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Abstract—Energy harvesting is a promising technology for
extending the lifetime of battery-powered sensor networks. Due to
time variations of harvested energy, one of the main challenging
issues is to maximize the uninterrupted sampling rates of
all sensor nodes, which represents the network performance.
Most of existing works do not consider the limited capacity of
rechargeable battery. In this paper, we are concerned with how
to adaptively decide the sampling rate for each rechargeable
sensor node with a limited battery capacity to maximize the
overall network performance. To solve this problem, we firstly
propose an adaptive Energy Allocation sCHeme (EACH) for each
sensor node to manage its energy use in an efficient way. Then we
develop a Distributed Sampling Rate Control (DSRC) algorithm
to obtain the optimal sampling rate. Furthermore, an Improved
adaptive Energy Allocation sCHeme (IEACH) is proposed to
reduce the impact due to imprecise estimation of harvested en-
ergy. Extensive simulations using real experimental data obtained
from Baseline Measurement System (BMS) of Solar Radiation
Research Laboratory are conducted to demonstrate the efficiency
of the proposed algorithms.

Index Terms—Rechargeable sensor networks, limited battery
capacity, energy allocation, sampling rate control.

I. INTRODUCTION

ENERGY constraint has been a challenging bottleneck
for further advance of wireless sensor networks (WSNs),

although great success has been achieved in last decade. As
the energy constraint mainly comes from the fact that sensor
nodes are typically powered by battery with limited volume,
recently, energy harvesting technologies have been employed
in WSNs to address the issue of energy constraint with the
goal to obtain perpetual and unattended networks [1][2][3][4].
Rechargeable sensor nodes can harvest energy from sources
such as solar and wind in the surroundings, and store the
harvested energy in the battery for future use when it can
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not be used immediately. As the energy source is typically
time-varying and unreliable, it is desirable for sensor nodes
to manage the energy use wisely and schedule sampling rate
adaptively to maximize the overall network performance.

In order to obtain a solution for fair and high throughput
of sampling in renewable sensor networks, Fan et al. [5]
sought to compute an optimal lexicographic rate assignment
for each sensor node, and then proposed a distributed and
asynchronous algorithm, which obtained the optimal sampling
rate for each sensor node provided that the routing tree is pre-
determined. Their approaches only guarantee that no sensor
node will run out of energy, however the sensor nodes will
miss the recharging opportunity when the battery reaches the
highest energy level. Since the lexicograghic rates are unique
for the whole time cycle and do not change in different slots,
employing the optimal lexicograghic rates to provide service
may degrade the actual performance in real applications. Liu
et al. [6] considered the effect of the battery capacity, and
formulated an optimization problem with the goal to maximize
the aggregate utility. In order to maintain the battery at a cer-
tain desired level while stochastically maintain a high network
utility, they proposed a distributed solution, called QuickFix,
to compute the optimal sampling rate and routing paths, and
a local algorithm, named SnapIt, to adapt the sampling rate.
The rationale of their approach is to let sensor node consume
more energy when its battery level is high and less energy
otherwise. However, the approach may not be effective, as the
energy harvesting rate may be much higher than the energy
consumption rate and the deficiency of the battery capacity
would result in the loss of recharging opportunity.

Though aforementioned works indicate the impact of the
limited battery capacity on the overall network performance,
they do not include this into algorithm design, and simply
assume the capacity of rechargeable battery is sufficiently
large to support applications. However, this may be not the
case in many scenarios. Table I gives a collection of energy
storage options [7][8], where shows Supercap is the only
choice, if we desire a perpetual lifetime of the rechargeable
battery. Taking the energy harvesting process at Columbus
and California for example, the total energy harvested from a
37mm × 33mm solar cell at Columbus in two days under
different weather conditions (sunny and partly cloudy) are
655.15mWh and 313.70mWh, respectively, and at Califor-
nia, the total energy harvested from the same solar cell under
the same weather conditions is 2-3 times as that at Columbus
[5]. Given that the maximal energy level and the volume of
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TABLE I
A NUMBER OF RECHARGEABLE BATTERY OPTIONS [7][8]

Type Lead Acid NiCd NiMH Li-ion Li-polymer Supercap
Weight energy density 26 Wh/Kg 42 Wh/Kg 100 Wh/Kg 165 Wh/Kg 156 Wh/Kg 5.06 Wh/Kg
Volume energy density 67 Wh/L 102 Wh/L 282 Wh/L 389 Wh/L 296 Wh/L 5.73 Wh/L
Charging cycle 500-800 1500 1000 1200 500-1000 >100000

Supercap are 0.304Wh and 53cm3, respectively, we need at
least two Supercapes at Columbus, and four at California, to
store all the harvested solar energy. This example demonstrates
the importance of taking the battery capacity into account.

When battery capacity is too limited to store all the har-
vested energy, there are two shortcomings of existing algo-
rithms: i) some sensor nodes may run out of energy and stop
working at slot t, which interrupts the continuous sensing,
and ii) the battery level of some sensor nodes may reach the
maximum and thus recharging opportunity may be missed.
The first case corresponds to an aggressive energy allocation
scheme, which means the sensor node has used too much
energy in the past, and is currently short of energy. The second
case indicates a conservative scheme, in which the sensor node
does not deplete much energy, so that the sensor nodes can not
store all the harvested energy due to the limited capacity of the
battery. Obviously, both cases will greatly limit the potential
to improve the network performance.

In this paper, our objective is to design a distributed adaptive
data sampling algorithm to maximize the overall network
performance (characterized by utility) by taking the capacity
of the rechargeable battery into consideration. Specifically, our
contributions are summarized as follows:

• We propose an adaptive Energy Allocation sCHeme
(EACH) to allocate the energy for each sensor node, so
that each sensor node can use the harvested energy wisely
according to current available energy.

• We design a Distributed Sampling Rate Control (DSRC)
based on EACH to find the optimal sampling rate for each
sensor node and theoretically analyze the performance of
DSRC.

• We proposed an Improved adaptive Energy Allocation
sCHeme (IEACH) to reduce the impact from imprecise
estimation of harvested energy.

• Extensive simulations based on real experiment data are
conducted to demonstrate the advantages of the EACH
and DSRC over existing algorithms in terms of energy
allocation and sampling rate, as well as network utility.
Also the performance of the IEACH is verified by the
simulations.

The remainder of this paper is organized as follows. We
firstly introduce the related work in Section II and describe
the network model and problem formulation in Section III.
Then, an energy allocation scheme for each sensor node to
manage its energy use is proposed and a distributed sampling
rate control algorithm to find the optimal sampling rate is
designed in Section IV. In addition, an Improved adaptive
Energy Allocation sCHeme (IEACH) is proposed to reduce
the impact from imprecise estimation of harvested energy in
Section IV. We evaluate the performance of the proposed
algorithms in Section V. Finally, the conclusion is given in
Section VI.

II. RELATED WORK

Recently, there are many works on utilizing the solar energy
to power the wireless sensors for environmental monitoring or
other sampling applications. As the harvested energy is time-
varying and unstable, the rechargeable sensor networks need
efficient energy management and resource allocation schemes.
Existing works on this issue can be mainly categorized into
three folds according to their goals:

1) Guaranteeing Fairness while Maximizing Throughput. In
order to obtain fair and steadily high data extraction from
all sensor nodes, Fan et al. sought to compute an optimal
lexicographic rate assignment for each sensor node [5]. In
addition, they extended the distributed algorithm to jointly
compute a routing structure and a high lexicograghic near-
optimal rate assignment [9]. Sharma et al. employed the
stochastic queuing theory to model data, energy generation and
storage processes, and proposed stable throughput-optimal and
mean delay-optimal energy management policies [10]. Joseph
et al. proposed joint power control, routing and scheduling
policies to ensure a fair utilization of network resources [11].
However, the quality of the service is restricted by the limited
battery capacity, since the battery capacity may be too limited
to store all the harvested energy. Thus, their approaches limit
the potential to improve the network performance, as well as
total network throughput.

2) Maximizing Network Utility. Gatzianas et al. considered
the optimal control of renewable wireless networks, and
proposed a policy, called Downlink Rechargeable Adaptive
Backpressure Policy (DRABP), through which the network
can achieve asymptotic optimality in case of sufficiently large
battery capacity [12]. They also extended the DRABP to
single-hop and multihop networks. In addition, they ana-
lytically and numerically evaluated the performance of the
algorithms that guarantee fair energy allocation in systems
with predictable and stochastic energy inputs [13]. Zhang
et al. addressed the maximal utility rate allocation problem
by designing a utility-based sensing rate allocation algorithm
[14]. Liu et al. developed QuickFix algorithm to compute the
optimal sampling rate and route, and SnapIt algorithm to adapt
the sampling rate with the goal of maintaining the battery at a
certain desired level [6]. However, when the battery capacity
is deficient to reserve all the rechargeable energy, the sensor
node will run out of energy or miss recharging opportunity.
Thus, the network performance might be degraded.

3) Maximizing Total Throughput. Noh et al. showed how
to use solar energy to maximize the amount of throughput
by adaptively controlling the reliability [15]. In addition, they
designed simple solar energy allocation (SSEA) and accurate
solar energy allocation (ASEA) algorithms to optimally utilize
the periodically harvested solar energy, while minimizing the
variability of energy allocation [16]. Chen et al. investigated
the problem of maximizing the throughput over a finite-
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horizon time period and proposed a three-step approach to
solve the problem [17]. Mao et al. proposed a joint data
queue and battery buffer control algorithm to maximize the
long-term average sensing rate of a single communication link
in rechargeable sensor networks [18]. Zhao et al. exploited
mobility for the joint design of energy replenishment and data
gathering, and proposed an algorithm to achieve the system-
wide optimum [19]. However, these approaches only focus
on maximizing the amount of data or throughput, which may
result in unfairness. For example, the sensor node near the sink
node has the highest sampling rate than other sensor nodes.

Most of aforementioned works disregard the impact of
battery capacity of renewable sensor nodes. They assume
that the battery capacity is sufficiently large to store the
harvested energy. Therefore, their approaches would miss
some recharging opportunities in practice and may degrade the
network performance when the battery capacity is too limited
to store all the harvested energy. Different from existing works,
our goal is to maximize the overall network performance while
maintaining the fairness of the sensor networks by taking the
limited battery capacity into account.

III. NETWORK MODEL AND PROBLEM STATEMENT

We consider a static wireless rechargeable sensor network,
with N sensor nodes (including the sink nodes) and some
unidirectional logistic links between sensor nodes. All sensor
nodes are equipped with similar solar cells and recharge-
able batteries with limited capacity. Hence, the harvested
solar energy can be reserved for future use. The sink nodes
are supposed to have sufficient energy, thus their energy
consumptions are not considered in this paper. Each sensor
node transmits sensory information to the sink nodes through
multiple hops along a single path. Let Nr(i) denote the set of
sensor nodes in the path of sensor node i, i = 1, 2, · · · , N , to
sink nodes (excluding sensor node i), and Ns(i) denote the set
of sensor nodes that use sensor node i as intermediate relay
node (excluding sensor node i).

The time cycle of energy harvesting is one day, which
can be divided into T slots. Specifically in this paper, we
set T = 24. Denote by Bi,t the remaining energy of sensor
node i at slot t. Let ρi,t and Ai,t denote the total amount
of harvested energy and energy allocation for sensor node i
at slot t, respectively. It is shown in [16][20] that the sensor
nodes can estimate ρi,t with high accuracy. Their results will
be introduced in this paper to estimate ρi,t.

Denote the maximum battery level of sensor node i by
Bmax

i . Obviously, Bi,t+1 = [Bi,t + ρi,t − Ai,t]
Bmax

i
0 , where

[·]Bmax
i

0 = max(0, (min(·, Bmax
i )). For easy presentation of

the paper, let oi,t be

oi,t = Bi,t + ρi,t −Ai,t −Bmax
i , (1)

from which we know that the harvested energy can not
completely be stored in the battery if oi,t > 0.

The average energy consumption by sensor node i for
sensing one unit of data is denoted by esi , and we use eti and eri
to denote the average energy cost for sensor node i to transmit
and receive one unit data, respectively [21][22]. As the sensing
and communication dominate the energy consumption, we

only focus on measuring the energy depletion due to sensing,
transmitting and receiving packets. Let ri,t represent the
data sampling rate of sensor node i at slot t. The sensory
information should be transmitted to sink nodes in slot t so
that it can be retrieved timely. Therefore, the total amount of
energy consumption wi,t for each sensor node i can be given
by

wi,t = (esi + eti)ri,t + (eri + eti)
∑

j∈Ns(i)

rj,t, (2)

which should be less than the allocated energy Ai,t, as,

Ai,t ≥ wi,t. (3)

In addition, Ai,t should be not larger than the total amount of
current available energy, i.e.,

Ai,t ≤ Bi,t + ρi,t. (4)

Moreover, the sum of allocated energy should not exceed
the total amount of harvested energy, so that the system can
ensure a sustainable network,

T∑
t=1

Ai,t ≤
T∑

t=1

ρi,t. (5)

At each slot t, each sensor node has to decide the sampling
rate ri,t and transmit the sensory information to sink nodes.
Let U(ri,t) be a utility function of sampling rate ri,t, where
utility can be a specific performance as required by applica-
tions. For example, U(ri,t) = log(ri,t) can be used to guar-
antee the fairness of sampling rate [23]. U(ri,t) is assumed
to be an increasing, strictly concave, and twice differentiable
function. Our objective is to maximize the network utility by
choosing optimal sampling rate ri,t at each slot for all sensor
nodes according to Bi,t and ρi,t, i.e,

objective max
ri,t

∑
i

∑
t

U(ri,t) (6)

s.t. Ai,t ≥ wi,t, ∀i, t (7)

Ai,t ≤ Bi,t + ρi,t, ∀i, t (8)
T∑

t=1

Ai,t ≤
T∑

t=1

ρi,t, ∀i, t (9)

where Eqs. (7) and (8) are used to guarantee the allocated
energy of each sensor node at each time slot must be bigger
than its energy consumption, but smaller than the available
energy. Eq. (9) ensures that the sum of energy allocation does
not exceed the total amount of energy it has harvested.

To solve (6), we should optimize the data sampling rates r,
which are coupled with the total amount of energy allocation,
i.e., A = {Ai,t, i = 1, 2, · · · , N, t = 1, 2, · · · , T }. Hence,
in the following section, we first develop an efficient energy
allocation scheme for each sensor node, based on which we
then design an optimal sampling rate control algorithm.

IV. ALGORITHM DESIGN

In this section, an adaptive Energy Allocation sCHeme
(EACH) for each sensor node is proposed to manage its energy
allocation and then a Distributed Sampling Rate Control
(DSRC) algorithm is designed to solve the Network Utility
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Maximization problem. Moreover, an Improved adaptive En-
ergy Allocation sCHeme (IEACH) is proposed to reduce the
impact from imprecise estimation of harvested energy.

A. Adaptive Energy Allocation Scheme

Before presenting the DSRC algorithm, we first focus on
the energy management for each sensor node, i.e., to allocate
a specific amount of energy Ai,t that will be consumed by
sensor node i at slot t. As the amount of harvested energy for
each rechargeable sensor node varies over time, a wise energy
allocation scheme is significant for the overall performance of
network utility.

For an energy allocation scheme, there are two shortcom-
ings that we have to overcome: i) a sensor node runs out of
energy and stops working at slot t, and ii) the battery level
of a sensor node i reaches the maximum and thus i will miss
some recharging opportunity. The first case corresponds to an
aggressive energy allocation scheme, which means the sensor
node has spent too much energy in the past, and is currently
short of energy. The second case indicates a conservative
scheme, in which the sensor node did not deplete much energy
in the past so that the harvested energy can not be stored due
to the limited capacity of battery at current slot.

We introduce an adaptive Energy Allocation sCHeme
(EACH), which can avoid the aforementioned two short-
comings and obtain an efficient energy allocation scheme.
Specifically, let

πi,t =
1

T

T∑
t=1

ρi,t. (10)

If the capacity of rechargeable battery is large enough
to store all the harvested energy at any slot t, the optimal
energy allocation scheme can be πi,t for sensor node i at
slot t, since the solution of the Network Utility Maximization
problem depends on the energy allocation [6]. However,
considering the limited capacity of the rechargeable battery,
some harvested energy may not be stored. For example,
let T = 10, Bmax

1 = 10, ρ1,1 = ρ1,2 = ρ1,3 = 7,
ρ1,4 = ρ1,5 = · · · = ρ1,10 = 1. So π1,t =

1
10

∑10
t=1 ρ1,t = 2.8.

At slot 3,
∑3

t=1(ρ1,t − π1,t) = 12.6 > 10. Hence, at slot 3,
2.6 unit energy can not be stored in the battery. The example
also indicates that more energy should be spent in the slots
with a large ρi,t. Generally, the energy allocation scheme Ai,t

for each sensor node i at slot t can be

Ai,t = (1−Δi)πi,t +Δiρi,t, (11)

where Δi, 0 ≤ Δi ≤ 1, is a weight to regulate the allocation
scheme.

Different from a constant energy allocation in all slots in
existing algorithm, EACH strives to allocate the energy adap-
tively dependent on the current amount of available energy.
The Algorithm 1 gives how to obtain desirable Δi, where K ,
K > 0, is a sufficiently small constant. We have the following
theorem on the performance of Algorithm 1.

Theorem 1: Algorithm 1 obtains a unique constant Δ =
{Δi ∈ [0, 1], i ∈ N} during each time cycle, no matter
whether the rechargeable battery capacity for each sensor node
i is sufficient or not.

Algorithm 1 Calculate Desirable Δi

repeat
for t = 1, 2, · · · , T

Ai,t = [(1−Δi)πi,t +Δiρi,t]
Bi,t+ρi,t

0

oi,t = Bi,t + ρi,t −Ai,t −Bmax
i

Bi,t+1 = min(Bi,t + ρi,t −Ai,t, B
max
i )

end
Δi = [Δi +K ∗max{ oi,t

ρi,t
, t = 1, 2, · · · , T }]10

until satisfying either of the following conditions:
1 max{oi,t, t = 1, 2, · · · , T } = 0
2 max{oi,t, t = 1, 2, · · · , T } < 0 while Δi = 0
returnΔi = Δi

Proof: With EACH each sensor node functions inde-
pendently, and therefore, it is sufficient to prove the conver-
gence of Algorithm 1 for one sensor node. If the capacity
of the rechargeable battery of sensor node i is sufficient,
max{ oi,t

ρi,t
, t = 1, ...T } will be negative for all the slots, which

will result in Δi = 0. If the capacity of rechargeable battery
is deficient, the surplus variable will be positive, which will
increase Δi, Δi ≤ 1.

The desirable battery capacity Bdes
i,t for sensor node i at slot

t is given by

Bdes
i,t = Bi,t + ρi,t −Ai,t

= Bi,t + ρi,t − ((1−Δi)πi,t +Δiρi,t)

= Bi,t + (1−Δi)(ρi,t − πi,t), (12)

where ρi,t and πi,t are constants. The relationship between
oi,t and Bdes

i,t is given by

oi,t = Bdes
i,t −Bmax

i . (13)

Hence, for sensor node i at slot t, there is a unique Δi such
that oi,t = 0, where ρi,t must be larger than πi,t.

When there are two different weight variables Δi,1 and Δi,2

(Δi,2 > Δi,1), such that oi,t1 = 0 at slot t1 and oi,t2 = 0
at slot t2, while satisfying max{oi,t, t = 1, 2, · · · , T } = 0
simultaneously accordingly. Bdes

i,t1
and Bdes

i,t2
are given by

Bdes
i,t1(Δi,2) = Bi,t1 + (1−Δi,2)(ρi,t1 − πi,t1 ), (14)

Bdes
i,t2(Δi,1) = Bi,t2 + (1−Δi,1)(ρi,t2 − πi,t2 ). (15)

We have

Bdes
i,t1 (Δi,2)−Bdes

i,t1 (Δi,1)

= (Δi,1 −Δi,2)(ρi,t1 − πi,t1), (16)

Bdes
i,t2 (Δi,1)−Bdes

i,t2 (Δi,2)

= (Δi,2 −Δi,1)(ρi,t2 − πi,t2). (17)

Since ρi,t1 > πi,t1 , ρi,t2 > πi,t2 and Δi,2 > Δi,1, Eq. (17)
will be larger than zero, implying Bdes

i,t2 (Δi,1) is larger than
Bdes

i,t2
(Δi,2) = Bmax

i . Thus oi,t2 > 0 for Δi,1, which is
contradictory to the fact that max{oi,t, t = 1, 2, · · · , T } = 0.

Thus, there is only one Δi for the sensor node i during
each time cycle, such that max{oi,t, t = 1, 2, · · · , T } = 0.

According to the second set of the constraints and the
desirable Δi calculated by EACH, we can conclude that the
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sum of energy consumption will not exceed the total amount
of collected energy, as∑

t

wi,t ≤
∑
t

Ai,t

=
∑
t

[(1−Δi)πi,t +Δiρi,t]

=
∑
t

[(1−Δi)
1

T

T∑
t=1

ρi,t] +
∑
t

Δiρi,t

=
∑
t

ρi,t.

Moreover, since the maximum of the surplus variable oi
must be zero or negative, the battery level for the next slot
can be written as follows:

Bi,t+1 = Bi,t + ρi,t −Ai,t, ∀i, t. (18)

B. Distributed Sampling Rate Control

With the energy allocation Ai,t, we proceed to give the
DSRC algorithm to solve the Network Utility Maximization
problem, which can be rewritten as

objective max
ri,t

∑
i

∑
t

U(ri,t) (19)

s.t. Ai,t ≥ wi,t, ∀i, t (20)

The optimization variables are sampling rates r. As the
energy allocation Ai,t may be different at different slots t,
the sampling rate ri,t should be decided dynamically at each
slot t for each sensor node i.

We aim at deriving a distributed algorithm to solve the
problem (19) by employing the theory of dual decomposition
[24][25][26]. Let μi,t ∈ R+ be the dual variable associated
with the energy consumption constraint (i.e., Eq. (20)) for the
sensor node i at slot t, and R+ = [0,∞). The Lagrangian of
the problem (19) is

L(µ) = max
ri,t

∑
i

∑
t

{
U(ri,t) + μi,t[Ai,t − (esi + eti)ri,t

+(eri + eti)
∑

j∈Ns(i)

rj,t] } . (21)

The dual problem of (19) then is

min
μi,t

L(µ). (22)

The dual problem can be decomposed in each slot t, as
follows:

L(µt) = max
ri,t

∑
i

{
U(ri,t) + μi,t[Ai,t − (esi + eti)ri,t

+(eri + eti)
∑

j∈Ns(i)

rj,t] } . (23)

The sub-gradient method can be adopted to update La-
grangian multiplier µ iteratively as follows:

μi,t(m+ 1) =
[
μi,t(m)− α(Ai,t − (esi + eti)ri,t

+(eri + eti)
∑

j∈Ns(i)

rj,t
]
+ , (24)

where m is the iteration number, α is a constant step size
satisfying α > 0, and [·]+ = max(0, ·).

The problem (23) can be rewritten as

L(µt) = max
ri,t

∑
i

{U(ri,t) + μi,tAi,t − μi,tri,t(e
s
i + eti)

−ri,t
∑

j∈Nr(i)

μj,t(e
r
j + etj)}. (25)

For all µ, a unique maximizer, denoted by ri,t(µ), exists
since U(ri,t) is strictly concave. When μi,t, i = 1, 2, · · · , N ,
are scalars, by the Kuhn-Tucker theorem, ri,t(µ) should be

r∗i,t = max
ri,t

∑
i

{U(ri,t) + μi,tAi,t − μi,tri,t(e
s
i + eti)

−ri,t
∑

j∈Nr(i)

μj,t(e
r
j + etj)} (26)

= [U
′−1(νii,t + νji,t)]

rmax
i

0 , (27)

where

νii,t = μi,t(e
s
i + eti), (28)

νji,t =
∑

j∈Nr(i)

μj,t(e
r
j + etj). (29)

Here, Ur
′−1 is the inverse of Ur

′.
The detailed description of DSRC algorithm is shown in Al-

gorithm 2. We have the following theorem on the performance
of DSRC algorithm.

Algorithm 2 DSRC

repeat
for i = 1, 2, · · · , N .
1 Each sensor node locally updates the Lagrange Mul-
tipliers μi,t using Eq. (24).
2 Each sensor node sends its μi,t to the sensor node
j, j ∈ Ns(i), meanwhile collecting and forwarding the
information μj,t, j ∈ Nr(i).
3 Each sensor node calculates νii,t and νji,t using the Eq.
(28) and (29).
4 Sensor node i calculates its sampling rate using (27).
end
if Dt == {ri,t, i = 1, 2, · · · , N}
D∗

t = Dt.
else
Dt = {ri,t, i = 1, 2, · · · , N}.

end
until D∗

t �= ∅
return{r∗i,t, i = 1, 2, · · · , N} = D∗

t .

Theorem 2: For sufficiently small positive constant α and
fixed energy allocation A, the DSRC algorithm converges to
optimum sampling rate r∗.

Proof: Since the utility function U(ri,t) is an increasing,
strictly concave, and twice differentiable function, a unique
sampling rate ri,t can be calculated by using the Eq. (27).
Since the relationship between Lagrangian multiplier µ and
the sampling rates r is linear and utility function U(ri,t) is
strictly concave, there exists a step size α that guarantees μi,t
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to converge to the optimal dual solution µ, according to [27].
It is easy to find that 
L(µ) satisfies Lipschitz continuous
on (0, rmax

i ], since the curvatures of the utility functions are
bounded away from zero [23]. Therefore, the DSRC algorithm
with a constant step size α, 0 < α < 2/L, converges to
optimum sampling rate r∗, where

‖ 
L(µ1)−
L(µ2) ‖ = L ‖ µ1 − µ2 ‖,
∀µ1,µ2 ∈ {µ, | µ ≥ 0}. (30)

C. Reduce the Impact of Imprecise Estimation of Harvested
Energy

In this subsection, we discuss the case of imprecise estima-
tion of harvested energy in the next few slots, and propose an
algorithm to reduce its impact effectively.

In order to calculate the desirable Δi for sensor node i,
the sensor nodes should estimate the amount of harvested
energy for every slots in entire time cycle. Let ρesti,t denote
the estimated harvested energy for sensor node i at slot t.
Thus, the estimated battery level is given by

Best
i,t+1 = Best

i,t + ρesti,t −Ai,t ≤ Bmax
i , ∀i, t, (31)

where Ai,t is calculated by Algorithm 1 using the estimated
harvested energy. At the beginning slot, Aest

i,t = Ai,t.
Let ρreali,t denote the real harvested energy. The expected

battery level Bexp
i,t+1 and the estimation error ρerrori,t can be

given by

Bexp
i,t+1 = Bexp

i,t + ρreali,t −Ai,t, (32)

ρerrori,t = ρreali,t − ρesti,t . (33)

Let Berror
i,t+1 denote the cumulative error for slot t+1 between

the expected battery level and the estimated battery level, i.e.,

Berror
i,t+1 = Bexp

i,t+1 −Best
i,t =

t+1∑
t=1

ρerrori,t . (34)

If the expected battery level Bexp
i,t+1, which equals to the sum

of the cumulative error Berror
i,t+1 and the estimated battery level

Best
i,t+1, is larger than the maximal battery capacity, the surplus

variable will be positive. This indicates that the sensor node
will miss recharging opportunity. Thus, it is necessary to
adjust the energy allocation scheme to eliminate the impact
of estimation error.

In order to yield an effective energy allocation scheme
and improve the performance of EACH, we propose an Im-
proved adaptive Energy Allocation sCHeme (IEACH), based
on EACH. Specifically, at each slot t, let

ρerrori,t =
ρerrori,t

T − t+ 1
. (35)

Then, for all t′ ∈ [t, T ], the estimated energy allocation
Aest

i,t′ and the expected battery level Bexp
i,t′+1 at slot t can be

updated by

Aest
i,t′ = Aest

i,t′ + ρerrori,t , (36)

Bexp
i,t′+1 = Bexp

i,t′ + ρi,t′ −Aest
i,t′ , (37)

where

Bexp
i,t = Breal

i,t , (38)

ρi,t′ =

{
ρreali,t , if t′ = t

ρesti,t′ , else .
(39)

By comparing with the expected battery level and the maximal
energy level, the peak of battery level Bpeak

i,t is given by

Bpeak
i,t = max{max{Bexp

i,t′ , t
′ ∈ [t, T ]}, Bmax

i }. (40)

If Bpeak
i,t > Bmax

i , let t∗ = t′, otherwise, t∗ = t. Here
t∗ indicates the slot where the expected battery level Bexp

i,t′

reaches to Bpeak
i,t .

Hence, the estimated energy allocation Aest
i,t′ at slot t′, t′ ∈

[t, T ], can be updated by

Aest
i,t′ =

⎧⎨
⎩Aest

i,t′ +
Bpeak

i,t −Bmax
i

t∗−t+1 , if t′ ∈ [t, t∗]

Aest
i,t′ −

Bpeak
i,t −Bmax

i

T−t∗ , if t′ ∈ [t∗ + 1, T ].
(41)

Now, the desirable real Areal
i,t and the real battery level Breal

i,t+1

at slot t are

Areal
i,t = Aest

i,t , (42)

Breal
i,t+1 = Breal

i,t + ρreali,t −Areal
i,t . (43)

We sketch IEACH in the Algorithm 3. Based on EACH,
IEACH strives to allocate the energy adaptively dependent on
past estimation error, current real amount of harvested energy
and the estimated amount of harvested energy in each time
cycle.

Algorithm 3 IEACH
1) Initialization

• Each sensor node updates the expected battery level
Bexp

i,t and the harvested energy ρi,t′ according to
(38) and (39), respectively.

• Each sensor node updates ρerrori,t according to (35).

2) Calculate peak of battery level Bpeak
i,t and t∗

for t′ = t, t+ 1, · · · , T
• Each sensor node updates the estimated energy al-

location Aest
i,t′ and the expected battery level Bexp

i,t′+1

according to (36) and (37), respectively.
• Each sensor node searches for the peak of battery

level Bpeak
i,t according to (40), and obtains the value

of t∗.

end
3) Update desirable real Areal

i,t at slot t
for t′ = t, t+ 1, · · · , T
• Each sensor node updates the estimated energy

allocation Aest
i,t′ according to (41).

end
• Each sensor node sets the desirable real Areal

i,t and
the real battery level Breal

i,t+1 according to (42) and
(43), respectively.
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Fig. 1. Network topology for the simulations.
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Fig. 2. Experimental data of solar panels obtained from BMS during duration
from July 2nd to July 6th.

V. PERFORMANCE EVALUATION

In this section, simulation results are provided to demon-
strate the performance of the proposed EACH and DSRC
algorithms over the existing algorithms. In addition, the sim-
ulation results in V-D show that the IEACH can reduce the
impact of imprecise estimation of harvested energy effectively
comparing with EACH. We also discuss the desirable battery
capacity. All the results are obtained by MATLAB.

A. Simulation Setting

Figure 1 shows the simple network topology and the
corresponding link contention. All sensor nodes are static,
having a 37 × 33mm2 solar cell and a Supercap, whose
nominal maximal energy level is 304mWh. Moreover, all
the sensor nodes have the same wireless module, such as
TelosB from Crossbow [5], and the consumption power (i.e.,
energy consumption per second) in receiving, transmitting
and sensing mode are 69mW , 63mW (when the transmit
power is 0dBm, transmit data rate is 250kbps), and 5.4mW ,
respectively. The experimental data obtained from Baseline
Measurement System (BMS) of Solar Radiation Research
Laboratory (SRRL) is used to model the energy harvesting
process [28]. Figure 2 shows the data obtained from BMS
for a period from July 2nd to July 6th, 2011. The total
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Fig. 3. Energy allocation AD,t calculated by EACH, QuickFix and QuickFix
with SnapIt, respectively.

amount of harvested energy for the five days are 746.9mWh,
779.3mWh, 880.9mWh, 475.6mWh and 643.6mWh, re-
spectively. Let the initial energy of the rechargeable battery
for all senor nodes be 150mWh, and the utility function be
U(ri,t) = log(ri,t) for each sensor node i at slot t.

The proposed algorithms are compared with QuickFix and
QuickFix with SnapIt in [6]. QuickFix uses the average energy
harvesting rate π (see Eq. 10) as the optimal energy allocation,
and then distributively calculates the optimal sampling rate for
each time cycle. SnapIt is designed to adapt the sampling rate
with the goal of maintaining the battery at a desired level,
with the δ = 0.2ri.

B. Performance Evaluation of EACH

Figure 3 shows the results of energy allocation AD,t for
sensor node D computed by our EACH, QuickFix and Quick-
Fix with SnapIt, respectively. It can be observed that values of
AD,t by QuickFix or QuickFix with SnapIt are 0 at some slots
during the five days, which means sensor node D runs out of
energy at these slots. However, energy allocation using EACH
does not have this problem. Moreover, the minimal values of
AD,t for each time cycle by EACH are very stable, and those
obtained by two other algorithms are changed with energy
harvesting rate, which indicates the advantage of EACH.

The battery level states are shown in Fig. 4. If the sensor
node employs QuickFix or QuickFix with SnapIt, the battery
level of the sensor node reaches the highest energy level or the
lowest energy level at some consecutive slots, which means
that node D is missing recharging opportunity or running
out of energy. Whereas, if the sensor node adopts EACH
to compute the energy allocation, these can be avoided. In
addition, at the end of each day, the battery level based on
EACH is the highest battery level, indicating that EACH can
reserve more energy for future use.

To show the efficiency of EACH in energy allocation, a
new variable O+

i,t = max(0, oi,t), called positive surplus, is
introduced. Recalling the definition of oi,t, positive surplus
O+

i,t means the amount of harvested energy that can not
be reserved in the rechargeable battery. The results of O+

D,t
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Fig. 4. Battery level of sensor node D under EACH, QuickFix and QuickFix
with SnapIt, respectively.
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Fig. 5. Values of O+
D,t under EACH, QuickFix and QuickFix with SnapIt,

respectively.

for different slots are shown in Fig. 5. It can be seen that
sensor node D employing QuickFix or QuickFix with SnapIt
algorithms can not store all the harvested energy at some slots
during the five days. Hence, some harvested energy are wasted,
which can be used to sample and thus increase the network
utility in DSRC algorithm.

C. Performance Evaluation of DSRC

Figure 6 shows the total sampling rates of all sensor
nodes under DSRC, QuickFix and QuickFix with SnapIt,
respectively. It can be seen that trend of the total sampling
rates is similar to those of energy allocation Ai,t. Sampling
rates at some slots under QuickFix or QuickFix with SnapIt
are zero, which means some sensor nodes do not work at these
slots as they have run out of energy.

The total sampling rate of each day is shown in Fig. 7.
DSRC achieves the highest total sampling rate of each day
except the first day. This is because of the impact of the initial
battery level (as sensor nodes can use the initial energy irre-
spective of the harvested energy). For a sensor network, larger
amount of sampling rates means better network performance.
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Fig. 6. Total sampling rates obtained by DSRC, QuickFix and QuickFix
with SnapIt, respectively.
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Fig. 7. The total sampling rate for each day obtained by DSRC, QuickFix
and QuickFix with SnapIt, respectively.

DSRC has the largest total sampling rates among the three
algorithms, which demonstrates the efficiency of DSRC.

The network utility of each day is given in Table II. It can be
seen that DSRC obtains the highest network utility in each day
except the first day (due to the reason discussed in the previous
paragraph) among the three algorithms (i.e., DSRC, QuickFix
and QuickFix with SnapIt). Note that the utility obtained by
QuickFix and QuickFix with SnapIt drops to negative infinity
in the third and fourth days, because some sensor nodes during
these days do not function and therefore the fairness is greatly
impaired. Moreover, the overall network utility of the five days
obtained by DSCR is larger than the other two algorithms. All
these demonstrate that the performance of DSRC is better than
those of the other two algorithms.

D. Performance Evaluation of IEACH

It is assumed that the maximal ratio of estimation error
to estimated harvested energy is 20% and the ratio of total
estimation error to the total estimated harvested energy for
all five days are 1.14%, −2.12%, −4.87%, −7.74% and
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TABLE II
NETWORK UTILITY FOR EACH DAY

Total Network Utility
Approach First Day Second Day Third Day Fourth Day Fifth Day

DSRC 266.71 266.09 277.23 223.79 254.18
QuickFix 267.73 259.50 -∞ -∞ 245.25

QuickFix with SnapIt 269.01 260.64 -∞ -∞ 247.94
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Fig. 8. Simulation results for the sensor node D employing EACH and
IEACH, respectively.

−3.79%, respectively. Figure 8(a)-8(c) show the results of
energy allocation, battery level and positive surplus for the
sensor node employing EACH and IEACH, respectively. It
can be seen that, if only employing EACH and the estimation
of harvested energy is imprecise, the sensor node D misses
recharging opportunity at some slots during the first day,
since the battery level of the sensor node reaches the highest
energy level and the amount of harvested energy is more
than the amount of the energy allocation at some consecutive
slots during the first day. Furthermore, the battery level of
the sensor node reaches the lowest energy level at some
consecutive slots, which means the sensor node runs out of
energy and stops working, and the positive surplus O+

D,t shows
the amount of harvested energy that can not be reserved in the
rechargeable battery. But with IEACH, the sensor node can
avoid these problems. In short, the simulation results show that
the imprecise estimation of harvested energy may degrade the
network performance and the IEACH can reduces the impact
of estimation error effectively.
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Fig. 9. The desirable battery capacity for sensor node D during the five
days.

E. The Desirable Battery Capacity

The battery capacity represents the ability to store the
energy, and is critical to the performance of rechargeable
sensor network. The Eq. (12) with Δi = 0 is used to calculate
the desirable battery capacity, which is the minimum battery
capacity to store all the harvested energy for each day. The
result for each day is shown in the Fig. 9.

It can be seen that the desirable battery capacity for the same
sensor node during the five days changes significantly, due to
the sharp change of harvested energy. The desirable battery
capacity is not only affected by the amount of harvested
energy, but also by the rate of harvested energy. For example,
the total harvested energy for the fourth day and fifth day are
475.6mWh and 643.6mWh, but the desirable battery capacity
during the fourth day is larger than that during the fifth day.
This is because the rate of harvested energy during the fourth
day is much larger than that during the fifth day. Since the
desirable battery capacity for the same sensor node changes
in the different days, it is extremely difficult to find a desirable
battery capacity for each sensor node. Therefore, designing an
efficient energy allocation is the only feasible way to obtain
desirable network performance.

VI. CONCLUSION

In this paper, we have studied distributed sampling problem
using a rechargeable battery with limited capacity to maximize
the overall network utility. As the sampling rate is coupled
with the energy allocation, we first proposed an adaptive
Energy Allocation sCHeme (EACH) in which each sensor
node can manage its energy use in an efficient way. Then
we developed a Distributed Sampling Rate Control (DSRC)
algorithm to obtain the optimal sampling rate, by employing
theory of convex optimization and dual decomposition. In ad-
dition, we proposed an Improved adaptive Energy Allocation
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sCHeme (IEACH) based on EACH to eliminate the impact
of estimation error. We performed extensive simulations to
demonstrate the efficiency of our algorithms by comparing
with existing algorithms. For our future work, we will focus
on investigating the impacts of storage space and Quality of
Service on network utility under general interference patterns
in the rechargeable sensor networks.
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