideration and produces much
smaller blocks, compared with traditional methods that con-
sider only a few attributes. We evaluate our algorithms on
multiple datasets (including benchmarks, biomedical data,
as well as multi-lingual data) and the extensive experimental
results show that DeepER outperforms existing solutions.

PVLDB Reference Format:
Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq
Joty, Mourad Ouzzani, and Nan Tang. Distributed Representa-
tions of Tuples for Entity Resolution. PVLDB, 11 (11): 1454-
1467, 2018.
DOI: https://doi.org/10.14778/3236187.3236198

1. INTRODUCTION
Entity resolution (ER) (a.k.a. record linkage), a funda-

mental problem in data integration, has been extensively
studied for 70+ years [20], from different aspects such as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 11
Copyright 2018 VLDB Endowment 21508097/18/7.
DOI: https://doi.org/10.14778/3236187.3236198

Labelling
Entity
Pairs

Learning
Rules/ML

Blocking

T1

T2

Matched
Entity
Pairs

Applying
Rules/

ML
models

Figure 1: A Typical ER Pipeline

declarative rules [8, 46, 50], machine learning (or probabilis-
tic) [23, 8, 44, 13], and crowdsourcing [49, 26], to name
a few, and in many domains such as health care [20], e-
commerce [26], data warehouses [53], and many more.

Despite the great efforts in all aspects of ER, there is still
a long journey ahead in democratizing ER. Adding to the
difficulty is the rapidly increasing size, number, and vari-
ety of sources of big data. Consider Figure 1 for a typical
ER pipeline that consists of four main steps: (1) labeling
entity pairs as either matching or non-matching pairs; (2)
learning rules/ML models using the labeled data1; (3) block-
ing for reducing the number of comparisons; and (4) apply-
ing the learned rules/ML models. Step (1) decides what
are the matched entities. Step (2) reasons about why they
match. Step (3) reduces the number of pairwise comparisons
for step (4) (i.e., how), usually by expert specified blocking
functions, which generate blocks such that matched entities
co-exist in the same block.

Challenges. The major challenge of current solutions in de-
mocratizing ER is that each step needs human-in-the-loop.
Even a “simple” step, such as step (1), which is thought to be
trivial, turned out to be difficult in practice [19]. Moreover,
the human resources required in each step might be differ-
ent – knowing what (i.e., step (1)) is easier than telling why
(i.e., step (2)) or how (i.e., step (3)). Wouldn’t it be great
if we significantly reduce human cost for each step, but with
a comparable if not better accuracy?

Observations. (i) In practice, step (1) is tedious because
humans can only label up to several hundred (or few thou-
sands) entity pairs and are error-prone. Intuitively, the
hope to reduce this effort is to have a “prior knowledge”
about what values would most likely match. (ii) Regard-
less of using rule-based [46, 50] or ML-based [23, 8] meth-
ods, step (2) requires experts to provide (domain-specific)
similarity functions from a large pool, for example, SimMet-
rics (https://github.com/Simmetrics/simmetrics) has 29
symbolic similarity functions. In addition, experts may also

1Rules can also be hand-crafted based on domain knowledge.

1454

need to specify the thresholds. Ideally, this step needs a uni-
fied metric that can decide different cases of matched enti-
ties, from both syntactic and semantic perspectives. (iii) For
step (3), a blocking function is typically defined over few
attributes, e.g., country and gender in a table about de-
mographic information, without a holistic view over all at-
tributes or the semantics of the entities.

Our Methodology. We present DeepER, a system for
democratizing ER that needs much less labeled data by
considering prior knowledge of matched values (observa-
tion (i)), captures both syntactic and semantic similarities
without feature engineering and parameter tuning (obser-
vation (ii)), and provides an automated and customizable
blocking method that takes a holistic view of all attributes
(observation (iii)) – all of these targets are achieved by grace-
fully using distributed representations, or DRs for short, (of
tuples), a fundamental concept in deep learning (DL).

DRs of tuples is an extension of DRs of words (a.k.a. word
embeddings) where a word is mapped to a high dimensional
dense vector such that the vectors for similar words are
close to each other in their semantic space. Well known
methods include word2vec [40] and GloVe [43]. Word em-
beddings have become conventional wisdom in other fields
such as NLP and have many appealing properties: (a) They
are known to well capture semantic string similarities, e.g.,
“William” and “Bill”, and “Apple Phone” and “iPhone”.
(b) Using pre-trained word embeddings (e.g., GloVe is
trained on a corpus with 840 billion tokens), we can tremen-
dously reduce the human effort of labeling matched values
per dataset. (c) Due to their generality, it is possible that the
same intermediate representation (such as from word2vec,
GloVe, or fastText) can work for multiple datasets out-
of-the-box. In contrast, traditional ER approaches require
hand tuning for each dataset. (d) DR toolkits such as fast-
Text [9] provide support for almost 294 languages allowing
them, and thereby DeepER, to work seamlessly on different
languages. (e) They provide a new opportunity of blocking
over the vectors representing the tuples.

Contributions. In this paper, we presentDeepER, a novel
ER system powered by DRs of tuples, which is accurate,
efficient, and easy-to-use.

1. [Distributed representations of tuples for ER.]
We present two methods for effectively computing DRs of
tuples by composing the DRs of all the tokens within all
attribute values of a tuple. The first method is a simple
averaging of the tokens’ DRs while the second uses uni- and
bi-directional recurrent neural networks (RNNs) with long
short term memory (LSTM) hidden units to convert each
tuple to a DR (i.e., a vector).

2. [Learning/tuning distributed representations.]
We introduce an end-to-end approach to tune the DRs that
is customized for a specific ER task which improves the per-
formance of DeepER (Section 3).

3. [Blocking for distributed representations.] We
propose two efficient and effective blocking algorithms based
on the DRs for tuples and locality sensitive hashing, which
takes the semantic relatedness of all attributes into account
(Section 4).

4. [Experiments.] We conducted extensive experiments
(Section 5). DeepER shows superior performance compared
to a state-of-the-art ER solution as well to published meth-

ods on several benchmark datasets from citations, products,
and proteomics. Finally, the proposed blocking delivers out-
standing results under different conditions.

2. DISTRIBUTED REPRESENTATIONS OF

TUPLES FOR ENTITY RESOLUTION

2.1 Entity Resolution
Let T be a set of entities with n tuples and m attributes
{A1, . . . , Am}. Note that these entities can come from one
table or multiple tables (with aligned attributes). We denote
by t[Ai] the value of attribute Ai on tuple t. The problem of
entity resolution (ER) is, given all distinct tuple pairs (t, t′)
from T where t 6= t′, to determine which pairs of tuples refer
to the same real-world entities (a.k.a. a match).

2.2 Distributed Representations of Words
We briefly describe the concept of distributed representa-

tions (DRs) of words (please refer to [27] for more details).
DRs of words (a.k.a.word embeddings) are learned from the
data in such a way that semantically related words are often
close to each other; i.e., the geometric relationship between
words often also encode a semantic relationship between
them. This embedding method seeks to map each word
in a given vocabulary into a high dimensional vector with a
fixed dimension d (e.g., d = 300 for GloVe). In other words,
each word is represented as a distribution of weights (pos-
itive or negative) across these dimensions. Figure 2 shows
some sample word embeddings.

Often, many of these dimensions can be independently
varied. The representation is considered “distributed” since
each word is represented by setting appropriate weights over
multiple dimensions while each dimension of the vector con-
tributes to the representation of many words. DRs can ex-
press an exponential number of “concepts” due to the abil-
ity to compose the activation of many dimensions [27]. In
contrast, the symbolic (a.k.a. discrete) representation of-
ten leads to data sparsity and requires substantially more
data to train ML models successfully [6]. Word embeddings
have been successfully used to solve various tasks such as
topic detection, document classification, and named entity
recognition.

A number of methods have been proposed to compute the
DRs of words including word2vec [40], GloVe [43], and fast-
Text [9]. Generally speaking, these approaches attempt to
capture the semantics of a word by considering its relations
with neighboring words in its context. In this paper, we use
GloVe, which is based on a key observation that the ratios
of co-occurrence probabilities for a pair of words have some
potential to encode a notion of its meaning. GloVe formal-
izes this observation as a log-bilinear model with a weighted
least-squares objective function. This objective function has
a number of appealing properties such as the vector dif-
ference between the representations for (man, woman) and
(king, queen) are roughly equal.

2.3 Distributed Representations of Tuples
Similar to word embeddings, given a tuple, we need to

convert it to a vector representation, such that we can mea-
sure the similarity between two tuples by computing the
distance between their corresponding vectors.

Consider a tuple t with m attributes {A1, . . . , Am}. Let
v(t[Ak]) be the vector representation of value t[Ak], and v(t)

1455

Algorithm 1 A Simple Averaging Approach

1: Input: Tuple t, a pre-trained dictionary such as GloVe
2: Output: Distributed representation v(t) for t
3: for each attribute Ak of t do
4: Tokenize t[Ak] into a set of words W
5: Look up vectors for tokens wl ∈W in GloVe
6: vk(t) := average of vectors of tokens in t[Ak]
7: v(t) := concatenation of v(t[Ak]), for k ∈ [1,m]

0.9 0.7 0.2 0.10.9 0.9 -0.2king 0.7

0.9 0.7 0.2 0.10.9 -0.1 0.8queen -0.2

0.9 0.7 0.2 0.10.2 -0.2 0.9woman 0.9

0.9 0.7 0.2 0.10.3 0.8 -0.1man 0.1

d-dimension

Figure 2: Sample Word Embeddings

be the vector representation of tuple t. Also, we write v(x)
the vector representation of a word x. We also write |v| as
the number of dimensions of vector v.

Running Example. We use the following example to il-
lustrate our approaches. Table 1 provides a toy relation
with 2 tuples and Table 2 provides word embeddings with 3
dimensions.

Table 1: Toy Dataset for ER
Tuple ID A1 : Name A2 : City

t1 Bill Gates Seattle
t2 William Gates Seattle

Table 2: Sample Word Embeddings
Word Distributed Representation
Bill [0.4, 0.8, 0.9]

William [0.3, 0.9, 0.7]
Gates [0.5, 0.8, 0.8]
Seattle [0.1, 0.1, 0.2]

Below, we describe two approaches for computing v(t): a
simple approach and a compositional approach. We then
explain how we compute the similarity between two vectors.

A Simple Approach – Averaging

For each attribute value t[Ak], we first break it into individ-
ual words using a standard tokenizer. For each token (word)
x, we look up the GloVe pre-trained dictionary and retrieve
the d-dimensional vector v(x). If a word is not found in
the GloVe dictionary (dubbed out-of-vocabulary scenario)
or if the attribute has a NULL value, GloVe contains a spe-
cial token Unk to represent such out-of-vocabulary word
(we postpone the discussion of a better handling of out-of-
vocabulary values to Section 3). Tokens such as IDs and
some numeric values are often assigned Unk.

In our initial approach, the vector representation for an
attribute value v(t[Ak]) is obtained by simply averaging the

Algorithm 2 A Compositional Approach

1: Input: Tuple t, a pre-trained dictionary such as GloVe
2: Output: Distributed representation v(t) for t
3: for each attribute Ak (k ∈ [1,m]) of t do
4: Tokenize t[Ak] into a set of words W
5: Look up vectors for tokens wl ∈W in GloVe
6: Pass the GloVe vectors for tokens through a LSTM-

RNN composer to obtain v(t[Ak])
7: v(t) := v(t[Am])

w1

w2

wk

0.9 0.7 0.2 0.10.9 0.7 -0.2 0.1

0.9 0.7 0.2 0.10.3 -0.4 -0.6 -0.7

0.9 0.7 0.2 0.10.1 -0.5 0.7 -0.4

LSTM cells

LSTM cells

LSTM cells

h1

h2

hk

Words
of a tuple

Word embedding lookup layer RNN
composition layer

a composed vectord-dimension

Figure 3: RNN with LSTM in the Hidden Layer

vectors of its tokens x in t[Ak]. The vector representation
v(t) of tuple t is the concatenation of all vectors v(t[Ak])
(k ∈ [1,m]). That is, if each attribute value corresponds
to a d-dimensional vector, |v(t)| = d × m. Algorithm 1
describes this process.

Example 1: Using our running example, v1[t1] =
[0.45, 0.8, 0.85] and v1[t2] = [0.4, 0.85, 0.75]. v2[t1] = v2[t2]
= [0.1, 0.1, 0.2]. The DR for t1 and t2 are obtained by con-
catenating the DRs for A1 and A2. ✷

A Compositional Approach – RNN with LSTM

We can see that the averaging based approach ignores the
word order. However, it has the appealing property of being
simple and very efficient to train. An alternative approach
for computing v(t) is to use a compositional technique mo-
tivated by the linguistic structures (e.g., n-grams, sequence,
and tree) in Natural Language Processing (NLP). In this
approach, instead of simple averaging, we use a neural net-
work to semantically compose the word vectors (retrieved
from GloVe) into an attribute-level vector. Considering the
word order (and linguistic structure in general) could be im-
portant as many attributes contain multi-word content such
as title in the citation dataset and description in the prod-
uct dataset. As we shall show in our experiments, there are
certain challenging datasets where being cognizant of word
order improves performance. Furthermore, a tuple binds the
attributes of a single entity, thus the attributes are related.
Thus, an appropriate compositional approach should con-
sider the relation between them rather than treating them
separately. Different neural network architectures have been
proposed to consider different types of linguistic structures,
the most popular of which use a recurrent structure [36].

We use uni- and bi-directional recurrent neural networks
(RNN) with long short term memory (LSTM) hidden units
[28], a.k.a. LSTM-RNNs. As shown in Figure 3, RNNs en-
code a sequence of words for all attribute values (i.e., words
of a tuple) into a composed vector by processing its word

1456

vectors sequentially (i.e., the word embedding lookup layer),
at each time step, combining the current input word vector
with the previous hidden state (i.e., the RNN composition
layer). The outputted composed vector of v[t] has x dimen-
sions, where x is determined by LSTM and may be different
than d. RNNs thus create internal states by remembering
the output of the previous time step, which allows them to
exhibit dynamic temporal behavior. We can interpret the
hidden state hi at time i as an intermediate representation
summarizing the past. The output of the last time step hk

thus represents the tuple. LSTM cells contain specifically
designed gates to store, modify or erase information, which
allow RNNs to learn long range sequential dependencies.
The LSTM-RNN shown in Figure 3 is unidirectional in the
sense that it encodes information from left to right.

Bidirectional RNNs [45] capture dependencies from both
directions, thus provide two different views of the same se-
quence. For bidirectional RNNs, we use the concatenated

vector [
−→
hk,
←−
hk] as the final representation of the attribute

value, where
−→
hk and

←−
hk are the encoded vectors from left to

right and right to left, respectively.
Algorithm 2 gives the overall compositional process. For

each word token in an attribute, we first look up its GloVe
vector. Then we use a “shared”2 LSTM-RNN to compose
each attribute value in a tuple into a vector. This results in
a vector v(t) of d dimensions. It is important to note that
the parameters of the LSTM-RNN model need to be learned
on the ER task in a DL framework before it can be used to
compose vectors for other off-the-shelf classifiers.

The order of attributes might not have a big effect when
the number of attributes is small (such as 4 for the citations
benchmark datasets). However, it might become significant
when the number of attributes is large. In this case, a sim-
ple heuristic would be to ensure that semantically related
attributes are close to each other. This is performed by
profiling the data to find possible data dependencies. For
example, if one identified that two attributes Ai and Aj are
closely related (e.g. Country often determines Capital), then
these can be ordered so that they are closer to each other.

Example 2: Assume that we used a LSTM with output
dimension of 2. In other words, it processes the entire tuple
and produces a DR of dimension 2. Assume that v(t1) =
[0.45, 0.23] and v(t2) = [0.42, 0.28]. ✷

Computing Distributional Similarity

Given the DR of a pair of tuples t and t′, the next step
is to compute the similarity between their DRs v(t) and
v(t′). Note that for the DRs computed by averaging, each
vector has d × m dimensions. We apply the cosine simi-
larity on every d dimensions (each d dimension corresponds
to one attribute), which results in a m-dimensional simi-
larity vector. For the DRs computed by LSTM, each vector
has x dimensions, we can use methods including subtracting
(vector difference) or multiplying (hadamard product) the
corresponding vector entries, resulting in a x-dimensional
similarity vector.

Example 3: Continuing our running example, the similar-
ity vector for tuples t1 and t2 for averaging is [0.99, 1.0]. The

2By the term ‘shared’ we mean the parameters of the model
are shared across the attributes. In other words, the LSTM-
RNNs for different attributes in a table share the same pa-
rameters.

Algorithm 3 ER – Classifier

1: Input: Table T , training set S
2: Output: All matching tuple pairs in table T
3: // Training
4: for each pair of tuples (t, t′) in S do
5: Compute the distributed representation for t and t′

6: Compute their distributional similarity vector
7: Train a classifier C using the similarity vectors for S and

true labels
8: // Testing
9: for each pair of tuples (t, t′) in T do
10: Compute the distributed representation for t and t′

11: Compute their distributional similarity vector
12: Predict match/mismatch for (t, t′) using C

first component corresponds to cosine similarity of name and
second the city. The distributional similarity for LSTM with
vector differencing is [0.03,−0.05]. ✷

2.4 ER as a Classification Problem using Dis
tributed Representations of Tuples

ER is typically treated as a binary classification prob-
lem [23, 21, 42, 8]. Given a pair of tuples (t, t′), the classifier
outputs true (resp. false) to indicate that t and t′ match
(resp. mismatch). The Fellegi-Sunter model [23] is a for-
mal framework for probabilistic ER and most prior machine
learning (ML) works are simple variants of this approach.

Intuitively, given two tuples t and t′, we compute a set of
similarity scores between aligned attributes based on prede-
fined similarity functions. The vectors of known matching
(resp. non-matching) tuple pairs – that are also referred to
as positive (resp. negative) examples – are used to train
a binary classifier (e.g., SVMs, decision trees, or random
forests). The trained binary classifier can then be used to
predict whether an arbitrary tuple pair is a match.

It is fairly straightforward to build a classifier for ER using
the above steps. For each pair of tuples in the training
dataset, we compute their DRs through either Algorithm 1
or Algorithm 2. We then compute the similarity between
tuple pairs using different metrics. Given a set of positive
and negative matching examples, we pass their similarity
vectors to a classifier such as SVM along with their labels.
Algorithm 3 provides the pseudocode.

3. LEARNING AND TUNING

DISTRIBUTED REPRESENTATIONS
Composing DRs of words to generate DRs of tuples, as dis-

cussed in Section 2, works effectively for an ER task based
on two assumptions: (i) there exist pre-trained word em-
beddings for most (if not all) words in the dataset; and
(ii) the pre-trained word embeddings that were trained in
a task agnostic manner are sufficient for the ER task. How-
ever, the above two assumptions may not hold for many
real-world scenarios. The datasets that follow the above as-
sumptions are considered as general data with full coverage
(Section 3.1); the datasets that are not well covered, are con-
sidered as general data with partial coverage (Section 3.2);
and the datasets that are minimally covered, are considered
as specific data with minimal coverage (Section 3.3). Fi-
nally, we discuss how to tune word embeddings for an ER
task (Section 3.4).

1457

3.1 General Data with Full Coverage
Many of the benchmark datasets used in ER [18] such

as Citations, Products, Restaurants, and Movies, are often
generic and do not require substantial specialized knowl-
edge. While they may be noisy and incomplete, the content
is often in English and use common words. For such generic
datasets, the approach that we have proposed so far – con-
vert pairs of tuples to similarity vectors using GloVe – is
often adequate. As we shall show in the experiments, we
obtain competitive results for all of them.

3.2 General Data with Partial Coverage
Another case is where a significant number of words that

are relevant for an ER task in a dataset are not present in the
word embedding dictionary. It is well known that natural
languages exhibit a Zipfian distribution with a heavy tail of
infrequently used words. For computational efficiency, these
“rare” words are often pruned. For example, even though
GloVe was trained on a very large document corpus with 840
billion tokens and a vocabulary size of 2.2 million, it can miss
many words such as from technical domains, names of peo-
ple, or institutions, which would be useful for performing ER
on a Citation dataset. Our approach from Section 2 replaces
any word not present in the dictionary with a unique token
UNK (Unknown). However, it is possible that these words
are especially relevant for identifying duplicate tuples.

Vocabulary Expansion is the process of expanding the
embedding dictionary to words that were not observed dur-
ing training. The naive approach of adding new documents
to the original corpus and re-run the whole algorithm is
not always possible or feasible. For example, the popular
GloVe dictionary is trained on the Common Crawl corpus,
which is almost 2 TB requiring exorbitant computing re-
sources. Given an unseen word, another simplistic approach
is to take the top-K words that co-occur the most with the
unseen word in the ER dataset and simply average them.
Another popular approach is to use character level embed-
dings such as fastText instead of word level embeddings or
use subword information [9]. These approaches can recog-
nize that the rare word “dendritic” is similar to “dendrites”
even if it is not explicitly present in the dictionary.

While these approaches are simple and often effective, in
this paper, we advocate an alternative approach inspired
from [22], as described below.

Vocabulary Retrofitting. Intuitively, this approach seeks
to adapt word embeddings such as GloVe by using auxiliary
semantic resources such as WordNet. If there are two words
that are related in WordNet, [22] seeks to refine their word
embeddings to be similar. This approach is especially rele-
vant to our scenario where our input is a tuple with explicit
attribute structure and has relational interpretations.

Let W = {w1, w2, . . .} be the set of words from the ER
dataset. Let U ⊆ W be the set of words with no word
embeddings. We begin by creating an undirected graph with
one vertex for each word in W . Two vertices (vi, vj) are
connected if they co-occur in some tuple. One can also define
other additional edge semantics such as an edge connecting
two vertices if they occur in the same attribute and so on.
For vertex v ∈ W \ U , we assign its word embedding from
the dictionary. For vertex v ∈ U , we assign its initial value
as the average of K of its most frequent co-occurring words.
We then create a set of new verticesW ′ for each word w ∈W

A

a2

a1

c2

B

b2

b1

C

c1t1

t2

a1 b1 c1 a2 b2 c2

a1’ b1’ c1’ a2’ b2’ c2’

inferred

in-the-vocabulary

out-of-vocabulary

values in the same tuple

values from the same attribute

retrofitted

Figure 4: A Sample for Vocabulary Retrofitting

and connect it to its corresponding vertex from W . These
vertices correspond to the retrofitted word embeddings that
will be learned through probabilistic inference. We set the
objective function such that we learn the word embeddings
for each vertex w ∈ W ′ such that they are both closer to
its counterpart in W and also closer to its other neighboring
vertices. Figure 4 shows an example.
This approach has a number of appealing properties.

First, this is an efficient mechanism to learn the word em-
beddings of unknown words such as IDs. Second, it provides
an elegant mechanism to “tune” the word embeddings that
is in sync with the ER dataset. For example, if two words do
not co-occur a lot in Common Crawl (such as SIGMOD and
Stonebraker) but does in our dataset, this approach tunes
the embeddings appropriately. Finally, it allows one to en-
code a diverse array of options to define relatedness (such as
present in the same attribute or tuple) that is more generic
than the simple co-occurrence idea used by GloVe.

3.3 Specific Data with Minimal Coverage
Another common scenario occurs when one performs ER

on datasets with specialized information. Examples include
performing ER on scientific articles for specialized fields or
in data that is specific to an organization. In this case, the
attributes often contain esoteric words that are not present
in GloVe dictionary. What is worse, it might not know that
two terms such as p53 and cancer are related. If most of
the words are not present in the dictionary, then approaches
such as retrofitting might be applicable. This problem could
be exacerbated if the ER dataset belongs to complex do-
mains such as Genomics. Finding if two tuples describe the
same protein might not be possible with GloVe or word2vec.
We use one of the following approaches to handle such

scenarios:

(1) Unsupervised Representation from Datasets. If the two

datasets that are to be merged are large enough (typi-
cally in the order of millions of tuples), they might contain
enough patterns to automatically learn word embeddings
from them. One could pool all the tuples from both datasets
and train GloVe/word2vec on them by treating each tuple
as a document.

(2) Unsupervised Learning from related Corpus. If the
datasets are not large enough, then one can find another
surrogate resource to learn word embeddings. GloVe and
word2vec learned the word embeddings by training on a
large corpus such as Common Crawl and Google News

1458

w1

wi

wj

A1 … Ap … Am

Words

Composition

(avg, LSTM)

layer

v1

vi

vk

Classification

layer

Dense

layer

Similarity

layer

Words

tuple t

A1 … Ap … Amtuple t’

Embedding lookup

layer

Figure 5: Deep Entity Resolution Framework

respectively. If one can find an analogous vast corpus
of domain information in the form of unstructured data
such as documents, it could be used to learn the word
embeddings for this specialized dataset. For example, while
word embeddings from GloVe might not know that p53
and cancer are related, the word embeddings trained from
PubMed articles would be able to. Similarly, one could
learn word embeddings from the enterprise’s document
repository for ER on data in the same organization.

(3) Customized Word Embeddings. In some cases, it is pos-
sible that direct application of GloVe or word2vec does not
solve the problem. For example, when given a huge amount
of training they might not find if, for example, two strings
encode the same protein. In such cases, one has to check if
there exist prior methods for learning word embeddings for
the task of interest. For example, there exist prior work on
word embeddings for proteins and genes from sequences of
amino acids and DNA respectively [3].

Of course, the worst case scenario is a specialized database
where no auxiliary resources are available to automatically
learn the representation for key concepts. In this scenario,
any machine learning approach is doomed to fail unless one
provides hand crafted features or a substantially large num-
ber of training examples that are sufficient for learning rep-
resentations using deep learning.

3.4 Tuning Word Embeddings for an ER Task
Recall that word embeddings such as GloVe/word2vec are

learned in an unsupervised task-agnostic manner so that
they can be used for arbitrary tasks. If the corpus used to
train them is large and representative enough, the learned
word embeddings can be used in a turn-key manner for ER
tasks. While unsupervised pre-training on a large corpus
does give the DL model better generalization, in many cases
the learned representations often lack task-specific knowl-
edge. One can achieve the best of both worlds by fine-tuning
the pre-trained word representations to achieve better accu-
racy. In fact, this paradigm of unsupervised pre-training
followed by supervised fine-tuning often beats methods that
are based on only supervision [15].

Our proposed approach can be easily extended for this
purpose. Let us now consider our deep neural network in
Figure 5. We train this network using Stochastic Gradient
Descent (SGD) based learning algorithms, where gradients
(errors) are obtained via backpropagation. In other words,

errors in the output layer (i.e., the classification layer) are
backpropagated through the hidden layers using the chain
rule of derivatives. The parameters of the hidden layers
are slightly altered such that when the model accuracy im-
proves. For learning or fine-tuning the embeddings, we allow
these errors to be backpropagated all the way till the word
embedding layer. In contrast, our approach from Section 2
can only tune parameters up to the composition layer. Al-
lowing error to be back propagated to the embedding layer
allows one additional level of freedom to tinker model pa-
rameters. Instead of limiting ourselves to how the attributes
are composed or how similarity is computed, we can also
modify the word embeddings themselves (if necessary).

One common issue with backpropagation through a deep
neural network (i.e., neural networks with many hidden lay-
ers such as RNNs) is that as the errors get propagated,
they may soon become very small (a.k.a. gradient vanishing
problem) or very large (a.k.a. gradient exploding problem)
that can lead to undesired values in weight matrices, causing
the training to fail [7]. We did not observe such problems
in our end-to-end training with simple averaging composi-
tional method, and the gates in LSTM cells automatically
tackle these issues to some extent [28].

4. BLOCKING FOR DISTRIBUTED REP

RESENTATIONS
Efficient ER systems avoid comparing all possible pairs of

tuples (
(

n
2

)

for one table of n×m for two tables) through the
use of blocking [4, 12]. Blocking identifies groups of tuples
(called blocks) such that the search for duplicates need to
be done only within these blocks, thus greatly reducing the
search space. While blocking often substantially reduces the
number of comparisons, it may also miss some duplicates
that fall in two different blocks.

4.1 New Opportunities for Blocking
We observe that blocking is very related to the classical

problem of approximate nearest neighbor (ANN) search in
a similarity space, which has been extensively studied (see
[51]). Locality sensitive hashing (LSH) [29] is a popular
probabilistic technique for finding ANNs in a high dimen-
sional space. In the blocking context, the more similar input
vectors are, the higher the probability that they both will
be put in the same block. While we are not the first to
propose LSH for blocking or automated tuning for blocking
(see Section 6), we are the first to propose a series of truly
turn-key algorithms for blocking.

Challenges in Traditional Blocking Approaches

(i) Identifying good blocking rules often requires the assis-
tance of domain experts.

(ii) Blocking rules often consider few (e.g., 2-3) attributes
which could result in comparing tuples that agree on those
attributes but have very different values on other attributes.

(iii) Prior blocking methods often do not take semantic sim-
ilarity between tuples into consideration.

(iv) It is usually hard to tune the blocking strategy to control
the recall and/or the size of the blocks.

We can readily see that LSH for blocking over DRs of
tuples obviates many of these issues. First, we free the do-
main experts from providing a blocking function. Instead
the combination of LSH and DRs transforms the problem of

1459

blocking into finding tuples in a high dimensional similarity
space. Note that a DR encodes semantic similarity into the
mix and that LSH considers the entire tuple for comput-
ing similarity. The extensive amount of theoretical work on
LSH (see Section 4.5) can be used to both tune and provide
rigorous theoretical guarantees on the performance.

4.2 LSH Primer

Definition 1: (Locality Sensitive Hashing [25, 51]): A fam-
ily H of hash functions is called (R, cR, P1, P2)-sensitive if
for any two items p and q,

• if dist(p, q) ≤ R, then Prob[h(p) = h(q)] ≥ P1, and

• if dist(p, q) ≥ cR, then Prob[h(p) = h(q)] ≤ P2,

where c > 1, P1 > P2, h ∈ H. ✷

The smaller the value of ρ (ρ = log(1/P1)
log(1/P2)

), the better the

search performance. For many popular distance measures
such as cosine, Euclidean, and Jaccard, there exists an algo-
rithm for the (R, c)-nearest neighbor problem that requires
O(dn + n1+ρ) space (where d is the dimensionality of p, q),
O(nρ) query time, and O(nρ log1/P2

n) invocations of hash
functions. In practice, LSH requires linear space and time
[25, 51].

Implementing LSH. Given a table T , LSH seeks to index
all the tuples in a hash table that is composed of multiple
buckets each of which is identified by a unique hash code.
Given a tuple t, the bucket in which it is placed by a (sin-
gle) hash function h is denoted as h(t) - which is often a
binary value. If two tuples t and t′ are very similar, then
h(t) = h(t′) with high probability. Typically, one uses K
hash functions h1(t), h2(t), . . . , hK(t), hi ∈ H, to encode
a single tuple t. We represent t as a K dimensional bi-
nary vector which in turn is represented by its hash code
g(t) = (h1(t), h2(t), . . . , hK(t)). Since the usage of K hash
functions reduces the likelihood that similar items will ob-
tain the same (K dimensional) hash code, we repeat the
above process L times - g1(t), g2(t), . . . , gL(t). Intuitively,
we build L hash tables where each bucket in a hash table
is represented by a hash code of size K. Each tuple is then
hashed into L different hash tables where its hash codes are
g1(t), . . . , gL(t). For example, if K = 10 and L = 2, every
tuple is represented as a 10-dimensional binary vector that
is stored in 2 different hash tables.

Hash Families for Cosine Distance. Cosine similarity
provides an effective method for measuring semantic simi-
larity between two DRs [43]. Since the DRs can have both
positive and negative real numbers, the cosine similarity
varies between −1 and +1. The family of hash functions
for cosine is obtained using the random hyperplane method.
Intuitively, we choose a random hyperplane through the ori-
gin that is defined by a normal unit vector v. This defines a
hash function with two buckets where h(t) = +1 if v · t ≥ 0
and h(t) = −1 if v · t < 0 where “·” denotes the dot prod-
uct between vectors. Since we require K hash functions
h1, . . . , hK , we randomly pick K hyperplanes and each tu-
ple is hashed with them to obtain a K dimensional hash
code. This process is then repeated for all L hash tables.

4.3 LSHbased Blocking
We begin by generating hash codes h1, . . . , hK for each

of the L hash tables using the random hyperplane method.

Algorithm 4 ER Classifier with LSH based Blocking

1: Input: Table T , training set S, L
2: Output: All matching tuple pairs in Table T
3: Generate hash functions for g1, . . . , gL using the random

hyperplane method
4: for each tuple t do
5: Index the DR of t into L hash tables using g1, . . . , gL
6: for each hash table g in [g1, . . . , gL] do
7: for each non-empty bucket H in g do
8: for each pair of tuples (t, t′) in H do
9: Apply classifier on (t, t′)

The set of hash functions h1, . . . , hK is analogous to a sin-
gle blocking rule. The K dimensional binary hash code is
equivalent to an identifier to a distinct block where t falls
into. Each hash table performs “blocking” using a different
blocking rule.

We index the DR of every tuple t in each of the L hash ta-
bles. LSH guarantees that similar tuples get the same hash
code (and hence fall into the same block) with high proba-
bility. Then, we consider each of the blocks for every hash
table and invoke the classifier over the distinct pairs of tu-
ples found in them. Algorithm 4 provides the corresponding
pseudocode.

Example 4: For simplicity, let us only hash the DR

for attribute A1 of tuples t1 and t2. Let K = 4 and
L = 1. Let the hash functions be h1 = [−1, 1, 1], h2 =
[1, 1, 1], h3 = [−1,−1, 1] and h4 = [−1, 1,−1]. Recall that
v1[t1] = [0.45, 0.8, 0.85] and v1[t2] = [0.4, 0.85, 0.75]. If
you do a dot product of v1[t1] with each of the hi’s, you
get [0.86, 1.53,−0.26,−0.39]. The corresponding output for
v1[t2] is [0.86, 1.46,−0.33,−0.26]. Note that the LSH hash
code is obtained by thresholding the values such that posi-
tive values get +1 and negative values −1. So the hash code
of both these tuples is [1, 1,−1,−1]. ✷

Algorithm 4 is a fairly straightforward adaptation of LSH
to ER. As we shall see in the experiments, it works well
empirically. However, the number of times a classifier would
be invoked can be as much as O(L× b2max×Bmax) where L
is the number of hash tables, bmax is the size of the largest
block in any hash table and Bmax is the maximum number
of non-empty blocks in any hash table. While the traditional
LSH based approach is often efficient and effective, one can
achieve improved performance with some additional domain
knowledge. We next describe a sophisticated approach to
reduce the impact of L and bmax.

4.4 MultiProbe LSH for Blocking
Recall that by increasing K, we ensure that the probabil-

ity of dissimilar tuples falling into the same block is reduced.
By increasing L, we ensure that similar tuples fall into the
same block in at least one of the L hash tables. Hence while
increasing L ensures that we will not miss a true duplicate
pair, it is achieved at the additional cost of making extra-
neous comparisons between non-duplicate tuples. We wish
to come up with a LSH based approach that achieves two
objectives: (a) reduce the number of unnecessary compar-
isons and (b) reduce the number of hash tables L without
seriously affecting recall.

Reducing Unnecessary Comparisons. Intuitively, we
expect duplicate tuples to have a high similarity with each

1460

Algorithm 5 Approximate Nearest Neighbor Blocking

1: Index all tuples using LSH
2: for each tuple t do
3: Get candidate tuples using Multiprobe-LSH
4: Sort tuples in candidates based on similarity with t
5: Invoke classifier on t and each of top-N neighbors of t

other and thereby more likely to be “near” each other.
Hence, even if a block has a large number of tuples, it is
not necessary to compare all pairs of tuples. Instead, given
a tuple t, we retrieve the top-N nearest neighbors of t and
invoke the classifier between t and these N nearest neigh-
bors. This is achieved by collating all the tuples that fall
into the same block as t in each of the L hash tables. We
then compute the similarity between t and each of the candi-
dates and return the top-N tuples. If the block is large with
b tuples, then we only require Θ(b×N) classifier invocations
instead of Θ(b2). We can see that by choosing N < b, we
can achieve considerable reduction in classifier invocations.

Reducing L. Naively decreasing the number of hash ta-
bles L can decrease the recall as a pair of duplicate tuples
might fall into different blocks. The key idea is to augment
a traditional LSH scheme with a carefully designed probing
sequence that looks for multiple buckets (of the same hash
table) that could contain similar tuples with high probabil-
ity. This approach is called multi-probe LSH [37]. Consider
a tuple t and another very similar tuple t′. It is possible
that t and t′ do not fall into the same bucket (especially if
K is large). However, due to the design of LSH, we would
expect t′ to fall into a “close by” bucket whose hash code
is very similar to the bucket in which t fell. Multi-probe
leverages this observation by perturbing t in a systematic
manner and looking at all buckets in which the perturbed t
fell into. By carefully designing the perturbation process one
can consider the buckets that have the highest probability
of containing similar tuples. For example, a multi-probe of
size 1 will consider all buckets whose hash codes have a ham-
ming distance of 1 and so on. It has been shown that this
approach often requires substantially less number of hash
tables (as much as 20x) than a traditional approach [37].
Algorithm 5 provides the pseudocode of this approach.

4.5 Tuning LSH Parameters for Blocking
In contrast to traditional blocking rules that are often

heuristics, the hash functions in LSH allow us to provide
rigorous theoretical guarantees. While the list of LSH guar-
antees is beyond the scope of this paper (see [47] for details),
we highlight two major ones.

Parameter Tuning for Recall. We can control the false
positive and negative values (and thereby recall) by varying
the values of c and R, such as by setting the values that
get the best results for the tuples in the training dataset.
We can obtain a fixed approximation ratio of c = 1 + ǫ by
setting [51],

K =
log n

log 1/P2
L = nρ where ρ =

log(1/P1)

log(1/P2)
(1)

Parameter Tuning for Occupancy. LSH also allows us
to control the occupancy - the expected number of tuples in
any given block. This can be achieved by varying the size K

of the number of hash functions in every hash table. Infor-
mally, if one uses multiple hash functions, we would expect
very similar items to be stored in the same blocks but at the
expense of low occupancy and a large number of blocks. On
the other hand, a smaller number of hash functions results in
less similar tuples being put in the same block. Intuitively, if
we use only one hash function, this results in 2 buckets - one
for +1 and −1. Since the hyperplane for the hash function
is chosen randomly, we would expect each bucket to have
an occupancy around 50% for all but most of the skewed
data distributions. One can reduce the occupancy rate by
increasing the number of hash functions. Alternatively, one
can also use sophisticated methods such as [16] to achieve
guaranteed limits.

5. EXPERIMENTAL RESULTS

5.1 Experimental Setup

Hardware and Platform. All our experiments were per-
formed on a Core i7 6700HQ Skylake chip, with four cores
running eight threads at speeds of up to 3.5GHz, along with
16GB of DDR4 RAM and the GTX 980M, complete with
8GB of DDR5 RAM. We used Torch [14] and Keras [11], a
deep learning framework, to train and test our models.

Datasets. We conducted extensive experiments over 7 dif-
ferent datasets covering diverse domains such as citations,
e-commerce, and proteomics. Table 3 provides some statis-
tics of these datasets. All are popular benchmark datasets
and have been extensively evaluated by prior ER work using
both ML and non-ML based approaches. We partition our
datasets into two categories: “easy” and “challenging”. The
former consists of datasets that are mostly structured and
often have less noise in terms of typos and missing informa-
tion. On the “easy” datasets most of the best existing ER
approaches routinely exceed an F-score of 0.9. The chal-
lenging datasets often have unstructured attributes (such as
product description) which are also noisy. On the “chal-
lenging” datasets that we study, both ML and rule based
methods have struggled to achieve high F measures, with
values between 0.6 and 0.7 being the norm. What these two
categories have in common is that they require extensive
effort from domain experts for cleaning, feature engineer-
ing and blocking to achieve good results. As we shall show
later, our approach exceeds best existing results on all the
datasets with minimal expert effort.

DeepER Setup. Our experimental setup was an adapta-
tion of prior ER evaluations methods [32, 33, 46] to handle
DRs. For example, [32] used an arbitrary threshold (such
as 0.1) on Jaccard similarity of trigram to eliminate tuple
pairs that are clearly non-matches. We make two changes
to this procedure. First, we use Cosine similarity to com-
pute similarity between tuple pairs as it is more appropriate
for DRs [40, 43]. Second, instead of picking an arbitrary
threshold, we set it to the minimum similarity of matched
tuple pairs in the training dataset. We obtain the negative
examples (non duplicates) by picking one tuple from the
positive example and randomly picking another tuple from
the relation that is not its match. For example, if (ti, tj) is a
duplicate, we pick a pair (tk, tl) as a negative example such
that (tk, tl) is not a duplicate already given in the training
data and has cosine similarity with (ti, tj) below the above
computed threshold. This approach is chosen to verify the

1461

Table 3: Data Statistics: ∗(Easy), ‡(Hard).
Walmart-Amazon (Prod-WA), Amazon-Google
(Prod-AG), DBLP-ACM (Pub-DA), DBLP-
Scholar (Pub-DS), DBLP-Citeseer (Pub-DC),
Fodors-Zagat (Rest-FZ)

Dataset #Tuples #Matches #Attr

Walmart-Amazon‡[18] 2,554 - 22,074 1,154 17

Amazon-Google‡ [1] 1,363 - 3,226 1,300 5
DBLP-ACM∗ [1] 2,616 - 2,294 2,224 4
DBLP-Scholar∗ [1] 2,616 - 64,263 5,347 4
DBLP-Citeseer∗ [18] 1,823,978-2,512,927 558,787 4
Fodors-Zagat∗ [2] 533 - 331 112 7

Table 4: Comparing DeepER with state-of-the-
art published results from existing rule-, ML-
and crowd-based approaches. We also compared
against Magellan, another end-to-end EM system.

Dataset Magellan DeepER Published

Prod-WA 82.99 88.06 89.3 [26] (Crowd)
Prod-AG 87.68 96.029 62.2 [33] (ML)
Pub-DA 97.6 98.6 N/A
Pub-DS 98.84 97.67 92.1 [26] (Crowd)
Pub-DC 96.4 99.1 95.2 [17] (Crowd)
Rest-FZ 100 100 96.5 [26] (Crowd)

robustness of our models against near matches. For each
of the datasets, we performed K-fold cross validation with
K=5. We report the average of the F-measure values ob-
tained across all the folds. We observed that in all cases,
the standard deviation of the F-measure values was below
1%.

DeepER Architecture. Since our objective is to highlight
the turn-key aspect of DeepER, we choose the simplest pos-
sible architecture. We use GloVe[43] as our DR. Figure 5
shows the architecture of DeepER. We used Adam for opti-
mizing the DL model that were trained for 20 epochs with a
batch size of 16. The learning rate was set to 0.01 and a reg-
ularization of 1e-3. For RNN-LSTM composition, we used
a single RNN layer where the memory dimension for LSTM
is 150. The dimension of the similarity layer is 50. When
end-to-end learning is enabled, the embeddings update rate
was set to 0.01.

Each tuple is represented as a m × d dimensional vector
where m is the number of attributes with d being the dimen-
sion of DRs. For each attribute, we apply a standard tok-
enizer and average the DR obtained from GloVe (as against
more sophisticated approaches such as Bi-LSTM). Given
a pair of tuples, the compositional similarity is computed
as the Cosine similarity of the corresponding attributes re-
sulting in a m dimensional similarity vector. As mentioned
above, we used K-fold validation with a duplicate to non-
duplicate ratio of 1:100 that is comparable to the ratio used
by the competing approaches. This is to ensure fair com-
parison. Note that the non-duplicates are sampled auto-
matically from the positive examples. This is achieved by
selecting other tuple pairs that have a low cosine similar-
ity with the duplicate being perturbed. This approach was
inspired from [34] where they demonstrate that an informa-
tive negative example is one that is far from the positive
example. Quoting from their example, “truck” is selected
over “dog” as the negative example for “cat”. We also do
not tune the DR for the ER task. Even with this restricted
setup, DeepER is competitive with existing approaches.

5.2 Comparison with Existing Methods
We first compare the performance of DeepER with the

best reported results from non-learning, learning and crowd
based approaches in [33, 26, 17]. Table 4 shows that the
simpleDeepER architecture has better performance, except
for one dataset, namely Prod-WA, where a crowd-based ap-
proach does slightly better.

Performing ER on a large dataset requires a number of
design choices from the expert such as feature engineering,
selection of appropriate similarity functions and thresholds,
parameter tuning for ML models, selection of appropriate

blocking functions, and so on. Hence, it is incredibly hard
to take any of the existing approaches and apply it as-is on
a new dataset. A key advantage of DeepER is the ability to
dramatically reduce this effort. In order to highlight this fea-
ture, we evaluated DeepER against Magellan [31] that also
has a end-to-end EM pipeline. We would like to emphasize
that bothDeepER and Magellan share the dream of making
the EM process as frictionless as possible. While Magellan
uses a series of sophisticated heuristics internally, DeepER

leverages DRs as a foundational technique. It is very easy
to incorporate features from DeepER and Magellan to each
other. For example, one can augment Magellan’s automat-
ically derived similarity based features to DeepER while
Magellan can readily use the blocking of DeepER and so on.
Table 4 compares the performance of DeepER and Magel-
lan using their default settings. Specifically, we adapted the
end-to-end EM workflow for Magellan [38]. We can see that
DeepER beats Magellan on two datasets, while perform-
ing slightly worst in one datasets. Both systems delivered
perfect results in the rather simple Fodors-Zagat dataset.

Evaluating DeepER for Other Domains. In order to
show that our approach can be readily applied to other do-
mains, we consider the problem of determining duplicates in
a nucleotide database. We assumed that we were provided
with an appropriate dictionary for biomedical embeddings.
We evaluated our model on a large benchmark dataset [10]
consisting of 21 most heavily studied organisms in molec-
ular biology. Our method was able to beat ML models
with hand-crafted approach in 11 of these cases while it was
within a F1-score of ± 5 for the remaining. Overall, our
approach achieved an F1-measure of 87.4 for the automatic
curation benchmark where the state-of-the-art is 83.9. This
shows that our approach can be readily applied to other
domains given the availability of effective embeddings.

5.3 Understanding DeepER Performance
We next investigate how each of the enhancements to the

basic DeepER architecture impacts its performance. For
this subsection, we use a positive to negative ratio of 1:4.
This is different from the ratio we used when compared to
competing approaches as this turned to be best forDeepER.

Varying the Size of Training Data. Figure 6 shows the
results of varying the amount of training data. DeepER is
robust enough to be competitive with other approaches with
as little as 10% of training data. Note that 10% translates
to as little as 11 examples to label in the case of Rest-FZ and
to 543 in the case of Pub-DS. As expected, our method im-
proves its excellent results with larger training data. This is
due to two key aspects: (a) the ability of DeepER to lever-
age/transfer the semantic similarity learned by DRs for ER

1462

F
-S

c
o

re
 (

%
)

0

25

50

75

100

Pub-DA Pub-DS Pub-DC Prod-AG Prod-WA Rest-FZ

10% 30% 50%

0

25

50

75

100

A S C -AG A -FZ

-

1 1 1
2 1 1
3 1 1
4 0.98 1
5 0.96 0.99
6 0.93 0.97
7 0.89 0.94
8 0.84 0.9
9 0.8 0.85

10 0.74 0.81

0

0.25

0.5

0.75

1

1 2 3 4 5 6 7 8 9 10

- Pub-

1 0.4 0.08
2 0.4 0.08
3 0.4 0.08
4 0.39 0.08
5 0.37 0.08
6 0.34 0.07
7 0.31 0.06
8 0.28 0.05
9 0.24 0.04

10 0.2 0.04

0

0.25

0.5

0.75

1

1 2 3 4 5 6 7

Figure 6: Varying Training Data

0

25

50

75

100

A S C -AG A -FZ

F
-S

c
o

re
 (

%
)

0

25

50

75

100

Pub-DA Pub-DS Pub-DC Prod-AG Prod-WA Rest-FZ

No Noise 10% 30%

0

25

50

75

100

A S C -AG A -FZ
0

25

50

75

100

A S C -AG A -FZ

-

1 1 1
2 1 1
3 1 1
4 0.98 1
5 0.96 0.99
6 0.93 0.97
7 0.89 0.94
8 0.84 0.9
9 0.8 0.85

10 0.74 0.81

0

0.25

0.5

0.75

1

1 2 3 4 5 6 7 8 9 10

-

1 0.4 0.08
2 0.4 0.08
3 0.4 0.08
4 0.39 0.08
5 0.37 0.08
6 0.34 0.07
7 0.31 0.06
8 0.28 0.05
9 0.24 0.04

10 0.2 0.04

0

0.25

0.5

0.75

1

1 2 3 4 5 6 7 8 9 10

-

1 0.52 0.6
2 0.7 0.8
3 0.81 0.88
4 0.87 0.93
5 0.91 0.95
6 0.94 0.97
7 0.96 0.98
8 0.97 0.99
9 0.98 0.99

10 0.98 1

0

0.25

0.5

0.75

1

- Pub-

1 0.15 0.03
2 0.22 0.05
3 0.28 0.06
4 0.31 0.06
5 0.34 0.07
6 0.35 0.07
7 0.36 0.08
8 0.37 0.08
9 0.38 0.08

10 0.39 0.08

0

0.25

0.5

0.75

1

Figure 7: Varying Noise

F
-S

c
o

re
 (

%
)

0

25

50

75

100

Pub-DA Pub-DS Pub-DC Prod-AG Prod-WA Rest-FZ

No Update Update

-

1 1 1
2 1 1
3 1 1
4 0.98 1
5 0.96 0.99
6 0.93 0.97
7 0.89 0.94
8 0.84 0.9
9 0.8 0.85

10 0.74 0.81

0

0.25

0.5

0.75

1

1 2 3 4 5 6 7 8 9 10

- Pub-

1 0.4 0.08
2 0.4 0.08
3 0.4 0.08
4 0.39 0.08
5 0.37 0.08
6 0.34 0.07
7 0.31 0.06
8 0.28 0.05
9 0.24 0.04

10 0.2 0.04

0

0.25

0.5

0.75

1

1 2 3 4 5 6

Figure 8: Varying Vector Updates

0

25

50

75

100

A S C -AG A -FZ

F
-S

c
o

re
 (

%
)

0

25

50

75

100

Pub-DA Pub-DS Pub-DC Prod-AG Prod-WA Rest-FZ

Average Bi-LSTM Sentence2Vec

-

1 1 1
2 1 1
3 1 1
4 0.98 1
5 0.96 0.99
6 0.93 0.97
7 0.89 0.94
8 0.84 0.9
9 0.8 0.85

10 0.74 0.81

0

0.25

0.5

0.75

1

1 2 3 4 5 6 7 8 9 10

-

1 0.4 0.08
2 0.4 0.08
3 0.4 0.08
4 0.39 0.08
5 0.37 0.08
6 0.34 0.07
7 0.31 0.06
8 0.28 0.05
9 0.24 0.04

10 0.2 0.04

0

0.25

0.5

0.75

1

1 2 3 4 5 6 7 8 9 10

-

1 0.52 0.6
2 0.7 0.8
3 0.81 0.88
4 0.87 0.93
5 0.91 0.95
6 0.94 0.97
7 0.96 0.98
8 0.97 0.99
9 0.98 0.99

10 0.98 1

0

0.25

0.5

0.75

1

1 2 3 4 5 6 7 8 9 10

- Pub-

1 0.15 0.03
2 0.22 0.05
3 0.28 0.06
4 0.31 0.06
5 0.34 0.07
6 0.35 0.07
7 0.36 0.08
8 0.37 0.08
9 0.38 0.08

10 0.39 0.08

0

0.25

0.5

0.75

1

1 2 3 4

n n

G -DS -DS G -DS -DS

1 94 98 1 88 95 1 48 59 1 88 95

2 94 98 2 88 95 2 65 78 2 88 95

3 94 98 3 88 95 3 75 86 3 86 95

4 92 98 4 88 95 4 82 92 4 85 95

5 90 97 5 88 95 5 84 93 5 84 95

6 86 95 6 89 95 6 88 95 6 84 93

7 83 92 7 89 97 7 90 96 7 83 92

8 78 88 8 89 97 8 91 97 8 83 92

9 74 83 9 90 97 9 92 97 9 83 92

10 68 79 10 92 99 10 92 98 10 82 92

25

50

75

100

1 2 3 4 5 6 7 8 9 10

62.5

75

87.5

100

1 2 3 4 5 6 7 8 9 10

25

50

75

100

1 2 3 4 5 6 7 8 9 10

50

62.5

75

87.5

100

Figure 9: Varying Composition

and (b) a DL architecture that is customized for ER. Please
refer to [5, 27, 54] for additional details about the beneficial
impact of effective representation/transfer learning and well
designed DL architectures.

Impact of Incorrect Labels. Most of the prior work on
ER assumes that the training data is perfect. However, this
assumption might not always hold in practice. Given the in-
creasing popularity of crowdsourcing for obtaining training
data, it is likely that some of the labels for matching and
non-matching pairs are incorrect. We investigate the im-
pact of incorrect labels in this experiment. For a fixed set of
training data (10%), we vary the fraction of labels that are
marked incorrectly. Figure 7 shows the results. While the
F-measure reduces with larger fraction of incorrect labels,
the experiments also show that our approach is very robust.
The average drop in F-measure values compared to the per-
fect labeling case across all datasets at 10% noise is just 2.6
with a standard deviation of 2.6. At 30% the average drop
is 8% with a standard deviation of 7%. We can also see
that at 10% noising, our approach is still competitive with
state-of-the-art approaches.

Dynamic vs Static Word Embeddings. In this set of
experiments, we evaluated the effect of updating (or fine-
tuning) the initial word embeddings obtained from GloVe
as part of training the model. In other words, we evaluated
if tuning the DR for ER tasks improves the performance of
our model. Figure 8 shows the results. The results matched
our intuition that for the “challenging” datasets, updating
the word embeddings in an end-to-end learning framework
helped boost the results a little, whilst for the “easy” ones,
it had either a small negative effect or no effect at all. Thus,
we advise that in general, it is better to use the end-to-end
framework.

Varying Composition. In this set of experiments, we
vary the compositional method we use to combine the in-
dividual word embeddings into a single representative vec-
tor for the tuple/attribute. In addition to word averaging
and LSTM, we added a method based on Sentence2Vec [35]
and that is tuned using our end-to-end learning methods
(Section 3.4), for completeness. Figure 9 shows that for the
“easy” datasets, simple word averaging work usually better

than recurrent compositional models (LSTM or BiLSTM).
This flips for the “challenging” datasets where sophisticated
compositional approaches perform slightly better. This is
especially noticeable for Prod-AG. Understanding and au-
tomatically recommending the appropriate architecture for
a given dataset is a key focus of our future research. In or-
der to use the more complex compositional methods (LSTM
or BiLSTM) one has to pay the price of its longer training
times, one also has to tune its additional hyperparameters.
However, even the simple averaging compositional technique
is competitive with prior approaches on all datasets. We
also observe that both methods are superior to Sentence2Vec
with a slight exception on the Prod-AG dataset where it is
superior to Average.

Varying Word Embedding Dictionaries. Here, we
study the impact of the dictionary used for DRs. GloVe has
two major dictionaries : one trained on Common Crawl web
corpus (840B tokens, 2.2M words) and one onWikipedia (6B
tokens, 400K words). We used the vocabulary retrofitting
to handle words not present in the dictionary. Table 5 shows
the result of the experiments. As expected, there is a steep
drop in F1 score when trained on a smaller dictionary. The
larger the corpus used for training the word embeddings, the
better they are identifying semantic relationships.

Table 5: Impact of Word Embedding Dictionaries
Dataset GloVe GloVe-Wiki

Pub-DA 98.6 82.1
Pub-DS 97.67 77.8
Pub-DC 99.1 79.2
Prod-WA 88.06 77.4
Prod-AG 96.029 87.2
Rest-FZ 100 91.2

Varying Word Embedding Models. We conducted ex-
periments on three popular models, GloVe, Word2Vec, and
FastText, which were trained on a corpus with 840B tokens,
100B tokens and 600B tokens, respectively. The number of
words identified are 2.2M, 3M, and 1M, respectively. Note
that for fairness of comparison, we only considered word em-
beddings in FastText even though it also allows character
embeddings. We used the vocabulary retrofitting to handle
words not present in the dictionary. Table 6 shows the re-
sults of the experiments. In general, there are only minor
variations between the different approaches.

Multi-Lingual Datasets. We now show an auxiliary ben-
efit of using a DR-based approach. We took three datasets
that were originally in English and translated them to Span-
ish. We then used the DRs for Spanish and repeated our
approach. Table 7 shows that while there is a reduction
in F1-score, our approaches can seamlessly work on multi-
lingual datasets. Since we used “Google translate”, we had

1463

Table 6: Impact of Word Embedding Used
Dataset GloVe Word2Vec FastText
Pub-DA 98.6 97.9 98.2
Pub-DS 97.6 96.9 97.2
Pub-DC 99.1 99 99
Prod-WA 88.06 86.1 88.89
Prod-AG 96.03 95.1 95.7
Rest-FZ 100 100 100

to limit how much we could translate. However, we expect
to see similar results with the other datasets.

Table 7: Showcasing ER on Multilingual Datasets
Dataset English Spanish

Prod-AG 96.029 89.1
Rest-FZ 100 92.6
Pub-DS 97.67 88.1

5.4 Evaluating LSHbased Blocking
In this subsection, we evaluate the performance of our

LSH based blocking approach. Our approach allows us to
vary K (the size of the hash code) and L (the number of
hash tables) in order to achieve a tunable performance. Re-
call that one can use Equation 1 to derive K and L based on
the task requirements. Suppose we wish that similar tuples
should fall into same bucket with probability P1 = 0.95 and
dissimilar tuples should fall into the same bucket with prob-
ability P2 ≤ 0.5. Suppose that we index the DBLP dataset
of Pub-DS. Then based on Equation 1, we need a LSH with
K = 12 and L = 2.

In our first set of experiments, we verify that the behavior
of blocking is synchronous with the theoretical expectations.
We evaluate the performance of blocking based on two met-
rics widely used in prior research [4, 12, 39]. The first metric,
efficiency or reduction ratio (RR), is the ratio of the num-
ber of tuple pairs compared by our approach to the number
of all possible pairs in T . In other words, a smaller value
indicates a higher reduction in the number of comparisons
made. The second metric, recall or pair completeness (PC),
is the ratio of the number of true duplicates compared by
our approach against the total number of duplicates in T .
A higher value for PC means that our approach places the
duplicate tuple pairs in the same block.

Figures 10(a)-10(d) show the results of our experiments.
As K is increased, the value of PC decreases. This is due
to the fact that for a fixed L, increasing K reduces the like-
lihood that two similar tuples will be placed in the same
block which in turn reduces the number of duplicates that
falls into the same block. However, for a fixed L, increasing
K dramatically decreases the RR. This is to be expected as
a larger value of K increases the number of LSH buckets
into which tuples can be assigned to.

A complementary behavior can be observed when we fix
K and vary L. When L increases, PC also increases. This
is to be expected as the probability that two similar tuples
being assigned to the same bucket increases when more than
one hash table is involved. In other words, even if a true
duplicate does not fall into the same bucket in one hash
table, it can fall into the same bucket in other hash tables.
However, increasing L has a negative impact on RR as some

false positive tuple pairs can fall into the same bucket in at
least one hash table thereby increasing the value of RR.

Evaluating DeepER End-to-End. We next evaluate the
performance of DeepER by combining both the blocker and
the matcher. The results are shown in Figure 11. First, we
study how precision and recall are impacted by varying K
for a fixed L. The recall decreases with increased K as
more and more duplicates are not put in the same block
which results in DeepER missing them. The precision in-
creases mildly with increasing K as an increasing number
of spurious non-duplicates are no longer being compared.
For example, when K = 1, almost half of all possible pairs
are classified by DeepER, which reduces the precision with
potential false positives. However, when K = 10, only a
quarter of all possible pairs are classified, resulting in mild
increase of precision. The reason for the mild increase is that
the classifier of DeepER is relatively robust and achieved
high precision even for low value of K.
Figures 10 c-d study the impact of varying L for a fixed

K on precision and recall. As expected, the recall increases
with higher L as almost all the true duplicates are put in the
same block and end up being classified as such by DeepER.
Since DeepER is quite accurate, this results in increased
recall. The precision declines mildly with increasing L. The
reason is that more and more non-duplicates are put in the
same block resulting in potential false positives. Once again,
the impact is mild as the classifier is relatively robust.

Evaluating Multi-Probe LSH. We evaluate Algorithm 5
using Multi-probe and comparing a tuple only with top-N
most similar tuples instead of all tuples in a block. Fig-
ure 12 shows the result for Pub-AG. We vary the number
of multi-probes and pick the top-N most similar tuples to
be classified. We measure the recall of this approach for
K = 10 and an extreme case with a single hash table where
L = 1. We wish to highlight two trends. First, even using a
single multi-probe sequence can dramatically increases the
recall. This supports our claim that one can increase recall
using a small number of hash tables by using multi-probe
LSH. Second, increasing the size of N does not dramatically
increase the recall. This is due to the fact that duplicate
tuples have high similarity between their corresponding dis-
tributed representations. Our top-N based approach would
be preferable to reduce the number of classifier invocations
when the block size is much higher than 10.

6. RELATED WORK

Entity Resolution. A good overview of ER can be found
in surveys such as [21, 42]. Prior work can be categorized
as based on (a) declarative rules, (b) ML and (c) expert or
crowd based. Declarative rules, such as DNF which specify
rules for matching tuples, are easily interpretable [46] but
often requires a domain expert. Most of the ML approaches
are variants of the classical Fellegi-Sunter model [23]. Pop-
ular approaches include SVM [8], active learning [44], clus-
tering [13]. Recently, ER using crowdsourcing has become
popular [49, 26]. While there exist some work for learning
similarity functions and thresholds [8, 50], ER often requires
substantial involvement of the expert.

There has been extensive work on building EM systems.
[31] provides a comprehensive survey of the current EM sys-
tems. Most of the prior works often do not cover the entire
EM pipeline, require extensive interaction with experts and

1464

P
a

ir
 C

o
m

p
le

te
n

e
s
s

0

0.25

0.5

0.75

1

K

1 2 3 4 5 6 7 8 9 10

Prod-AG Pub-DS

(a) K vs PC (L=10)

0

0.25

0.5

0.75

1

1 2 3 4 5 6 7 8 9 10

R
e

d
u

c
ti
o

n
 R

a
ti
o

0

0.25

0.5

0.75

1

K

1 2 3 4 5 6 7 8 9 10

Prod-AG Pub-DS

(b) K vs RR (L=10)

0

0.25

0.5

0.75

1

1 2 3 4 5 6 7 8 9 10

0

0.25

0.5

0.75

1

1 2 3 4 5 6 7 8 9 10

P
a

ir
 C

o
m

p
le

te
n

e
s
s

0

0.25

0.5

0.75

1

L

1 2 3 4 5 6 7 8 9 10

Prod-AG Pub-DS

(c) L vs PC (K=4)

0

0.25

0.5

0.75

1

1 2 3 4 5 6 7 8 9 10

0

0.25

0.5

0.75

1

1 2 3 4 5 6 7 8 9 10

0

0.25

0.5

0.75

1

R
e

d
u

c
ti
o

n
 R

a
ti
o

0

0.25

0.5

0.75

1

L

1 2 3 4 5 6 7 8 9 10

Prod-AG Pub-DS

(d) L vs RR (K=4)

Figure 10: Impact of varying K and L on Pair Completeness (PC) and Reduction Ratio (RR).

R
e

c
a

ll
(%

)

0

25

50

75

100

K

1 2 3 4 5 6 7 8 9 10

Prod-AG Pub-DS

(a) K vs Recall (L=10)

0

25

50

100

1 2 3 4 5 6 7 8 9 10

P
re

c
is

io
n

 (
%

)

50

62.5

75

87.5

100

K

1 2 3 4 5 6 7 8 9 10

Prod-AG Pub-DS

(b) K vs Precision (L=10)

25

50

75

100

1 2 3 4 5 6 7 8 9 10

62.5

75

87.5

100

1 2 3 4 5 6 7 8 9 10

R
e

c
a

ll
(%

)

0

25

50

75

100

L

1 2 3 4 5 6 7 8 9 10

Prod-AG Pub-DS

(c) L vs Recall (K=4)

25

50

75

100

1 2 3 4 5 6 7 8 9 10

62.5

75

87.5

100

1 2 3 4 5 6 7 8 9 10

25

50

100

1 2 3 4 5 6 7 8 9 10

P
re

c
is

io
n

 (
%

)

50

62.5

75

87.5

100

K

1 2 3 4 5 6 7 8 9 10

Prod-AG Pub-DS

(d) L vs Precision (K=4)

Figure 11: Impact of varying K and L on Precision and Recall of DeepER

0

0.25

0.5

0.75

1

1 2 3 4 5 6 7 8 9 10

0

0.25

0.5

0.75

1

1 2 3 4 5 6 7 8 9 10

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

R
e

c
a

ll

0

0.25

0.5

0.75

1

top-N

10 20 30 40 50 100

No MP MP=1 MP=2

Figure 12: MultiProbe LSH on Pub-AG

are not turn-key systems. The key objective of DeepER is
the same as Magellan [31]. We propose a end-to-end EM
system based on DR that minimizes the burden on the ex-
perts. Our techniques are modular enough and can be easily
incorporated into any of the existing systems.

There has been extensive interest in applying DL in data
cleaning [48]. A recent work that extends DeepER [41] ex-
plored the design space of ER using DRs. The authors intro-
duce four different choices for the attribute summarization
process, namely, SIF, RNN, Attention, and Hybrid. The
first two methods are similar to our AVG and LSTM-RNN
methods. Attention uses decomposable attention for at-
tribute summarization and vector concatenation to perform
attribute comparison. Hybrid uses a bidirectional RNN with
decomposable attention for attribute summarization and a
vector concatenation and element-wise absolute difference
during attribute comparison. While this work shares some
similarities with DeepER, there are two notable differences.
We present solutions for the practical situations where for
dealing with data with partial or minimal coverage. We also
propose efficient and effective blocking solutions.

Blocking. Blocking has been extensively studied as a way
to scale ER systems and a good overview can be found in sur-

veys such as [4, 12]. Common approaches include key-based
blocking that partitions tuples into blocks based on their
values on certain attributes and rule-based blocking where
a decision rule determines which block a tuple falls into.
There has been limited work on simplifying this process by
either learning blocking schemes such as [39] or tuning the
blocking [30]. In contrast, our work automates the blocking
process by requiring minimal input from the domain expert.

Some recent works used LSH for blocking. [47] uses Min-
Hashing where tuples with high Jaccard similarity are likely
to be assigned to the same block. [52] improves it by propos-
ing a MinHashing with semantic similarity based on concept
hierarchy to assign conceptually similar tuples to the same
block. [24] proposed a clustering based method to satisfy
size constraints with upper and lower size thresholds for
blocks for performance and privacy reasons.

7. FINAL REMARKS
In this paper, we introduced DeepER, a DL-based ap-

proach for ER. Our fundamental contribution is the identi-
fication of the concept of DRs as a key building block for de-
signing effective ER classifiers. We also propose algorithms
to transform a tuple to a DR, building DR-aware classifiers
and an efficient blocking strategy based on LSH. Our exten-
sive experiments show that our approach is promising and
already achieves or surpasses the state-of-the-art on multi-
ple benchmark datasets. We believe that DL is a powerful
tool that has applications in databases beyond ER and it is
our hope that our ideas be extended to build practical and
effective ER systems.

There are several avenues for improving DeepER. First,
understand and automatically recommend the appropriate
DL architecture for a given dataset, especially complex ones.
Another line of work is to design a hybrid system that lever-
ages both automatic features, such as DRs, and manual fea-
tures, such as a similarity metric for IDs. Finally, we will
also need to address the cases where the data is dirty.

1465

8. REFERENCES
[1] Benchmark datasets for entity resolution.

https://dbs.uni-leipzig.de/en/research/

projects/object_matching/fever/benchmark_

datasets_for_entity_resolution.

[2] Duplicate detection, record linkage, and identity
uncertainty: Datasets. http:
//www.cs.utexas.edu/users/ml/riddle/data.html.

[3] E. Asgari and M. R. Mofrad. Continuous distributed
representation of biological sequences for deep
proteomics and genomics. PloS one, 10(11):e0141287,
2015.

[4] R. Baxter, P. Christen, and T. Churches. A
comparison of fast blocking methods for record
linkage. In SIGKDD Workshop on Data Cleaning,
Record Linkage, and Object Consolidation, 2003.

[5] Y. Bengio, A. Courville, and P. Vincent.
Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis
and machine intelligence, 35(8):1798–1828, 2013.

[6] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin.
A neural probabilistic language model. JMLR, 2003.

[7] Y. Bengio, P. Simard, and P. Frasconi. Learning
long-term dependencies with gradient descent is
difficult. Trans. Neur. Netw., 5(2):157–166, Mar. 1994.

[8] M. Bilenko and R. J. Mooney. Adaptive duplicate
detection using learnable string similarity measures. In
KDD, 2003.

[9] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov.
Enriching word vectors with subword information.
arXiv preprint arXiv:1607.04606, 2016.

[10] Q. Chen, J. Zobel, and K. Verspoor. Benchmarks for
measurement of duplicate detection methods in
nucleotide databases. Database, 2016.

[11] F. Chollet. Deep learning with Python. Manning
Publications, 2018.

[12] P. Christen. A survey of indexing techniques for
scalable record linkage and deduplication. TKDE,
2012.

[13] W. W. Cohen and J. Richman. Learning to match and
cluster large high-dimensional data sets for data
integration. In KDD, 2002.

[14] R. Collobert, K. Kavukcuoglu, and C. Farabet.
Torch7: A matlab-like environment for machine
learning. In BigLearn, NIPS Workshop, 2011.

[15] R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. Natural language
processing (almost) from scratch. JMLR, 2011.

[16] M. Covell and S. Baluja. Lsh banding for large-scale
retrieval with memory and recall constraints. In
ICASSP, 2009.

[17] S. Das, P. S. G. C., A. Doan, J. F. Naughton,
G. Krishnan, R. Deep, E. Arcaute, V. Raghavendra,
and Y. Park. Falcon: Scaling up hands-off
crowdsourced entity matching to build cloud services.
In SIGMOD, pages 1431–1446, 2017.

[18] S. Das, A. Doan, P. S. G. C., C. Gokhale, and
P. Konda. The magellan data repository.
https://sites.google.com/site/anhaidgroup/

projects/data.

[19] A. Doan, A. Ardalan, J. R. Ballard, S. Das,
Y. Govind, P. Konda, H. Li, S. Mudgal, E. Paulson,
P. S. G. C., and H. Zhang. Human-in-the-loop
challenges for entity matching: A midterm report. In
HILDA@SIGMOD, 2017.

[20] H. L. Dunn. Record linkage. American Journal of
Public Health, 36 (12), 1946.

[21] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. TKDE, 19(1),
2007.

[22] M. Faruqui, J. Dodge, S. K. Jauhar, C. Dyer, E. Hovy,
and N. A. Smith. Retrofitting word vectors to
semantic lexicons. arXiv preprint arXiv:1411.4166,
2014.

[23] I. Fellegi and A. Sunter. A theory for record linkage.
Journal of the American Statistical Association, 64
(328), 1969.

[24] J. Fisher, P. Christen, Q. Wang, and E. Rahm. A
clustering-based framework to control block sizes for
entity resolution. In KDD, 2015.

[25] A. Gionis, P. Indyk, R. Motwani, et al. Similarity
search in high dimensions via hashing. In PVLDB,
volume 99, pages 518–529, 1999.

[26] C. Gokhale, S. Das, A. Doan, J. F. Naughton,
N. Rampalli, J. W. Shavlik, and X. Zhu. Corleone:
hands-off crowdsourcing for entity matching. In
SIGMOD, pages 601–612, 2014.

[27] I. Goodfellow, Y. Bengio, and A. Courville. Deep
Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[28] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[29] P. Indyk and R. Motwani. Approximate nearest
neighbors: Towards removing the curse of
dimensionality. In Proceedings of the Thirtieth Annual
ACM Symposium on the Theory of Computing, Dallas,
Texas, USA, May 23-26, 1998, pages 604–613, 1998.

[30] B. Kenig and A. Gal. Mfiblocks: An effective blocking
algorithm for entity resolution. Information Systems,
2013.

[31] P. Konda, S. Das, P. Suganthan GC, A. Doan,
A. Ardalan, J. R. Ballard, H. Li, F. Panahi, H. Zhang,
J. Naughton, et al. Magellan: Toward building entity
matching management systems. PVLDB,
9(13):1581–1584, 2016.

[32] H. Köpcke and E. Rahm. Training selection for tuning
entity matching. In QDB/MUD, 2008.

[33] H. Köpcke, A. Thor, and E. Rahm. Evaluation of
entity resolution approaches on real-world match
problems. PVLDB, 3(1):484–493, 2010.

[34] A. Lazaridou, G. Dinu, and M. Baroni. Hubness and
pollution: Delving into cross-space mapping for
zero-shot learning. In Proceedings of the 53rd Annual
Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), volume 1, pages 270–280, 2015.

[35] Q. Le and T. Mikolov. Distributed representations of
sentences and documents. In ICML, 2014.

[36] J. Li, T. Luong, D. Jurafsky, and E. Hovy. When are
tree structures necessary for deep learning of
representations? In EMNLP, 2015.

1466

[37] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and
K. Li. Multi-probe lsh: efficient indexing for
high-dimensional similarity search. In PVLDB, pages
950–961, 2007.

[38] Magellan. End-to-end em workflows, 2017.

[39] M. Michelson and C. A. Knoblock. Learning blocking
schemes for record linkage. In AAAI, pages 440–445,
2006.

[40] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and
phrases and their compositionality. In NIPS, 2013.

[41] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park,
G. Krishnan, R. Deep, E. Arcaute, and
V. Raghavendra. Deep learning for entity matching: A
design space exploration. In SIGMOD, 2018.

[42] F. Naumann and M. Herschel. An introduction to
duplicate detection. Synthesis Lectures on Data
Management, 2(1):1–87, 2010.

[43] J. Pennington, R. Socher, and C. D. Manning. Glove:
Global vectors for word representation. In EMNLP,
2014.

[44] S. Sarawagi and A. Bhamidipaty. Interactive
deduplication using active learning. In KDD, 2002.

[45] M. Schuster and K. K. Paliwal. Bidirectional recurrent
neural networks. IEEE TSP, 1997.

[46] R. Singh, V. Meduri, A. K. Elmagarmid, S. Madden,
P. Papotti, J. Quiané-Ruiz, A. Solar-Lezama, and
N. Tang. Synthesizing entity matching rules by
examples. PVLDB, 11(2):189–202, 2017.

[47] R. C. Steorts, S. L. Ventura, M. Sadinle, and S. E.
Fienberg. A comparison of blocking methods for
record linkage. In PSD, 2014.

[48] S. Thirumuruganathan, N. Tang, and M. Ouzzani.
Data curation with deep learning : Towards self
driving data curation. arXiv preprint
arXiv:1803.01384, 2018.

[49] J. Wang, T. Kraska, M. J. Franklin, and J. Feng.
Crowder: Crowdsourcing entity resolution. PVLDB,
5(11):1483–1494, 2012.

[50] J. Wang, G. Li, J. X. Yu, and J. Feng. Entity
matching: How similar is similar. PVLDB,
4(10):622–633, 2011.

[51] J. Wang, H. T. Shen, J. Song, and J. Ji. Hashing for
similarity search: A survey. arXiv preprint
arXiv:1408.2927, 2014.

[52] Q. Wang, M. Cui, and H. Liang. Semantic-aware
blocking for entity resolution. TKDE, 2016.

[53] W. E. Winkler. Data quality in data warehouses. In
Encyclopedia of Data Warehousing and Mining,
Second Edition (4 Volumes), pages 550–555. 2009.

[54] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How
transferable are features in deep neural networks? In
Advances in neural information processing systems,
pages 3320–3328, 2014.

1467

