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Abstract—We study the distributed sampling and centralized re-
construction of two correlated signals, modeled as the input and
output of an unknown sparse filtering operation. This is akin to
a Slepian-Wolf setup, but in the sampling rather than the lossless
compression case. Two different scenarios are considered: In the
case of universal reconstruction, we look for a sensing and recovery
mechanism that works for all possible signals, whereas in what we
call almost sure reconstruction, we allow to have a small set (with
measure zero) of unrecoverable signals. We derive achievability
bounds on the number of samples needed for both scenarios. Our
results show that, only in the almost sure setup can we effectively
exploit the signal correlations to achieve effective gains in sampling
efficiency. In addition to the above theoretical analysis, we propose
an efficient and robust distributed sampling and reconstruction al-
gorithm based on annihilating filters. We evaluate the performance
of our method in one synthetic scenario, and two practical applica-
tions, including the distributed audio sampling in binaural hearing
aids and the efficient estimation of room impulse responses. The
numerical results confirm the effectiveness and robustness of the
proposed algorithm in both synthetic and practical setups.

Index Terms—Annihilating filter, compressed sensing, compres-
sive sampling, distributed sampling, finite rate of innovation, iter-
ative denoising, sparse reconstruction, Yule-Walker system.

I. INTRODUCTION

C
ONSIDER two signals that are linked by an unknown

filtering operation, where the filter is sparse in the time

domain. Such models can be used, e.g., to describe the corre-

lation between the transmitted and received signals in an un-

known multi-path environment. We sample the two signals in a

distributed setup: Each signal is observed by a different sensor,

which sends a certain number of non-adaptive and fixed linear

measurements of that signal to a central decoder. We study how
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the correlation induced by the above model can be exploited

to reduce the number of measurements needed for perfect re-

construction at the central decoder, but without any inter-sensor

communication during the sampling process.

Our setup is conceptually similar to the Slepian-Wolf

problem in distributed source coding [1]–[3], which consists

of correlated sources to be encoded separately and decoded

jointly. While communication between the encoders is pre-

cluded, correlation between the measured data can be taken

into account as an effective means to reduce the amount of

information transmitted to the decoder. The main difference

between our work and this classical distributed source coding

setup is that we study a sampling problem and hence are only

concerned about the number of sampling measurements we

need to take, whereas the latter is about coding and hence uses

bits as its “currency”. From the sampling perspective, our work

is closely related to the problem of distributed compressed

sensing, first introduced in [4] (see also [5]–[10]). In that

framework, jointly sparse data need to be reconstructed based

on linear projections computed by distributed sensors. In [4],

the authors proposed three joint-sparsity models for distributed

signals, as well as efficient algorithms for signal recovery.

The first contribution of this paper is a novel correlation

model for distributed signals. Instead of imposing any sparsity

assumption on the signals themselves (as in [4]), we assume

that the signals are linked by some unknown sparse filtering

operation. Such models can be useful in describing the signal

correlation in several practical scenarios (e.g., binaural audio

recording). Under the sparse-filtering model, we introduce

two strategies for the design of the sampling system: In the

universal strategy, we seek to successfully recover all signals,

whereas in what we call the almost sure strategy, we allow to

have a small set (with measure zero) of unrecoverable signals.

As the second contribution of our work, we establish the

corresponding achievability bounds on the number of samples

needed for the two strategies mentioned above. These bounds

indicate that the sparsity of the filter can be useful only in the

almost sure strategy.

Since the algorithms that achieve the aforementioned bounds

are computationally prohibitive, we introduce, as our third

contribution, a novel distributed sampling and reconstruction

scheme that can recover the original signals in an efficient

and robust way. As an intermediate step in the reconstruction

process, our proposed algorithm employs the annihilating filter

technique [11]–[13] to estimate the unknown sparse channel

between the two signals. Several recent papers on channel

estimation (e.g., [14] and [15]) have also explored the sparsity
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of the channels, usually by using theories and techniques devel-

oped in compressed sensing. In this perspective, our proposed

reconstruction algorithm can be viewed as a new approach

to sparse channel estimation, based on annihilating filters.

However, we emphasize that, rather than focusing on channel

estimation, our main goal is to develop efficient distributed

sampling schemes based on the signal correlation provided by

the sparse filtering model.

The rest of this paper is organized as follows. After a pre-

cise definition of the considered model, we state in Section II

a general formulation of the distributed sensing problem. In

Section III-A, we demonstrate a somewhat surprising result: If

one requires all possible signals to be reconstructed perfectly,

then the aforementioned correlation between the observed sig-

nals cannot be exploited. In that case, the simple strategy of in-

dependently sending all coefficients of the distributed signals

would be optimal. However, if one only considers the perfect

recovery of almost all signals, then substantial gains in sam-

pling efficiency can indeed be achieved. We derive an achiev-

ability bound for the almost sure reconstruction in Section III-B.

Since the algorithm that attains the bound has combinatorial

complexity, we propose in Section IV a slightly suboptimal, yet

computationally efficient distributed algorithm based on anni-

hilating filters. Moreover, we show how the proposed method

can be made robust to model mismatch using an iterative pro-

cedure due to Cadzow [16]. In Section V, we discuss several

possible extensions and generalizations of the modeling and re-

covery algorithms proposed in this paper. Finally, Section VI

presents numerical experiments to illustrate the performance of

our proposed scheme in both synthetic and practical scenarios.

We conclude the paper in Section VII.

II. SIGNAL MODEL AND PROBLEM STATEMENT

A. Proposed Correlation Model

Consider two signals and , where can be

obtained as a filtered version of . In particular, we assume

that

(1)

where is a stream of Diracs with

unknown delays and coefficients . The above

model characterizes the correlation between a pair of signals

of interest in various practical applications. Examples include

the correlation between transmitted and received signals under

multipath propagation, with representing the unknown

channel, or the spatial correlation between signals recorded by

two closely spaced microphones in a simple acoustic environ-

ment composed of a single source.

In this paper, we study a finite-dimensional discrete version

of the above model. As shown in Fig. 1, we assume that the orig-

inal continuous signal is bandlimited to . Sampling

at uniform time interval leads to a discrete sequence

of samples , where the sampling rate is

set to be above the Nyquist rate . To obtain a finite-length

Fig. 1. The continuous-time sparse filtering operation and its discrete-time
counterpart. The two bandlimited signals � ��� and � ��� are sampled above
the Nyquist rate, followed by a smooth temporal windowing operation.
Neglecting the windowing effect, we can approximately model the resulting
finite-length signals � ��� and � ��� as the input and output of a discrete-time
filtering operation. The discrete filter ���� is sparse as long as the sampling
interval is fine enough.

signal, we subsequently apply a temporal window to the infinite

sequence and get

where is a smooth temporal window (e.g., the Kaiser

window [17]) of length . It is easy to verify that the discrete

Fourier transform (DFT) of the finite sequence is

(2)

for , where and

are the discrete-time Fourier transforms of and

, respectively, and represents circular convolution. When

is large enough, we can omit the windowing effect, since

approaches a Dirac function as .

It then follows from (2) that

where is the continuous-time Fourier transform of ,

and the equality above is due to the standard sampling formula

in the Fourier domain [18].

Applying the same procedure to and using (1), we have

where

(3)

This relationship implies that, like the original continuous sig-

nals and , the finite-length signals and

can also be approximately modeled as the input and output of

a discrete-time filtering operation, where the unknown filter
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Fig. 2. The proposed distributed sensing setup. The �th sensor �� � �� �� pro-
vides an � -dimensional observation of the signal ��� via a nonadaptive linear
transform ��� . The central decoder reconstructs the original vectors (as well as
the sparse convolution kernel ���) based on the received measurements.

—and in time domain —contains all the informa-

tion about the original continuous filter 1. In general, the

location parameters in (3) can be arbitrary real numbers,

and consequently, the discrete-time filter is no longer

sparse (see Fig. 1 for a typical impulse response of ).

However, when the sampling interval is small enough, we

can assume that the real-valued delays are close enough

to the sampling grid, i.e., for some integers .

Under this assumption, the filter becomes a sparse vector

with nonzero elements, represented by

We will follow this assumption2 throughout the paper, and

focus on the following model.

Definition 1 (Correlation Model): The signals of in-

terest are two vectors and

, linked to each other through a

circular convolution

(4)

where is an unknown

-sparse vector, that is .

Definition 2: The signal space is the set of all stacked

vectors such that its components

satisfy the correlation model given in Definition 1.

B. Distributed Sensing and Problem Statement

We consider the problem of sensing in a

distributed fashion, by two independent sensors taking linear

measurements of and , respectively. The measurement ma-

trices are fixed (i.e., they do not change with the input signals).

As shown in Fig. 2, suppose that the th sensor takes

linear measurements of . We can write

1Note that in order to be unambiguous in the positions �� �, we need to ensure
that �	 
 ��� �� �.

2We introduce this assumption (i.e., � �	 � � for some � � ) mainly
for the simplicity it brings to the theoretical analysis in later parts of this paper. It
is however not an inherent limitation of our work. In fact, the proposed sampling
and recovery algorithm presented in Section IV can work with the case when
the delays �� � have arbitrary real values. We demonstrate this capability
in Section VI-B, where we apply the proposed algorithm in estimating acoustic
room impulse responses.

where represents the vector of samples taken by the

th sensor, and is the corresponding sampling matrix. Con-

sidering the stacked vector , we have ,

where

(5)

Note that the block-diagonal structure of is due to the fact

that and are sensed separately. This is in contrast to the

centralized scenario in which and can be processed jointly

and hence, the matrix can be arbitrary.

The measurements and are transmitted to a central de-

coder, which attempts to reconstruct the vector through some

(possibly nonlinear) mapping as

By analogy to the Slepian-Wolf problem in distributed source

coding [1], the natural questions to ask in the above sampling

setup are the following:

1) What choices of sampling pairs will allow us to

reconstruct signals from their samples?

2) What is the loss incurred by the distributed infrastructure

in (5) over the centralized scenario in terms of the total

number of measurements ?

3) How to reconstruct the original signals from their samples

in a computationally efficient way?

In what follows, we first answer the above questions in the

case of universal reconstruction (Section III-A), where we want

to recover all signals. We then consider almost sure reconstruc-

tion (Section III-B) in which case we allow to have a small set

(with measure zero) of unrecoverable signals. In Section IV, we

propose a robust and computationally efficient reconstruction

algorithm based on annihilating filters.

III. BOUNDS ON ACHIEVABLE SAMPLING PAIRS

A. Universal Recovery

Let and be the sampling matrices used by the two

sensors, and be the corresponding block-diagonal matrix as

defined in (5). We first focus on finding those and such

that every is uniquely determined by its samples .

Definition 3 (Universal Achievability): We say a sampling

pair is achievable for universal reconstruction if there

exist fixed measurement matrices and

such that the set

(6)

is empty.

Intuition suggests that, due to the correlation between the vec-

tors and , the minimum number of samples needed to per-

fectly describe all possible vectors can be made smaller than

the total number of coefficients . The following proposition

shows that, surprisingly, this is not the case.

Proposition 1: Let and be two signals that

are related through an unknown -sparse convolution kernel ,
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and sampled separately. A sampling pair is achiev-

able for universal reconstruction if and only if and

.

Proof: The sufficiency of the above conditions is clear. To

show its necessity, let us consider two stacked vectors

and , each following the correlation

model (4). They can be written under the form

where and are two circulant matrices with vectors and

as the first column, respectively. It holds that

(7)

Meanwhile, we can check that

rank rank

rank (8)

Next, we show that for any -sparse filter , we can always find

another -sparse filter such that is full rank. To see

this, note that and are circulant matrices, therefore they can

be diagonalized by DFT matrices where the diagonal elements

are the DFTs of the -sparse filters and , respectively. For

any -sparse filter , we can build a different -sparse filter

where is the position of any

nonzero element of and . Since has

a flat spectrum, it insures that is full rank. It follows

from (8) that the matrix in (7) is of full rank too. Consequently,

in (7) can take any possible value in . Now if the ma-

trix is not full rank, we can always find two different vectors

and , such that their difference is in the null space of

, which implies that and provide the same measurement

vector. Hence, a necessary condition for the set (6) to be empty

is that the block-diagonal matrix be a full rank matrix of size

, with . In particular, and must be full

rank matrices of size and , respectively, with

. Note that, in the centralized scenario, the full

rank condition would still require to take at least measure-

ments.

Remark: As a direct consequence of the above result for uni-

versal reconstruction, each sensor can simply process its signal

independently without any loss of optimality. In particular, the

simple strategy of sending all observed coefficients is optimal.

Moreover, it is seen in the proof of Proposition 1 that there is no

penalty associated with the distributed nature of the sampling

setup. In other words, the total number of measurements cannot

be made smaller than even if the vectors and can

be sampled jointly. The region of achievable sampling pairs for

universal reconstruction is depicted as the shaded area in Fig. 3.

B. Almost Sure Recovery

As shown in Proposition 1, universal recovery is a rather

strong requirement to satisfy since we have to take at least

Fig. 3. Shaded area: achievable sampling region for universal reconstruction.
Solid line: boundary of the sampling pairs achieved for almost sure reconstruc-
tion for � odd [any pair �� �� � above the line is achievable]. Dashed line:
boundary of the sampling pairs achieved for almost sure reconstruction by the
proposed algorithm based on annihilating filters (see Section IV for details).

samples at each sensor, with no chance to exploit the existing

signal correlation. In many situations, however, it is sufficient

to consider a weaker requirement, which aims at finding mea-

surement matrices that permit the perfect recovery of almost all

signals from . We will use the following definition in our dis-

cussion on the almost sure reconstruction.

Definition 4 (Nonsingular Probability Distribution): We say

a probability distribution over is nonsingular if for any

subset with Lebesgue measure zero we have .

For nonsingular distributions, the probability of signals living

in a subspace with dimension less than is zero. A typical ex-

ample of a nonsingular distribution is a jointly Gaussian distri-

bution with a nonsingular covariance matrix.

Definition 5 (Almost Sure Achievability): We say a sampling

pair is achievable for almost sure reconstruction if

there exist fixed measurement matrices and

such that the set , as defined in (6), is of

probability zero.

The above definition for almost sure recovery depends on the

probability distributions of the signal and the sparse filter .

In our discussions in Section IV and Appendix A, we assume

that the signal follows a probability distribution such that

the frequency components of are nonzero with probability 1.

Note that this condition is fairly mild and can be satisfied when

is drawn from any non-singular probability distribution over

, or when is sparse in a basis that is different from the

standard Fourier basis. For the sparse filter , it is sufficient to

assume that, given the locations of its nonzero coefficients, the

values of these coefficients are drawn from a non-singular dis-

tribution over . The following proposition gives an achiev-

ability bound on the number of samples needed for almost sure

reconstruction.

Proposition 2: Let and be two signals that

are related through an unknown -sparse convolution kernel ,
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and sampled separately. A sampling pair is achiev-

able for almost sure reconstruction if

and (9)

where .

Proof: See Appendix A.

Remark: Proposition 2 shows that, in contrast to the universal

scenario, the correlation between the signals by means of the

sparse filtering provides a large improvement in sampling effi-

ciency in the almost sure setup, especially when . We

show the boundary of the above achievable region as the solid

line in Fig. 3.

IV. ALMOST SURE RECONSTRUCTION BASED ON

ANNIHILATING FILTERS

We show in the proof of Proposition 2 (see Appendix A) that

the algorithm which attains the bound in (9) is combinatorial in

nature and, thus, computationally prohibitive. In the following,

we propose a novel distributed sensing algorithm based on anni-

hilating filters. This method, known as Prony’s method in spec-

tral estimation, belongs to the class of model-based parametric

methods for high-resolution harmonic retrieval [11], [13], [19].

This algorithm needs effectively more measurements with re-

spect to the achievability region for the almost sure reconstruc-

tion but can substantially reduce the reconstruction complexity

to . We start our discussion with the noiseless case.

A. Noiseless Scenario

The proposed distributed sensing scheme is based on a fre-

quency-domain representation of the input signals. Let us de-

note by and the DFTs of the vectors

and , respectively. The circular convolution in (4) can be ex-

pressed as

(10)

where is the DFT of the filter and denotes element-

wise multiplication. Our approach consists of the following two

main steps:

1) Finding the filter by sending the first (1 real and

complex) DFT coefficients of and .

2) Sending the remaining frequency indices by sharing them

among the two sensors.

We first show how a decoder can almost surely recover the

unknown filter using only the first DFT coefficients of

and . This is achieved by using the annihilating filter ap-

proach, which is widely used in harmonic retrieval applications.

In what follows, we focus on the main steps of the algorithm;

more details can be found in [11] and [13].

The DFT coefficients of the filter are given by

(11)

The sequence is the sum of complex exponentials,

whose frequencies are determined by the positions of the

nonzero coefficients of the filter. It can be shown [11] that

can be “annihilated” by a filter of degree whose roots

are of the form for , i.e.,

More specifically, in the spatial domain, the coefficients of this

filter satisfy

or in matrix form

...
...

...
...

...

(12)

The above matrix is of size and is built from

consecutive DFT coefficients. Moreover, it can be shown to

be of rank (see Appendix B) and hence, its null space is of

dimension one. Therefore, the solution can be any vector in the

null-space of the above matrix. Note that, due to the conjugate

symmetry property, the coefficients of the matrix in (12) can be

computed as

(13)

provided that is nonzero for . In other

words, those signals which have zero frequency components

in the range are unrecoverable by the anni-

hilating filter method. However, according to our assumption

on the probability distribution of , the probability of encoun-

tering such signals is zero. Once the coefficients of the annihi-

lating filter have been obtained, it is simply a matter of com-

puting its roots to retrieve the unknown positions . The

filter weights can then be recovered by means of the linear

system of equations in (11).

Based on the above considerations, our distributed sensing

scheme can be described as follows. Both sensors send the first3

DFT coefficients of their signals to the decoder (

real values each). They also transmit complementary subsets4

(in terms of frequency indexes) of the remaining DFT coeffi-

cients ( real values in total). This is illustrated in

Fig. 4. Note that certain level of coordination, i.e., which Fourier

coefficients to retain, is needed among the sensors. However,

this type of coordination is fixed and can be set before deploy-

ment. The first DFT coefficients allow us to almost surely

reconstruct the filter . The missing frequency components of

(resp. ) are then recovered from the available DFT coeffi-

cients of (respectively, ) using (10). Note that in order to

3Note that we could also use a pass-band frequency range but in that case,
we need �� complex measurements (�� real), since we can no longer use the
complex conjugate property of the Fourier transform to build �� consecutive

frequency data from � � � measurements.

4Two subsets� and� are called the complementary subsets of� if��� �

� and � � � � � .
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compute from , the frequency component

should be nonzero. This is insured almost surely under our as-

sumption that the nonzero elements of the filter are drawn

from a nonsingular distribution in . We summarize the pro-

posed method in Algorithm 1. In terms of achievability, we have

thus shown the following result.

Algorithm 1: Sensing and Recovery Based on Annihilating

Filters

1: Sensors 1 and 2 send the first DFT coefficients of

and , respectively. They also send complementary

subsets of the remaining DFT coefficients.

2: The decoder computes consecutive DFT

coefficients of from (13).

3: The decoder retrieves the filter using the annihilating

filter method.

4: The decoder reconstructs and from (10) using

and the remaining DFT coefficients of and .

Proposition 3: A sampling pair is achievable for

almost sure reconstruction using the proposed annihilating filter

method if

and

In contrast with the case of universal reconstruction, the total

number of measurements can be reduced from to

, as depicted by the dashed line in Fig. 3. Although slightly

oversampled compared to the bound for the almost sure setup

given in Proposition 2, we obtain substantial improvement in

terms of computational efficiency, as seen in the following.

The annihilating filter equation in (12) is a Yule-Walker

system which is solvable in operations [20]. To find

the locations of the nonzero coefficients, the annihilating filter

should be factorized. The roots of the filter can be found by

the Chien search algorithm in operations [21]. In the

last step, the weights of the nonzero coefficients of the filter

are obtained by solving a Vandermonde system, which requires

operations [20]. Since , the total number of

operations needed in reconstructing the sparse filter is .

B. Noisy Case

Noise or, more generally, model mismatch makes it diffi-

cult to directly apply the solution discussed above in practice.

Adding robustness to the system requires sending additional

measurements to the decoder.

Our first strategy for reconstruction in the noisy scenario is

to use the total least squares (TLS) approach [19] to solve the

system of equations in (12). In the TLS technique, it is assumed

that the observation errors are on both sides of a system of equa-

tions, instead of just on the right hand side as in the least squares

approach. This approach finds the solution by minimally per-

turbing both sides of a system of equations, until it is satisfied.

The TLS approach requires the singular value decomposition

and the solution is estimated from the singular vectors [20]. In

our system of equations in (12), the TLS approach consists of

computing the singular value decomposition of the coefficient

matrix and then, the solution is the singular vector which corre-

sponds to the smallest singular value.

Algorithm 2: Cadzow Iterative Denoising

1: Build matrix of dimension of the form

(12) from the measurements.

2: Set to be a small constant.

3: while do

4: Enforce rank on by setting the

smallest singular values to zero.

5: Enforce the Toeplitz form on by averaging the

coefficients along the diagonals.

6: end while

7: Extract the denoised DFT coefficients from the first

row and first column of .

To further improve robustness, we use an iterative method

devised by Cadzow [16]. In our context, it can be summarized

as follows. Sensor transmits the first DFT coefficients of

with . A matrix of dimension

of the form (12) is then built from these measurements. In the

noiseless case, this matrix has two key properties: (i) it has rank

(see Appendix B) and (ii) it is Toeplitz. In the noisy case,

these two properties are not initially satisfied simultaneously,

but can be subsequently enforced by alternatively performing

the following two steps:

i) Enforce rank by setting the smallest singular

values of to zero.

ii) Enforce the Toeplitz form on by averaging the coeffi-

cients along the diagonals.

The above procedure is guaranteed to converge to a matrix

which exhibits the desired properties [16]. The iterations stop

whenever the ratio of the th singular value to the th

one, , falls below a predetermined threshold (e.g.,

). The denoised DFT coefficients are then extracted from

the first row and first column, and used to solve the systems (11)

and (12) using the TLS method. The method is summarized in

Algorithm 2.

It may happen that the sparsity parameter is not known

a priori or the sparse filter is only approximately sparse, with

fast decaying entries. In these cases, it is sufficient to estimate

an upperbound for the effective sparsity parameter5. Then,

the Cadzow denoising algorithm treats the remaining

least significant coefficients of the filter as noise. In this

case, the denoising performance depends on the energy of the

significant coefficients with respect to the nonsignificant

ones.

5By effective sparsity parameter we mean the number of significant coeffi-
cients that retain most of the energy of the original filter ����. This is a model
estimation problem which in general requires some a priori knowledge about
the underlying structure which generates the sparse filter.
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Fig. 4. Sensors 1 and 2 both send the first � � � DFT coefficients of their
observations, but only complementary subsets of the remaining frequency com-
ponents.

V. POSSIBLE EXTENSIONS

A. Generalizing the Model

In this paper, we consider the correlation model which con-

sists of sparse filters in the time domain. Using the sampling

theory for signals with finite rate of innovation [12], the pro-

posed model can be extended to cases where the unknown fil-

ters are piecewise polynomials or piecewise bandlimited func-

tions. Moreover, the model is extendable to filters which admit

a sparse representation in an arbitrary basis. In that case, one

can send samples which involve random frequency measure-

ments [5] of the sparse filter. Then, the reconstruction uses tech-

niques based on minimization6 to recover the filter, with a

complexity of . After finding the filter, the two sensors

send complementary information on the remaining frequency

indices of their signals to the decoder. Finally, another possible

extension of the model is to consider general linear transforms

(matrices) which have a sparse representation in a matrix dic-

tionary [22].

B. The Multiframe Setup

Our discussion in this paper focuses on distributed sensing in

a single frame setup, where only one “snapshot” is available for

sensing and reconstruction. It is possible to consider the case

where multiple consecutive frames are available and the sparse

filters in different frames are inter-related through certain joint

sparse models [4]. In this scenario, one can exploit the interrela-

tion between the underlying -sparse filters in different frames

in the sensing and recovery architecture. This allows to either

reduce the total number of measurements or, make the recon-

struction more robust to noise and model mismatch. In [23], we

showed how to efficiently exploit the interrelation between the

sparse signals in different frames in the annihilating filter based

reconstruction method. In the case of random frequency mea-

surements followed by the -based recovery method, the tech-

niques proposed in [4] can be used to exploit redundancy across

frames.

VI. NUMERICAL EXPERIMENTS AND APPLICATIONS

In this section, we present numerical results to demonstrate

the effectiveness and robustness of the proposed sensing and re-

covery scheme based on annihilating filters. The simulations are

divided into three parts. First, in Section VI-A, we run simula-

tions on synthetic data with additive white Gaussian noise added

to the sparse filter to evaluate the effect of model mismatch on

the recovery algorithm. Then, in Section VI-B, we apply our

proposed algorithm to estimate an acoustic room impulse re-

sponse (RIR) generated by the image-source model [24], [25].

6One can also use greedy algorithms like orthogonal matching pursuit [7] for
reconstruction.

Finally, in Section VI-C, we evaluate the performance of the

algorithm in a distributed audio coding application, where the

goal is to localize a sound source using two hearing aid micro-

phones.

A. Synthetic Experiments

Assume that the signal is of length and the sparse

filter has or 6 nonzero coefficients. The elements of the

signal and the nonzero coefficients of the filter are chosen to

be i.i.d. random with distribution . The positions of the

nonzero coefficients of are chosen uniformly from

at random.

To evaluate the effect of model mismatch on the filter model,

we add independent white Gaussian noise to all coefficients

of the filter and get

Then, the signal observed by the second sensor is given by

We define

SNR

In this simulation, we let the first sensor send the whole signal

, and let the second sensor transmit the first DFT co-

efficients of to the decoder, for different values of . The

decoder first estimates the true unknown -sparse filter , call

it , and then computes an estimate of the signal of the second

sensor as

To evaluate the quality of the reconstruction, we calculate the

normalized mean-square error (MSE) as the norm of the dif-

ference between the ideal noiseless signal of the second sensor

and the reconstructed one, , divided by the en-

ergy of , i.e.

The results are averaged over 50 000 realizations. Fig. 5(a)

shows the normalized MSE as a function of using

the TLS approach, with or without the Cadzow denoising

procedure introduced in Section IV. The different sets

of curves correspond to different oversampling factors

(from top to bottom).

We observe that the normalized MSE can be significantly re-

duced by sending just a few more measurements than the min-

imum required (i.e., ). Besides, the gain provided by the

Cadzow denoising procedure increases as the number of trans-

mitted coefficients increases. In Fig. 5(b), we show the recon-

struction error as a function of the signal length . The param-

eters are set to be 25 dB, with

taking values from the set . The

results shown in the figure clearly exhibits the effectiveness of

the Cadzow denoising algorithm on the reconstruction perfor-

mance in the presence of model mismatch.
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Fig. 5. Normalized MSE of the reconstructed signals. The filter coefficients
are perturbed by additive white Gaussian noise. The recovery algorithm is the
annihilating filter method introduced in Section IV, with or without the Cadzow
denoising step. (a) � � ���� � � �� � � �� �� �� (from top to bottom)
(b) � � �� � � ���	
� � �� dB and different values for the signal length
� .

B. Room Impulse Response Estimation

In this section, we use the proposed algorithm to estimate the

room impulse response (RIR) in an acoustic environment. The

same setup can also be relevant in an ultrawideband localiza-

tion scenario in which one can sample the echo at much slower

speed than the Nyquist rate and still get very good localization

information.

This experiment is a bit different from our original setup. In-

stead of recovering two signals and , our goal here is to

estimate the room impulse response by sending a signal and

collecting a set of noisy observations. In our original setup, this

is equivalent to the case where the decoder has full access to

the first signal , and then recovers the second signal and

the underlying sparse filter. In this simulation, we consider two

sources of noise to simulate the imperfections on both the trans-

mitter and receiver sides.

In our experiment, the acoustic room impulse response is gen-

erated by the standard image-source model (ISM) [24], [25].

Fig. 6. Synthesizing the room impulse response using the image-source model
[24], [25]. (a) Room setup. (b) Synthesized RIR using the image-source model.

This scheme provides realistic impulse responses which can be

used to generate signals that would effectively be recorded in the

considered environment. To produce the RIR, we used the code

provided by E. A. Lehmann, available online at http://www.

watri.org.au/~ericl. Our setup is shown in Fig. 6(a). The room

has dimensions , , and m. The reflection

coefficients of all six walls are set to 0.6. The sound source is lo-

cated at coordinates , , and m. We put the

microphone at coordinates , , and m.

The speed of sound is set to m/s and the sampling fre-

quency is kHz. The impulse response is computed until

the time index where its overall energy content has decreased by

20 dB, which sets the value of to 956. Also, the RIR synthesis

algorithm makes use of fractional delay filters, which allow the

representation of noninteger delays for all acoustic reflections.

The synthesized RIR is shown in Fig. 6(b) and consists of 150

reflections.

The setup for sending and receiving signals is shown in Fig. 7.

We build the signal using i.i.d. elements from the Gaussian

distribution . In order to simulate the imperfections in

sending this sequence through the loudspeaker, we add white

Gaussian noise to to reach an of 25 dB. Conse-

quently, the transmitted signal is given by

Moreover, after convolving with the RIR filter , we add to

the result another white Gaussian noise sequence , which is
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Fig. 7. The setup for sending and receiving signals in order to estimate the
acoustic room impulse response.

TABLE I
THE AVERAGE ERROR (NORMALIZED TO THE SAMPLING PERIOD) IN

ESTIMATING THE POSITIONS OF THE 7 STRONGEST REFLECTIONS, INDICATED BY

NUMBERS IN FIG. 8. THE MATCHING ALGORITHM IS BASED ON AN EXHAUSTIVE

SEARCH. THE BLACK SQUARE INDICATES THAT THE CORRESPONDING DELAY

COULD NOT BE FOUND. THE RESULTS ARE AVERAGED OVER 500 TRIALS

independent of and used to model the imperfections on the

receiver side. Consequently, the microphone observes

with

SNR

set to 25 dB.

In the reconstruction phase, we assume that the first sequence

is fully available to the recovery system (note that a noisy

version of is convolved with the RIR filter ). To estimate

the RIR, we set and use different oversampling factors

and 156 on . Since the true reflection delays

are real valued, we set the root finding part in the annihilating

filter method to look for roots at machine precision. In this way,

our algorithm is able to find the true delays even if they do not lie

on the sampling grid. The original and the reconstructed RIRs

are shown in Fig. 8. It can be verified visually that taking more

measurements will result in better reconstruction quality.

Table I summarizes the average error (normalized to the sam-

pling period) in estimating the positions of the seven strongest

reflections of the original RIR (see Fig. 8), using the annihilating

filter method. We do an exhaustive search to match the set of

original and reconstructed spikes. First, we separately pick the

seven strongest among each of the two sets. Then, from the two

lists, we pick two spikes that are closest in time. If their time

difference is smaller than a predefined threshold (which is set to

10 samples here), they are matched and removed from the lists.

This process is continued until either all the seven strongest orig-

inal spikes are matched or the minimum time difference between

the remaining spikes in the two lists are above the threshold. The

errors in positions are normalized to convert the absolute error

(in seconds) to the error in the number of samples. The results

are averaged over 500 trials. This table clearly shows the posi-

tive effect of oversampling on the performance of the recovery

algorithm.

C. Binaural Hearing Aids Setup

In this experiment, we consider the signals recorded by two

hearing aids mounted on the left and right ears of the user [26],

[27]. We assume that the signals of the two hearing aids are re-

lated through a filtering operation. We refer to this filter as bin-

aural filter. In the presence of a single source in far field, and

neglecting reverberations and the head-shadow effect [28], the

signal recorded at hearing aid 2 is simply a delayed version of

the one observed at hearing aid 1. Hence, the binaural filter can

be assumed to have sparsity factor . In the presence of

reverberations and head shadowing, the filter from one micro-

phone to the other is no longer sparse which introduces model

mismatch. Despite this model mismatch, it is assumed that the

main binaural features can still be well captured with a filter

having only a few non-zero coefficients. Thus, the transfer func-

tion between the two received signals should be sparse, with the

main peak indicating the desired relative delay.

A single sound source, located at distance from the head

of a KEMAR mannequin, moves back and forth between two

angles and . The angular speed of the source is de-

noted as . The sound is recorded by the microphones of the

two hearing aids, located at the ears of the mannequin. We want

to retrieve the binaural filter between the two hearing aids at

hearing aid 1, from limited data transmitted by hearing aid 2.

Then, the main peak of the binaural filter indicates the rela-

tive delay between the two received signals, which can be used

to localize the source. In addition to that, retrieving this bin-

aural filter also allows the hearing aid 1 to find out the received

signal at hearing aid 2. The setup is shown in Fig. 9. To get the

head related transfer functions (HRTF) at each position of the

sound source, we used the CIPIC HRTF database7, which is a

public-domain database of high-spatial-resolution HRTF mea-

surements [29]. The database includes 2500 measurements of

head-related impulse responses for 45 different subjects.

In order to track the binaural impulse response, we process

the received signals frame by frame in a DFT filter bank ar-

chitecture [18], [30]. In this way, we calculate the near-sparse

filter in each frame with a few measurements, considering it

as a 1-sparse filter. We use a weighted overlap-add (WOLA)

filter bank, which allows for an efficient realization of a DFT

filter bank to obtain the short-time Fourier transform of the input

signal.

The parameters of the simulation setup is as follows. The

sound source is located at the distance meter in front

of the head, at elevation 0. It travels between and

with the angular speed of deg/sec. The total

7http://interface.cipic.ucdavis.edu



1104 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 3, MARCH 2010

Fig. 8. The original RIR along with the reconstructed responses with different number of measurements in a typical trial. The parameter � is set to 156, 120, 84,
and 48 from top to bottom and � � ���. White Gaussian noise is added to the two signals � ��� and � ��� to get signal to noise ratio of 25 dB in each one. The
recovery algorithm reconstructs � � �� Diracs of the RIR. The numbered spikes are the 7 strongest ones considered in Table I.

length of the sound is 10 seconds. In the frame by frame pro-

cessing, the HRTF for the left and right ears are extracted from

the database. Then, each frame of length 1024 is windowed by

a Hanning window and then filtered by the impulse responses

to generate the received signals for the left and right ears. The

overlap between the frames is set to half of the window size.

On the reconstruction phase, we use the WOLA filter bank

architecture. In our implementation, the sampling frequency is

set to 16 kHz. The analysis window is a Hanning window of

size 896, zero-padded with 64 zeros on both sides, to give a

total length of 1024 samples. In each frame, we estimate the un-

derlying impulse response between the two ears, using the dis-

tributed algorithm presented in Section IV. Since we are inter-

ested in the relative delay between the two signals, we set

, i.e., we are looking for just one Dirac. To overcome the model

mismatch in the system, we send more measurements than the

minimum rate and use the Cadzow’s iterative de-noising fol-

lowed by the TLS method. The parameter in our algorithm

is selected from the set , which is much

smaller than the frame length. This allows the left ear to lo-

calize the sound source in each frame by looking at the position

of the main peak in the corresponding binaural filter. Moreover,

it can reconstruct the signal received by the right ear using the

frame-by-frame reconstruction approach. The original and the

reconstructed sound data are available at http://rr.epfl.ch/sparse-

filtering.

Note that if the angular speed of the source is small com-

pared to the frame length, the binaural filter does not change

Fig. 9. Audio experiment setup. (a) A sound source travels at a distance of
� meters in front of the head. It moves back and forth with angular speed �
between the horizontal angles � and � . There are two microphones
(hearing aids) at the two ears which record the received signals. (b) Angular
position of the sound source with respect to time.

too rapidly over several frames. Therefore, we can make the re-

construction more robust to noise and model mismatch by av-

eraging the measurements along multiple frames. We used an
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Fig. 10. A typical example of the binaural filter impulse response and its
one-tap sparse approximation. (a) Original version. (b) Sparse approximation
obtained by Cadzow iterative denoising � TLS algorithm. The parameters are
� � � and � � ��. We observe that the non-zero coefficient is located at the
position of the filter tap with the largest magnitude.

exponentially weighted averaging filter, with the averaging con-

stant equal to msec. However, setting large values for

degrades the tracking capability of the algorithm.

Fig. 10 shows, as an example, the binaural filter and its ap-

proximation as a one-tap filter, estimated by the reconstruction

algorithm, using measurements. Because of the rever-

berations and the shadowing effects, the binaural filter is not ex-

actly sparse. Moreover, the frame-by-frame processing further

distorts the binaural filter. That is why we need to over-sample,

in order to get a good approximation for the position of the main

peak.

Fig. 11 demonstrates the localization performance of the al-

gorithm. Fig. 11(a) shows the evolution of the original binaural

impulse response over time. Fig. 11(b)–11(f) exhibits the sparse

approximation to the filter, obtained by the proposed algorithm,

using different number of measurements. This clearly demon-

strates the effect of the over-sampling factor on the robustness

of the reconstruction algorithm.

When multiple sources are concurrently active, the binaural

filter is no longer sparse. Therefore, our scheme can not be

applied directly. A possible solution is to apply the proposed

scheme on a subband basis [31], where the assumption is that

Fig. 11. Tracking the binaural impulse response with a 1-tap filter using dif-
ferent number of measurements. The quality of estimating the main delay im-
proves significantly by increasing the number of measurements. Each column in
the image corresponds to the binaural impulse response at the time mentioned
on the � axis. (a) Original binaural filter. (b)–(f) Tracking the evolution of the
main peak with different values of the oversampling factor �. (a) Original. (b)
� � �. (c) � � ��. (d) � � ��. (e) � � ��. (f) � � ��.

only one source is active in each subband. However, the conju-

gate symmetry property can no longer be used to obtain twice

as many consecutive frequency coefficients. Moreover, the over-

sampling ratio must be reduced to keep a constant total number

of coefficients. We leave this for future work.

VII. CONCLUSION

We investigated the task of recovering distributed signals at a

central decoder based on linear measurements obtained by dis-

tributed sensors, using a fixed linear measurement structure. Our

main focus was on the scenario where the two signals are related

through a sparse time-domain filtering operation. Under this

model, we proposed universal and almost sure reconstruction

strategies. We derived the achievability bounds on the minimum

number of samples needed in each strategy and showed that,

for universal recovery, one can not use the sparsity of the filter

to reduce the number of measurements. On the other hand, by

means of a computationally demanding recovery algorithm, the

number of measurements in the almost sure setup is decreased

effectively by . Since , this is about a two times

reduction in the number of measurements. To overcome the high

complexity of the recovery algorithm, we proposed a slightly
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TABLE II
SUMMARY OF THE MAIN RESULTS

sub-optimal yet efficient and robust distributed sensing and re-

covery scheme based on annihilating filters. The proposed ap-

proach needs effectively more measurements compared to the

theoretical achievability bound but its complexity is of .

The results are summarized in Table II. Our future work will

focus on pursuing more practical applications of the proposed

algorithm, e.g., in binaural hearing aids [26], [27].

APPENDIX A

THE ACHIEVABILITY BOUND FOR ALMOST SURE

RECONSTRUCTION

The goal of this Appendix is to show the achievability result

for the almost sure reconstruction as stated in Proposition 2. To

this end, we first state some definitions and lemmas.

Definition 6 (Spark [32]): The spark of a matrix , denoted

as , is defined as the largest integer , such that every sub-

group of columns from are linearly independent.

The following lemma shows that, using a measurement ma-

trix with Spark at least , we can almost surely reconstruct

a -sparse signal with only measurements. Our proof

follows the main ideas of the proof sketched in [4], but with a

few additional details.

Lemma 1 (Sparse Reconstruction): Let be a

-sparse vector with the nonzero coefficients chosen from a

nonsingular distribution in . Furthermore, let be a matrix

with columns, satisfying . Then almost surely,

we can reconstruct the sparse vector from the measurements

.

Proof: Assume, without loss of generality, that the nonzero

coefficients of lie on the first indices .

The measurement vector lives in the span of the columns of

indexed by ; we denote these columns by and define

The combinatorial search algorithm goes through all the pos-

sible subspaces and checks to which one the measurement

vector belongs. Let be any other set of indices different

from with cardinality . Since , the dimen-

sion of the sum of the two subspaces and satisfies

(14)

It can be easily verified that

Meanwhile, since , we have

Since the columns of are linearly independent and the

nonzero elements of have a nonsingular probability distribu-

tion, the probability that the measurement vector belongs to

any low dimensional subspace of is zero. To see this, take

any low dimensional subspace of , and let be a nonzero

vector in the null space of . We have

where denotes the subvector of with indices given in the

set . This shows that the nonzero elements of which generate

live in , a proper subspace of . Since the nonzero

elements of have a nonsingular probability distribution, these

nonzero elements have probability zero which in turn, indicates

that the probability of is zero.

Therefore, this intersection set of dimension less than has

total probability zero in . Since the number of subspaces are

finite, the total probability of the set of points in which

also live in any other subspace is zero. Thus, there is a

one-to-one relationship between the measurements and the

sparse vector almost surely. In general, the recovery algorithm

should search through all possible subspaces and check to

which one the measurement vector belongs. Therefore, the

recovery algorithm is combinatorial in nature and computation-

ally prohibitive. Note that if the filter lies in the intersection

of two subspaces (which has probability zero under the condi-

tioned discussed), the filter is not recoverable uniquely.

Now we are ready to prove the achievability result stated in

Proposition 2. We divide the sensing and recovery architecture

into two parts:

I. The two sensors send frequency measurements to the de-

coder, necessary to find the underlying -sparse filter

. For fixed values of and , the structure of this

part does not change by choosing different values for the

number of measurements and in the achievability

region.

II. The sensors transmit complementary subsets of the DFT

coefficients necessary to construct the two signals and

. The sensors adjust their share on this part of linear

measurements in order to reach the required rates and

.

We show the results of Proposition 2 in two separate situa-

tions, corresponding to whether is an odd or even number.

a) is odd:

In part I, define the matrix of size

as

The two sets of measurements in part I, denoted as

and , are given by

(15)

in which is the DFT matrix of size . The number

of real measurements in (15) is for each sensor,
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composed of 1 real DC component plus com-

plex frequency components.

In order to reconstruct the sparse filter , the

central decoder computes the consecutive fre-

quency components of in the index range

. This is done by

dividing the two sets of measurements in (15) index by

index and making use of the complex conjugate property

of the Fourier transform of real sequences. Note that this

division is allowed as long as the denominator is not

zero. Since a zero frequency component forces to lie

on a hyperplane in , the frequency components are

nonzero almost surely for the signal drawn from a

nonsingular distribution in (More precisely, we only

require that the frequency components of be nonzero

in the range .)

In the matrix form, we obtain

where is the Fourier transform of in the range given

by . The matrix is a complex valued generalized

Vandermonde system [33] of size which

consists of consecutive rows of the DFT matrix,

corresponding to the indices in the set , i.e.

for and . Thus, by the

properties of generalized Vandermonde matrices, we get

Note that, by assumption, the nonzero elements of

satisfy a nonsingular distribution in . Therefore, by

Lemma 1, it is possible to find the -sparse filter from

and almost surely.

In the second part of the sensing and recovery architec-

ture, the sensors send complementary subsets of the re-

maining frequency information of their signals and

to the decoder. By having access to the frequency infor-

mation of one of the signals , the decoder uses

the point-wise relationship

(16)

to get the frequency content of the other sequence, with

the help of the known filter . Note that since the nonzero

elements of satisfy a nonsingular distribution in ,

the frequency components of the filter are all nonzero al-

most surely. Therefore, it is possible to find from

or vice versa. The two sensors share the rest of the

frequency indices to reach any point on the achievability

region. Note that (16) also allows the decoder to calculate

the real (imaginary) part of by knowing the imag-

inary (real) part of the other sequence and vice

versa. This is achieved by equating the real and imaginary

parts in (16) and solving a linear system of equations.

In this way, each sensor sends real measurements

in part I for the decoder to find the underlying sparse filter

almost surely. Moreover, in part II, the sensors send

complementary information to the decoder. This indicates

that the sensors can choose the sampling pairs given by

and . Therefore,

the algorithm described earlier attains any point on the

achievability region given in Proposition 2.

b) is even:

The same measurement and reconstruction techniques

apply. In this case, however, we are able to find the

-sparse filter from real measurements, instead

of . This corresponds to the matrix of size

, given by

Therefore, when is even, we have

APPENDIX B

DERIVATION OF THE RANK PROPERTY

We investigate the rank property of the Toeplitz matrices con-

structed by a signal which is composed by a sum of exponen-

tials. We show that whenever the number of rows and columns

of this matrix is larger than or equal to , its rank is .

Consider a sequence of length with nonzero coeffi-

cients at positions . The consecutive

frequency samples of (starting from index ) are given

by

where and . We build the

Toeplitz matrix of size as follows:

...
...

. . .
...

To show that the rank of is , we can write it as the product

where the three matrices are given by

...
...

. . .
...
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...
...

. . .
...

...
...

. . .
...

The matrices and are Vandermonde matrices of rank .

Therefore, since the diagonal elements of are nonzero, the

matrix is of rank .
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