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Abstract—This paper proposes a methodology for applications
to automatically claim linear arrays of processing elements
within massively parallel processor arrays at run-time depending
on the available degree of parallelism or dynamic computing
requirements. Using this methodology, parallel programs running
on individual processing elements gain the capability of au-
tonomously managing the available processing resources in their
neighborhood. We present different protocols and architectural
support for gathering and transporting the result of a resource
exploration for informing a configuration loader about the
number and location of the claimed resources. Timing and data
overhead cost of four different approaches are mathematically
evaluated. In order to verify and compare these decentralized
algorithms, a simulation platform has been developed to compare
the data overhead and scalability of each approach for different
sizes of processor arrays.

I. INTRODUCTION

Growing demands for high computational capabilities for
computer systems lead to employ more hardware and software
parallelism by increasing the number of processing elements
placed in a multiprocessor system-on-a-chip (MPSoC). Be-
cause of this technological shift from multi-core to many-
core system-on-a-chip designs, controlling and programming
of 100s to 1000s of processing elements are becoming one
of the major challenges for system designers. In addition,
huge diversity in the application domain signals to have more
flexible architectures that can be reconfigured according to the
application requirements. Whereas for a single application,
the optimal mapping onto an array of processors may be
computed at compile-time, which holds in particular for loop-
level parallelism and the corresponding programs, a static
mapping might not be feasible for the execution at run-time
because of time-variant resource constraints or because the
degree of exploitable parallelism may be data-dependent, or
because of temporal and permanent failures. Thus, in the
future, applications and architectures should exploit dynamic
resource requirements while avoiding fully centralized and
not scalable control of their execution. The main idea of
our methodology is to give processors the ability to explore
neighbor processors and to distribute and execute in parallel
their application. This paper investigates different techniques
for organizing, gathering and transmitting information about
the number and the location of available resources. The
proposed approaches are evaluated using mathematical models
and their functionality is compared in different experimental
scenarios. The rest of this paper is organized as follows: A
brief overview of related work is given first. In Section III,
our distributed resource reservation methodology is explained

shortly. Section IV proposes different concepts and algorithms
that can be employed in such systems to return back the result
of resource explorations. A mathematical evaluation of the
proposed methods, in terms of timing and hardware cost, is
given in Section V. A simulation environment is presented in
Section VI to compare the proposed approaches. Finally, the
paper is concluded in Section VII.

II. RELATED WORK

In this section, we give an overview of the recent projects
from academia on reconfigurable multi-core architectures. In
the TRIPS project [1], an array of small processors is used
for the flexible allocation of resources dynamically to different
types of concurrency. In the CAPSULE project [2], the authors
describe a component-based programming paradigm combined
with hardware support for processors with simultaneous multi-
threading (SMT) in order to handle the parallelism in irregular
programs. Here, an application is being dynamically paral-
lelled at run-time. Resano and others [3] developed a hybrid
design/run-time pre-fetch heuristic that schedules reconfigura-
tions at run-time but carries out the scheduling computations
at design-time. The algorithm mapping for PACT XPP [4]
is done in a similar way. All the aforementioned approaches
have in common that if the number of available resources
should change, the entire application has to be recompiled and
mapped again. Furthermore, the above architectures are con-
trolled centrally and often provide no mechanisms to monitor
the utilization of the computing resources. In order to tackle
these problems, we introduce a distributed hardware-based
approach to monitor the system utilization and automatically
adapt the mapped applications according to the amount of
available resources at run-time.

III. DISTRIBUTED RESOURCE RESERVATION

In the seminal paper by Teich et al. [5], a novel paradigm of
adaptive computing called Invasive Computing is introduced.
The main idea behind invasion is to give parallel programs the
capability of requesting and temporarily claiming processing,
communication, and memory resources in their neighborhood,
to then execute in parallel the given program using the claimed
resources, and the capability of subsequently freeing these
resources again. At the beginning, a program (mapped to
a PE that we call it master PE) may define its resource
requirements which leads to call for an exploration in order to
capture available resources and reserve them for subsequent
parallel execution. After that, an infection is performed so to
copy and then execute the application code to the captured
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Fig. 1. Resource exploration controller for massively parallel processor
architectures. One controller is integrated in each of the processing elements
in a massively parallel processor array.

resources (slave PEs). Once the execution of all resources has
finished, the number of captured resources can be altered by
either issuing another exploration or retreat, respectively to
increase or decrease the number of captured resources. In order
to implement such functionality efficiently, an exploration
controller may be integrated with each of processing elements
as depicted in Fig. 1. The implementation of such a controller
may vary according to the architectural requirements and
constraints from a simple FSM-based implementation for area-
limited architectures, as introduced in [6], to a programmable
co-processor. Here, despite of the work in [6] where the
controller was designed just for one-dimensional processor
arrays, we have extended the controller to support exploration
and reservation of a linear chain of connected PEs on general
multi-dimensional architectures. The next section proposes
different approaches for gathering resource explorations and
for informing a configuration loader for infecting sets of
captured PEs.

IV. CLAIM COLLECTION

Once a resource exploration is performed, a configura-
tion loader needs to be informed about the captured region
specifications (number of PEs and their location). We call
this information a “claim”. In [6], a simple integer is incre-
mented and rippled back to the master PE as the number
of captured PEs after a successful exploration process. This
mechanism could work perfectly for a simple linear array
of processing elements, but for more complex architectures,
like two dimensional coarse-grained reconfigurable arrays
(CGRAs) [4], [7], such results should reflect not only the
amount of captured PEs, but also their locations. In order to
pass the geographical information about the captured PEs, two
different types of approaches are proposed in the following:
a centralized approach and three streaming-based (decentral-
ized) approaches. Centralized Approach: In this approach,
dedicated coordinate signals connect each PE to a resource
manager which is responsible to detect the captured PEs and
inform the configuration loader to configure the captured PEs
with an appropriate program and interconnection topology.
In order to achieve this vertical and horizontal signals might
be shared among PEs of a same column/row to connect PEs
in a same column/row to the resource manager respectively.
The captured PEs use these vertical and horizontal signals
to inform the resource manager about their locations. This

approach can be implemented in two ways. In the first way,
each PE enables its coordinate signals immediately after
receiving an exploration request which enables to overlap the
result collection time with the exploration time. Alternatively
for the second approach, the exploration is completed first,
then the configuration manager scans the array row-by-row
and requests PEs to enable their vertical signals if they were
captured. The first approach imposes less timing overhead
to the system but the configuration manager should always
snoop on the incoming signals. In the second approach, the
configuration manager starts scanning just when an exploration
has completed but at the expense of a slight timing overhead.
In summary, the centralized approach imposes an insignificant
timing overhead to the system but at the expense of hardware
wiring cost, and the need for implementing a central resource
manager.

Streaming-based (Decentralized) Approaches: In the fol-
lowing approaches, claims are gathered and communicated
back to the master PE in a decentralized way. Subsequently,
the master PE requests the configuration loader to reconfigure
the captured PEs. In this case, a stream of information is built
and sent to the master PE that includes information about the
geographical location of the captured PEs. Here, we propose
and compare three different streaming-based approaches.

Coordinate collection: In this solution, a claim consisting
of information about the number of captured PEs during the
exploration phase, followed by a list of coordinates of the
captured PEs is sent from captured PEs to their master PE.
Each PE appends its coordinate information at the end of a so-
called claim stream and passes it to its capturer. This solution
can even support simultaneous claim collection for different
applications on a system. The disadvantage of this approach is
its high data overhead, where for each PE, we need to include
its coordinate information into the stream and depending on
the array size, this data overhead may vary accordingly.

Directional collection: In this method, instead of appending
a coordinates by the captured PEs, each PE adds just direction
symbols to the stream indicating the direction of its own slaves
(neighbors that the PE has captured), i.e., North, East, South,
or West. In this way, less amount of data is gathered and
transferred compared to the case of coordinate collection, but
like the last method, this approach gathers claim information
of a size proportional to the number of captured PEs.

Compressed directional collection: In this solution, a com-
pression method is used to decrease the amount of transferred
data. Here, instead of transmitting slave directions for each
PE, the number of consecutive PEs captured in one direction
is encoded and appended to the claim stream. Here, only if
there is a change in the direction, a symbol will be placed in
the stream showing the new direction of the captured PEs. In
this way, each symbol includes two parts: the direction of the
claimed PEs, i.e., North, East, South, or West, and the number
of consecutive PEs in the specified direction. An example of
this method is shown in Fig. ??. In this example, the stream
generation starts from the last PE in the captured domain,
PE03, by sending Sclm = 1N, indicating that this PE is located
at the north of its capturer and only one PE is captured in
this direction. As there is a change of direction in PE13, a
new symbol will be added at the end of the stream showing
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Fig. 2. Compressed directional result collection (streaming-based approach)
for a simple captured domain where PE00 is the master PE. Note that the
arrows just show the exploration steps. Each claim stream, transferred from
a PE to its capturer, consists of a packet indicating the number of captured
PEs, and comressed directional symbols. Timing offsets annotated under each
packet box, indicates the transmission timing offset that should be added to
the claim collection start time (Ttr = ts + to).

the geographical location of PE13 from PE12’s perspective,
Sclm = 1E1N. As the direction remains unchanged for PE12,
this PE increases the number of consecutive PEs in the last
symbol, so the stream will be Sclm = 2E1N. This process
continues until the main master PE, which receives the final
stream Sclm = 1S3E1N. This approach is obviously superior
for regular domain invasions with few directional changes. For
more information about the proposed methods please see [8].

V. COST EVALUATION

The claim collection latency may vary depending on the
architectural parameters and the claim collection mechanism
that is implemented. In order to transfer exploration-related
signals among PEs, a set of control signals is used which
we call exploration data signals. The number and bit width
of these signals can influence the timing cost of claim trans-
missions. Here, the proposed mechanisms are evaluated by
considering system design parameters such as number of
connected neighbors (Ncon), number of rows/columns in a 2D
processor array (Nrow/Ncol) and the bit width of control signals
(Ddata).

In the case of the proposed centralized approaches, the
first solution does not impose any timing overhead. For the
second one, we need at most Nrow cycles to scan all rows,
assuming each row can be scanned within one cycle. For
the streaming-based approaches, the amount of stream data
needs be calculated in order to estimate the timing cost
of a claim collection phase. In the case of the coordinate
collection method, where the PE coordinates are sent, the
data size needed to encode each PE coordinate is Dcoo =
⌈log2 (Nrow)⌉+ ⌈log2 (Ncol)⌉ when encoding row and column
coordinates separately. In our implementation a claim stream
consists of a number indicating the total amount of captured
PEs followed by each captured PE coordinate, we always
reserve the first data item of the stream to transfer the captured
PE count. It is assumed that this number can be presented
by data bits (⌈log2 (Nrow ×Ncol)⌉ ≤ Ddata). Consequently, the
total length of a claim stream (in bits) received by the master
PE will be Dclm = Ddata + Ncap ×Dcoo where Ncap is claim
size (number of captured PEs). By calculating the maximum

number of coordinates which can be placed in one packet,

Ncpp =
⌊

Ddata
Dcoo

⌋

, the total number of coordinate packets re-

ceived at the master PE can be calculated as Ncoo = 1+
⌈

Ncap

Ncpp

⌉

.

By assuming that each PE starts informing its capturer PE
immediately after receiving the first chunk of the result stream
from its slaves, the total claim collection latency may be
calculated as Tclm = Ncoo + Ncap. In the directional collection
approach, slave direction symbols are sent by the PEs besides
the number of captured PEs. The size of direction symbols
depends on the connectivity of the array architecture Ncon

(number of channels a PE is connected to) and is calculated
by Ddir = ⌈log2 (Ncon)⌉. The total size of a claim stream is
then calculated as Dclm = Ddata +Ncap ×Ddir. The maximum

number of direction symbols per packet is Nd pp =
⌊

Ddata
Ddir

⌋

.

Consequently, by assuming the maximal number of stream

packets received at the master PE, Ndir = 1 +
⌈

Ncap

Nd pp

⌉

, Tclm

is calculated by Tclm = Ndir + Ncap.Each symbol of the com-
pressed directional collection approach is constituted of two
parts: a direction symbol and the number of consecutively
captured PEs in the specified direction. The maximum number
of consecutive PEs in one direction depends on the processor
array size Ncons = max [Nrow,Ncol ], and the data size to send
this number is Dcons = ⌈log2 (Ncons)⌉. The size of a direction
change symbol, Ddir, is also calculated as explained for direc-
tional collection approach. Consequently, the total size of each
symbol will be Dsym = Ddir +Dcons. The total size of the stream
now depends on the number of symbols (Nsym) that are placed
in a claim stream. As an example, assume a captured domain
with the size of Ncap = 10, and different numbers of direction
changes, and a set of direction symbols Cdir = {N,E,S,W}.
Some examples of claim streams are: Sclm1 = 10E for a
domain in a single direction, Sclm2 = 7E3S for a domain
with one directional change, or Sclm3 = 1E1S1E1N5E1S with
five directional changes. The longest stream occurs when the
direction of the exploration is changed in every captured PE,
meaning Nsym = Ncap, and the shortest stream happens when all
of the captured PEs are in one straight line, meaning Nsym = 1.
For a captured domain containing Nsym symbols, the total
size of the stream is Ds = Nsym ×Dsym. With the maximum

number of symbols per packet be given as Nspp =
⌊

Ddata
Dsym

⌋

, the

total number of compressed directional packets (received at

the master PE) will be Ncdir = 1+
⌈

Nsym

Nspp

⌉

, and the total claim

collection latency may be approximated as Tclm = Ncdir +Ncap.

VI. EXPERIMENTAL RESULTS

As a target platform, we consider a coarse-grained re-
configurable architecture consisting of an array of tightly-
coupled lightweight reconfigurable processor elements [7] (see
Fig. 1). These processor elements are single-threaded pro-
cessing elements with very-long-instruction-word instruction
set. Here, the exploration controller introduced in Section III
is intergrated into a simulation model of this architecture to
support resource explorations in four directions. It is worth
to mention that the designed controller can be coupled to
different kinds of MPSoC architectures such as RISC-based
MPSoCs as well. In order to evaluate the functionality of the
proposed streaming-based result collection mechanisms, the
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Ncap = 4 Ncap = 8 Ncap = 12

Ncoo 2 3 4

Ndir 2 2 3

Ncdir 2 2.16 3

TABLE I
AVERAGE NUMBER OF PACKETS RECEIVED AT THE MASTER PE FOR A

4×4 ARRAY OF PES.

simulation platform is configured for different experimental
scenarios. These scenarios can be categorized according to
three different parameters such as array size, occupation rate

(Orate =
Noccupied

Nrow×Ncol
) which results in randomized selection of

some PEs (grouped into contiguous cascading blocks) as
busy or non-available PEs, and Ncap, the number of PEs
which are targeted to be captured in each experiment, where
Ncap = n×Ncol and 1 ≤ n < Nrow. As a result of such resource
explorations, e.g. a linear chain of PEs may be captured which
can be used to execute signal processing and filtering appli-
cations, e.g. finite impulse response (FIR) filters, convolution
calculations, or image filtering algorithms. Here our focus is
on the performance of proposed decentralized methods, not on
the application execution performance. The size of the control
signal is 16 bits for all of the experiments (Ddata = 16).

Tab. I shows the average number of the transferred claim
packets on a 4 × 4 array of PEs for each of the proposed
decentralized methods. The number of claimed PEs for the
experiments varies from Ncap = 4 PEs to Ncap = 12 PEs
and 10% ≤ Orate ≤ 90%.. As it can be seen, the number of
transferred packets for coordinate collection and directional
collection approaches grow linearly proportional to the number
of captured PEs. But the compressed directional collection
behaves differently when number of direction changes varies
due to the occupation rate. In general for 4× 4 arrays, the
directional collection approach results in less packet transmis-
sion because due to the small array size, when the occupation
rate is increased, the number of directional changes grows
accordingly. Fig. 3 shows the average number of transferred
packets on different array sizes, where in all cases Ncap =
⌊

Nrow×Ncol
2

⌋

, and 10% ≤ Orate ≤ 50%. In order to have a fair

comparison, the different approaches are compared according
to the average amount of packets transmitted per captured

Fig. 3. Result overhead rate for different array sizes. The number of captured
PEs is half of the array size and the result is given as an average over different
utilization rates for each array size.

PE. We call it claim overhead rate. As it can be seen, for
the coordinate collection method, this rate is growing by
increasing array size, meaning that we need to transfer more
packets for bigger arrays, while capturing the same amount
of PEs. In order to obtain the same performance we need to
use wider control signals for bigger arrays. Conversely, the
overhead rate for the directional approach remains unchanged
which shows the its great scalability for different array sizes.
The compressed directional collection shows its superiority
over other approaches for the array sizes because there is more
chance to gain consecutive PEs with less direction changes.

VII. CONCLUSION

This paper proposes two strategies for distributed resource
exploration and reservation in massively parallel processor
arrays. In the first category, a centralized approach was pre-
sented that was based on direct connections from processing
elements in a massively parallel processor array to a central
resource manager. In the second category, three decentralized
streaming-based approaches were proposed. In order to in-
clude the geographical information of captured PEs, these
approaches use coordinate information, directional informa-
tion, or compressed directional information. A mathematical
analysis has been presented to measure the timing and data
overhead of each of the approaches. Our simulation results
show that directional collection has better results for small
arrays, but for big arrays the compressed directional method
leads to more compact results and latencies.
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