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The dissertation studies how distributed devices that are disconnected for long

and unknown periods can efficiently perform a set of tasks. Given n distributed

devices that must perform t independent tasks, known to each device, the goal is

to schedule work of the devices locally, in the absence of communication, so that

when communication is established between some devices at some later point of

time, the devices that connect have performed few tasks redundantly beyond ne-

cessity. The dissertation gives a lower bound on redundant work, and randomized

and deterministic schedules, that allow devices to avoid doing redundant work

provably well. The lower bound shows how the wasted work increases as the

devices progress in their work. When each disconnected device randomly selects

its next task, from among the tasks remaining to be done, then the amount of

work duplicated by any devices that reconnect is close to the lower bound in

a precise sense. In order to derandomize the construction of schedules, tech-

niques from design theory, linear algebra, and graph theory are used. The topics

developed within the dissertation are related to the theory of latin squares and

coding theory. For example the lower bound shown in the dissertation generalizes

the Second Johnson Bound. The dissertation also studies scheduling problems for

shared memory systems. It shows a method for creating near-optimal instances of

an algorithm of Anderson and Woll. The dissertation also shows a work-optimal

deterministic algorithm for the asynchronous Certified Write-All problem.
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Chapter 1

Introduction

This dissertation studies a cooperation problem where a system of distributed

asynchronous devices, that can be disconnected for long and unknown periods,

must efficiently perform a set of tasks.

1.1 Motivation

Distributed systems have many compelling advantages over centralized sys-

tems, such as ability to mask failures, potential for high availability, and improved

performance. However, building correct and efficient distributed systems is often

challenging because of the possible unpredictable changes in the system that can

occur during the lifetime of the system. The goal of understanding the advan-

tages and fundamental challenges of distributed systems have been the subject

of research over the last decades [45, 46, 96, 54, 5, 135].

1



2

One of the instances of distributed systems are grid computing infrastructures

[22, 57, 68]. A grid infrastructure leverages the computing power of massive num-

bers of independent computing devices, to tackle large computational problems.

Grids are used to forecast weather and design drugs. Key to the efficient oper-

ation of many grid infrastructures is the ability to perform a collection of tasks

in a distributed setting. It is often difficult to perform the tasks quickly, because

of changes in communication and computing media, that may occur during the

operation of the grid.

Failures are common in current communication networks. Communication

topology may change over time (e.g., due to link failures), messages may be

delayed (e.g., due to congestion), communication may be costly (e.g., due to

competition for resources), or communication may be intentionally disabled (e.g.,

due to the need to maintain radio silence or save energy). Consequently, some

devices may not be able to communicate with others for prolonged periods, and

thus may need to make decisions using limited and possibly obsolete information

about the state of other devices. Dealing with obsolete information makes it

challenging to efficiently utilize computing resources [9, 12, 20, 43, 52, 64, 80,

110, 111, 120, 121]. A consequence of local decision making is that devices may

unknowingly choose to perform the same tasks, thus increasing the number of

redundantly performed tasks and postponing the moment by which the devices

compute all tasks.
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Variability in the computing medium is also common. Devices may work at

varying paces (e.g., due to time-sharing) or can quit computation (e.g., due to a

failure). Asynchrony can increase the execution time of a computation. Suppose

that a correctly working device has performed a task, and slows down before

communicating the progress to other devices. Other devices will not know if the

task has been performed by the device, and may (unknowingly) redo the task,

again increasing the number of redundantly performed tasks and postponing the

moment by which the devices compute all tasks.

Performing a computation quickly on asynchronous devices under variable

communication is challenging. As long as devices are connected, they can share

their knowledge to estimate which tasks remain to be done, and agree what

to work on next, so as not to duplicate the execution of any of the remaining

tasks. However, when devices become disconnected, they no longer can exchange

information, and they must make local decisions about which tasks to work on

next, if at all. Each device should indeed continue computing tasks during a

period of disconnection (as opposed to idle), so as to reduce the set of tasks

remaining to be done to the extent possible given the spare CPU cycles available

to the device, and hence potentially reduce the set of tasks remaining to be done,

when results of tasks are exchanged during a future connection. At the same time,

one would like to ensure that disconnected devices work on the tasks that they

somehow know that other devices have not been working on. Doing so allows

to maximize the computational progress when devices connect. The challenge
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here is to allow devices to always work, but at the same time keep the number of

redundantly performed tasks low, in order to possibly accelerate the moment by

which the devices compute all tasks.

1.2 Problem statement

This thesis studies the problem of scheduling work of disconnected asyn-

chronous devices with the goal of reducing the number of redundantly performed

tasks. There are t independent and idempotent tasks, and n asynchronous pro-

cessors. A task is idempotent if the execution of the task yields the same result

when it is performed more than once. Tasks are independent if the result of

execution of any task does not depend on the order in which other tasks are

executed. The processors have unique identifiers from the set [n] = {1, . . . , n},

and the tasks have unique identifiers from the set [t] = {1, . . . , t}. Initially each

processor knows all the tasks, the value of t, and the value of n. At the beginning

of computation communication is not available, but at some a priori unknown

point of time some group of a priori unknown processors rendezvous. Processors

compute at all times during the period of disconnection, and our goal is to control

the number of redundantly performed tasks in the group.

We consider the following framework for solving the above problem. A sched-

ule σ is a permutation on [t]. Schedules σ1, . . . , σn immediately give rise to a

strategy for n isolated processors who must complete t tasks until communica-

tion between some pair (or group) of processors is established: the processor i
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proceeds to complete the tasks in the order prescribed by σi. Suppose now that

some h of these processors, say q1, . . . , qh, should rendezvous at a time when the

i-th processor in this group, qi, has completed ai tasks. Ideally, the processors

would have completed disjoint sets of tasks, so that the total number of tasks

completed is
∑

i ai. As this too much to hope for in general, it is natural to

attempt to bound the gap between
∑

i ai and the actual number of distinct tasks

completed. This gap we call waste. (For fixed schedules σ1, . . . , σn, waste is a

function of the a1, . . . , ah.)

Let us consider an example of computation involving a single rendezvous of

some two processors. In the worst case they rendezvous after performing all

tasks individually. In this case no savings in the combined number of tasks

performed by the processors is realized. Suppose that they rendezvous after

having performed t/2 tasks each. In the best case, the two processors performed

mutually-exclusive subsets of tasks and they learn the complete set of results

as a consequence of the rendezvous (during which state exchange occurs). In

particular if these two processors know that they will be able to rendezvous in

the future, they could schedule their work as follows: one processor performs the

tasks in the order 1, 2, . . . , t, the other in the order t, t − 1, . . . , 1. No matter

when they happen to rendezvous and how much progress they will have made by

then, the number of wasted tasks they both perform is minimized. In our setting

processors do not know a priori what group will be able to rendezvous. Thus

our goal is to produce task execution schedules for all processors, such that upon
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the first rendezvous of any group of processors, the number of tasks performed

redundantly is minimized.

1.3 Summary of results

The dissertation studies how n distributed devices that are disconnected for

long and unknown periods can efficiently perform a set of t independent tasks that

are known to each device. The thesis investigates local scheduling decisions that

require no communication between devices. We show fundamental limitations of

local scheduling and develop randomized and deterministic scheduling techniques

that offer nearly tight bounds on waste.

We show a lower bound on waste, that says that worst-case number of redun-

dantly performed tasks must grow as processors progress in their work. Specifi-

cally, for any n schedules for t tasks, at least a2/(t−b+a)·
(

1 − t−b
a(n−1)

)
redundant

tasks must be performed by at least two processors when they establish commu-

nication after one of them has performed a tasks and another b tasks, a ≤ b.

For example, when n = t, then there are two processors such that when they

rendezvous after having performed a tasks each, then at least a2−a
t−1

tasks have

been performed redundantly by the two processors. Thus in this situation, waste

is bounded from below by a quadratic function of a. Naturally, the lower bound

also applies to any group of h ≥ 2 processors that rendezvous.

It is not surprising that when each disconnected device randomly selects its

next task, from among the tasks remaining to be done, then this device will avoid



7

duplicating the work of other devices quite well. Specifically, we study waste of

a system of n schedules obtained when each schedule is selected uniformly (and

independently) at random among all permutations of [t]. We show that with

probability at least 1 − 1
nt

, any two processors that rendezvous, after having

performed sufficient number of a and b tasks respectively (i.e., 7
√

t ln (2nt) ≤

a, b ≤ t), have performed at most ab
t

+∆(a, b) redundant tasks, where ∆(a, b) is a

lower order summand equal to 11
√

ab
t

ln(2nt). This compares favorably with the

lower bound when a = b. We also bound waste of random schedules when a group

of two or more processors rendezvous. We show that with probability at least 1−
1
n
, waste incurred by any h processors that establish communication after having

performed a tasks each, is within a lower order summand of (2h + 1)
√

a ln n from

the expected waste of
∑h

s=2(−1)s
(

h
s

)
as

ts−1 .

Main contributions of this thesis include methods for derandomizing the con-

struction of schedules using intersection properties of certain subspaces of a mul-

tidimensional vector space over a finite field. We give constructions for different

relations between n and t. When t ≥ n, for a prime power q, n = q2 + q + 1,

such that n divides t, we show how to construct n schedules so that when any

two processors rendezvous after having performed sufficient number of a tasks

each (i.e., when a ≥ t
n

(
1 + q7/4

)
), then waste is at most 1 + 22 · n−1/4 times

the corresponding lower bound. Each schedule can be produced in time O(t).

This construction has the property that waste can grow linearly when progress

a is small compared to t, which is a disadvantage when t is much larger than n.
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We alleviate this issue with a recursive construction that offers tighter bounds

on waste for small progress a. Next, we consider the case when there are more

processors than tasks, n = t1−x, for some 0 < x < 1. This models the end-game

where there are relatively few tasks remaining to be performed, compared to

the number of processors available to perform the computation. We construct

n = t · qm−1−1
q2−1

schedules for t = qm−1
q−1

tasks. (Note that n is about t2−ε(m),

where the ε(m) tends to 0 when m tends to infinity.) When progress a is large

enough (i.e., when a > qm−2−1
q−1

), waste is at most 1 + 64 · t−1/(3m−3) times the

lower bound. Each schedule can be produced in time O(mt). We also study the

super-saturated case when there are substantially more processors than tasks,

n = tu, for a constant u ≥ 2. Specifically, when t = q2 and n = qd, for d ≥ 2,

we present a construction of n schedules based on polynomials such that waste

is bounded by (d − 1)
√

t + 4ab
t

, when progress of any two processors a and b is

at most t/4. Finally, we give a construction of schedules with a bound on waste

for groups of size h ≥ 2 when n = t1−x. Specifically, when n = qm−1−1
q−1

and

t = qm−1
q−1

, we show how to construct a system of schedules so that any group of h

processors that rendezvous after having performed a tasks each, wastes at most(
h
2

)
a2

t

(
1 + c1 · t−1/(m−1) + c2 · h−1

)
tasks, where c1 and c2 are absolute constants.

We show how our distributed computing problem is linked to several math-

ematical theories. Our distributed computing problem is related to the sphere

packing problem. Our solutions give rise to a construction of latin squares with
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specific uniformity properties. Our lower bound generalizes the Second Johnson

Bound from coding theory.

In addition to results on scheduling work of disconnected devices, the thesis

also shows results on scheduling work of parallel processors in a shared memory

system. It demonstrates how to create near-optimal instances of the Certified

Write-All algorithm called AWT that was introduced by Anderson and Woll [4].

In this algorithm n processors update n memory cells and then signal the com-

pletion of the updates. The algorithm is instantiated with q permutations, where

q can be chosen from a wide range of values. The thesis shows that the choice of

q is critical for obtaining an instance of the AWT algorithm with near-optimal

work. Finally, the thesis presents a deterministic asynchronous algorithm for the

Certified Write-All problem. The algorithm has optimal work complexity O(n)

for a nontrivial number of processors p ≤ (n/ log n)1/4. In contrast, all determin-

istic algorithms known to date require superlinear in n work when p = n1/r, for

any fixed r ≥ 1. This work-optimal algorithm generalizes the collision principle

of the algorithm T [24].

1.4 Overview of related work

The efficiency of algorithms for computing tasks depends on how well the

loads are balanced among the participating processors, and on the ability of the

processors to disseminate information about the progress of the computation.
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Load balancing to perform tasks with processor crashes was studied by Dwork,

Halpern and Waarts [51]. References to a large body of work on this topic can

be found in the monograph by Kanellakis and Shvartsman [85].

Load balancing to perform tasks with communication failures was studied

by Dolev, Segala and Shvartsman [49], who formulate a distributed computing

problem of performing a collection of n tasks by n processors in partitionable

networks. They give a competitive analysis showing that the termination time

of any on-line task scheduling algorithm is greater than the termination time

of an off-line task scheduling algorithm by at least a factor linear in n. They

also present a work-efficient load-balancing algorithm for networks subject to

arbitrary fragmentations. Finally they introduce the definition of pairwise waste

and give a deterministic scheduling strategy for up to n1/3 tasks that minimizes

it. This work was followed by Georgiou and Shvartsman [66] who improved the

fragmentation-tolerant algorithm of [49], and who analyze the work and message

efficiency of their algorithm using a DAG that models network fragmentation

and merges. The problem of waste minimization introduced in [49] was later

studied in depth by Malewicz, Russell, and Shvartsman [100, 101]. The authors

generalize the notion of pairwise waste of [49] to h-wise waste, for any h ≥

2. This work shows that random schedules perform well in terms of expected

waste and shows how to effectively generate deterministic schedules with low

worst-case waste. (Randomized scheduling techniques were previously considered

in a variety of similar task-performing settings, e.g., by Chlebus and Kowalski
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[29], Anderson and Woll [4], and by Martel and Subramonian [108].) Georgiou,

Russell and Shvartsman [65] observed that it is impossible to achieve low work

for the basic task-performing problem of [49] in partitionable networks subject

to fragmentations and merges. They pursue competitive analysis of work and

use the algorithmic approach of [66] together with random task scheduling. The

authors show that their randomized algorithm has optimal competitive ratio of

1 + cw/e, where cw is the computation width, defined as a number associated

with the DAG that describes the network reconfigurations.

There are several results developed in the context of design theory that pro-

vide partial solutions to our scheduling problem. The result on pairwise waste

of Dolev, Segala and Shvartsman [49] can be improved using techniques from

design theory (see e.g., Hughes and Piper [77] for an introduction to design the-

ory). Specifically the n blocks of a u-(t, k, 1) packing design (see Mills and Mullin

[109] and Stinson [133] for an introduction to packing designs) overlap by at most

u − 1, and a block can be used to schedule the first k out of t tasks of a proces-

sor. For example, there is a known construction that allows to schedule about

k = t1/2 tasks with overlap of 1. The problem of controlling the number of redun-

dantly performed tasks for arbitrary progress of processors could be solved using

multiply-nested packing designs. Unlike existing approaches presented by Mor-

gan, Preece, and Rees [112] and Preece [123], for our purpose the packings must

have the same number of blocks, but the parameter u should be different across

the nested packings. It appears that multiply nested packings that yield almost
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tight bounds on waste are not known. In addition, the Second Johnson bound

[81] yields a lower bound on waste for processors that connect after performing

the same number of tasks. Our results extend this lower bound to the case when

progress of processors may be different. The concept of nesting has been studied

in coding theory in a different context by Dodis and Halevi [47]

Another line of research shows that quality of load balancing correlates with

the extent of communication available to the devices. Papadimitriou and Yan-

nakakis [120] study how limited patterns of communication affect load-balancing.

They consider a problem where there are 3 agents, each of which has a job of

a size drawn uniformly at random from [0, 1], and this distribution of job sizes

is known to every agent. Any agent A can learn the sizes of jobs of some other

agents as given by a directed graph of three nodes. Based on this information

each agent has to decide to which of the two servers its job will be sent for

processing. Each server has capacity 1, and it may happen that when two or

more agents decide to send their jobs to the same server, the server will be over-

loaded. The goal is to devise cooperative strategies for agents that will minimize

the chances of overloading any server. The authors present several strategies for

agents for this purpose. They show that adding an edge to a graph can improve

load balancing. This problem is similar to our scheduling problem. Sending a

job to server number x ∈ {0, 1} resembles doing task number x in our problem.

The goal to avoid overloading servers resembles avoiding overlaps between tasks.

The problem differs from our problem because we are interested in sequencing
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the execution of tasks, where the number of tasks can be arbitrary t ≥ 1. The

problem of Papadimitriou and Yannakakis has been studied by: Deng and Pa-

padimitriou [43], Irani and Rabani [80], Brightwell, Ott and Winkler [20], and

Georgiades, Mavronicolas and Spirakis [64]. Similar results demonstrating that

the availability of communication can affect the effectiveness of load-balancing

were given by Papadimitriou and Yannakakis [121], Awerbuch and Azar [9], Bar-

tal, Byers and Raz [12], Eager, Lazowska and Zahorjan [52], Mitzenmacher [111],

and Mirchandaney, Towsley and Stankovic [110].

1.5 Thesis organization

The remainder of this thesis is organized as follows. In Section 2, we give an

account of research results related to the problem. In Section 3, we detail our

cooperation problem, mathematical tools used in the solutions, and links between

our problem and other mathematical problems. In Section 4, we show a lower

bound on the number of redundantly performed tasks for processors that connect.

In Section 5 and Section 6, we give randomized and deterministic constructions

that control the number of redundantly perfomed tasks quite well. Finally, in

Section 7, we present results on scheduling for shared memory systems.



Chapter 2

Related work

In this chapter we present several problems that are related to the scheduling

problem studied in this dissertation. We begin with the review of distributed plat-

forms for performing large numbers of tasks (Section 2.1). Next we review results

of studies of an abstract version of the load balancing problem with fault-prone

processors (Section 2.2). We also report on load balancing techniques when pro-

cessors are fault-free, but the communication medium may be faulty (Section 2.3).

Next we report on distributed cooperation techniques when only partial informa-

tion about the problem is available to the distributed devices (Section 2.3). Then

we report on work about producing schedules to that avoid redundancy (Sec-

tion 2.5). Next we present mathematical tools used to derive and analyze the

properties of the schedules developed in the dissertation (Section 2.6). Finally we

review some facts from design theory and several applications of design theory in

computer science (Section 2.7).

14



15

2.1 Grid computing

A grid [57, 68] is a software platform that allows users to share storage, com-

munication, and computation resources that are heterogeneous and distributed,

but at the same time allow each user to control which resources, and to what

extent, are shared with other users. A grid allows users to request a set of

resources that satisfy prescribed requirements (such as the number of comput-

ers, time and duration of their required availability, their operating system,

quality of network that connects the requested computers), and perform some

computation using the resources. There are many implementations of grids

(see [22, 69] for examples). A grid called High Throughput Computing Grid

[1, 23, 41, 59, 63, 79, 94, 97, 98, 119, 122, 127, 126, 128, 138, 139, 94] executes

large numbers of independent, idempotent, and similar tasks using distributed,

heterogeneous computers (that are often underutilized [115]). We review some of

the instances of these grids.

The authors of the SETI@home project [94] aim at finding evidence of ex-

traterrestrial life. They develop a computing platform where distributed comput-

ers cooperate on a computation to detect patterns in radio signals received from

the cosmos. It is assumed that an extraterrestrial civilization would broadcast a

radio signal at the frequency of the hydrogen line. Due to the Doppler effect, the

unknown velocity of the emitter at the time of emission and unknown relative

velocity of the receiver at the time of receiving, one needs to probe frequencies in
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the neighborhood of the hydrogen line in order not to overlook a potential signal.

A telescope in Puerto Rico repeatedly scans about 25% of the sky and records a

range of radio frequencies centered at the hydrogen line. This data is delivered to

a server at the University of California, Berkeley. The data is decomposed into

tasks each described using about 300KB. Each task needs to be processed using

the FFT to detect spikes of frequencies significantly above the noise level. Each

task can be performed independently. The processing of one task takes about 10

hours on a typical personal computer. During the time when tasks are processed,

new signals are received, and so new tasks continue being created at the server.

The solution employs a client-server architecture. The server can: (1) register

any volunteer and send there a client program that can process any task, (2) send

a task to a client program that contacted the server, and (3) receive the result of

processing of a task from a client program. In this solution any client computer

processes at most one task at any time. The server stores a database of about 2

million volunteers, half a million of which actively participate in the processing,

and keeps track of which volunteer processed which task. A task is sometimes

processed more than once (by different volunteers) to verify the results using a

(hopefully) independent volunteer.

In the XPulsar@home project [139] the authors study a mathematical model

of a pulsar and their goal is to calculate the distribution of photons emitted

from the pulsar. For this purpose they implement a Monte Carlo method. In

this method, initial locations and velocities of photons are chosen according to
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some random process and the trajectories of these photons are then traced to

arrive at the distribution of photons. Each tracing can be done independently

from one another. The authors implement this method by creating a server

program for collecting results, and a client program for tracing trajectories. The

client program is uploaded to hundreds of computers. Then any client program

repeatedly chooses the initial location and velocity, traces the photon, and reports

the results of tracing to a central server.

The goal of the Intel CURE project [79] is to evaluate the curing potential

of hundreds of millions of molecules, in order to design new drugs. Evaluations

can be done independently from one another. The authors propose a distributed

architecture similar to that of SETI@home, where volunteers download a client

program that repeatedly requests a task from a server, performs evaluation for

about 1 day, and returns results to the server. A similar method is used by the

FightAIDS@Home project [119]. Here the problem requires testing if the trial

drug molecules can be docked at the target protein.

In the RSA Factoring by Web project [128], distributed machines use a fac-

toring method called Number Field Sieve [23]. For the instance of the factoring

problem considered by the authors, one of the stages of the method called siev-

ing would normally take 8.9 years on a single personal computer. However, this

stage can be decomposed into independent and idempotent tasks, and executed

in parallel on distributed machines in 1 CPU month.
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2.2 Load balancing with processor failures

Several studies consider an abstract load-balancing problem in a distributed

environment, where computing medium is prone to failures.

Dwork, Halpern and Waarts [51] were the first to formulate and study the

abstract problem of performing t independent, idempotent, and similar tasks in

a distributed environment consisting of n failure-prone processors. We call this

problem do-all. In this problem each processor has access to a global clock.

Processors communicate by sending messages. Any processor can fail (i.e., stop

computing) at any time, as long as there is at least one operational processor

at any time. The goal of these processors is to perform the t tasks so that the

total number of tasks performed (counting multiplicities) is small. These tasks are

initially known to every processor. Following this work, there has been substantial

research on how to efficiently perform the tasks subject to processors failures.

These results were given by De Prisco, Mayer and Yung [44], Galil, Mayer and

Yung [60], Chlebus and Kowalski [29], and Chlebus, Kowalski and Lingas [30].

There were also extensions of this model to scenarios where processors can restart.

A processor that restarts begins computation in a predefined initial state without

the knowledge of its prior state (i.e., it does not have access to stable storage).

These results were give by Chlebus, De Prisco and Shvartsman [26].

The do-all problem was originally considered in the shared memory model,

where it is called write-all. In this model processors can exchange information
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(or communicate) by writing to and reading from shared memory. The write-

all problem was first introduced and studied by Kanellakis and Shvartsman

[84, 85]. Other work includes Kedem, Palem, Raghunathan and Spirakis [90],

Buss, Kanellakis, Ragde and Shvartsman [24], Anderson and Woll [4], Groote,

Hesselink, Mauw and Vermeulen [70], and Chlebus, Dobrev, Kowalski, Malewicz,

Shvartsman and Vrto [27]. These studies on do-all and write-all present

various load-balancing techniques for sequencing the work for the computing

devices that are able to communicate by some means. A common challenge is

to design effective failover techniques. When a processor performs some tasks

and fails before communicating to other processors that it has performed these

tasks, the other processors need to perform the tasks, which increases the total

number of tasks that need to be performed (counting multiplicities), and degrades

performance.

2.3 Load balancing with communication failures

In some scenarios, processors that do not participate in the exchange of infor-

mation can perform computation. This happens, for example, in the setting of

partitionable networks [49]. This setting is also called a message passing model

with communication failures. In this setting the communication topology of the

network may change during the computation, causing regroupings of processors.

Communication links that fail can “fragment” (or partition) the system into con-

nected components. When links recover, processors that were disconnected may
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“merge” to form larger components. Such failures occur, for example, in the

context of mobile computing. Indeed, an intrinsic feature of mobile comput-

ing [25, 78, 83, 92, 130, 136] is that communication topology changes over time,

and some devices may not be able to communicate with others for prolonged

periods of time. In such a setting, a processor that does not participate in the

exchange of information may still do useful work. If a processor becomes isolated

before all tasks have been performed, it will never know that tasks have been

performed nor know their results, unless it executes all the remaining tasks on

its own. This setting motivates the consideration of a variation of the do-all

problem called omni-do.

The omni-do problem was defined by Dolev, Segala and Shvartsman [49]

as follows. There are n processors that do not fail. There are t independent

and idempotent tasks initially known to each processor. The goal is that each

processor learns the results of all tasks. A processor learns the result of a task

either by executing the tasks or by receiving the result from some other pro-

cessor. The requirement that each processor knows the results of all tasks at

the end of computation, is an extension to the do-all problem. The efficiency

of omni-do algorithms is measured by summing up how many times each task

has been performed by processors (a measure introduced in [51]). Two solu-

tions to the omni-do problem have been studied. Each of them uses a message

passing model of computation augmented with a group communication service
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[11, 17, 18, 31, 37, 48, 53, 74, 113, 125] that notifies processors about the cur-

rent membership of components and provides a multicast service for delivering

messages to all processors in the component. The omni-do algorithms studied

by Dolev, Segala and Shvartsman [49] are developed for an asynchronous system

where processors within a group work in rounds controlled by a group commu-

nication service. Processors start computing as a single component. Later on,

component(s) may fragment into smaller components. Georgiou and Shvartsman

[66] extend these results to the setting where components may undergo frag-

mentations and merges during the computation. They offer work-efficient and

message-efficient algorithms. A common feature of these solutions is that pro-

cessors do load-balancing inside connected components. Sequencing the tasks for

execution inside such a component does not take into account possible future

merges with other components.

2.4 Load balancing using partial information about distributed sys-

tems

Distributed devices may not know the current state of other devices in a

distributed system due to delays in transmitting information. Therefore, it is in-

teresting to study how to make load balancing decisions using only partial infor-

mation about the instance of a load balancing problem but without compromising

quality by much. Specifically, one could look for load balancing algorithms that

are competitive compared to the best load balancing algorithm that has complete



22

information about the instance of the problem. In this section we review some

work on this topic that indicates that the more the devices know, the better the

decisions can be.

The work of Papadimitriou and Yannakakis [120] (mentioned in Section 1.4),

who study how communication topology influences the effectiveness of load as-

signment, was continued by other researchers.

Deng and Papadimitriou [43] study competitive strategies for the problem

of [120]. Each agent knows the communication graph and they are to coopera-

tively assign jobs to two servers so as to minimize makespan. The authors show

optimal competitive strategies for each graph (the competitive ratio ranges from

1 to 2). Then they show that for any r, it is NP-hard to find an assignment of

jobs of n agents to m servers, that achieves competitive ratio r. Finally, they

consider a model with no communication at all, in which each of the n agents

has some number of jobs of some sizes, and must decide to which of the n servers

to send the jobs for processing, without coordinating with other agents. The au-

thors show a 2
√

n-competitive deterministic algorithm, and a lower bound of
√

n

on the ratio for deterministic algorithms. They present a randomized algorithm

that has ratio O(log n/ log log n).

Irani and Rabani [80] generalize the work of [43] to an arbitrary communi-

cation graph with an arbitrary number of nodes (agents). Each agent has some

jobs of some known size, and the goal is to distribute the jobs across other agents

(maybe even agents from which information was not available, e.g., because there
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is no edge in the graph) so as to balance the load. The authors show that for

a given graph G, the competitive ratio for deterministic algorithms is at least

the square root of the size of a maximum independent set, and that there is a

deterministic algorithm for distributing load that is competitive by at most twice

the square root of the size of minimum clique cover (the algorithm uses answers

to some NP-hard problems). The authors show that among r-regular graphs the

best graph (up to constant factor of 2) is a graph with cliques of size r + 1 with

no communication between cliques, which yields 2
√

n/(r + 1) bound on compet-

itive ratio. The authors show that randomization can beat the lower bound, and

extend the result of [43], to show that for any graph, a randomized algorithm

has O(log f/ log log f) ratio, where f is the size of minimum clique cover. When

graph is r-regular, then the competitive ratio is O(log n
r
/ log log n

r
). When r not

too large compared to n, the authors show a lower bound of Ω(log n
r
/ log log n

r
),

which demonstrates than the competitive ratio is optimal up to a constant for

these values of r. The authors also study a problem of routing a permutation on

some fixed network where sources only know destination of some other sources as

given by a communication graph, with the goal of controlling network congestion.

Brightwell, Ott, and Winkler [20] study load assignment when agents that

have some load need to assign it to the server without communicating with other

agents. There are n agents and each agent i has a job of size Xi which is a

random variable, and the variables are pairwise independent. There is a server of

capacity T . They would like to decide if an agent i should or should not assign
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its job to the server based on the value of the variable Xi only, so as to minimize

the expected square of the distance between T and the total load assigned to

the server by all the clients (intuitively we want to make it close to the target

T without communication). The authors consider strategies where each agent i

has a measurable subset Si ⊆ R, and assigns load iff Xi ∈ Si, and show that

it is enough to consider subsets that are real intervals that start or end at zero.

The authors show the existence of an optimal solution and develop an optimality

condition (from which it is in general difficult to find what the intervals should

be!). The authors characterize some special cases, including the case when the

variables are all uniform on [0, 1]. The authors study two other models: one

when each agent may assign a fraction of its job to the server (and not assign

the remaining fraction), and the other when there is more than one server, each

of which has its own threshold and weight specifying the relative importance

of achieving an assignment close to the threshold for the server. The authors

characterize some properties of optimal solutions.

Georgiades, Mavronicolas, and Spirakis [64] study a similar load assignment

problem. They consider arbitrary number of agents n where there is no communi-

cation between processors whatsoever, and arbitrary computable load assignment

strategies. There are two servers that process jobs, and the servers have some

given capacity that is not necessarily 1. They study two families of load assign-

ment strategies: (a) strategies that cannot see the size of jobs before making a

decision about which server to send a job to for processing, and (b) strategies
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that can make decisions based on the size of the job. They completely settle

these cases, by showing that their strategies minimize the chances of overloading

any server.

The paper of Papadimitriou and Yannakakis [121] studies how distributed

agents can solve a specific optimization problem with incomplete information

about the problem. The problem is a linear program with a matrix A with

nonnegative entries, and decision variables x1, . . . , xn which must be nonnegative,

while we are interested in maximizing their sum under the condition that Ax ≤ 1

(i.e., the cross product of each row of the matrix and the vector 〈x1, . . . , xn〉 can

be at most 1). There is an interesting special case of the linear programming

problem, that encodes load balancing with limited information, across servers

with bounded capacity. Suppose that there are n agents and m servers, and that

each agent i wants to assign a job of size 1 to each of servers in the set Si. We

assume that for any server there are at most d agents that want to assign a job

to the server (any server is in at most d of these sets). Each agent is allowed

to assign to a server a fraction of the job of size 1 destined for the server. Each

server has capacity 1 and this capacity cannot be exceeded by the assignments of

agents. Each agent has incomplete information about where other agents want

to assign their jobs. Specifically, the agent i knows, for each server j (in Si),

which other agents also want to send the job to the server j. Agents must decide

what fraction of jobs to send to each server, given this limited information about

other agents intents. The authors show a d competitive algorithm that is optimal.
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The authors study two variants of the linear programming problem, which differ

by what type of information is available to the agents, and give competitive

algorithms.

The paper by Awerbuch and Azar [9] studies solutions to linear programming

where agents can accumulate some information about the parts of the problem

known to other agents. There are n agents and n severs. Each agent a wants

to assign a job, or its fraction, to a server from some fixed subset P (a). Each

job of an agent a have size sa, and a server s has capacity cs. The agent a

can only communicate with servers in P (a). It is assumed that the minimum

capacity of any server is order of log n factor greater than the maximum size of

any job. The goal is to assign fractions of jobs so that the total “throughput”, i.e.,

sum of the sizes of jobs assigned to servers, is as large as possible. The authors

give a O(log n) competitive algorithm where agents communicate with servers

in O(log n) rounds (since in each round an agent a may only contact servers in

P (a), if P (a) and P (a′) intersect, then agent a can reveal its part of the matrix

to the agent a′). An agent initially assigns small fraction of its jobs to servers,

and then iteratively learns about current load on the servers, and increases the

assignments. The authors also study generalizations of the problem.

Bartal, Byers, and Raz [12] study how to improve the quality of an answer to

a linear programming problem at the expense of time during which agents gain

more knowledge about the matrix. The authors assume: specific communica-

tion topology between agents, that each agent initially knows only a part of the
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matrix, and that the computation progresses in rounds during which any agent

can send a fixed size message to any of its neighbors sharing, for example, the

knowledge of the matrix. The authors show a distributed algorithm that achieves

1 + ε competitiveness using polylogarithmic number of rounds of communication

between agents.

Consequences of load balancing with stale information have been studied by

several authors. Eager, Lazowska and Zahorjan [52] show that in some cases gath-

ering too much information may be useless. Mitzenmacher [111] demonstrates

that using stale information can actually be counterproductive. Mirchandaney,

Towsley and Stankovic [110] show that long message delays can encourage devices

to balance load across small neighborhood of devices.

2.5 Sequencing to avoid redundancy

There exist results on producing sequences of numbers with certain intersec-

tion properties. Our scheduling problem is related to these results.

Gasieniec, Pelc, and Peleg [62] study a variation of the wakeup problem [55].

In broadcast systems, such as Ethernet or radio networks, processors share a

communication medium. The medium delivers a message only when one processor

broadcasts. In such systems, it is desirable to establish a pattern of access to

the shared medium that avoids collisions. This problem can be abstracted as

the wakeup problem, where some processors are waken up by the adversary at

some points of time, and the goal is that processors succeed in waking up all
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other processors by means of broadcasting. This should be done as quickly as

possible, counting from the moment when the first processor is woken up. This

can be achieved by producing, for each processor, a sequence saying when it is

to be silent, and when it is to broadcast, so as to avoid collisions. The authors

consider four cases, that are combinations of global/local clock ticking at the same

pace, and known/unknown number of processors participating in the protocol.

The authors give deterministic and randomized constructions of sequences with

guarantees on the wakeup time, and study lower bounds.

Rosenberg [127] studies a problem where a server is to assign tasks to clients.

There is an infinite number of tasks, indexed with natural numbers. Clients

register at the server, and each client obtains a unique identifier. Later clients

repeatedly request tasks from the server, compute them, and return their results

to the server. The goal of the author is to find a function f , that for a given an

identifier i of a client and the number x of tasks already sent to this client, yields

the index f(i, x) of the task that should be sent to the client next. This function

should be easy to compute. Also its inverse should be easy to compute, so as

to make it easier for the server to decide which client did which task. The tasks

should be assigned is such a way, that no task is assigned to more than one client,

and each task is eventually assigned to some client (i.e., f is a bijection), and

that tasks are assigned in the order of their indices. The author studies functions

in the form f(i, x) = a(i) ·x+ bi parameterized with a “slope” function a(i). The

author is interested in constructing functions, each with specific growth of a(i),
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so as to assign tasks to clients in the approximate order of task indexes given

clients with specific computational speeds. The author presents a few functions

f that achieve these goals.

2.6 Mathematical tools

We report some properties of vector spaces over finite fields, that will be

used in Chapter 6. Let GF(q) denote the finite field with q elements, where q

is a prime power, V be a vector space of dimension m over the field. We cite

a counting lemma that lets us find the number of certain subspaces of V ([77],

Lemma 1.6). Let W be a w-dimensional subspace of V , w ≥ 0, and let h ≥ 0. We

let the number of (w + h)-dimensional subspaces of V containing W be denoted

by ∆(q, m, w, h).

Lemma 2.6.1 ([77]). (i) ∆(q, m, w, h) =
∏h−1

i=0
qm−w−qi

qh−qi , (ii) ∆(q, m, 0, d) =

∆(q, m, 0, m − d), and (iii) ∆(q, m, w, h) = ∆(q, m − w, 0, h).

We use several properties of inner product spaces (see, e.g., [86]). Recall that

an inner product space is a structure consisting of V and 〈·, ·〉, where V is a

vector space over a field K, and 〈·, ·〉 : V × V → K is an inner product, i.e.,

for all α, β, γ ∈ V and a, b ∈ K, we have 〈α, β〉 = 〈β, α〉 and 〈aα + bβ, γ〉 =

a〈α, γ〉+ b〈β, γ〉. For any two vectors α, β ∈ V , we say that α is orthogonal to β

(we write α ⊥ β), if 〈α, β〉 = 0. For any linear subspace U of V , an orthogonal

complement of U , denoted as U⊥, is defined to be a linear space that contains all



30

vectors orthogonal to every vector in U , i.e., U⊥ = {α ∈ V | ∀β ∈ U, α ⊥ β}.

For a subspace U and a vector α, we write α ⊥ U if α ∈ U⊥. For two subspaces

U and W , we write U ⊥ W if and only if ∀α ∈ U, α ⊥ W . We focus here

on finite dimensional spaces; in this case an inner product space is called non-

singular if the matrix A = (ai,j), ai,j = 〈αi, αj〉, 1 ≤ i, j ≤ m, is non-singular

(i.e., det(A) �= 0), where α1, . . . , αm is a base of V .

Lemma 2.6.2. Let U be a d-dimensional subspace of m-dimensional non-singular

inner product space V . The space U⊥ is unique and has dimension m−d, (U⊥)⊥ =

U . Let K be any subspace of V . Then D ⊆ K if and only if K⊥ ⊆ D⊥.

Our analysis in Chapter 5 uses tools for bounding tails of distributions. We

first record some standard Chernoff bounds. See [2], for example, for discussion

and proofs.

Proposition 2.6.3 ([2]). Let Xi be a family of t independent random variables

for which

Xi =




1 − p with probability p,

−p with probability 1 − p.

Then for each a > 0,

Pr

[∑
i

Xi > a

]
≤ ea−(a+tp) ln(1+ a

tp
), (1)

Pr

[∑
i

Xi > a

]
≤ e

− a2

2tp
+ a3

2(tp)2 , and (2)

Pr

[∑
i

Xi < −a

]
≤ e−

a2

2tp . (3)
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(Inequality (2) follows from (1) by recalling that ln(1 + x) ≥ x2 − 1
2
x2, for all

x ≥ 0 .)

Another technique for bounding tails of distributions uses Azuma’s inequality.

Recall that a martingale is a sequence X1, X2, . . . , Xn of real valued random

variables for which E [Xi+1 Xi] = Xi. A martingale is said to have Lipschitz

constant L, if for each i, |Xi − Xi−1| ≤ L. (See [2, §7] for a general discussion of

discrete martingales and a proof of Azuma’s inequality.)

Theorem 2.6.4 (Azuma’s Inequality, [75, 10]). Let X0, X1, . . . , Xk be a mar-

tingale with Lipschitz constant 1 and assume that X0 is a constant random vari-

able X0 = c. Then Pr
[
Xk − X0 > λ

√
k
]
≤ e−

λ2

2 .

Observe that Azuma’s inequality does not require that the Xi be independent.

2.7 Design theory

Set systems with prescribed intersection properties have been the object of

intense study by both the design theory community and the extremal set theory

community (see, e.g., [77, 16, 21] for a surveys). We review a notion of a packing.

A u-(t, k, λ) packing design [109, 133] is a family of subsets S = (S1, . . . , Sn) of

the set [t] with the property that each |Si| = k and any set of u elements of [t]

is a subset of at most λ of the Si. (The subsets Si are typically referred to as

blocks.) A packing design is called a design if it has a more regular structure;
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namely, we require that subsets are distinct, and that any subset of u elements

of [t] is included in exactly λ of the Si’s.

We will apply the following design-theoretic construction several times in the

sequel. Treating GF(q)m, m ≥ 3, as a vector space over GF(q), the design will be

given by the lattice of linear subspaces of GF(q)m. There are n = ∆(q, m, 0, m−2)

distinct (m − 2)-dimensional subspaces of GF (q)m denoted A1, . . . , An, and t =

∆(q, m, 0, m− 1) distinct subspaces of dimension m− 1 denoted B1, . . . , Bt. Any

subspace of dimension m − 1 contains k = ∆(q, m − 1, 0, m − 2) subspaces of

dimension m−2. Note the intersection of any two different subspaces of dimension

m − 1 is a subspace of dimension m − 2 (by the theorem of the dimension of

the sum of two subspaces). The 2-(n, k, 1) design consists of t sets Lm
u = {i |

Ai ⊂ Bu}. Note that each subspace of dimension m − 2 is contained in exactly

h = ∆(q, m, m − 2, 1) subspaces of dimension m − 1.

Theorem 2.7.1 ([77]). Let n = (qm−1)(qm−1−1)
(q2−1)(q−1)

, t = qm−1
q−1

, where q is a prime

power. Then the sets Lm
1 , . . . , Lm

n possess the following properties: each Lm
u is a

subset of [t], has cardinality qm−1−1
q−1

, for each u �= v, |Lm
u ∩ Lm

v | = 1, and any

element i ∈ [t] appears in exactly q + 1 distinct sets.

When m = 3, the sets Lm
1 , . . . , Lm

n form blocks of a 2-(q2 + q + 1, q + 1, 1)

design, and we omit the superscript m.

Theorem 2.7.2. Let n = q2 + q + 1, where q is a prime power. Then the sets

L1, . . . , Ln possess the following properties: each Lu has cardinality q+1, for each



33

u �= v, |Lu∩Lv| = 1, and any element i ∈ [n] appears in exactly q+1 distinct sets.

We note also that if q is prime, the first element of each set can be calculated in

O(log n) time; each subsequent element can be calculated in O(1) time.

(We assume throughout that addition or multiplication of two log (max{n, t})-bit

numbers can be performed in O(1) time.)

Design theory [77] has already been applied in numerous contexts in computer

science. Two surveys by Colbourn and van Oorschot [33], and by Colbourn,

Dinitz and Stinson [32] are excellent introductions to these applications. Here we

review other related problems.

Frankl, Rödl and Wilson [58] show certain uniformity property of some matri-

ces. Specifically they show that in Hadamard matrices, small submatrices have

about the same number of zeros and ones in them. Our constructions of sched-

ules yield matrices that have duplicate elements “evenly” distributed across the

matrices.

Mullender and Vitányi [114] introduce a problem called distributed match

making and show a relationship of this problem to distributed control issues such

as name server, mutual exclusion (see e.g., [82] for recent work in this area),

and replicated data management. Solutions to this problem involve producing

sets with certain intersection properties. The authors use a multidimensional

construction similar to the one presented in Section 6.3.

Karp and Wigderson [88] show a parallel algorithm for the maximal inde-

pendent set problem. They first present a solution that uses random sets, and
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then use objects from design theory to derandomize their solution. Specifically,

they substitute these random sets with deterministically constructed sets, and

argue about the quality of the resulting solution. This is similar in spirit to the

derandomization technique that we present in Chapter 6.

Shamir and Schuster [131] show a construction of a network using vector

spaces over finite fields. Nodes are associated with subspaces of dimension about

half of the dimension of the space, and edges reflect containment between the

subspaces. This is similar to the technique of building a bipartite graph presented

in Section 6.4.1. The number of nodes in the network is about square root of the

number of nodes allowed by the Moore bound for the diameter and the degree

of nodes in the network constructed. The authors give a randomized method for

routing that does the routing in the order of diameter of the network parallel

steps, with high probability.



Chapter 3

Definitions, problem statement, and

relationships to other problems

This chapter defines the model of distributed system and states the discon-

nected cooperation problem studied in the dissertation. Then relationships be-

tween the problem and other problems encountered in design and coding theories

are given.

35
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3.1 Schedules and waste

We consider the abstract setting where n asynchronous processors must per-

form t abstract tasks. We model tasks as distinct numbers from [t] (recall that

[t] = {1, . . . , t}), and processors as distinct numbers from [n]. We assume that

there is a (deterministic) function f : [t] → R, where R is the set of results, and

say that a processor performs (or executes) a task i, when it evaluates the function

f at a point i. (Tasks modeled this way are called independent and idempotent,

because the execution of any task yields the same result when it is performed

more than once, and the result of execution of any task does not depend on the

order in which other tasks are executed.) We assume that each processor can

perform addition or multiplication of two log (max{n, t})-bit numbers in O(1)

time.

At the beginning of a computation, communication is not available, but at

some a priori unknown point of time, a group of a priori unknown processors

rendezvous. Processors compute at all times during the period of disconnection,

in between communications.

We focus on the scheduling problem discussed above, abstracted as follows.

An (n, t)-schedule is a tuple 〈σ1, . . . , σn〉 of n permutations of the set [t]. When

n = 1, it is elided and we simply write t-schedule.

An (n, t)-schedule immediately gives rise to a strategy for n isolated processors

who must complete t tasks until communication between some pair (or group) is
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established: each processor i simply proceeds to complete the tasks in the order

prescribed by σi. Suppose now that k of these processors, say q1, . . . , qk ∈ [n],

happen to rendezvous at a time when the ith processor in this group, qi, has

completed ai tasks. We call ai the progress of processor i at the instant of the

rendezvous. Ideally, the processors would have completed disjoint sets of tasks,

so that the total number of tasks completed is
∑

i ai. As this is too much to hope

for in general, it is natural to attempt to bound the gap between
∑

i ai and the

actual number of distinct tasks computed. This gap we call waste:

Definition 3.1.1. If S = 〈σ1, . . . , σn〉 is a (n, t)-schedule and 〈a1, . . . , ak〉 ∈ Nk,

the waste function for S is

WS(a1, . . . , ak) = max
〈q1,...,qk〉

(
k∑
i

ai −
∣∣∣∣∣

k⋃
i

σqi
([ai])

∣∣∣∣∣
)

,

this maximum taken over all k tuples 〈q1, . . . , qk〉 of distinct elements of [n].

Here (and throughout), if φ : X → Y is a function and S ⊂ X, we let

φ(S) = {φ(x) | x ∈ S}. For example σi([a]) is the set of the first a tasks performed

by processor i. For a specific sequence of numbers a1, . . . , ak, WS(a1, . . . , ak)

captures the worst-case number of redundant tasks performed by any collection

of k processors, when the ith process has performed the first ai tasks of its

schedule. One immediate observation is that bounds on pairwise waste WS(·, ·)

can be naturally extended to bounds on k-wise waste WS(·, . . . , ·︸ ︷︷ ︸
k

): specifically,

note that if S is an (n, t)-schedule then

WS(a1, . . . , ak) ≤
∑
i<j

WS(ai, aj)
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just by considering the first two terms of the standard inclusion-exclusion rule.

Equality in this relationship is and nearly attained by randomized schedules (see

Section 5.2). We shall content ourselves to focus the investigation on pairwise

waste – the function WS(a, b).

3.2 Relationships to other problems

We observe that a specific sequence of packing designs can be used to construct

schedules with limited waste. Let u-(t, k, 1) be a packing design with n blocks

B1, . . . , Bn. Observe that if 2 blocks had u or more elements in common, then the

set of these u elements would be on 2 blocks, which is impossible by the definition

of u-(t, k, 1) packing. Thus the cardinality of the intersection of any 2 distinct

blocks is at most u − 1. Using this remark, we can construct an (n, t)-schedule

S with waste bounded by u − 1 for progress k, just by taking any sequence of

n permutations on [t] for which σi([k]) = Bi. Unfortunately, this construction

offers satisfactory control of 2-waste only for the specific pair (k, k). Furthermore,

considering that the construction only determines the sets σi([k]) and σi([t]\ [k]),

the ordering of these can be conspiratorially arranged to yield poor bounds on

waste for values of progress other than k. Our goal is to construct schedules with

satisfactory control on waste for all pairs (a, a).

We can construct an (n, t)-schedule S = (σ1, . . . , σn) with waste controlled at

a finer granularity of values of progress, from a sequence of packing designs that

have specific containment properties. For a given n and t, and k1 ≤ . . . ≤ kt, let
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Pu be a u-(t, ku, 1) packing design with n blocks Bu,1, . . . , Bu,n. Let, for any i,

the corresponding blocks of packing designs form a monotonically nondecreasing

sequence, i.e., ∅ = B0,i ⊆ B1,i ⊆ B2,i . . . ⊆ Bt,i ⊆ [t]. Such sequence of packings

is called multiply nested because blocks of one packing are nested, or contained,

in the corresponding blocks of the next packing in the sequence. (Nested designs

were introduced by Preece [123]; see also [112] for a recent survey.) A permutation

σi is obtained by assigning the elements in consecutive “deltas” in arbitrary order

to consecutive arguments i.e., σi([|Bu,i|+1, |Bu+1,i|]) = Bu+1,i\Bu,i, for 0 ≤ u < t,

and σi([|Bt,i| + 1, t]) = [t] \ Bt,i. (There is also a dual construction for packing

designs that are called regular [14].)

Theorem 3.2.1. Any (n, t)-schedule S constructed as above from t nested packing

designs has waste bounded by WS(ku, ku) < u , for any u, 1 ≤ u ≤ t.

This theorem teaches us that we should seek a packing design that, for any

u, maximizes ku. Fundamental limitations on how large ku can be are known.

These bounds are derived from the so called packing number. The packing number

Dλ(t, k, u) is the maximum number of blocks n in any u-(t, k, λ) packing. Johnson

[81] gave an upper bound on the packing number.

Theorem 3.2.2 (Second Johnson bound, [81]). The packing number D1(t, k, u)

is bounded by

D1(t, k, u) ≤ t(k + 1 − u)

k2 − (u − 1)t

This bound lets us immediately derive a lower bound on waste.
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Corollary 3.2.3.

WS(k, k) ≥ n

t(n − 1)
k2 − k + t + 1

n − 1
.

Proof. Let us take any (n, t)-schedule D = (δ1, . . . , δn) and suppose that its

waste is WD(k, k) = u − 1. The n sets δi([k]) form n blocks of a u-(t, k, 1)

packing design. From the Second Johnson bound we get that n ≤ t(k+1−u)
k2−(u−1)t

, and

so u ≥ n
t(n−1)

k2 − k+t−n
n−1

. Hence WS(k, k) ≥ n
t(n−1)

k2 − k+t−n
n−1

− 1, and the result

follows.

Our lower bound, presented in Chapter 4, generalizes the second Johnson

Bound [81] for the case when two processors execute different number of tasks

prior to their rendezvous. We note that one can trivially obtain a lower bound on

WS(a, b) when a < b, just by taking the bound for k = a in the Corollary 3.2.3.

However, this bound is weaker than the one we derive in Chapter 4.

It appears that there is no existing construction of multiply nested packings

that, for arbitrary large n and t, yields an (n, t)-schedule that has waste that

compares favorably with the lower bound.

Our problem can be reformulated in the language of the classical coding the-

ory problem called the sphere packing problem (see, e.g., [38]). Consider the

metric space Mk of all subsets of [t] of cardinality k, with distance between two

sets defined as the number of elements that appear in only one of the two sets.

The problem of minimizing the worst case intersection between sets of cardinal-

ity k can be reformulated as selecting n points from the metric space, so as to
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maximize minimum distance between the selected points. The difference between

our problem and coding theory is that coding theory studies the Hamming dis-

tance, while we need a solution for the sphere packing problem with the different

distance that we defined in this paragraph. An additional difference is that in

order to control intersection for arbitrary progress of processors, we would need

the sets of points selected for M1, M2, . . . , Mt to have a specific nesting property:

we obtain the point number i selected for Mk to be equal to the point number i

selected for Mk−1 union some element of [t] (i.e., we do not have complete freedom

in selecting points in Mk).



Chapter 4

A lower bound on waste

Coordination of a distributed computation in the presence of arbitrary changes

of communication is a futile task. In the extreme case where all processors are

isolated from the beginning of computation and remain isolated, the number of

tasks performed by any algorithm is t · n, which can be achieved by a trivial

oblivious algorithm, where each processor performs all tasks. However, as we

pointed out earlier, it is possible to schedule the work of a pair of processors

so that each can perform up to t/2 tasks without a single task being performed

redundantly. This suggests that when communication is established early, i.e.,

when each processor has performed only a part of t tasks, a more interesting

lower bound may be obtained. Such lower bound will be shown in this chapter.

42
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4.1 Lower bound on waste

If we insist that among the n total processors, any two processors, having

executed the same number of tasks t′, where t′ < t, perform no redundant work,

then it must be the case that t′ ≤ �t/n�. In particular, if n = t, then the pairwise

waste jumps to one if any processor executes more than one task.

The next natural question is: how many tasks can processors complete before

the lower bound on pairwise redundant work is 2? In general, if any two pro-

cessors perform t1 and t2 tasks respectively, what is the lower bound on pairwise

redundant work? In this section we answer these questions. The answers contain

both good and bad news: given a fixed t, the lower bound on pairwise redundant

work starts growing slowly for small t1 and t2, then grows quadratically in the

schedule length as t1 and t2 approach t.

We begin with a short lemma that has geometric interpretation (see [129]).

Lemma 4.1.1. For any integers a, b, t, and n such that 1 ≤ a ≤ b ≤ t, 2 ≤ n,

let integer variables xi, yi, 1 ≤ i ≤ t, satisfy the constraints 0 ≤ xi ≤ yi ≤ n,

∑t
i=1 xi = na, and

∑t
i=1 yi = nb. Then the sum

∑t
i=1 xiyi is bounded from below

by
t∑

i=1

xiyi ≥ (na)2

t − b + a
.

Proof. The proof of the lemma is by induction. We first show that the lemma is

true for 1 ≤ a = b ≤ t, and then show that the lemma is true for 1 ≤ a < b ≤ t

given that it is true for a, b − 1, and t − 1. Observe that applying this rule
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inductively exhausts all possible choices for a, b and t, which will complete the

inductive proof.

For the base case let 1 ≤ a = b ≤ t. Then
∑t

i=1 xi =
∑t

i=1 yi. But xi ≤ yi,

and so xi = yi. Thus
∑t

i=1 xiyi =
∑t

i=1 x2
i . By the Cauchy-Schwarz’s inequality,

this sum can be bounded from below by

t∑
i=1

xiyi ≥ 1

t

(
t∑

i=1

xi

)2

=
(na)2

t − b + a
.

For the inductive step we pick 1 ≤ a < b ≤ t and show that the lemma

holds given that it holds for a, b − 1, t − 1. Take any xi, yi, 1 ≤ i ≤ t such

that
∑t

i=1 xi = an,
∑t

i=1 yi = bn, 1 ≤ a < b ≤ t, 0 ≤ xi ≤ yi ≤ n. We apply

two transformations to the sequences of variables xi and yi. Each transformation

never increases the sum
∑t

i=1 xiyi. Then we will apply the inductive hypothesis

to the sequences after transformations, to bound the sum from below.

For the first transformation we do the following. (It is convenient to draw

a plot of a function f(i) = yi above the function g(i) = xi, each bounded from

above by h(i) = n.) After possibly renumbering, let xt be a smallest xi i.e.,

for all i, xi ≥ xt. Since b > a, we have that
∑t

i=1 yi −
∑t

i=1 xi ≥ n, and so

∑t−1
i=1 yi −

∑t−1
i=1 xi ≥ n − yt. Let u = n − yt. Thus we can increase yt by u, and

decrease some of the yi, i ∈ [t−1], cumulatively by u without violating the xi ≤ yi

constraint. We denote the resulting values of variables by ȳi. Since xt is minimal,

the sum
∑t

i=1 xiȳi for the resulting sequences can only be smaller compared to

∑t
i=1 xiyi. Notice that the resulting sequence has ȳt = n. We now transform the
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sequences again. Since b > a, we have that
∑t−1

i=1 ȳi = (b − 1)n ≥ an =
∑t

i=1 xi,

and so we can increase some variables xi, 1 ≤ i ≤ t − 1, cumulatively by xt,

without increasing any ȳi, 1 ≤ i ≤ t − 1, and without violating the xi ≤ ȳi

constraint. Moreover, let us decrease xt to 0. We denote the resulting values by

x̄i. The impact of the second transformation on the value of the sum
∑t

i=1 xiȳi

is as follows. Setting x̄t to 0 reduces the sum by nxt (because ȳt = n), while

increasing the value of an xi by 1 can increase the sum by at most n, hence

cumulatively by at most nxt. Consequently,
∑t

i=1 xiȳi ≥
∑t−1

i=1 x̄iȳi.

Finally notice that after the two transformations, we have
∑t−1

i=1 x̄i = an,

and
∑t−1

i=1 ȳi = (b − 1)n, so we can use the inductive hypothesis to bound the

transformed sum from below by
∑t

i=1 xiyi ≥ (na)2

t−b+a
. The result thus follows.

Now we proceed to the lower bound, which generalizes the second Johnson

Bound [81] for the case when two processors execute different number of tasks

prior to their rendezvous.

Theorem 4.1.2. Let P = 〈π1, . . . , πn〉 be an (n, t)- schedule and let 0 ≤ a ≤ b ≤

t. Then

WP(a, b) ≥ na2

(n − 1)(t − b + a)
− a

n − 1
.

Proof. We obtain the lower bound by computing the expected waste of a pair of

t-schedules selected at random from P. Let λ = WP(a, b). Consider selection of

i and j independently at random in the set [n]. We focus on the expected value
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of the random variable

|πi([a]) ∩ πj([b])|.

There are a total of n2 pairs for i and j; if i �= j then the cardinality of the

intersection is bounded above by λ. If i = j then this cardinality is obviously a.

Hence

E[|πi([a]) ∩ πj([b])|] ≤ n(n − 1)λ + n · a
n2

=
λ(n − 1) + a

n
. (4)

Consider now the t random variables Xτ , indexed by τ ∈ [t], defined as follows:

Xτ = 1 if τ ∈ πi([a]) ∩ πj([b]), and 0 otherwise. Then E[|πi([a]) ∩ πj([b])|] =

E[
∑

τ∈[t] Xτ ], and by linearity of expectation,

E[|πi([a]) ∩ πj([b])|] =
∑
τ∈[t]

E[Xτ ] =
∑
τ∈[t]

Pr [τ ∈ πi([a])] · Pr [τ ∈ πj([b])] ,

since i and j are independent.

Now we introduce the function xm(τ), equal to the number of prefixes of

schedules of length m to which τ belongs, i.e., xm(τ) = |{i : τ ∈ πi([m])}|. Then

E[|πi([a]) ∩ πj([b])|] =
∑
τ∈[t]

Pr [τ ∈ πi([a])] · Pr [τ ∈ πj([b])] =
∑
τ∈[t]

xa(τ)xb(τ)

n2

=
1

n2

∑
τ∈[t]

xa(τ)xb(τ) .

(5)

Noting that
∑

xa(τ) = an and
∑

xb(τ) = bn, we apply Lemma 4.1.1 to the last

expression in (5) above and combine this with the bound of (4):

1

n2
· (na)2

(t − b + a)
≤ 1

n2

∑
τ∈[t]

xa(τ)xb(τ) ≤ E[|πi([a]) ∩ πj([b])|] ≤ (n − 1)λ + a

n

whence

λ ≥ a

n − 1

(
na

t − b + a
− 1

)
,
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as desired.

For example, when processors perform the same number of tasks a = b and

n = t, then the worst case number of redundant tasks for any pair is at least a2−a
t−1

.

This means that (for n = t) if a exceeds
√

t + 1, then the number of redundant

task is at least 2.

Corollary 4.1.3. For t = n, if a >
√

n − 3/4 + 1
2

then any n-processor schedule

of length a for t tasks has worst case pairwise waste at least 2.



Chapter 5

Random schedules

This chapter studies waste of randomized schedules. When the processors are

endowed with a reasonable source of randomness, a natural candidate scheduling

algorithm is one where processors select tasks by choosing them uniformly among

all tasks they have not yet completed. This give rise to an (n, t)-schedule R =

〈ρ1, . . . , ρn〉, where permutations ρi are selected independently, and uniformly at

random from S[t], the collection of all permutations of the set [t]. We demonstrate

that the (n, t)-schedule R has waste that is close to the lower bound.

48
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5.1 Pairwise waste for random schedules

Our objective is to show that random schedules R have controlled pairwise

waste with high probability. This amounts to bounding, for each pair i, j and each

pair of numbers a, b, the overlap |ρi([a]) ∩ ρj([b])| . Observe that when these ρi

are selected at random, the expected size of this intersection is ab/t. By showing

that the actual waste is very likely to be close to this expected value, one can

conclude that waste is bounded for all sufficiently long prefixes.

The next technical lemma demonstrates that the cardinality of intersection of

two random sets is close to the expected cardinality with high probability.

Claim 5.1.1. Let n, t ≥ 1, and a, b ≥ 7
√

t ln(2nt). Let A ⊆ [t] and B ⊆ [t]

be chosen randomly, A among all sets of size a, and B among all sets of size b.

Then

Pr [|A ∩ B| > ab/t + ∆] ≤ 1

2n3t3
,

where ∆ = 11
√

ab
t

ln(2nt).

Proof. Observe that E [ |A ∩ B| ] = ab/t. We need to see that this intersection

is close to the expected value with high probability.

Fixing for the moment the set A, for each a ∈ A, let Xa be the indicator

variable for the event a ∈ B. These Xa are not independent, which slightly

complicates the analysis. To begin, we approximate the selection of the set B by

the selection of a set B̂, which will contain each element x ∈ [t] independently
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with probability (1+δ)b/t, where δ is a parameter we shall set presently. Observe

that, E
[∣∣∣B̂∣∣∣] = (1 + δ)b. We have now two goals:

• control the intersection of B̂ and A,

• correct for the distortion induced by the approximation of B by B̂.

We first concentrate on the second goal. Let π be a permutation of [t] chosen

uniformly at random (and independently of A and B̂). When B̂ has cardinality

at least b, let B̂π denote the set consisting of the first b elements of B̂ with the

order induced by π. Then define the map φ : 2[t] × St → 2[t] ∪ {⊥} so that

φ(B̂, π) =




B̂π if
∣∣∣B̂∣∣∣ ≥ b,

⊥ otherwise.

The range of φ is {S ⊆ [t] |S| = b}∪{⊥}, where φ−1(⊥) is exactly the collection

of sets not large enough to afford a subset of size b. Now consider the random

variable φ(B̂, π), and observe that the distribution on 2[t] induced by conditioning

on φ(B̂, π) �=⊥ is precisely the distribution of B. Let ε̂ be the probability that

φ(B̂, π) = ⊥. Recall that for any two events E1 and E2, Pr [E1 E2] ≤ Pr [E1] +

Pr
[

E2

]
. Observe that when φ(B̂, π) �=⊥, B̂π ⊆ B̂. Hence for any sets A, B ⊆ [t]

and any η,

Pr [|B ∩ A| > η] = Pr
[∣∣∣B̂π ∩ A

∣∣∣ > η φ(B̂, π) �=⊥
]

≤ Pr
[∣∣∣B̂ ∩ A

∣∣∣ > η φ(B̂, π) �=⊥
]
≤ Pr

[∣∣∣B̂ ∩ A
∣∣∣ > η

]
+ ε̂.

(6)

To bound ε̂, observe that ε̂ = Pr
[∣∣∣B̂∣∣∣ < b

]
≤ e−

δ2b2

2tp = e
− δ2b

2(1+δ) , by the Chernoff

bound (3). We now select δ = 2
√

ln(4n3t3)/b and recall that b ≥ 7
√

t ln(2nt) ≥
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4 ln (4n3t3). As a result, δ ≤ 1, and so δ2

1+δ
≥ δ2

2
, and we can further bound ε̂ as

ε̂ ≤ e−
δ2b
4 =

1

4n3t3
. (7)

We now focus on the first goal, and show how to control intersection between B̂

and A. Applying the Chernoff bound (2) yields

Pr
[∣∣∣A ∩ B̂

∣∣∣ > (1 + δ)ab/t + λ
]
≤ e

− t·λ2

2(1+δ)ab
+ t2·λ3

2(1+δ)2a2b2
.

We now instantiate this bound for λ = z
√

(1 + δ)ab/t, z = 2
√

ln(4n3t3). Recall

that a, b ≥ 7
√

t ln(2nt) ≥ 4
√

t ln (4n3t3), δ ≥ 0, and hence

Pr
[∣∣∣A ∩ B̂

∣∣∣ > (1 + δ)ab/t + λ
]
≤ e

− z2

2
+ z3

2

√
t

(1+δ)ab ≤ e
− z2

2
+ z3

2

√
t

16t ln (4n3t3)

= e−
z2

2
+ z2

4 =
1

4n3t3
.

Observe that ab
t
√

b
≤
√

ab
t

, because their ratio is equal to
√

a
t
≤ 1. Hence we can

bound

(1 + δ)ab/t + λ ≤ ab/t + δ
ab

t
+ z

√
2ab

t
≤ ab/t + 3z

√
ab

t

≤ ab/t + 6

√
ab

t
ln(2nt)3 ≤ ab/t + 11

√
ab

t
ln(2nt)

Let ∆ = 11
√

ab
t

ln(2nt). Using the above bounds we have that

Pr
[∣∣∣A ∩ B̂

∣∣∣ > ab/t + ∆
]
≤ 1

4n3t3
. (8)

Taking η = ab/t+∆, and combining equations (6), (7), and (8) yields the lemma.

The above lemma allows us to control the size of intersection between ρi([a])

and ρj([b]) for fixed a, b, i and j. Next we show a bound on waste for any two

distinct schedules from R and any large enough progress.
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Theorem 5.1.2. Let R be a random (n, t)-schedule as constructed previously.

Then with probability at least 1 − 1
nt

,

∀a, b such that 7
√

t ln (2nt) ≤ a, b ≤ t : WR(a, b) ≤ ab

t
+ ∆(a, b) ,

for ∆ = 11
√

ab
t

ln(2nt)

Proof. Let B be the (bad) event that the condition from the statement of the the-

orem fails, and let Ba,b
i,j be the event that |ρi([a]) ∩ ρj([b])| > ab/t + ∆(a, b).Then

B =
∨

1≤i,j≤n, i�=j, t0≤a,b≤t Ba,b
i,j , where t0 = 7

√
t ln (2nt). By Lemma 5.1.1, Pr

[
Ba,b

i,j

]
≤

1
2n3t3

. Hence Pr [B] ≤ n2t2 × maxi,j,a,b Pr
[
Ba,b

i,j

]
≤ 1

2nt
< 1

nt
.

5.2 Bounds for a group of arbitrary size

In this section we analyze k-waste for the (n, t)-schedule R. The expected

value of k-waste can be computed by inclusion-exclusion to be
∑k

s=2(−1)s
(

k
s

)
as

ts−1 .

We show that, with high probability, k-waste is close to this expectation. The

proof proceeds by considering the martingale which exposes the ith element of

all schedules at step i. The theorem then follows by noting that the expected

value can change by at most k during a single exposure, and by applying Azuma’s

inequality.

For convenience of the analysis before we present the proof we define I-waste,

denoted by WR,I(a1, . . . , ak), that measures the number of redundant tasks per-

formed by a given subset I of k processors. Observe that k-waste is equal to

maximum I-waste, where I ranges across all subsets of [n] of cardinality k.
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An application of the inclusion-exclusion principle shows, that for a set I ⊂

[n] of cardinality h, the expected value of WR,I(a, . . . , a) denoted by E(k, a),

is equal to ka minus the expected number of tasks executed by at least one of

the processors, and so E(k, a) = E[WR,I(a, . . . , a)] = ka − t
(

1 − (
1 − a

t

)k
)

=

∑k
s=2(−1)s

(
k
s

)
as

ts−1 . Our goal is to show that R is quite likely to have k-waste

close to this expected value.

Theorem 5.2.1. Let R be a random (n, t)-schedule as constructed previously,

and let a ≤ t. Then with probability at least 1 − 1/n,

WR(a, . . . , a︸ ︷︷ ︸
k

) ≤
k∑

s=2

(−1)s

(
k

s

)
as

ts−1
+ ∆a,k ,

where ∆a,k = (2k + 1)
√

a ln n.

Proof. Let ∅ = C0 � C1 � · · · � Cka = I × [a] be a sequence of subsets of I × [a],

and let Πl : Cl → [t] be the map such that Πl(i, x) = ρi(x). The range Πl(Cl)

contains the distinct tasks that occur among some l tasks that have been executed

by the k processors before the rendezvous. Now, let Zl = E [WR,I(a, . . . , a) Πl]

be the expected value of I-waste when it is known what the values of elements

ρi(x) for all (i, x) ∈ Cl are. (See [50] for a discussion of conditional expectation.)

Observe now that Z0 = E [WR,I(a, . . . , a)], Zka = WR,I(a . . . , a), and an easy

argument shows that this martingale has Lipschitz constant 1. Applying Azuma’s

inequality with λ =
√

2 ln(n
(

n
k

)
) guarantees that for any set I of processors of

size k

Pr
[
WR,I(a, . . . , a) − E(k, a) > (2k + 1)

√
a ln n

]
≤ 1

n
(

n
k

) .
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Let, for a subset I ⊂ [n] of cardinality k, BI be the bad event that WR,I(a, . . . , a) >

E(k, a) + (2k + 1)
√

a ln n. Then

Pr
[
WR,I(a, . . . , a) > E(k, a) + (2k + 1)

√
a ln n

]
≤ Pr [∃I,BI ] ≤

∑
I⊂[n]
|I|=k

Pr [BI ] ≤ 1

n
.

In the above, the quantity
∑k

s=2(−1)s
(

k
s

)
is exactly the expected k-waste

manifested by k random subsets of size a. Observe that when k is small (i.e., when

k2
√

ka = o(t)), this expectation is asymptotically (1 + o(1))
(

k
2

)
a2. In particular,

this occurs when k = O(1) and a = o(t). Observe, also, that the above theorem

begins to be interesting when ∆a,k � E [WR(a, . . . , a)]. For constant k, this

occurs when a = ω(t2/3 ln1/3 n).



Chapter 6

Derandomization via finite geometries

We now present a method for derandomizing the schedules described in the

previous chapter, using the designs discussed in Chapter 3. The main idea of the

construction is that a processor executes tasks contained in some selected blocks

of a design, block by block. Since the intersection of any two different blocks

is small, one can hope to ensure gradual buildup of the number of redundantly

performed tasks, as processors progress through their schedules. There are two

cruxes of the construction. The first one is to ensure that blocks selected for

any two processors are “mostly” different, because if many are the same, then

they may be conspiratorially arranged so that the same blocks are executed by

the processors at the very beginning of processors’ work, and consequently high

waste may be incurred during initial work, thus waste could significantly diverge

from the lower bound. The second crux is to ensure that blocks selected for a

processor do not intersect too much among themselves, because if this were the

55
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case, then, for a given block, the number of extra tasks that the block contains

and that have not yet been performed by the processor may decrease rapidly.

Conspiratorially, it could be the case that the redundant tasks occur precisely

among the extra tasks, and so again waste could diverge substantially from the

lower bound.

6.1 Basic construction (n ≤ t)

In this section we present a special case of our recursive derandomization

technique to illustrate the main ideas of the technique. We construct an (n, n)-

schedule, by arranging tasks from the sets L1, . . . , Ln constructed in Theorem 2.7.2

in a recursive fashion. (Recall that while each pair of these sets intersect by 1

element, each set has cardinality only roughly
√

n.)

Let us demonstrate the second crux. Take any element u of [n]. By Theo-

rem 2.7.2, there are exactly q + 1 sets Lt1u , . . . , Ltq+1
u

that contain u. This fact

suggests the following construction of an (n, n)-schedule P = 〈π1, . . . , πn〉. Let

the processor u execute tasks in the order: first task u, then tasks from Lt1u ar-

ranged in some order except for task u, then tasks from Lt2u except for task u,

and so on. Specifically permutation πu is chosen so that,

πu(1) = u,

πu([q(i − 1) + 2, qi + 1]) = Ltiu
\ {u}, 1 ≤ i ≤ q + 1 .

Note now that since each Li has cardinality q + 1, the total number of distinct

elements in πu([n]) is evidently (q + 1)q + 1 = n. Thus each element of [n]
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must appear exactly once in each πu([n]), and so any πu is indeed a permutation.

Observe that the above selection of blocks of a design ensures that each block

adds at least q extra tasks to the schedule.

Let us now present the first crux. We need to ensure that almost all sets

selected for two different processors u �= u′ are different. Recall that any two

sets selected for the processor u intersect at u. If it were the case that some two

distinct sets selected for u were also selected for u′, then the intersection of these

sets should be equal to u′, and so u would be equal to u′, a contradiction. This

ensures that among all sets selected for u and u′ at most two of them are the

same.

When we combine the above two observations, one on the number of extra

tasks that each set adds, and the other stating that sets are mostly different, we

obtain a lemma saying that the growth of waste is gradual.

Lemma 6.1.1. Let q be a prime power, n = q2 +q+1. Let a = 1+ iq, b = 1+jq,

0 ≤ i, j ≤ q + 1. Then

WP (a, b) ≤




0, if i + j = 0,

1, if i = 0, j ≥ 1 or i ≥ 1, j = 0,

q + ij, if i · j ≥ 1.

Note that when t = κn, for some κ ∈ N, the above construction can be

trivially applied by placing the t tasks into n chunks of size κ. In this case, of
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course, when a single overlap occurred in the original construction, this penalty

is amplified by κ. We denote the resulting (n, t)-schedule by V = 〈χ1, . . . , χn〉.

The bound stated in the preceding lemma limits waste for specific values of

progress of processors. A possible issue is that waste diverges relatively much in

between these values. This, however, is not the case, because the bounds give

control over waste for dense enough values of progress. We can show that for

fixed x ≥ 1, when t = nx is large enough, waste of the (n, t)-schedule V compares

favourably with the lower bound when a is at least t1−1/(8x)+ε.

Lemma 6.1.2. Let n = q2 + q + 1, t = κn, κ ∈ N, and let V be (n, t)-schedule

as constructed previously. Then

WV (a, a) ≤ (
1 + 22 · n−1/4

)
LB(a, a) ,

for any a such that t
n
(1 + q7/4) ≤ a ≤ t.

Proof. Take any a such that t
n
(1 + q7/4) ≤ a ≤ t. It can be written as a =

t
n

+ iq t
n

+ k, 0 ≤ i ≤ q + 1, 0 ≤ k < q t
n
. By Lemma 6.1.1, waste is bounded

by UB = WV (a, a) ≤ t
n

(q + (i + 1)2) . Using Theorem 4.1.2, we further bound

waste by

WV (a, a) ≥ LB = LB(t/n(1 + iq), t/n(1 + iq))

=
n

t(n − 1)

t2

n2
(1 + iq)2 − t(1 + iq)

n(n − 1)
=

t

n
· i2q + i

q + 1
.

Let us consider the ratio of the upper bound to the lower bound.

UB

LB
≤ (q + 1)(q + i2 + 2i + 1)

i(iq + 1)
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Observe that by assumption i ≥ q3/4, so q ≤ i2√
q
. Observe also that 2i + 1 ≤ 4q.

From this we get:

UB

LB
≤

(q + 1)( i2√
q

+ i2 + 4q)

i2q
≤ (q + 1)(q−1/2 + 1 + 4q−1/2)i2

i2q

≤ q + 5q1/2 + 1 + 5q−1/2

q
.

Hence UB/LB ≤ 1 + 5q−1/2 + q−1 + 5q−3/2, and the result follows.

We mention that the construction of P can be done on-line. For each schedule

the first element can be calculated in O(1) time. For the remaining q(q + 1)

elements, at the beginning of every sequence of q elements, we need to invert at

most two elements in GF(q). This can be done using the extended Euclidean

algorithm, and can be done in O(log n) time when q is prime. Other elements of

the schedule can be found in O(1) time.

6.2 Generic recursive construction (n = tu)

This section illustrates a more general technique for producing (n, t)-schedules

recursively, from set systems with controlled intersection properties. This tech-

nique offers weaker bound on waste than the one presented earlier, because when

constructing a schedule, the selected sets may add fewer and fewer extra tasks to

the schedule.

The construction is based on polynomials over finite fields and has two inter-

esting features. Firstly, it yields a (tu, t)-schedule when the number of processors

n = tu is polynomially larger than the number of tasks t. Secondly, processor do
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not need to know the value of n in order to construct their schedules in isolation.

In order to get good bounds on waste, it is enough to ensure that processors have

identifiers that are distinct and are compactly packed among the smallest natural

numbers.

Assume that there is a prime power q, so that t = q2, and that n = qd, for

some fixed d ≥ 2. We construct sets κ
(d)
1 , . . . , κ

(d)

qd , where each κ
(d)
i has cardinality

q. Let f1, . . . , fqd be an enumeration of all polynomials of degree at most d − 1

over GF(q) = {e1, . . . , eq}, and canonically associate these polynomials with [n],

the processor identifiers. By canonically associating the set [t] of tasks with

GF(q)2, we define the set κ
(d)
i to be a “plot” of the polynomial; i.e., κ

(d)
i =

{(e1, fi(e1)) , . . . , (eq, fi(eq))}. Recalling that two distinct polynomials of degree

d − 1 can agree at no more than d − 1 points, yields the following lemma (this

property is also used by Reed-Solomon codes).

Lemma 6.2.1. Let q be a prime power, d ≥ 2, n = qd, and let κ
(d)
1 , . . . , κ

(d)
n be

subsets of [q2] of cardinality q as constructed above. For any i �= j, |κ(d)
i ∩ κ

(d)
j | ≤

d − 1.

The construction of a (qd, q2)-schedule J = 〈ι1, . . . , ιqd〉 uses the sets κ
(2)
1 , . . . , κ

(2)

q2 ,

to recursively “elongate” sets κ
(d)
1 , . . . , κ

(d)

qd . The t-schedule ιi is constructed as

follows. Let κ
(d)
i = 〈y1, . . . , yq〉. We build a list K inductively. We start with

an empty list K, and append a set κ
(2)
y1 (called segment number 1), in arbitrary

order, to K. Suppose that we have appended segment number i < q, to K. We
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take the set κ
(2)
yi+1, remove from it all elements that already appear in K, and

append the result (called segment number i + 1), in arbitrary order, to K. We

proceed in this fashion until segment number q has been appended. Then we

append all elements that do not appear in K, at the end of K, in arbitrary order.

The resulting list defines the permutation ιi; i.e., x is the j-th element on the

list, if and only if ιi(j) = x. In the following theorem we show that waste for J

is close to the lower bound, for lengths linear in t.

Theorem 6.2.2. Let q be a prime power, t = q2, n = qd, d ≥ 2, and let a, b ≤ t
4
.

Then the waste for the (n, t)-schedule J is bounded by:

WJ (a, b) ≤ (d − 1)
√

t + 4
ab

t
.

Proof. Take a schedule ιi as constructed in the paragraph preceding the statement

of the theorem, and consider element number a in the schedule. Since each two

sets κ
(2)
i and κ

(2)
j , i �= j, overlap by at most 1, and any κ

(2)
i contains q elements,

each of the first � q
2
� segments added in the inductive process adds at least � q

2
�

new elements to K. Hence these segments contain at least � q
2
�2 elements. Since

a ≤ q2

4
≤ � q

2
�2, element number a must belong to one of the first � q

2
� inductively

added segments, and the segment’s number is at most a

 q
2
� ≤ 2a

q
.

Consider any two schedules ιi and ιj , and elements number a and b from

the schedules respectively. We estimate the overlap between ιi([a]) and ιj([b]).

Consider the pairs of segments (I, J), where I is a segment included in ιi([a]) and

J is a segment included in ιj([b]). By Lemma 6.2.1, only d − 1 pairs may have
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segments where I ⊆ J or J ⊆ I. This results in at most (d − 1)q overlap for the

d−1 pairs. For the remaining at most 4
q2 ab− (d−1) pairs, the overlap is at most

1.

The complexity of the construction of any of the n schedules is O(t) time and

O(t) space (recall that d is a fixed constant).

6.3 Generalization of basic construction (n = t2−x)

We turn back to the study of schedules obtained from designs. We have seen

in Section 6.1, that the regular structure of blocks of certain designs enabled

us to control waste quite well. This section generalizes this construction, and

allows to schedule tasks for n = t2−x processors, for some 0 < x < 1. In the

previous construction, both a schedule and a task were associated with subspaces

of dimension 1 of the vector space of dimension 3 used to construct a design. In the

construction presented in this section, a task is still associated with a subspace of

dimension 1, but a schedule is associated with a subspace of dimension m−2, and

as m grows, n approaches t2. The appropriate arrangement of blocks of specific

designs allows us to construct a family of schedules with waste that compares

favorably with the lower bound.

For any m ≥ 3, and q prime power, we take the vector space GF (q)m, n =

∆(q, m, 0, m− 2), and t = ∆(q, m, 0, m− 1), and construct (n, t)-schedule Nm =

〈ν1, . . . , νn〉 as follows. For any u, by Theorem 2.7.1, there are exactly q+1 distinct
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sets Lm
t1u

, . . . , Lm
tq+1
u

that contain u. Recall that Au is a subspace of dimension

m − 2 that is contained in any of the subspaces Bt1u , . . . , Btq+1
u

; that Au contains

e = ∆(q, m−2, 0, 1) subspaces of dimension 1; that any Bi contains r = ∆(q, m−

1, 0, 1) subspaces of dimension 1; and that �1, . . . , �t are all the subspaces of

GF (q)m of dimension 1. Permutation νu is picked so that

νu([e]) = {j | �j ⊆ Au} ,

νu([e + (r − e)i + 1, e + (r − e)(i + 1)]) = {j | �j ⊆ Btiu
\ Au}, 0 ≤ i ≤ q .

By the same argument as in Section 6.1, we know that νu is indeed a permuta-

tion, and that for any two u �= u′, among the sets Lm
t1u

, . . . , Lm
tq+1
u

and Lm
t1
u′

, . . . , Lm
tq+1

u′
,

at most two of them are the same. This yields the following bound on waste that

generalizes Lemma 6.1.1.

Lemma 6.3.1. Let m ≥ 3, q prime power, and Nm be the (n, t)-schedule con-

structed in the preceding paragraphs. Let a = e + (r − e)i, b = e + (r − e)j,

1 ≤ i, j ≤ q + 1. Then

WNm(a, b) ≤ qm−1 − 1

q − 1
+ (ij − 1)

qm−2 − 1

q − 1
.

The lemma bounds waste for sufficiently dense values of a, so that we can

show that for any fixed m ≥ 3, large enough t, when a is at least t1−2/(m−1)+ε,

waste compares favorably with the lower bound.

Theorem 6.3.2. For any a such that qm−2−1
q−1

< a ≤ t,

WNm(a, a) ≤
(

1 + 64 · t− 1
3(m−1)

)
LB(a, a).
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Proof. Let us take a that satisfies the condition from the statement of the the-

orem. Then there exists an i, such that a := qm−2−1
q−1

+ (i − 1)qm−2 < a ≤
qm−2−1

q−1
+ iqm−2 =: a. The waste incurred by any two processors that have exe-

cuted a tasks each, must be at least LB = LB(a, a). Since m ≥ 3 and i ≥ 1,

we can bound LB from below by LB ≥ i2qm−3 1−q−2

1+2q−3 . The waste of any two pro-

cessors that have executed a tasks each, can be at most UB = WNm(a, a), and

we can bound the waste using Lemma 6.3.1 by UB ≤ qm−1−1
q−1

+ (i2 − 1) qm−2−1
q−1

.

Since i ≥ q−2/3, we can further bound UB from above by UB ≤ i2 · qm−3 1+q−1/3

1−q−1 .

Therefore, we can bound the ratio of UB to LB by UB
LB

≤ (1+q−1/3)(1+2q−3)
(1−q−1)(1−q−2)

. Since

q−1 ≤ 1/2, we have that 1/(1 − q−1) ≤ 1 + 2q−1, and 1/(1 − q−2) ≤ 1 + 2q−2. In

addition, since t ≤ 2qm−1, q−1/3 ≤ 2t−1/(3(m−1)). Hence the result follows.

6.3.1 Efficient incremental construction of schedules

In this section we show how to efficiently construct schedules from the (n, t)-

schedule Nm = 〈ν1, . . . , νn〉. An important feature of our construction, for the

applications that we consider, is that processors pay for the construction in small

chunks as they build their schedules, and each processor can perform the con-

struction without coordination with other processors.

Recall that according to the method described in the previous section, a sched-

ule νi is constructed by taking the (m− 2)-dimensional subspace Ai, and by con-

sidering all (m − 1)-dimensional subspaces B1, . . . , Bq+1 that contain Ai. Then
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elements of the schedule νi were obtained by listing indices of 1-dimensional sub-

spaces contained in each Bj, 1 ≤ j ≤ q + 1, excluding repeated indices. Using

this simple approach would mean the we must use Θ(m2) memory to describe

(m − 2)-dimensional subspaces, this would also influence the construction time.

In order to avoid this high cost, we use a dual approach that is more efficient.

Let 〈·, ·〉 be the normal inner product given by 〈(x1, . . . , xm), (y1, . . . , ym)〉 =

∑
j xjyj, where additions and multiplications are performed in GF (q). By Lemma 2.6.2,

there is a unique 2-dimensional subspace P orthogonal to Ai. By the same

lemma, an (m − 1)-dimensional subspace K contains D = Ai if and only if

the 1-dimensional subspace K⊥ is contained in the 2-dimensional subspace D⊥.

Similarly, a 1-dimensional subspace W is contained in a (m−1)-dimensional sub-

space K if and only if K⊥ ⊆ W⊥. But K⊥ ⊆ W⊥ is equivalent to K⊥ being

orthogonal to W .

These observations lead to the following construction of νi. Let P1, . . . , Pn be

all the subspaces of GF (q)m of dimension 2. We take a 2-dimensional subspace

Pi = span(α, β), and all distinct 1-dimensional subspaces span(γ1), . . . , span(γq+1)

contained in Pi. The first segment of νi is obtained in two phases. We first take the

e indices of all 1-dimensional subspaces span(γ) orthogonal to Pi, i.e., 〈γ, α〉 = 0

and 〈γ, β〉 = 0. Then we take the r − e indices of all 1-dimensional subspaces

span(γ) orthogonal to span(γ1) but not orthogonal to Pi, i.e., 〈γ, γ1〉 = 0, but

〈γ, α〉 �= 0 or 〈γ, β〉 �= 0. Next we append elements from the remaining segments.



66

A segment number j, 2 ≤ j ≤ k, is obtained by taking indices of all 1-dimensional

subspaces span(γ) such that 〈γ, γj〉 = 0, but 〈γ, α〉 �= 0 or 〈γ, β〉 �= 0.

In order to realize this construction, we must be able to efficiently carry out

several procedures. We have associated the tasks with 1-dimensional subspaces

and the schedules with 2-dimensional subspaces. We require a representation of

these spaces so that we can

(i) efficiently compute a distinct 2-dimensional subspace associated with an

index i ∈ [n],

(ii) efficiently enumerate all distinct 1-dimensional subspaces contained in a

particular 2-dimensional subspace,

(iii) efficiently enumerate all distinct 1-dimensional subspaces orthogonal to a

given 1- or 2-dimensional subspace, and

(iv) efficiently compute a distinct index in [t] associated with a given 1-dimensional

subspace.

Such a representation, called Row Reduced Echelon Form, will be discuss in

the remainder of this section. It gives rise to the algorithm described in Fig-

ure 1. The algorithm constructs any schedule from Nm efficiently, incrementally,

and without coordination with other processors. An important feature of the

algorithm is that the cost of construction is almost evenly distributed during

construction. Each of the q + 1 segments of at most t/q consecutive elements of
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a schedule costs O(mt/q) time to construct, except for the first segment which

costs O(mt/q+q log q)). Thus, processors pay in small chunks while constructing

schedules. Each element can be found using O(m + q) space. The performance

of the algorithm is described by the following theorem:

Theorem 6.3.3. Let q be prime and m ≥ 3. The t elements of each νi in

Nm (1 ≤ i ≤ n) can be calculated incrementally. The first qm−1−1
q−1

elements are

determined in time O(mqm−2 +q log q). All elements from any of the remaining q

segments of consecutive qm−2 elements are determined in time O(mqm−2). Each

element can be found using O(m + q) space, and the entire construction can be

done in O(t · m) time and O(m + q) space.

First we discuss a representation of the distinct 2-dimensional subspaces of

V called Row Reduced Echelon Form. For each pair 1 ≤ i1 < i2 ≤ m, and a

vector x = (x1, . . . , xu) ∈ GF (q)u, u = 2(m− 2) + 3− (i1 + i2), we select the pair

α1, α2 ∈ GF (q)m, so that for each j = 1, 2,

αj = (

ij−1︷ ︸︸ ︷
0, . . . , 0, 1, xj

ij+1, . . . , x
j
m),

where

• x1
h = xh−i1 , i1 + 1 ≤ h ≤ i2 − 1,

• x1
i2 = 0,

• x1
h = xh−i1−1, i2 + 1 ≤ h ≤ m,

• x2
h = xh−i2−1+m−i1 , i2 + 1 ≤ h ≤ m.
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int next( in-out α, β, x ∈ (Zq)m , y ∈ (Zq)m−1,
z ∈ (Zq)m−2, w ∈ Zq, case ∈ [3])

while true do
if case = 3 then

advance( y,m − 1, carry )
if carry = true then

x =normalize( α + wβ )
w = w + 1
y = (1, 0, . . . , 0)

v = normalize( λ(x, y) )
if case = 2 then

w = 0 ; x = β
y = (1, 0, . . . , 0)
v = normalize( λ(x, y) )
case = 3

if case = 1 then
v =normalize( µ(α, β, z) )
advance( z,m − 2, carry )
if carry = true then

case = 2
return( getIndexFrom1dim(v) )

if 〈v, α〉 �= 0 ∨ 〈v, β〉 �= 0 then
return( getIndexFrom1dim(v) )

advance( in-out z ∈ (Zq)a;
in a ∈ [m];
out carry ∈ {true, false} )

for j = 1 to a
if z[j] �= 0 break

for b = j + 1 to a
z[b] = z[b] + 1
if z[b] �= 0 break

carry = false
if j = a then

carry = true
else if b = a ∧ z[b] = 0 then

z[j] = 0
z[j + 1] = 1
for b = j + 2 to a

z[b] = 0
initW( in i ∈ [n]; out α, β ∈ (Zq)m;

out z ∈ (Zq)m−2;
out case ∈ [3])

(α, β) = get2dimFromIndex( i )
z = (1, 0, . . . , 0)
h = 1
case = 1

Figure 1: Algorithm for incremental construction of schedule νi from the (n, t)-
schedule Nm = 〈ν1, . . . , νn〉.

(Note that these α1, α2 depend on i1, i2, and x.) Hence for each j = 1, 2, there

are ij −1+2− j coordinates of αj that are set to 0, one other coordinate is set to

1, and the remaining m− (ij + 2 − j) are copies of distinct coordinates of vector

x. We let S(i1, i2, x) be the list of vectors α1, α2 as defined above. Observe that

for fixed i1 and i2, vector x can be chosen in q2(m−2)+3−(i1+i2) unique ways. It

is easy to see that these vectors S(i1, i2, x) are linearly independent. Therefore,

span(S(i1, i2, x)) is a 2-dimensional subspace of GF (q)m. It is also easy to observe

that any 2-dimensional subspace D = span(β1, β2) is equal to span(S(i1, i2, x)),

for some 1 ≤ i1 < i2 ≤ m, and x ∈ GF (q)u, u = 2(m − 2) + 3 − (i1 + i2).
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For convenience, we canonically associate elements of GF (q)u with elements of

[qu], and we treat them interchangeably in the remaining part of the section.

The following lemma asserts that the function S defines distinct 2-dimensional

subspaces of GF (q)m

Lemma 6.3.4. Let 1 ≤ i1 < i2 ≤ m, 1 ≤ i′1 < i′2 ≤ m, x ∈ [q2(m−2)+3−(i1+i2)],

and x′ ∈ [q2(m−2)+3−(i′1+i′2)]. If (i1, i2, x) �= (i′1, i
′
2, x

′) then span(S(i1, i2, x)) �=

span(S(i′1, i
′
2, x

′)).

Proof. Let us take (i1, i2, x) �= (i′1, i
′
2, x

′). We consider two cases, one of which

must occur.

Case 1: Suppose that (i1, i2) �= (i′1, i
′
2). Since the indices are ordered, the

cardinality of the set {i1, i2, i′1, i′2} is at least 3, and so is the dimension of

span(S(i1, i2, x)) + span(S(i′1, i
′
2, x

′)). Therefore, the subspaces span(S(i1, i2, x))

and span(S(i′1, i
′
2, x

′)) are distinct.

Case 2: Suppose that (i1, i2) = (i′1, i
′
2), but x �= x′. Then there is 1 ≤ h ≤ 2,

such that the vector αh is not equal to vector α′
h. But then αh − α′

h is a nonzero

vector with the first nonzero coordinate that is not in the set {i1, i2}, and so it is

linearly independent from vectors α1, α2. Hence the subspaces span(S(i1, i2, x))

and span(S(i′1, i
′
2, x

′)) are distinct.

Now we show that we can quickly compute a distinct 2-dimensional subspace

given an index i from the set [n] = [∆(q, m, 0, 2)]. In the following lemma we

introduce a linear ordering on the two dimensional subspaces of GF (q)m.



70

Lemma 6.3.5. For any i ∈ [n], n = ∆(q, m, 0, 2), vectors that span a distinct

2-dimensional subspace Pi of GF (q)m, q prime, can be found in O(m) time and

O(m) space.

Proof. We introduce a linear order on the set of 2-dimensional subspaces of

GF (q)m in a recursive fashion.

We order the 2-dimensional subspaces in groups from group 1 to m − 1 as

follows. Group number j consists all subspaces for i1 = j, i2 > i1, and x ∈

[q2(m−2)+3−(i1+i2)]. We can count the number sj of subspaces in a group j using

Lemma 6.3.4, and observing that the sum forms a geometric progression:

sj = q2(m−2)+3

m+j∑
x=3+2(j−1)

q−x = q2(m−j−1) q
−m+j − 1

q−1 − 1
.

We can count the number aj of subspaces in groups 1 through j as:

aj = s1 + . . . + sj =
(1 + q)(qm−j−1 − qm−1) − q2m−2j−1 + q2m−1

(q2 − 1)(q − 1)
.

Hence, for a given i, we can find the group j to which i belongs, and the offset

ĵ within the group in O(log2 m) time and O(1) space, using binary search.

We order the subspaces that belong to a group j < m in subgroups, from

subgroup j + 1 to subgroup m, as follows. Subgroup number h consists of all

2-dimensional subspaces for i1 = j, i2 = h, and x ∈ [q2(m−2)+3−(i1+i2)]. We can

count the number bg of subspaces in subgroups j + 1 through g as:

bg = q2(m−2)+3

j+g∑
x=2j+1

q−x =
q2m−j−g−1 − q2(m−j−1)+1

1 − q
.
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Hence, for a given j and ĵ, we can find the subgroup g to which ĵ belongs, and

the offset ĝ within the subgroup, in O(log2 m) time and O(1) space, using binary

search.

We order the subspaces that belong to a subgroup as follows. Observe that

ĝ ∈ [q2(m−2)+3−(i1+i2)], i1 = j, i2 = g. We represent ĝ as a string of length

2(m− 2) + 3− (i1 + i2) with symbols from GF (q) using ”q-ary” expansion. Since

q is prime, this can be done in O(m) time and O(m) space. From this string

we obtain α1 and α2 by placing zeros, ones, and the elements of the string at

the corresponding coordinates of the two vectors, according to the definition of

function S. This can be done in O(m) time and O(m) space.

Finally, observe that the order introduced above is linear.

In the following lemma, we show how to find all distinct 1-dimensional sub-

spaces contained in a given 2-dimensional subspace.

Lemma 6.3.6. Let W = span(α, β) be a 2-dimensional subspace of a vector space

GF (q)m. Then the q + 1 spaces span(β), span(α + xβ), x ∈ GF (q), are distinct,

and are all 1-dimensional subspaces of W .

In our construction of (n, t)-schedule Nm we need to find all distinct 1-

dimensional subspaces that are orthogonal to a given 2-dimensional subspace,

or 1-dimensional subspace of GF (q)m. We now discuss the construction and its

complexity.
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Let span(x, y) be a 2-dimensional subspace of a vector space GF (q)m with

x =(0, . . . , 0, 1, xi+1, . . . , xm),

y =(0, . . . , 0, 1, yj+1, . . . , ym),

where i < j ≤ m and xj = 0. Let Z ⊂ GF (q)m−1 be the set

{(0, . . . , 0, 1, zh+1, . . . , zm−2) | h ≤ m − 2}.

For z ∈ Z we define µ(x, y, z) ∈ GF (q)m to be

µ(x, y, z) = (z1, . . . , zi−1,−ξ
(1)
ij − υ

(2)
jmxj + ξ

(2)
jm, zi, . . . , zj−2,−υ

(2)
jm, zj−1, . . . , zm−2),

where

ξ
(1)
ij =

j−2∑
a=i

zaxa+1,

ξ
(2)
jm =

m−2∑
a=j−1

zaxa+2, and

υ
(2)
jm =

m−2∑
a=j−1

zaya+2.

Lemma 6.3.7. The set P = {span(µ(x, y, z)) | z ∈ Z} contains all distinct

1-dimensional subspaces of GF (q)m that are orthogonal to span(x, y).

Corollary 6.3.8. For GF (q)m and q prime, the vector µ(x, y, z) can be found in

O(m) time and O(m) space.

Let span(x̂) be a 1-dimensional subspace of a vector space GF (q)m, x̂ =

(0, . . . , 0, 1, xi+1, . . . , xm), 1 ≤ i ≤ m. Let Y ⊂ GF(q)m−1 be the set

{(0, . . . , 0, 1, yj+1, . . . , ym−1) | 1 ≤ j ≤ m − 1}.
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For ŷ ∈ Y , we define λ(x̂, ŷ) ∈ GF (q)m to be

λ(x̂, ŷ) = (y1, . . . , yi−1,−xi+1yi − . . . − xmym−1, yi, . . . , ym−1) .

Lemma 6.3.9. The set P = {span(λ(x̂, ŷ)) | ŷ ∈ Y } contains all distinct 1-

dimensional subspaces of GF (q)m that are orthogonal to span(x̂).

Corollary 6.3.10. For GF (q)m and q prime, the vector λ(x̂, ŷ) can be found in

O(m) time and O(m) space.

Proof of Theorem 6.3.3. For convenience of the analysis let us cluster the ele-

ments of a schedule νi in k + 1 = q + 2 groups. The group number zero consists

of the first e = qm−2−1
q−1

elements. The remaining k groups consist of r − e = qm−2

consecutive elements. Each time an element number 1 through q−1 of a schedule

is constructed, we invert a consecutive element of Zq, in O(log q) time and O(1)

space for each element, and store the result in a table of size O(q).

First we judge the complexity of determining elements from group number

zero. Finding the very first element of this group can be done by obtaining

the two dimensional subspace span(α, β) corresponding to the index i. This,

by Lemma 6.3.5, can be done in O(m) time and O(m) space. Then we need

to find a vector µ(α, β, z) that spans a 1-dimensional subspace orthogonal to

span(α, β), which, by Corollary 6.3.8, takes O(m) time and O(m) space. Next

we need to compute a distinct index j ∈ [t] associated with the space spanned

by the vector. Since q is prime, this can be done in O(m + log q) time and O(m)

space (as it may require normalizing i.e., multiplying a vector by the inverse of
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its first nonzero coordinate). In order to find the elements 2 through e of the

group we need to: find vectors µ(α, β, z) for the remaining admissible values of z

as stated in Lemma 6.3.7, normalize the resulting vectors, and compute distinct

indices associated with them. Since we need to invert at most q − 1 elements

of Zq, the total complexity of determining elements from group number zero is

O(mqm−3 + q log q) time. Each element can be found in O(m) space.

Let us consider the complexity of finding elements from a group number j > 0.

According to the description that appears earlier in the section, we do it by

finding all 1-dimensional subspaces orthogonal to a given 1-dimensional subspace

span(γj), but not orthogonal to a given 2-dimensional subspace span(α, β). We

can find γj in O(m) time and space using Lemma 6.3.6. The vector γj may

need to be normalized in O(m) space and O(m + log q) time, when inverses

of elements from Zq are not available, but only in O(m) time, when they are

available. There are r = qm−1−1
q−1

1-dimensional subspaces orthogonal to a given

1-dimensional subspace, and we can find each, by Corollary 6.3.10, in O(mqm−2)

time and O(m) space. However, only r − e = qm−2 of them are not orthogonal

to span(α, β), and we can test each in O(m) time and O(m) space. Each one

dimensional subspace that passes the test needs to be converted to its unique

index in [t] in O(m) time and space, and this may require prior normalization,

in O(m) space and O(m + log q) time, when inverses of elements from Zq are not

available, but only O(m) time, when they are available. Thus, the complexity of

finding all the elements from the group is O(mqm−2 + q log q) time, when inverses
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are not available, and O(mqm−2) time, when they are. Each element can be found

in O(m) space.

Finally observe that the first segment contains group number zero and one,

and so the total time sufficient to construct its elements is O(mqm−2 + q log q).

Since the first segment contains at least q−1 elements, after they are constructed,

the inverses are available in the table, and so constructing any of the remaining

segments takes O(mqm−1) time.

If space is of concern, we can use a different version of the algorithm. We find

the inverse of an element of Zq every time it is needed, in O(log q) time and O(1)

space. For such an algorithm, the total construction time is O(t(m + log q)) and

O(m) space.

6.4 Controlling waste for short prefixes

The deterministic schedules developed so far have the property that when

progress is small waste may grow linearly (this is expressed by the existence of

additive constants: q in Lemma 6.1.1, (d− 1)
√

t in Theorem 6.2.2, and qm−1−1
q−1

in

Lemma 6.3.1). This property may be undesired in some case. If t � n then pro-

cessors may waste relatively much work beyond necessity, when they rendezvous

early in their computation. Moreover, redundant work gets amplified, as more

processors rendezvous, in which case an undesired constant fraction of their total

work may be wasted. This section deals with the issues by presenting several
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constructions for improving prefix waste. We note that our objective can be triv-

ially attained at the expense of later higher waste just by each processor selecting

a distinct block of a design to schedule its initial work. This, however, results in

possibly increasing by two the number of blocks that some two schedules share,

and can cause about half of the tasks to be wasted, when some two processors

rendezvous after performing tasks from three blocks each. Our constructions

presented next are more subtle, and have better control over the growth of waste.

6.4.1 A method when t ≥ n

One disadvantage of the (n, n)-schedule P is that the sets of q + 1 tasks

executed first by some two processors may be the same, and so q + 1 waste may

be incurred when a prefix of length q + 1 is executed. To postpone this increase,

one would like to rearrange the sets Lt1u , . . . , Ltq+1
u

used to construct πu, so that

the sets of the first q + 1 tasks are different for different schedules of P . This can

be accomplished by finding a permutation α : [n] → [n] such that u is contained

in the set Lα(u).

Consider the bipartite graph (U, V, E), where U = V = [n] and n = q2 +q+1.

The set U can be placed in one-to-one correspondence with the one dimensional

subspaces of GF(q)3, and V with the two dimensional subspaces. An edge is

placed between u ∈ U and v ∈ V , if u is a subset of v. Based on Theorem 2.7.2,

the graph is (q + 1)-regular. By Hall’s theorem (see e.g., [72]), there is always a

perfect matching in a d-regular bipartite graph, and note that such a matching
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yields a permutation α with the desired properties. In particular, if the edge

(u, v) appears in the perfect matching, then we put α(u) = v. This matching can

be found using the Hopcroft-Karp algorithm [76] that runs in time O(
√|U | + |V |·

|E|) = O(n2).

We use α to construct (n, n)-schedule G = 〈γ1, . . . , γn〉, such that the sets

γi([q + 1]) intersect by exactly one. For any 1 ≤ u ≤ n, let Lα(u), Lt2u , . . . , Ltq+1
u

be the q + 1 sets that contain u. Permutation γu is chosen so that

γu(1) = u,

γu([q + 1]) = Lα(u),

γu([2 + (i − 1)q, 1 + iq]) = Ltiu
\ {u}, 2 ≤ i ≤ q + 1

Theorem 6.4.1. Let q be a prime power, and n = q2 + q + 1. Let a = 1 + iq,

b = 1 + jq, 0 ≤ i, j ≤ q + 1. Then:

WG(a, b) ≤




0, if i + j = 0,

1, if i = 0, j ≥ 1 or i ≥ 1, j = 0,

1, if i · j = 1,

q + ij, if i · j > 1.

Proof. Take any two distinct t-schedules γu and γu′, u �= u′. When i = j = 1,

observe that by the construction of G, α(u) �= α(u′), and so Lα(u) intersect by

one with Lα(u′). The other cases follow the proof of Lemma 6.1.1.

Observe that this construction is time-optimal, as it produces n2 elements and

runs in O(n2) time. However, the algorithm requires O(n2) time to construct even
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a single permutation. (This construction can be further refined, and by (q + 1)

coloring of the graph, we can produce a latin square [42] rows of which yield

an (n, n)-schedule with the same bound on waste as in Theorem 6.4.1. The

construction of latin square can be done in O(n2 log n) time using the algorithm

of Cole and Hopcroft [36].)

We could use the (n, n)-schedule G to produce an (n, t)- schedule, for t = κn,

in the same fashion as we produced V i.e., by grouping tasks into t/n size chunks.

However, this is not a good idea if we want to control waste when t � n and

progress is small. We know that first segments of schedules from G overlap by 1.

Hence in the resulting (n, t)-schedule, the set of the first (q + 1) · t
n

elements of

any t-schedule would intersect by t
n

elements with the set of the first (q + 1) · t
n

elements of some other t-schedule. In the worst case, an undesired linear growth

of waste could be incurred when progress is between t/n and 2t/n. One way to

alleviate the problem is to compute tasks from the chunks in a different order.

Observe that when at most d elements in a segment of G are wasted, then q − d

are not wasted. This suggests the following sequencing of tasks within a segment.

We compute the first tasks from all the chunks, then the second tasks, and so on,

up to t/n-th tasks from the chunks. We call the resulting (n, t)-schedule H .

Lemma 6.4.2. Let n = q2 +q+1, q prime power, t = κn, κ ∈ N, and let 0 ≤ a ≤

(q + 1)t/n. Waste for the (n, t)-schedule H is bounded by a
q+1

≤ WH(a, a) ≤ a+q
q+1

.
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6.4.2 A recursive method when t ≥ n3/2

When the number of tasks t is sufficiently larger than the number of processors

n, then H does not offer good control over waste when progress is a = O(tn−1/2).

Waste grows linearly and diverges increasingly from the lower bound, as the ratio

t/n grows. Therefore, it is desired to construct an (n, t)-schedule that would

provide tighter control over waste when t/n is large. The method presented

below reschedules elements of H in the prefixes of length t/
√

n, and the resulting

schedules are relatively close to the lower bound in this range. The method can

be applied recursively to tighten the bound on waste in the first segments. We

discuss only the first recursive step in detail.

For the construction of (n, t)-schedule M = 〈µ1, . . . , µn〉, let us assume that

n = q2 + q + 1, q prime power, t = κn, κ = (q + 1)κ̄, q + 1 = q̄2 + q̄ + 1, q̄ prime

power, κ, κ̄ ∈ N. (These technical assumptions about the existence of primes can

be relaxed in exchange for a lower order increase of waste using the fact [71] that,

for any ε > 0 and any large enough x, there is always a prime number between

x and x + x11/20+ε.) Let G = 〈γ1, . . . , γn〉 be the (n, n)-schedule constructed in

Theorem 6.4.1, and let α be the permutation used in the construction of G. A

schedule µi is constructed as follows. For clarity of presentation, we construct a

matrix K with κ rows and q + 1 columns, and the processor will perform tasks

row by row: the entry kx,y in row x and column y of the matrix will be performed

as task number (x−1)(q+1)+y of the schedule µi i.e., µi((a−1)(q+1)+b) = ka,b.
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The entries in the column y will be exactly the tasks from the chunk γi(y) (i.e.,

tasks {γi(y)κ, . . . , (γi(y) + 1)κ− 1}) sequenced so as to ensure that this chunk is

performed in different order by any two processors that have this chunk in one

of the columns of its matrix. Note that we know which these processors are. Let

us recall that, by Theorem 2.7.2, the task γi(y) occurs in exactly q + 1 different

sets Li1 , . . . , Liq+1 , i1 < . . . < iq+1. By the construction of G, the set Lij is equal

to the set of the first q + 1 task in the t-schedule γα−1(ij). Thus the matrix K

constructed for the schedule µz will have the chunk in one of the columns of K, if

and only if z = α−1(ij), for some j, 1 ≤ j ≤ q +1. Let j be such that i = α−1(ij).

We order the chunk in column y of schedule µi according to the sequence given

by the schedule χj of the (q + 1, κ)-schedule V .

The theorem below gives a bound on waste of the (n, t)-schedule constructed

above, for coarse-grained values of progress up to (q + 1)t/n:

Theorem 6.4.3. Let n = q2 + q + 1, q prime power, t = κn, κ = (q + 1)κ̄,

q + 1 = q̄2 + q̄ + 1, q̄ prime power, κ, κ̄ ∈ N. Let a = i(q + 1), b = j(q + 1),

0 ≤ i, j ≤ t/n. Let i = t
n(q+1)

(
1 + îq̄

)
, and j = t

n(q+1)

(
1 + ĵq̄

)
, 0 ≤ î, ĵ ≤ q̄ + 1.

Waste of the (n, t)-schedule M is bounded by:

WM (a, b) ≤




0, if î + ĵ = 0,

t
n(q+1)

, if î = 0, ĵ ≥ 1 or î ≥ 1, ĵ = 0,

(
q̄ + îĵ

)
t

n(q+1)
, if î · ĵ ≥ 1.
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if x = t/n ∧ y = q + 1 then
matrix = 0; y = q + 2; x = 1

else if y = q + 1 then
y = 1; x = x + 1

else
y = y + 1

else {matrix = 0}
if x = 1 then

gy = nextTaskG(i)
m = (gy − 1)t/n + x
if x = t/n then

x = 1; y = y + 1
else

x = x + 1
return(m)

initializeM( in-out matrix ∈ {0, 1})
x ∈ [ t

n ], y ∈ [q + 1] )
matrix = 1; x = 1; y = 1

local static si, g1, . . . , gq+1

nextTaskM( in i ∈ [n] ;
in-out matrix ∈ {0, 1},
x ∈ [ t

n ], y ∈ [q + 1] )
if matrix = 1 then

if x = 1 ∧ y = 1 then
si = α(i)
g1 =firstTaskG(i)
j = findJ(g1, si)
τ = firstTaskV(j)

else if x = 1 ∧ y > 1 then
gy =nextTaskG(i)
j = findJ(gy, si)
τ = firstTaskV(j)

else if 1 < x ≤ t/n then
j = findJ(gy, si)
τ = nextTaskV(j)

m = (gy − 1)t/n + τ

Figure 2: Algorithm for incremental construction of schedule µi from the (n, t)-
schedule M = 〈µ1, . . . , µn〉.

Proof. Pick any two schedules µc and µc′, c �= c′, and let K and K ′ be the matrices

constructed for the schedules as above. By the construction of M , after having

executed task a and b of some two schedules from M , at most task number i and

j respectively of some two columns have been executed. By the construction, for

any two prefixes of length (q + 1)t/n, only t/n tasks are the same. These tasks

are located in a column of the matrix K and a column of the matrix K ′. Note

that by the construction of the matrices, tasks from each of the two columns were

executed according to different schedules from the (q + 1, κ)- schedule V . Hence

we can use Lemma 6.1.1 to bound waste incurred.
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The bound on waste, which is presented only for specific values of progress

a, is sufficient to show that waste is relatively close to the lower bound for all a

that are sufficiently large, as shown in the following theorem.

Theorem 6.4.4. For any a such that t
n
(1 + q̄5/3) ≤ a ≤ t

n
(q + 1), waste of the

(n, t)-schedule M is bounded by

WM (a, a) ≤ (
1 + c · n−1/12

) · LB(a, a) ,

where c is an absolute constant (independent of n, t, q, and q̄).

Proof. We use the matrix K constructed above. Pick any a satisfying the con-

dition from the statement of the theorem. The element number a belongs to a

column of K and a row i. This column can be divided into consecutive chunks

of size tq̄
n(q+1)

, and there exists î such that

i :=
t

n(q + 1)

(
1 + (̂i − 1)q̄

)
< i ≤ t

n(q + 1)

(
1 + îq̄

)
=: i

(the formulas define i and i). Let a = i(q + 1), and a = i(q + 1). By the

construction, we have a < a ≤ a, and by the selection of a, 0 ≤ î ≤ q̄ + 1. Of

course waste for a is at most the value of waste for a, and we can use Theorem 6.4.3

to bound it by UB = WM(a, a) ≤ WM(a, a) ≤
(
q̄ + î2

)
t

n(q+1)
. Of course the

waste for a cannot be smaller than the value of a lower bound on waste for a,

and we can use lower bound Theorem 4.1.2 to bound it by

LB ≥ LB(a, a) ≥ n

t(n − 1)
a2 − 1

n − 1
a =

t

n(n − 1)

(
(̂i − 1)2q̄2 + (̂i − 1)q̄

)
.
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Consider the ratio of the upper bound to the lower bound. Using the above

bounds we can bound the ratio by

UB

LB
≤ (n − 1)(q̄ + î2)

(q + 1)q̄2
(

î−1
q̄

+ (̂i − 1)2
) ≤ (n − 1)

(q + 1)q̄2
· q̄ + î2

(̂i − 1)2

=

(
1 +

1

q̄

)(
1 +

2

î − 1
+

q̄ + 1

(̂i − 1)2

)
.

By the selection of a, q̄2/3 ≤ î, and by assumption, 1 ≤ 1
2
q̄2/3. Thus we can bound

the ratio by UB
LB

<
(

1 + 1
q̄

)(
1 + 2

1
2
q̄2/3 + q̄+1

( 1
2
q̄2/3)2

)
= 1 + O

(
1

q̄1/3

)
, and the result

follows.

The above construction dictates how to sequence the first (q + 1)κ tasks of

any schedule µi. The remaining t− (q + 1)κ tasks are scheduled by following the

sequence established by χi, µi(a) = χi(a), (q + 1)κ < a ≤ t. Thus Theorem 6.1.2

also holds for the (n, t)-schedule M .

The construction of the (n, t)-schedule M is summarized in Figure 2. The

initial cost of O(n2) (in order to find the permutation α) of constructing a schedule

is fully amortized if we can do the construction off-line for all schedules (the

permutation can be calculated once for all schedules). Note that if t ≥ n2, then

the construction is amortized even if done in isolation.

The first step of recursion described above, can be used to have even better

control over initial waste, by applying this step more times. We used (q + 1, κ)-

schedule V in the construction of (n, t)-schedule M , to control waste in the tail of

the prefix. However, we could use (q + 1, κ)- schedule M instead. This recursive

process can be iterated as long as t is sufficiently large compared to n, and n is
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sufficiently large, and desired primes exist. We can use Theorem 6.4.4 to relate

waste of the resulting system to the lower bound when progress is small.

6.4.3 A method when n = t1−x

This section presents another technique for reducing the initial growth of

waste. Recall that any two t-schedules share at most one set Lm
i . If we knew

which set is shared between some two schedules, then we could reorder the sets

so that the processors execute the task from this set last. The difficulty is that

this shared set may be different across different schedules, and the reordering can

be tricky. We observe that we can find many schedules that all share the same

set which is the key idea of our construction.

We construct an (n, t)-schedule Sm = 〈σ1, . . . , σn〉, for n = qm−1−1
q−1

and t =

qm−1
q−1

, by selecting specific schedules from W m, and reordering their tasks. Recall

that for any two u �= u′, among the 2(q +1) sets from Theorem 2.7.1 that contain

either u or u′, only two sets may be the same. Let us fix a set, say Lm
1 . Naturally,

for each element u in Lm
1 , among the q +1 sets Lm

t1u
, . . . , Lm

tq+1
u

that contain u there

is Lm
1 . So if we select from W m only the schedules constructed for elements in

Lm
1 , then we know precisely which set is shared between the schedules. This set

is Lm
1 . This suggests the following construction of Sm. Let, for any u ∈ Lm

1 ,

the blocks Lm
t1u

, . . . , Lm
tqu

, Lm
1 be all the q + 1 blocks that contain u. Recall that

Au is a subspace of dimension m − 2 that is contained in any of the subspaces

Bt1u , . . . , Btqu , B1. We associate points from Lm
1 with numbers from [n] through a
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bijection id. The permutation σid(u) is taken so that

σid(u)([e]) = {j | �j ⊆ Au},

σid(u)([e + (r − e)i + 1, e + (r − e)(i + 1)]) = {j | �j ⊆ Btiu
\ Au}, 0 ≤ i < q ,

σid(u)([e + (r − e)q + 1, t]) = {j | �j ⊆ B1 \ Au} .

Lemma 6.4.5. Let n = qm−1−1
q−1

, t = qm−1
q−1

, m ≥ 3, q prime power, and Sm be

the (n, t)-schedule defined above. Let k ≤ n, 0 ≤ i1, . . . , ik ≤ q, i = i1 + . . . + ik.

Then

WSm(e + (r − e)i1, . . . , e + (r − e)ik) ≤ e

((
i

2

)
−

k∑
j=1

(
ij
2

))
.

Proof. Since i1, . . . , ih ≤ q, all sets in the prefixes are associated with distinct

(m − 1)-dimensional subspaces. This adds at most
(

i
2

)
e to the overlap. But for

any t-schedule, sets do not add any overlap, and so we overestimated waste by((
i1
2

)
+ . . . +

(
ik
2

))
e.

The above lemma gives control over waste for coarse-grained values of progress.

Although one can carry out analysis similar to that in Theorem 6.1.2, we content

ourselves with a coarse-grained bound that explicitly exhibits the
(

h
2

)
a2

t
leading

factor.

Theorem 6.4.6. If a = e + (r − e)i, 0 ≤ i ≤ q, then k-waste, 2 ≤ k ≤ r, is

bounded by

WQm(a, . . . , a︸ ︷︷ ︸
k

) ≤
(

k

2

)
a2

t
· (1 + c1 · t−1/(m−1) + c2 · k−1

)
,

where c1 and c2 are absolute constants.
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Proof. We show the result by applying Lemma 6.4.5 and using a sequence of

upper bounds presented below.

Since i = (a−e)k
r−e

, we can bound
(

i
2

)
from above by

(
i

2

)
≤ a2

(r − e)2
· k2

2
≤ a2

(r − e)2
· k(k − 1)(1 + Θ(k−1))

2

=

(
k

2

)
a2

(r − e)2
(1 + Θ(k−1)) .

Recall that t = r + q(r − e), and so r − e = t
q

(
1 − r

t

)
. Hence we can rewrite the

bound as: (
i

2

)
≤
(

k

2

)
a2

t
· 1

t
q2

(
1 − r

t

)2 (1 + Θ(k−1)) .

Since t = qm−1(1 + Θ(q−1)), and e = qm−3(1 + Θ(q−1)), we can write

e · q2

t
=

1 + Θ(q−1)

1 + Θ(q−1)
= 1 + Θ(q−1) .

Since r = qm−2(1 + Θ(q−1)), we can write

1

(1 − r
t
)2

=
1

(1 − 1
q
(1 + Θ(q−1))2

≤ 1

1 − 2
q
(1 + Θ(q−1))

= 1 + Θ(q−1) .

Next observe that (1+Θ(k−1)) ·(1+Θ(q−1)) ·(1+Θ(q−1)) = 1+Θ(q−1)+Θ(k−1).

The result now follows from Lemma 6.4.5 with i = ak
r−e

, the above bounds,

and by noticing that the inequalities turn Θ into O.



Chapter 7

Scheduling for shared memory systems

This chapter shows results on scheduling for shared memory systems. We

study algorithms for the Certified Write-All problem. Such algorithms can be

used to simulate a synchronous parallel machine on an asynchronous machine.

The efficiency of an algorithm is measured by work that is equal to the worst-case

total number of instructions executed by the algorithm. First we show how to

create near-optimal instances of a Certified Write-All algorithm that was intro-

duced by Anderson and Woll [4] (Section 7.3). Then we present a work-optimal

deterministic asynchronous algorithm for the Certified Write-All problem, that

solves a question posed by Martel et al. [105] in 1992 (Section 7.4). Finally,

we present a conjecture about an efficient construction of schedules used by the

algorithm of Anderson and Woll (Section 7.5).

87
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7.1 Introduction

Many existing parallel systems are asynchronous. However, writing correct

parallel programs on an asynchronous shared memory system is often difficult, for

example because of data races, which are difficult to detect in general [15, 117].

When the instructions of a parallel program are written with the intention of

being executed on a system that is synchronous, then it is easier for a program-

mer to write correct programs, because it is easier to reason about synchronous

parallel programs than asynchronous ones. Therefore, in order to improve pro-

ductivity in parallel computing, one could offer programmers the illusion that

their programs run on a parallel system that is synchronous, while in fact the

programs would be simulated on an asynchronous system.

Simulations of a parallel system that is synchronous on a system that is asyn-

chronous have been studied for over a decade [6, 7, 8, 13, 28, 40, 61, 84, 87, 89,

90, 91, 105, 107, 132, 134]. Simplifying considerably, such simulations assume

that there is a system with p asynchronous processors, and the system is to sim-

ulate a program written for n synchronous processors. The simulations use three

main ideas: idempotence, load balancing, and synchronization. Specifically, the

execution of the program is divided into a sequence of phases. A phase executes

an instruction of each of the n synchronous programs. The simulation executes

a phase in two stages. First the n instructions are executed and the results are

saved to a scratch memory. Only then cells of the scratch memory are copied
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back to desired cells of the main memory. This ensures that the result of the

phase is the same even if multiple processors execute the same instruction in a

phase, which may happen due to asynchrony. The p processors run a load balanc-

ing algorithm to ensure that the n instructions of the phase are executed quickly

despite possibly varying speeds of the p processors. In addition, the p processors

should be synchronized at every stage, so as to ensure that the simulated program

proceeds in lock-step. Such simulation implements the PRAM model [56] on an

asynchronous system.

One challenge in realizing the simulations is the problem of “late writers” i.e.,

when a slow processor clobbers the memory of a simulation with a value from an

old phase. This problem has been addressed in various ways: by replication of

variables [89]; by a combination of hashing, replication, and error correction [7];

by approximate detection of who is late, and replication of variables [8]; by using

instructions that execute relatively fast [105]; by versioning of variables using

extra atomic primitives [106]; or by restricting a class of computations that can

be simulated [105].

Another challenge is the development of efficient load-balancing and syn-

chronization algorithms. This challenge is abstracted as the Certified Write-All

(CWA) problem. In this problem, introduced in a slightly different form by Kanel-

lakis and Shvartsman [84], there are p processors, an array w with n cells and a

flag f , all initially 0, and the processors must set the n cells of w to 1, and then

set f to 1. One efficiency criterion for the simulation is to reduce the wasteful
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use of computing resources. This use can be abstracted as the work complexity

(or work for short) that is equal to the worst-case total number of instructions

executed by the simulation. A simulation uses an algorithm that solves the CWA

problem. Therefore, it is desirable to develop low-work algorithms that solve the

CWA problem.

When creating a simulation of a given parallel program for n processors, one

may have a choice of the number p of simulating processors. On the one hand,

when a CWA algorithm for p � n is used in a simulation, the simulation may

be faster as compared to the simulation that uses an algorithm for p � n pro-

cessors, simply because of higher parallelism which means that more processors

are available to perform the simulation. On the other hand, however, proces-

sors that access shared memory may create hotspots, which may cause delays,

and as a result an algorithm for p � n may run slower than an algorithm for

p � n (memory contention is disregarded in the model studied in this thesis).

The actual speed of a simulation may depend on system parameters, and so it is

interesting to study CWA algorithms for different relationships between p and n.

Deterministic algorithms that solve the CWA problem on an asynchronous

system can be used to create simulations that have bounded worst-case overhead.

Thus several deterministic algorithms have been studied [4, 24, 27, 70, 85, 116].

The best to date deterministic algorithm that solves the CWA problem on an

asynchronous system for the case when p = n was introduced by Anderson and

Woll [4]. This algorithm is called AWT, and it generalizes the algorithm X of
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Buss et al. [24]. The AWT algorithm uses a list of q permutations on {1, . . . , q}.

Anderson and Woll showed that for any ε > 0, there is a q ∈ N, a list of q permu-

tations with desired contention (a value associated with a list of permutations,

see Section 7.3.1 for a formal definition), and a constant cq, such that for any

h > 0, the algorithm for p = qh processors and n = p cells that uses the list,

has work at most cq · n1+ε. Note that this upper bound includes a multiplicative

constant factor that is a function of q. The result that an O(n1+ε) work algorithm

can be found is very interesting from theoretical standpoint. However, a different

search objective will occur when a simulation is developed for a specific parallel

system.

A specific parallel system will have a fixed number p of processors. It is

possible to create many instances of the AWT algorithm for these p processors

and n = p cells, that differ by the number q of permutations used to create an

instance. It is possible that the work of these different instances is different. If

this is indeed the case, then it is interesting to find an instance with the lowest

work, so as to create a relatively more efficient simulation on this parallel system.

Section 7.3 studies a method for creating near-optimal instances of the AWT

algorithm of Anderson and Woll. We show that the choice of q is critical for

obtaining an instance of the AWT algorithm with near-optimal work. Specifically,

we show a tight (up to an absolute constant) lower bound on work of the AWT

algorithm instantiated with a list of q permutations (appearing in Lemma 7.3.5).

This lower bound generalizes the Lemma 5.20 of Anderson and Woll by exposing
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a constant that depends on q and on the contention of the list. We then combine

our lower bound with a lower bound on the contention of permutations given

by Lovász [99] and Knuth [93], to show that for any ε > 0, the work of any

instance must be at least n1+(1−ε)
√

2 ln ln n/ lnn, for any large enough n (appearing

in Theorem 7.3.9). The resulting bound is nearly optimal, as demonstrated by

our method for creating instances of the AWT algorithm. We show that for

any ε > 0 and for any m that is large enough, when q = �e
√

1/2 ln m ln lnm�, and

h = �√2 ln m/ ln ln m�, then there exists an instance of the AWT algorithm for

p = qh processors and n = p cells that has work at most n1+(1+ε)
√

2 ln ln n/ ln n

(appearing in Theorem 7.3.10). We also prove that there is a penalty if one

selects a q that is too far away from e
√

1/2 ln n ln lnn. For any fixed r ≥ 2, and any

large enough n, work is at least n1+r/3·
√

2 ln ln n/ lnn, whenever the AWT algorithm

is instantiated with q permutations, such that 16 ≤ q ≤ e
√

1/2 ln n ln ln n/(r·ln ln n) or

er·
√

1/2 ln n ln ln n ≤ q ≤ n (appearing in Proposition 7.3.11).

This chapter also studies algorithms for the CWA problem for the case when

p � n. Fixing r ≥ 1, when p = n1/r all known to date deterministic algorithms

for the asynchronous CWA problem have work ω(n). Specifically, when r = 1

the first asynchronous CWA algorithm, called X, was developed by Buss et al.

[24]. This algorithm was later generalized by Anderson and Woll [4], and the

generalized algorithm, called AWT, has work Ω(n1+
√

ln lnn/ ln n/2). (The authors

showed that there exists a deterministic algorithm with work O(n1+ε), for any

ε > 0. Such algorithm can be created in time that is independent of n or t, but is
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exponential in 1/ε.) When r ≥ 2 a naive algorithm where each processor writes to

every cell of the array w has work Ω(n1+1/r). The best known algorithm for r ≥ 2

is due to Anderon and Woll [4]. This algorithm, called AW, has work Ω(n log n)

(the authors showed an upper bound of O(n log n) on work of their algorithm),

which can be shown using a lower bound of Lovász [99] and Knuth [93] (this

algorithm can be instantiated using results of Naor and Roth [116], Kanellakis and

Shvartsman [85], and Chlebus et al. [27], with the same asymptotic lower bound

on work). The elegant algorithm of Groote et al. [70] has work Ω(n1+1/(2r2r ln 2))

(the authors showed that their algorithm has work complexity O(nplog2(1+1/x)),

where x = n1/ log2 p) and it uses a Test-And-Set instruction [73]. Buss et al. [24]

give a lower bound of n+Ω(p log(n/p)) on work of asynchronous CWA algorithms

that use Test-And-Set.

An interesting deterministic algorithm, called T, for 3 processors is due to

Buss et al. [24]. In this algorithm two processors start from the two opposite tips

of the array w, each works towards the opposite tip. The third processor starts

from the middle of the array and “expands” by setting to 1 further and further

cells on each side of the starting cell. When a “collision” between two processors

occurs, the two processors “jump” to repeat the pattern of work recursively in a

different part of the array. The algorithm has work O(n), and at most n+O(log n)

cells of the array are set to 1. The problem of generalizing this algorithm to more

than 3 processors was posed by Buss et al. In a recent paper Groote et al. [70]
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say: “Algorithm T does not appear to be generalizable to larger numbers of

processes.”

Section 7.4 presents a work-optimal deterministic algorithm for the asyn-

chronous Certified Write-All problem for a nontrivial number of processors. Our

algorithm has work complexity of O(n+ p4 log n) (appearing in Theorem 7.4.15).

The algorithm has optimal work for a nontrivial number of processors p ≤

(n/ log n)1/4. In contrast, all known to date deterministic algorithms require

as much as ω(n) work when p = n1/r, for any fixed r ≥ 1. The p processors com-

bined set, at most, n+4p3 log n cells of w to 1. The processors use O(n+p4 log n)

memory cells for coordinating their work (shown in Theorem 7.4.16). Our algo-

rithm generalizes the collision principle used by the algorithm T. Namely, each

processor has a collection of intervals of w and iteratively selects an interval to

work on. The processor proceeds from one tip (or end) of the interval towards

the other tip. When processors collide, they exchange appropriate information

and schedule their future work accordingly. Our algorithm uses Test-And-Set in-

structions to detect collisions. Finally, we show an Ω(n + p log p) lower bound on

work of any deterministic algorithm that solves the Certified Write-All problem

and that uses Test-And-Set (appearing in Theorem 7.4.17). When p = n, our

lower bound improves the lower bound Buss et al. [24].
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7.2 Model and definitions

We consider a shared memory system where processors can work at arbitrar-

ily varying paces. Our formal definition is based on the Atomic Asynchronous

Parallel System as presented by [8] (cf. [34, 35, 39, 67, 95, 105, 118, 137]).

The system consists of p processors, each of which has a dedicated local mem-

ory and a unique identifier from the set {1, . . . , p}, and every processor has access

to shared memory. Each processor has a discrete local clock ranging over N. A

processor executes exactly one basic action at any tick of the local clock unless

the processor has halted. The basic actions that a processor can execute include:

a Halt action that stops the operation of the processor, an operation on a con-

stant number of cells from the local memory 1 , and a transfer between the

local memory and shared memory. The possible transfers are: reading a single

cell of shared memory into a cell of the local memory; writing from a cell of the

local memory to a cell of shared memory; and performing a Test-And-Set (TAS)

action that checks if the value stored at a cell of shared memory is equal to the

value stored at a cell of the local memory, if so the action sets the cell of shared

memory to the value of a (possibly different) cell of the local memory, but in any

case returns the result of the test.

An execution of an algorithm progresses according to the following model

of asynchrony. Local time of processor i is mapped to global time through a

1An operation can be formally defined as an arbitrary function f : Ns×[logn]s → Ns×[log n]s

that takes the addresses of s cells of the local memory and values stored there, and returns the
addresses of s cells of the local memory and the new values that should be stored at these cells.
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strictly increasing function Ti : N → R. We assume that no local clock ticks

of two processors are mapped to the same instant of global time i.e., if Ti(x) =

Tj(y), then i = j and x = y. When mappings T1, . . . , Tp have been fixed, each

processor executes basic actions dictated by its algorithm. The processors take

turns according to the total order prescribed by the mappings. Any processor

i does not execute basic actions after the tick when the processor executed the

Halt action, if the processor executed the action. The execution of any basic

action is instantaneous, and so the resulting memory updates are atomic.

We adopt the following definition of the Certified Write-All (CWA) problem:

given an array w[0, . . . , n − 1] with n cells and a flag f , all located in n + 1 cells

of shared memory and all initially 0, set the n cells of w to 1 and then set f to

1. An algorithm solves the CWA problem for p processors and n cells, if for all

allowed choices for mappings, each processor halts after a finite number of local

clock ticks, and, whenever a processor halts, the n cells and the flag f have been

set to 1.

The work complexity of a deterministic algorithm that solves the CWA prob-

lem for p processors and n cells measures the maximum total number of basic

actions executed by the processors. Consider any mappings T1, . . . , Tp allowed

by our model of asynchrony. Let hi be the first local clock tick when processor i

executes the Halt action or ∞ if it does not execute the action. Then the total

number of basic actions executed by the processors is
∑p

i=1 hi. The work of the
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algorithm is defined as the maximum value of the sum across allowed choices for

mappings (Work is a function of n and p.)

Definition 7.2.1. Work of a deterministic algorithm A for p processors and n

cells that solves the Certified Write-All problem is defined as

work(A, p, n) = max
T1,...,Tp

p∑
i=1

hi(T1, . . . , Tp) ,

where the maximum is taken over Ti’s that are strictly increasing functions from

N to R such that no two functions map numbers to the same number from R; and

where hi(T1, . . . , Tp) is a number from N that is the first tick of the local clock of

processor i during which the processor executes the Halt basic action, when local

time of processors have been mapped to global time using the maps T1, . . . , Tp.

Note that in this model, there is a trivial Write-All algorithm for n = p where

the first basic action that a processor i, 0 ≤ i ≤ n− 1, executes is an assignment

of 1 to cell i of the array w (because the model ensures that each processor will

eventually perform a basic action). This takes O(n) work in total. However,

in general no processor can certify and halt right after performing its first basic

action, as the processor cannot ensure that always each of the n cells has been

set to 1 (because other processors may be delayed).
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7.3 A method for creating near-optimal instances of a Certified Write-

All algorithm

This section shows how to create near-optimal instances of the Certified Write-

All algorithm called AWT that was introduced by Anderson and Woll [4]. In this

algorithm n processors update n memory cells and then signal the completion of

the updates. The algorithm is instantiated with q permutations, where q can be

chosen from a wide range of values. This section shows that the choice of q is

critical for obtaining an instance of the AWT algorithm with near-optimal work.

7.3.1 Preliminaries

For a permutation ρ on [q] = {1, . . . , q}, ρ(v) is a left-to-right maximum [93]

if it is larger than all of its predecessors; i.e., ρ(v) > ρ(1), ρ(v) > ρ(2), . . . , ρ(v) >

ρ(v−1). The contention [4] of ρ with respect to a permutation α on [q], denoted as

Cont(ρ, α), is defined as the number of left-to-right maxima in the permutation

α−1ρ that is a composition of α−1 with ρ. For a list Rq = 〈ρ1, . . . , ρq〉 of q

permutations on [q] and a permutation α on [q], the contention of Rq with respect

to α is defined as Cont(Rq, α) =
∑q

v=1 Cont(ρv, α). The contention of the list of

permutations Rq is defined as Cont(Rq) = maxα on [q]Cont(Rq, α).

Lovász [99] (see Exercise 3.17.(a)) and Knuth [93] showed that the expectation

of the number of left-to-right maxima in a random permutation on [q] is Hq (Hq is

the qth harmonic number). This immediately implies the following lower bound

on contention of a list of q permutations on [q].
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Lemma 7.3.1. [99, 93] For any list Rq of q permutations on [q], Cont(Rq) ≥

qHq > q ln q.

Anderson and Woll [4] showed that for any q there is a list of q permutations

with contention at most 3qHq. Since Hq/ ln q tends to 1, as q tends to infinity,

the following lemma holds.

Lemma 7.3.2. [4] For any q that is large enough, there exists a list of q permu-

tations on [q] with contention at most 4 · q ln q.

We describe the algorithm AWT of Anderson and Woll [4] that solves the

CWA problem when p = n. There are p = qh processors, h ≥ 1, and the array

w that has n = p cells. The identifier of a processor is represented by a distinct

string of length h over the alphabet [q]. The algorithm is instantiated with a

list of q permutations Rq = 〈ρ1, . . . , ρq〉 on [q], and we write AWT(Rq) when

we refer to the instance of algorithm AWT for a given list of permutations Rq.

This list is available to every processor (in its local memory). Processors have

access to a shared q-ary tree called progress tree. Each node of the tree is labeled

with a string over alphabet [q]. Specifically, a string s ∈ [q]∗ that labels a node

identifies the path from the root to the node (e.g., the root is labeled with the

empty string λ, the leftmost child of the root is labeled with the string 1). For

convenience, we say node s, when we mean the node labeled with a string s. Each

node s of the tree, apart from the root, contains a completion bit , denoted by
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AWT(Rq)
01 Traverse(h, λ)
02 set f to 1 and Halt

Traverse(i, s)
01 if i = 0 then
02 w[val(s)] := 1
03 else

04 j := qi

05 for v := 1 to q
06 a := ρj(v)
07 if bs·a = 0 then
08 Traverse(i − 1, s · a)
09 bs·a := 1

Figure 3: The instance AWT(Rq) of an algorithm of Anderson and Woll, as
executed by a processor with identifier 〈q1 . . . qh〉. The algorithm uses a list of q
permutations Rq = 〈ρ1, . . . , ρq〉.

bs, initially set to 0. Any leaf node s is canonically assigned a distinct number

val(s) ∈ {0, . . . , n − 1}.

The algorithm, shown in Figure 3, starts by each processor calling procedure

AWT(Rq). Each processor traverses the q-ary progress tree by calling a recursive

procedure Traverse(h, λ). When a processor visits a node that is the root of a

subtree of height i (the root of the progress tree has height h) the processor takes

the ith letter j of its identifier (line 04) and attempts to visit the children in the

order established by the permutation ρj . The visit to a child a ∈ [q] succeeds

only if the completion bit bs·a for this child is still 0 at the time of the attempt

(line 07). In such case, the processor recursively traverses the child subtree (line

08), and later sets to one the completion bit of the child node (line 09). When

a processor visits a leaf s, the processor performs an assignment of 1 to the cell

val(s) of the array w. After a processor has finished the recursive traversal of the

progress tree, the processor sets f to 1 and halts.
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We give two technical lemmas that will be used to solve recursive equations

in the following section.

Lemma 7.3.3. Let h and q be integers, h ≥ 1, q ≥ 2, and k1 + . . . + kq = c > 0.

Consider a recursive equation W (0, r) = r, and W (i, r) = r · q +
∑q

v=1 W (i −

1, kv · r/q), when i > 0. Then for any r, W (h, r) = r
(
q · (c/q)h−1

c/q−1
+ (c/q)h

)
.

Proof. First we observe that W is right-linear i.e., that W (i, z · r) = z · W (i, r),

for any real z, which can be shown by induction on i. We use right-linearity to

solve the recursive equation as follows:

W (h, r) = r · q +

q∑
v=1

kv/q · W (h − 1, r) = r · q + c/q · W (h − 1, r)

= r · q
h−1∑
j=0

(c/q)j + r(c/q)h = r · q (c/q)h − 1

c/q − 1
+ r(c/q)h .

Lemma 7.3.4. Let h and q be integers, h ≥ 1, q ≥ 2, and for any string

s ∈ [q]∗, ks
1 + . . . + ks

q = c > 0. Consider a recursive equation V (s, r) = 3r,

for any string s of length h, and V (s, r) = 7rq +
∑q

v=1 V (s · v, ks
v · r/q), for

any string s of length less than h. Then for the empty string λ and any r,

V (λ, r) = r
(

7q · (c/q)h−1
c/q−1

+ 3(c/q)h
)

.

Proof. First we observe that V is right-linear i.e., that V (s, z · r) = z · V (s, r),

which can be shown by backward induction on the length of s, starting from

length h. We also observe that the value of V (s, r) is the same across all strings

of the same length i.e., for any s and s′ of the same length V (s, r) = V (s′, r).
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This can also be shown by backward induction, where the inductive step is

V (s, r) = 7rq +

q∑
v=1

ks
v/q · V (sv, r) = 7rq +

q∑
v=1

ks
v/q · V (s1, r)

= 7rq + c/q

q∑
v=1

·V (s′1, r) = V (s′, r) .

We use these two properties to solve the recursive equation as follows:

V (λ, r) = 7r · q +

q∑
v=1

kλ
v /q · V (v, r) = 7r · q + c/q · V (1, r)

= 7r · q
h−1∑
j=0

(c/q)j + 3r(c/q)h = 7r · q (c/q)h − 1

c/q − 1
+ 3r(c/q)h .

7.3.2 Near-optimal instances of AWT

This section presents a method for creating near-optimal instances of the

AWT algorithm. The main idea of this section is that for fixed number p of

processors and n = p cells of the array w, work of an instance of the AWT

algorithm depends on the number of permutations used by the instance, along

with their contention. This observation has several consequences. It turns out

(not surprisingly) that work increases when contention increases, and conversely

it becomes the lowest when contention is the lowest. Here a lower bound on

contention of permutations given by Lovász [99] and Knuth [93] is very useful,

because we can bound work of any instance from below, by an expression in which

the value of contention of the list used in the instance is replaced with the value

of the lower bound on contention. Then we study how the resulting lower bound

on work depends on the number q of permutations on [q] used by the instance.
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It turns out that there is a single value for q, where the bound attains the global

minimum. Consequently, we obtain a lower bound on work that, for fixed n,

is independent of both the number of permutations used and their contention.

Our bound is near-optimal. We show that if we instantiate the AWT algorithm

with about e
√

1/2 ln n ln lnn permutations that have small enough contention, then

work of the instance nearly matches the lower bound. Such permutations exist

as shown by Anderson and Woll [4]. We also show that when we instantiate

the AWT algorithm with much fewer or much more permutations, then work of

the instance must be significantly greater than the work that can be achieved.

Details of the overview follow.

We will present a tight bound on work of any instance of the AWT algorithm.

Our lower bound generalizes the Lemma 5.20 of Anderson and Woll [3]. The

bound has an explicit constant which was hidden in the analysis given in the

Lemma 5.20. The constant will play a paramount role in the analysis presented

in the reminder of the section.

Lemma 7.3.5. Work W of the AWT algorithm for p = qh processors, h ≥ 1, q ≥

2, and n = p cells, instantiated with a list Rq = 〈ρ1, . . . , ρq〉 of q permutations on

[q], is bounded by c
84
·n1+logq

Cont(Rq)

q ≤ W ≤ c ·n1+logq
Cont(Rq)

q , where c = 28q2

Cont(Rq)
.

Proof. The idea of the lemma is to carefully account for work spent on traversing

the progress tree, and spent on writing to the array w. The lower bound will

be shown by designing an execution during which the processors will traverse
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the progress tree in a specific, regular manner. This regularity will allow us to

conveniently bound work inside a subtree from below by work done at the root

of the subtree and work done by quite large number of processors that traverse

the child subtrees in a regular manner. A similar recursive argument will be used

to derive the upper bound.

Recall that our model assumes that no two basic actions are executed at the

same time. In the proof below, however, we will say that some instructions are

executed at the same instant. This is done for convenience of description only,

and a simple transformation allows us to prove the lemma in our model. Indeed,

the concurrent instructions will be either: reads from the same shared location,

or writes of the same value to the same shared location, or operations on disjoint

subsets of memory. Therefore, the concurrent instructions may be sequenced in

arbitrary order in a close enough neighborhood of the instant, to comply with

the assumptions of our model. Such transformation guarantees that the lemma

holds in our model.

Consider any execution of the algorithm. We say that the execution is regular

at a node s (recall that s is a string from [q]∗) iff the following three conditions

hold:

(i) the r processors that ever visit the node during the execution, visit the

node at the same time,
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(ii) at that time, the completion bit of any node of the subtree of height i rooted

at the node s is equal to 0,

(iii) if a processor visits the node s, and x is the suffix of length h − i of the

identifier of the processor, then the qi processors that have x as a suffix of

their identifiers, also visit the node during the execution.

We define W (i, r) to be the largest number of basic actions that r processors

perform inside a subtree of height i, from the moment when they visit a node s

that is the root of the subtree until the moment when each of the visitors finishes

traversing the subtree, maximized across the executions that are regular at s

and during which exactly r processors visit s (if there is no such execution, we

put −∞). Note that the value of W (i, r) is well-defined, as it is independent of

the choice of a subtree of height i (any pattern of traversals that maximizes the

number of basic actions performed inside a subtree, can be applied to any other

subtree of the same height), and of the choice of the r visitors (suffixes of length

h − i do not affect traversal within the subtree). There exists an execution that

is regular at the root of the progress tree, and so the value of W (h, n) bounds

work of AWT(Rq) from below.

We will show a recursive formula that bounds W (i, r) from below. We do

it by designing an execution recursively. The execution will be regular at every

node of the progress tree. We start by letting the qh processors visit the root at

the same time. For the recursive step, assume that the execution is regular at a
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node s that is the root of a subtree of height i, and that exactly r processors visit

the node. We first consider the case when s is an internal node i.e., when i > 0.

Based on the i-th letter of its identifier, each processor picks a permutation that

gives the order in which completion bits of the child nodes will be read by the

processor. Due to regularity, the r processors can be partitioned into q collections

of equal cardinality, such that for any collection j, each processor in the collection

checks the completion bits in the order given by ρj. Let for any collection, the

processors in the collection check the bits of the children of the node in lock step

(the collection behaves as a single “virtual” processor). Then, by Lemma 2.1 of

Anderson and Woll [4], there is a pattern of delays so that every processor in some

kv ≥ 1 collections succeeds in visiting the child s · v of the node at the same time.

Thus the execution is regular at any child node. The lemma also guarantees that

k1 + . . .+kq = Cont(Rq), and that these k1, . . . , kq do not depend on the choice of

the node s. Since each processor checks q completion bits of the q children of the

node, the processor executes at least q basic actions while traversing the node.

Therefore, W (i, r) ≥ rq +
∑q

v=1 W (i−1, kv · r/q), for i > 0. Finally, suppose that

s is a leaf i.e., that i = 0. Then we let the r processors work in lock step, and so

W (0, r) ≥ r.

We can bound the value of W (h, n) using Lemma 7.3.3, the fact that h =

logq n, and that for any positive real a, alogq n = nlogq a, as follows
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W (h, n) ≥ n · (Cont(Rq)/q)h

(
q · 1 − (q/Cont(Rq))

h

Cont(Rq)/q − 1
+ 1

)

= n1+logq(Cont(Rq)/q)

(
q2/Cont(Rq) · 1 − (q/Cont(Rq))

h

1 − q/Cont(Rq)
+ 1

)

> q2/Cont(Rq) · n1+logq(Cont(Rq)/q)
(

1 − (q/Cont(Rq))
h
)

≥ 1/3 · q2/Cont(Rq) · n1+logq(Cont(Rq)/q) ,

where the last inequality holds because for all q ≥ 2, q/Cont(Rq) ≤ 2/3, and

h ≥ 1.

The argument for proving an upper bound will be similar to the above argu-

ment for proving the lower bound. The main conceptual difference is that pro-

cessors may write completion bits in different order for different internal nodes

of the progress tree. Therefore, while the coefficients k1, . . . , kq were the same

for each node during the analysis above, in the analysis of the upper bound pre-

sented now, each internal node s will have its own coefficients ks
1, . . . , k

s
q that

may be different for different nodes. To see this, take any execution and consider

the root node s = λ. The r processors that visit the node satisfy condition (iii)

and so they can be divided into q collections, each of cardinality r/q, where any

processor in a collection j reads the completion bits in the order given by the

permutation ρj . During the execution, the completion bits of the child nodes are

set to 1 in some sequence, and let αs be this sequence (αs is a permutation on

[q]). The argument of Anderson and Woll ensures that any processor from a col-

lection j can only visit a child s · v, 1 ≤ v ≤ q, when (α−1
s ρj) (v) is a left-to-right
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maximum of the permutation α−1
s ρj . Let ks

v be the number of permutations ρj

such that (α−1
s ρj) (v) is a left-to-right maximum. By the definition of contention,

ks
1 + . . . + ks

q ≤ Cont(Rq). Work could only be increased if every processor from

the collection j indeed visited every child node that corresponds to left-to-right

maximum of α−1
s ρj (a processor from the collection may not visit every child if

another processor from the collection is quite fast and manages to set the comple-

tion bits to 1 before its peers check the bits). But if every processor from every

collection visited every child node admissible by the sequence αs, then the ks
v ·r/q

processors that would visit the child node s ·v would satisfy condition (iii), and so

could be divided into q collections of equal cardinality, and every processor from

such collection would check completion bits according to a distinct permutation.

Therefore, we could repeat the argument described for the root recursively for the

child nodes. As a result, we obtain a recursive formula V (s, r) ≤ 3r, when s is a

string of length h, and V (s, r) ≤ 7rq +
∑q

v=1 V (s · v, ks
v · r/q), when s is a string

of length less than h, while for all s, ks
1 + . . . + ks

q ≤ Cont(Rq). We can bound

work of the given execution from above by V (λ, n). The result now follows by

applying Lemma 7.3.4 and observing that 7q · 1−(q/Cont(Rq))h

1−q/Cont(Rq)
+ 3 can be bounded

from above by 28q2

Cont(Rq)
, because q/Cont(Rq) ≤ 2/3 and 3 ≤ 3q2/Cont(Rq).

How does the bound from the preceding lemma depend on contention of the

list Rq? We should answer this question so that when we instantiate the AWT

algorithm, we know whether to choose permutations with low contention or per-

haps with high contention. The answer to the question may be not so clear at
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first, because for any given q, when we take a list Rq with lower contention, then

although the exponent of n is lower, but the constant c is higher. In the lemma

below we study this tradeoff, and demonstrate that it is indeed of advantage to

choose lists of permutations with as small contention as possible.

Lemma 7.3.6. The function c �→ q2/c · nlogq c, where c > 0 and n ≥ q ≥ 2, is a

non-decreasing function of c.

Proof. We consider a derivative

∂

∂c

(
q2/c · nlogq c

)
= −q2/c2 · nlogq c + q2/c · (ln n)/(c ln q) · nlogq c

=
(−1 + logq n

)
q2/c2 · nlogq c .

Recall that n ≥ q ≥ 2, and so logq n ≥ 1. Thus the derivative is non-negative.

This lemma, simple as it is, is actually quite useful. In several parts of the

section we use a list of permutations, for which we only know an upper bound or

a lower bound on contention. The lemma allows us to bound work respectively

from above or from below, even though we do not actually know the exact value

of contention of the list.

We would like to find out how the lower bound on work depends on the

choice of q. The subsequent argument shows that careful choice of the value

of q is essential, in order to guarantee low work. We begin with two technical

lemmas, the second of which bounds from below the value of a function occurring

in Lemma 7.3.5.
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The next lemma shows that an expression that is a function of x must vanish

inside a “slim” interval.

Lemma 7.3.7. Let ε > 0 be any fixed constant. Then for any large enough n, the

expression x2−x+(1 − ln x) · ln n is negative when x=x1=
√

1/2 ln n ln ln n, and

positive when x=x2=
√

(1 + ε)/2 ln n ln ln n.

Proof. The key idea of the proof is that x2 creates in the expression a highest

order summand with factor either 1/2 or (1+ ε)/2 depending on which of the two

values of x we take, while ln x creates a summand of the same order with factor

1/2 independent of the value of x. As a result, for the first value of x, the former

“is less positive” than the later “is negative”, while when x has the other value,

then the former “is more positive” than the later “is negative”. This intuition is

made precise next.

We will show that the expression is negative when x =
√

1/2 ln n ln ln n.

We split the expression into two parts: x2 − x and (1 − ln x) ln n, and compare

their values. Obviously, x2 − x < 1/2 ln n ln ln n. We rewrite the second part as

(1 − ln x) ln n = −1/2 ln n ln ln n(1/2 ln(1/2)−1+1/2 ln ln ln n) ln n , and observe

that, for large enough n, the triple logarithm ln ln ln n is large enough so that any

negative constant summand in the parenthesis becomes balanced by a positive

summand, and so the expression inside parenthesis becomes positive. As a result,

for large enough n, the second part is smaller or equal to −1/2 ln n ln ln n. This

means that the sum of the first part and the second part is negative, as desired.
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We will show that the expression is positive when x =
√

(1 + ε)/2 ln n ln ln n.

Since the summand x of the first part is of lower order than the summand x2, we

know that for large enough n, x2 − x > (1 + ε/2)/2 ln n ln ln n (recall that ε > 0

is a fixed constant). Now a key observation is that the multiplier of the highest

order summand ln n ln ln n of the second part is equal to 1/2, and not (1 + ε)/2,

because it is obtained by taking a logarithm of a square root. Thus the second

part (1 − ln x) ln n = −1/2 ln n ln ln n−(1/2 ln((1 + ε)/2) − 1 + 1/2 ln ln ln n) ln n

is more than −(1 + ε/2)/2 lnn ln ln n, for large enough n. This completes the

proof.

Lemma 7.3.8. Let ε > 0 be any fixed constant. Then for any large enough n,

the value of the function f : [ln 3, ln n] → R, defined as f(x) = ex/x · nlnx/x, is

bounded from below by f(x) ≥ n(1−ε)
√

2·ln lnn/ ln n .

Proof. We shall show the lemma by reasoning about the derivative of f . We will

see that it contains two parts: one that is strictly convex, and the other that is

strictly concave. This will allow us to conveniently reason about the sign of the

derivative, and where the derivative vanishes. As a result, we will ensure that

there is only one local minimum of f in the interior of the domain. An additional

argument will ascertain that the values of f at the boundary are larger than the

minimum value attained in the interior.

Let us investigate where the derivative

∂f

∂x
= exnln x/x/x3 · (x2 − x + (1 − ln x) ln n

)
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vanishes. It happens only for such x, for which the parabola x �→ x2−x “overlaps”

the logarithmic plot x �→ ln n ln x − ln n. We notice that the parabola is strictly

convex, while the logarithmic plot is strictly concave. Therefore, we conclude

that one of the three cases must happen: plots do not overlap, plots overlap at

a single point, or plots overlap at exactly two distinct points. We shall see that

the later must occur for any large enough n.

We will see that the plots overlap at exactly two points. Note that when

x = ln 3, then the value of the logarithmic plot is negative, while the value of

the parabola is positive. Hence the parabola is “above” the logarithmic plot at

the point x = ln 3 of the domain. Similarly, it is “above” the logarithmic plot

at the point x = ln n, because for this x, the highest order summand for the

parabola is ln2 n, while it is only ln n ln ln n for the logarithmic plot. Finally, we

observe that when x =
√

ln n, then the plots are “swapped”: the logarithmic plot

is “above” the parabola, because for this x the highest order summand for the

parabola is ln n, while the highest order summand for the logarithmic plot is as

much as 1/2 ln n ln ln n. Therefore, for any large enough n, the plots must cross

at exactly two points in the interior of the domain.

Now we are ready to evaluate the monotonicity of f . By inspecting the sign

of the derivative, we conclude that f increases from x = ln 3 until the first point,

then it decreases until the second point, and then it increases again until x = ln n.

This holds for any large enough n.
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This pattern of monotonicity allows us to bound from below the value of f

in the interior of the domain. The function f attains a local minimum at the

second point, and Lemma 7.3.7 teaches us that this point is in the range between

x1 =
√

1/2 ln n ln ln n and x2 =
√

(1 + ε)/2 ln n ln ln n. For large enough n, we

can bound the value of the local minimum from below by f1 = ex1/x2 · nln x1/x2 .

We can further weaken this bound as

f1 = n− ln x2/ lnn+ln x1/x2+x1/ lnn ≥ n− ln x2/ ln n+1/2 ln lnn/x2+
√

1/2 ln lnn/ ln n

≥ n(1−ε)
√

2·ln ln n/ ln n ,

where the first inequality holds because for large enough n, ln(1/2 ln ln n) is posi-

tive, while the second inequality holds because for large enough n, ln x2 ≤ ln ln n,

and 1/
√

1 + ε ≥ 1− ε, and for large enough n,
√

1/2 ln ln n/ ln n− ln ln n/ ln n is

larger than
√

1/(2 + 2ε) ln ln n/ ln n.

Finally, we note that the values attained by f at the boundary are strictly

larger then the value attained at the second point. Indeed, f(ln n) is strictly

grater, because the function strictly increases from the second point towards

ln n. In addition, f(ln 3) is strictly grater because it is at least n1.08, while the

value attained at the second point is bounded from above by n raised to a power

that tends to 0 as n tends to ∞ (in fact it suffices to see that the exponent of n

in the bound on f1 above, tends to 0 as n tends to ∞).

This completes the argument showing a lower bound on f .
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The following two theorems show that we can construct an instance of AWT

that has the exponent for n arbitrarily close to the exponent that is required,

provided that we choose the value of q carefully enough.

Theorem 7.3.9. Let ε > 0 be any fixed constant. Then for any n that is large

enough, any instance of the AWT algorithm for p = n processors and n cells has

work at least n1+(1−ε)
√

2 ln lnn/ ln n.

Proof. This theorem is proven by combining the results shown in the preceding

lemmas. Take any AWT algorithm for n cells and p = n processors instantiated

with a list Rq of q permutations on [q]. By Lemma 7.3.5, work of the instance

is bounded from below by the expression q2/(3Cont(Rq)) · n1+logq(Cont(Rq)/q). By

Lemma 7.3.6, we know that this expression does not increase when we replace

Cont(Rq) with a number that is smaller or equal to Cont(Rq). Indeed, this is

what we will do. By Lemma 7.3.1, we know that the value of Cont(Rq) is bounded

from below by q ln q. Hence work of the AWT is at least n/3 · q/ ln q · nln ln q/ ln q .

Now we would like have a bound on this expression that does not depend on

q. This bound should be fairly tight so that we can later find an instance of the

AWT algorithm that has work close to the bound. Let us make a substitution

q = ex. We can use Lemma 7.3.8 with ε/2 to bound the expression from below as

desired, for large enough n, when q is in the range from 3 to n. What remains to be

checked is how large work must be when the AWT algorithm is instantiated with

just two permutations (i.e., when q = 2). In this case we know what contention
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of any list of two permutations is at least 3, and so work is bounded from below

by n raised to a fixed power strictly greater than 1. Thus the lower bound holds

for large enough n.

Theorem 7.3.10. Let ε > 0 be any fixed constant. Then for any large enough m,

when q = �e
√

1/2 ln m ln ln m�, and h = �√2 ln m/ ln ln m�, there exists an instance

of the AWT algorithm for p = n = qh processors and n cells that has work at

most n1+(1+ε)
√

2 ln ln n/ lnn.

Proof. Had it not been for the ceilings in the definitions of q and h, the result

would have been immediate. The main problem that we are facing is that taking

ceiling could make q too far away from the best possible choice for q, and so

work of the resulting algorithm could be too large compared to the lower bound

on work of Theorem 7.3.9. However, this cannot happen, as we will see shortly.

Intuitively, this is because h and q are quite small, and so qh is close to the qh

with ceilings dropped. This intuition is formally shown next.

We construct a specific instance of the AWT algorithm and bound its work

from above. By Lemma 7.3.2, for any q that is large enough, there exists a list

of q permutations on [q] with contention at most 4q ln q. Thus, by Lemma 7.3.5

and Lemma 7.3.6, work W of the AWT algorithm instantiated with this list is at

most W ≤ 28q/(4 ln q) · n1+ln(4 ln q)/ ln q , for any m that is large enough. We now

apply a series of algebraic manipulations to bound this expression from above,
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for large enough m. Specifically, W can be bounded as

W ≤ 28 · n1+ln(4 ln q)/ ln q+ln q/ ln n

≤ n
1+ln(8

√
1/2 lnm ln ln m)/

√
1/2 ln m ln lnm+

(
1+ln 28+

√
1/2 lnm ln lnm

)
/ ln m

≤ n1+(1+
√

ln ln lnm/ ln ln m)
√

2 ln lnm/ lnm ,

where the second inequality holds because for large enough m, q ≤ e1+
√

1/2 ln m ln lnm ≤

e2·
√

1/2 lnm ln ln m, and because m ≤ n, while the third inequality holds because

ln(8
√

1/2 ln ln m)/
√

1/2 ln m ln ln m+(1+ln 28)/ ln m ≤ ln ln ln m/
√

1/2 lnm ln ln m.

Our goal now is to replace every occurrence of m above with n. Since m ≤ n,

we can easily do the substitution in the enumerator. However, we also have an

expression 1/ ln m, where such substitution could decrease the exponent. In order

to alleviate this problem, we will show that n and m are close to each other. Let

q̄ and h̄ be equal to q and h respectively except for the ceilings dropped i.e.,

q̄ = e
√

1/2 ln m ln lnm, and h̄ =
√

2 ln m/ ln ln m. We can trivially bound n from

above by m3, because q̄2 ≥ q, for large enough m. However, any upper bound

of m raised to a power bounded away from 1 is not satisfactory, as it will boost

the constant 1 in the (1 +
√

ln ln ln m/ ln ln m) factor in the expression above.

Therefore, we need a tighter upper bound, and we will develop it now. We first

note that ((q̄ + 1) /q̄)h̄ ≤ eh̄/q̄ ≤ mh̄/ ln m ≤ m
√

2/(ln m ln ln m), and that for large

enough m, q̄+1 ≤ q̄2 = m2 ln q̄/ lnm ≤ m
√

2 ln lnm/ lnm. Using the fact that, for large

enough m, ln(m3) ln ln(m3) ≤ 4 ln m ln ln m, and n ≤ m3, we obtain two bounds:

1/(ln m ln ln m) ≤ 4/(ln n ln ln n) and 1/ ln m ≤ 3/ ln n. These two bounds can

be applied to replace m with n in the former two bounds, and we experience a
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slight weakening of the former bounds:((q̄ + 1) /q̄)h̄ ≤ m
√

8/(ln n ln ln n), and q̄+1 ≤

m
√

6 ln ln n/ ln n. We combine the latest two bounds to show that n is bounded from

above by m raised to a power that tends to 1, as n tends to infinity. Specifically,

n ≤ (q̄ + 1)h̄+1 = q̄h̄((q̄ + 1)/q̄)h̄ · (q̄ + 1) ≤ m1+8
√

ln lnn/ ln n. This ensures that

1/ ln m ≤ (1 + 8
√

ln ln n/ ln n)/ ln n, for any large enough m. This bound allows

us to replace m with n in the expression above, while maintaining the (1 + o(1))

multiplicative factor. Thus the result follows.

The above two theorems teach us that when q is selected carefully, we can

create an instance of the AWT algorithm that is nearly optimal. A natural

question that one immediately asks is: what if q is not selected well enough?

Lemma 7.3.5 and Lemma 7.3.6 teach us that lower bound on work of an instance

of the AWT algorithm depends on the number q of permutations on [q] used by

the instance. On one extreme, if q is a constant that is at least 2, then work must

be at least n to some exponent that is greater than 1 and that is bounded away

from 1. On the other extreme, if q = n, then work must be at least n2. In the

“middle”, when q is about e
√

1/2 ln n ln ln n, then the lower bound is the weakest,

and we can almost attain it as shown in the preceding two theorems. Suppose

that we chose the value of q slightly away from the value e
√

1/2 lnn ln ln n. By how

much must work be increased as compared to the lowest possible value of work?

Although one can carry out a more precise analysis of the growth of a lower

bound as a function of q, we will be contented with the following result, which
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already establishes a gap between the work possible to attain when q is chosen

well, and the work required when q is not chosen well.

Proposition 7.3.11. Let r ≥ 2 be any fixed constant. For any large enough

n, if the AWT algorithm is instantiated with q permutations on [q], such that

16 ≤ q ≤ e
√

1/2 ln n ln ln n/(r·ln ln n) or er·
√

1/2 lnn ln lnn ≤ q ≤ n, then its work is at

least n1+r/3·
√

2 ln lnn/ ln n.

Proof. By Lemma 7.3.5, Lemma 7.3.6, and Lemma 7.3.1, work of the AWT al-

gorithm instantiated with any list of q permutations on [q] is at least q/ ln q ·

n1+ln ln q/ ln q−ln 3/ lnn. Suppose that q falls into the first interval. By taking log-

arithm of both sides of the inequality q ≤ e
√

1/2 lnn ln ln n/(r·ln ln n), we obtain an

inequality r ·√2 ln ln n/ ln n ≤ 1/ ln q. Recall that q ≥ 16, and so ln ln q ≥ 1.

Therefore, we can multiply the right-hand side of the former inequality by ln ln q

without violating the inequality, and obtain r/2 ·√2 ln ln n/ ln n ≤ ln ln q/ ln q, as

desired. Now suppose that q falls into the second interval. We obtain the desirable

bound by observing that then q ≥ nr·
√

1/2 lnn ln ln n/ lnn = nr/2·
√

2 ln ln n/ lnn.

7.4 A work-optimal deterministic algorithm for the asynchronous Cer-

tified Write-All problem

This section presents a deterministic asynchronous algorithm for the Certified

Write-All problem. The algorithm has work complexity of O(n + p4 log n), which

is optimal for a nontrivial number of processors p ≤ (n/ log n)1/4.



119

7.4.1 Collision algorithm

The algorithm (see Figure 4) generalizes the collision principle of algorithm T

[24]. The main algorithmic approaches of our algorithm are: to ensure that any

processor often works on a relatively large interval of unset cells of the array w

according to a sequence that enables rapid detection of two processors setting to

1 the same cell of the array; and, when the same cell has been set to 1 more than

once, to ensure effective mechanism of reassigning work to processors. Briefly

speaking, all processors share an array tab with n cells used for coordination

of their work. Each processor maintains a list of intervals of the array tab (an

interval is a subset of consecutive cells of the array). A processor takes an interval

from the list and keeps setting cell w[x] to 1 and marking the cell tab[x] with some

special information, while working from a tip (or end) of this interval towards the

opposite tip. Later, the processor removes some intervals or their parts from the

list, possibly based on information obtained from other processors. This process

is repeated as long as there is an interval on the list. When the list becomes

empty, the processor sets the flag f to 1 and halts.

There are several challenges that we solve to ensure that our algorithm avoids

doing redundant work. It may happen that two processors “collide” at the same

cell while working in the opposite or the same directions. When they work in

the opposite directions then it could happen that they “cross” each other and

duplicate the work that the other processor already did. When they work in the
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same direction then they may keep on working “side-by-side” and again duplicate

the work that the other processor is doing. Another potential problem is that

even if we are able to detect collisions, a processor that collides must decide upon

a cell of the table where the processor will resume its work from. Ideally, the

processor should chose to work from a tip of an interval, so that this tip is “far

away” from any cell that any other processor is currently working on. This is

desirable because it would help to ensure that when the next collision of this

processor occurs, substantial number of distinct new cells of the array w have

been set to 1.

Intuitively, our algorithm solves these challenges as follows. The processors

coordinate their work on intervals using atomic Test-And-Set (TAS) instructions.

This ensures that whenever a processor does a successful TAS to a cell, no other

processor can succeed. As a result, a colliding processor sets at most one cell of

w to 1 before it detects a collision with another processor and has an opportunity

to reassign its own future work. The choice of a relatively long interval located

in a rather unassigned part of the table is intuitively done by a processor always

working on an interval that is at least as long as half of the length of a longest

interval on the list. In addition, we ensure that a colliding processor obtains

knowledge from the other processor about which cells of w remain to be set to

1, and this allows us to guarantee that when a processor often collides it must

substantially reduce the amount of work remaining to be done even though it has

not actually recently set to 1 any distinct cells of w.



121

The following two sections present the details of this intuitive explanation.

The first section makes some observations about the flow of information between

colliding processors. We use these results in the second section to prove a bound

on work for our algorithm.

7.4.2 Collections of intervals, their transformations, and preserved

properties

This section defines several properties of collections of intervals (see Figure 5

for illustrations), and shows that certain transformations of the collections pre-

serve these properties. All intervals in this and subsequent sections are over the

set of integers {0, 1, . . . , n − 1}.

Definition 7.4.1. Let U0, . . . , Ug be collections of intervals over {0, . . . , n − 1}.

We say that the collections are regular iff the following three properties are

satisfied:

(i) any of the collections is composed of mutually disjoint nonempty intervals,

each interval has length that is a power of two (length can be 1), and the

lengths of any two intervals from the same collection differ by at most factor

of 2,

(ii) for any two intervals I and J , each from a different collection, either I ⊆ J

or J ⊆ I or I ∩ J = ∅,
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(iii) if I ⊆ J are two intervals from different collections, then J can be parti-

tioned into a power of 2 intervals of the same length and I is among the

partitions.

We say that the collections are monotonic iff the following property is satisfied:

(iv) for any j, 0 ≤ j < g, if interval I belongs to Uj+1, then there is interval J

that belongs to Uj such that J ⊇ I.

We now show a simple fact that halving any interval in the last collection

preserves monotonicity.

Lemma 7.4.1. Let U0, . . . , Ug be monotonic collections of intervals, and let U

be equal to Ug except for some interval of length 2 or more replaced by its two

halves. Then the collections U0, . . . , Ug, U are monotonic.

Proof. We consider two cases. If j < g then the existence of an interval J in Uj

that contains any given interval I contained in Uj+1 is ensured because collections

U0, . . . , Ug are monotonic. For the second case, let j = g and I be an interval from

U . If I is one of the two halves of the interval J from Ug that was halved, then

this interval J (strictly) contains I. If I is none of the halves then Ug contains

I.

The following lemma states that halving a relatively long interval in any

collection preserves regularity.
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Lemma 7.4.2. Let U0, . . . , Ug be regular collections of intervals and let U be

equal to Ui, 0 ≤ i ≤ g, except for some longest interval H from Ui which has

length 2 or more replaced by its two halves. Then the collections U0, . . . , Ug, U

are regular.

Proof. Since H is an interval from Ui that has the maximum length across all

intervals in Ui and its length is at least 2, then the collection U contains intervals

that differ by at most factor of two. Thus collections U0, . . . , Ug, U satisfy property

(i).

To see that properties (ii) and (iii) are also satisfied let us take any interval I

from the collection U and any interval J of from some collection Uj , 0 ≤ j ≤ g.

If I is not any of the halves of H then I must be an interval from Ui and so the

properties hold by the assumption that U0, . . . , Ug are regular. Suppose that I is

one of the halves of H . By property (ii) that holds for the collections U0, . . . , Ug,

either H ∩J = ∅, or H ⊆ J , or J ⊂ H . Let us consider these three cases in turn.

Firstly, suppose that H ∩ J = ∅. Then property (ii) holds for any of the halves

and J , because their intersection with J is empty, and property (iii) is void for

any of the halves and J . Secondly, suppose that H ⊆ J . Obviously property

(ii) holds for each of the halves and J , because any half is included in J . By

property (iii), J can be partitioned into a power of two intervals one of which

is H . But then J can be partitioned into twice as many intervals two of which

are the halves of H . Hence property (iii) holds for J and each of the halves.

Thirdly, suppose that J ⊂ H . By assumption, H can be partitioned into two or
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more intervals one of which is J . Then J is a subset (not necessarily strict) of

one of the halves and J has empty intersection with the other half. As a result,

property (ii) holds for J and each half. In addition, the half that includes J can

be partitioned into twice fewer than H can (perhaps just one) intervals one of

which is J . Thus property (iii) holds for J and each of the halves.

Taking a specific intersection of two collections preserves regularity and mono-

tonicity, as shown below.

Lemma 7.4.3. Let k1, . . . , kp ≥ 0, the collections U0
1 , . . . , Uk1

1 , . . . . . . , U0
p , . . . , U

kp
p

be regular, and the collections U0
h , . . . , Ukh

h be monotonic for any h, 1 ≤ h ≤ p. Let

i �= j be two numbers from {1, . . . , p}, 0 ≤ m ≤ kj, and U = Uki
i and U ′ = Um

j .

Let 2k be the maximum length of an interval in U and 2k′
be the maximum length

of an interval in U ′. Let V be the collection

V =




U ′ ∩ U :=
{

H | H �= ∅ ∧ J ∈ U ′ ∧ H = J ∩⋃
I∈U I

}
if k > k′

U ∩ U ′ :=
{

H | H �= ∅ ∧ I ∈ U ∧ H = I ∩⋃
J∈U ′ J

}
if k ≤ k′.

Then the number of intervals in V is at most the maximum of the number of

intervals in U and in U ′. If k > k′ then V contains some complete intervals

from U ′, and when k < k′ some complete intervals from U . If k = k′ then

V contains some complete intervals from U and a single half for each of some

other intervals of length 2k from U (V never contains two halves of any interval

from U). The collections V, U0
1 , . . . , Uk1

1 , . . . . . . , U0
p , . . . , U

kp
p are regular, and the

collections U0
i , . . . , Uki

i , V are monotonic.
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Proof. We shall study the content of V based on the relationship between the

length of a longest interval in U and the length of a longest interval in U ′. In

preparation for the case analysis we record what the lengths of intervals in these

collections may be. Since collections are regular, by property (i), we indeed know

that the length of a longest interval in U is 2k, and the length of a longest interval

in U ′ is 2k′
, for some integers k, k′ ≥ 0. We also know that intervals in U have

length 2k or 2k−1, and the intervals in U ′ have length 2k′
or 2k′−1.

For the first case, suppose that k > k′, and let us investigate common parts

between U ′ and U . Let I be an interval from U , and J from U ′. The interval

I cannot be shorter than 2k−1, and the interval J cannot be longer than 2k−1.

Therefore, J is too short to be a strict superset of I. Hence, by property (ii),

any interval J from U ′ is either a subset of some interval from U or does not

intersect with any interval from U . Consequently, the set U ′ ∩ U contains only

some complete nonempty intervals from U ′. The length of a longest interval in

U ∩U ′ is reduced by the factor of 2 or more compared to the length of a longest

interval in U . Since removing an interval from a collection does not invalidate

the properties, the collections V,U0
1 , . . . , Uk1

1 , . . . . . . , U0
p , . . . , U

kp
p are regular and

the collections U0
i , . . . , Uki

i , V are monotonic.

The second case is when k < k′. Here we can carry out similar analysis as

is the above paragraph. The set U ∩ U ′ contains only some complete nonempty

intervals from U , and so regularity and monotonicity hold, however we do not

guarantee that the length of a longest interval is reduced.
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The final case is when k = k′. Let us again investigate the result of the

operation U ∩ U ′. Take any interval I from U , and let us see what part of this

interval is contained in U ∩ U ′, if any. By property (ii), for any interval J from

U ′ we have: either I ⊆ J , or I ⊃ J , or I ∩ J = ∅. If the first subcase occurs,

then we are guaranteed that complete I is contained in U ∩U ′. Suppose that the

first subcase does not happen, and so for all J , either I ⊃ J or I ∩ J = ∅ (but

never I ⊆ J). The result now depends on how many distinct J there are that

satisfy I ⊃ J . Suppose that I ⊃ J . Our assumption about the length of intervals

ensures that the length of such J is 2k−1 and of I is 2k. By property (i), we can

have either zero, or one, or two intervals in U ′ that are strict subsets of I. In

the former situation all intervals J have empty intersection with I, and so I is

not contained in U ∩ U ′. In the later situation the two intervals combined must

yield I, and so complete I is contained in U ∩U ′. The discussion presented so far

in this paragraph implies that regularity and monotonicity trivially hold because

the intervals contained in U ∩ U ′ are complete intervals from U . In the middle

situation, by property (iii), the interval I is partitioned into two halves: J and

I \ J , and so only the half J is contained in U ∩ U ′, but not the other half. An

argument similar to that in Lemma 7.4.1 shows that monotonicity is preserved,

and similar to that in Lemma 7.4.2 shows that regularity is preserved.

The operation of intersection defined in the above lemma yields a certain

reduction of size or length of the intervals in the resulting collection V compared

to the given collection U .
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Corollary 7.4.4. If V �= U then either the length of a longest interval in V is

smaller or equal to half of the length of a longest interval in U , or the intervals

in V combined have fewer elements than the intervals in U combined by least half

of the length of a longest interval in U .

Proof. The analysis again proceeds by considering the relationship between the

lengths of longest intervals in U and U ′. We consider three mutually exclusive

cases. Suppose that k > k′. Then, by Lemma 7.4.3, the length of a longest

interval in V is equal or shorter than half of the length of a longest interval in U .

If k < k′ then V contains some complete intervals from U , and since U �= V , one

of them must be missing in V . This missing interval has length at least half of

the length of a longest interval in U . If k = k′ then V contains complete intervals

from U or their halves. Again, since U �= V , either one interval is missing or its

half. If a half is missing, then this half must contain at least 2k−1 elements.

From now until the end of Section 7.4.2, let us fix the values of the collections

U0
1 , . . . , Uk1

1 , . . . . . . , U0
p , . . . , U

kp
p as well as the values of variables i, j, and m. Let

V be the collection defined in Lemma 7.4.3 for the fixed values of the collections

and the variables. We let I be a fixed interval from the collection Uki
i , and J a

fixed interval from the collection Um
j , such that these two intervals have nonempty

intersection. This intersection contains a cell where a processor collides with other

processor. The lemmas and corollaries in the remainder of Section 7.4.2 show

transformations on collections that preserve regularity and monotonicity, and
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lead to certain reductions in the number of elements contained in the intervals

of the resulting collections. The proofs are similar to the proofs of Lemma 7.4.3

and Corollary 7.4.4 (see Figure 6 for illustrations).

Lemma 7.4.5. Let D be a possibly empty prefix of I and D′ a possibly empty

suffix of J , or vice versa D be a suffix and D′ a prefix, such that D ∩D′ = ∅ and

D ∪ D′ is a nonempty interval. Let W be the collection

W = V \ (D ∪ D′) := { H | H �= ∅ ∧ K ∈ V ∧ H = K \ (D ∪ D′) } .

Then the number of intervals in W is at most the number of intervals in V . If

k �= k′ then the collection W contains some complete intervals from V . If k = k′

then W contains some complete intervals from V and a single half for each of

some other intervals from V . The collections W, U0
1 , . . . , Uk1

1 , . . . . . . , U0
p , . . . , U

kp
p

are regular, and the collections U0
i , . . . , Uki

i , V, W are monotonic.

Proof. To prove the lemma, we take any interval K from V and argue about

what the result of subtracting D ∪ D′ from K is. We arrange the argument in 3

cases by the relationship between the length of a longest interval in U and in U ′.

For the first case suppose that k > k′. Then, by Lemma 7.4.3, the collection

V contains only some complete intervals from U ′. Inspecting the possible lengths

of intervals from U and U ′ reveals that it cannot happen that an interval from

U is a strict subset of some interval from U ′, and so, by property (ii), J ⊆ I

(recall that we assume that I ∩ J �= ∅). Similarly, for any K from V , K ⊆ I or

K ∩ I = ∅. Note that the interval D ∪ D′ starts at a tip of I, runs through the
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entire J , and ends at the opposite tip of J . Thus the three sets (D ∪ D′) \ J , J ,

and I \ (D∪D′) are disjoint possibly empty intervals whose union is I. If K does

not intersect with I, then K \ (D ∪ D′) = K. Assume now that K is a subset

of I. Since J and K are intervals from U ′ we have, by property (i), that either

J = K or J ∩ K = ∅. In the first subcase K \ (D ∪ D′) = ∅, while in the second

subcase K either belongs to (D ∪D′) \ J or to I \ (D ∪D′), and so K \ (D ∪ D′)

is equal to ∅ or K respectively. Thus W is equal to V , except for possibly some

complete intervals removed, and so desired regularity and monotonicity hold.

A symmetric case is when k < k′. Now collection V contains only some

complete intervals from U , and it must be that I ⊆ J , and that for any K

from V , K ⊆ J or K ∩ J = ∅. As above, if K does not intersect with J , then

K \ (D ∪ D′) is equal to K, while if K ⊆ J , then K \ (D ∪ D′) is either empty

or equal to K, and so desired regularity and monotonicity hold.

Finally, consider the case when k = k′. Since I ∩ J �= ∅, by property (ii), we

have three subcases J ⊂ I, I ⊂ J , I = J . We consider them in turn. For the

first subcase suppose that J ⊂ I. Since, by property (i), the length of I and J

can be either 2k or 2k−1, the length of I is 2k and, by property (iii), J is a half of

I and has length 2k−1. Thus D ∪ D′ is either equal to I or equal to a half of I.

Take any K from V . By Lemma 7.4.3, V contains complete intervals from U or

halves of some other intervals form U but never two halves of the same interval

from U . If K is an interval from U , then, by property (i), K is either equal to I

or has empty intersection with I. If K ∩ I = ∅ then K \ (D ∪ D′) = K. If K = I
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then K \ (D ∪ D′) is equal to either a half of K or an empty set depending on

whether D∪D′ is the other half of K or not. If K is a half of an interval from U ,

then either K ∩ I = ∅ or K is a half of I. If K is a half of I, then K \ (D ∪ D′)

is either K or an empty set. Thus in the first subcase the set K \ (D ∪ D′) has

length either 2k or 2k−1 or 0 and is equal to K, or a half of K, or the empty set.

Hence desired regularity and monotonicity hold. For the second subcase suppose

now that I ⊂ J . Then J has length 2k, I is its half of length 2k−1, and D ∪ D′

is equal to J or I. Take any K from V . Since K is an interval from U or its half

and has length 2k or 2k−1, K is too short to be a strict superset of J , and, by

property (ii), K ⊆ J or K ∩ J = ∅. When the later is true, K \ (D ∪ D′) = K.

Let K ⊆ J . If the length of K is 2k, then K = J and K \ (D ∪ D′) is equal to

∅ or a half of K. If the length of K is 2k−1, then K \ (D ∪ D′) is equal to K

or ∅. Thus in the second subcase the set K \ (D ∪ D′) has length either 2k or

2k−1 or 0. Hence desired regularity and monotonicity hold. Finally, consider the

last subcase when I = J . Then the set K \ (D ∪ D′) is either empty or equal

to K, and so it has length either 2k, or 2k−1, or 0, and so desired regularity and

monotonicity hold.

Corollary 7.4.6. If U = V then the intervals in W combined have fewer elements

than the intervals in U combined by least half the length of a longest interval in

U .
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Proof. If U = V then the I used in the statement of Lemma 7.4.5 belongs to V .

Consequently, one of the sets K from the statement of Lemma 7.4.5 is equal to

I. We now follow the last three paragraphs of the proof of Lemma 7.4.5 to see

what the difference is between V and W . It cannot be that k > k′ because then

U �= V . If k < k′ then the set D ∪ D′ used in the statement of Lemma 7.4.5

contains I, and so the collection W does not contain the interval I, which has

length at least half of the length of the longest interval is U . If k = k′ then: when

J ⊂ I then I has the length of a longest interval in U and the set D ∪ D′ is at

least a half of I, which is removed; while when I ⊂ J then D∪D′ contains I and

so I is removed; finally when I = J then I is removed.

Lemma 7.4.7. Let D �= ∅ be a prefix of I and D′ �= ∅ a prefix of J such that x

is the smallest element in D′ and x− 1 is the largest element in D, or vice versa

D �= ∅ be a suffix of I and D′ �= ∅ a suffix of J such that x is the largest element

in D′ and x + 1 is the smallest element in D. Let Q be the collection

Q = V \ D := { H | H �= ∅ ∧ K ∈ V ∧ H = K \ D } .

Then the number of intervals in Q is at most the number of intervals in V . If

k �= k′ then Q contains some complete intervals from V . If k = k′ then Q contains

some complete intervals from V and a single half for each of some other intervals

from V . The collections Q, U0
1 , . . . , Uk1

1 , . . . . . . , U0
p , . . . , U

kp
p are regular, and the

collections U0
i , . . . , Uki

i , V , Q are monotonic.
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Proof. We begin by showing that there are just two cases to consider. Since

I ∩ J �= ∅, by property (ii), we know that either I ⊆ J or J ⊂ I. Suppose that

I ⊆ J . Then, when D′ is a prefix of J , x must be the smallest element in J , and

so x − 1 does not belong to J and so cannot belong to I either, while we know

that x belongs to I, or when D′ is a suffix of J , x is the largest element in J

and so x + 1 does not belong to J and so cannot belong to I either. Hence the

assumption that I ⊆ J leads to a contradiction. Consequently it must be that

J ⊂ I, and so either k = k′ or k > k′.

For the first case, suppose that k > k′. Then V contains only some complete

intervals from U ′. Take any K from V . By property (ii), we have one of the

three subcases: K ⊆ I, K ⊃ I, K ∩ I = ∅. The interval K is too short to be

a strict superset of I, so the middle subcase cannot happen. If the last subcase

happens, then K \ D = K. Let us now focus on the first subcase when K ⊆ I.

Notice that the sets D, J , and I \ (D ∪ J) are disjoint intervals and their union

is I. By property (i), either K = J or K ∩ J = ∅. If K = J then K \ D = K,

while when K does not intersect with J , then K \ D is either empty or equal to

K. Consequently the collection Q contains only some complete intervals from V

and so desired regularity and monotonicity hold.

Finally, consider the second case when k = k′. Take any K from V . The

collection V contains some complete intervals from U or halves of some other

intervals from U but never two halves of any interval from U . Hence, by property

(i), either K ∩ I = ∅, or K = I, or K is a half of I but then there is no other
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interval in V that is equal to the other half of I. In the first subcase K \D = K,

and so let us focus on the two remaining subcases. Note that the length of J can

be either 2k or 2k−1, but since J ⊂ I, then the length of J must be 2k−1, and J

must be a half of I. As a result, D and J are the two halves of I. So if K = I

then K \D is equal to J , a half of K. If K is a half of I, then K \D is either K

or empty. Again regularity and monotonicity hold for Q.

Corollary 7.4.8. If U = V then the intervals in Q combined have fewer elements

than the intervals in U combined by at least half the length of a longest interval

in U .

Proof. As explained in Corollary 7.4.6, we have that k ≤ k′ and I is in V , and

so I = K for some K from the statement of the Lemma 7.4.7. It cannot be that

k < k′ because this is disallowed by the proof of Lemma 7.4.7. Thus the only

possible relationship between k and k′ is that k = k′. In this case I has length

2k and a half of I is removed.

Lemma 7.4.9. Let x be the smallest element in I, D′ �= ∅ a prefix of J such that

x is the largest element in D′, or vice versa x be the largest element in I, D′ �= ∅

a suffix of J such that x is the smallest element in D′. Let R be the collection

R = V \ (D′ \ {x}) := { H | H �= ∅ ∧ K ∈ V ∧ H = K \ (D′ \ {x}) } .

Then the number of intervals in R is at most the number of intervals in V .

The collection R contains some complete intervals from V . The collections R,
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U0
1 , . . . , Uk1

1 , . . . . . . , U0
p , . . . , U

kp
p are regular, and the collections U0

i , . . . , Uki
i , V ,

R are monotonic.

Proof. The argument is similar to that of Lemma 7.4.5: we take an interval K

from V and argue about what part of the interval is in R. We start with an

observation that when D′ contains just one element x, then the result is trivial

because R = V . Assume that D′ contains at least two elements. But then J

contains an element that is not in I and so, by property (ii), I ⊂ J . Consequently,

we have just two cases to consider k = k′ and k < k′. We will study them in

turn.

For the first case suppose that k = k′. Take any K from V . The collection V

contains some complete intervals from U or halves of some other intervals from

U . Hence, by property (i), either K ∩ I = ∅, or K = I, or K is a half of I.

Note that the length of K can be either 2k or 2k−1 and the length of I is 2k−1,

so K cannot be a half of I. As a result, the last subcase does not happen and

we have either K ∩ I = ∅, or K = I. If K = I then K \ (D′ \ {x}) = K, while if

K ∩ I = ∅ then K \ (D′ \ {x}) can be either K or empty. Again regularity and

monotonicity hold for R.

Finally, consider the second case when k < k′. This case is very similar to

the case when k > k′ in the proof of Lemma 7.4.7. We shall show it here for

completeness. In this case V contains only some complete intervals from U . Take

any K from V . By property (ii), we have one of the three mutually exclusive

subcases: K ⊆ J , K ⊃ J , K ∩ J = ∅. The interval K is too short to be a strict
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superset of J , so the middle subcase cannot happen. If the last subcase happens,

then K \ (D′ \ {x}) = K. Let us now focus on the first subcase when K ⊆ J .

Notice that the sets D′ \ {x}, I, and J \ ((D′ \ {x}) ∪ I) are disjoint intervals

and their union is J . By property (i), either K = I or K ∩ I = ∅. If K = I then

K \ (D′ \ {x}) = K, while when K does not intersect with I, then K \ (D′ \ {x})

is either empty or equal to K. Consequently, the collection R contains only some

complete intervals from V , and so desired regularity and monotonicity hold.

Corollary 7.4.10. If U = V and R �= V then the intervals in R combined have

fewer elements than the intervals in U combined by least half the length of a

longest interval in U .

Proof. Since U = V then each interval K from the statement of the Lemma 7.4.9

has length at least half of the length of a longest interval in U . But R �= V and

so at least one interval or its part must have been removed. Lemma 7.4.9 shows

that either a complete interval is removed or not a part of it at all. Thus at least

one K is missing in R compared to V .

7.4.3 Analysis of the algorithm

This section presents an analysis of the generalized collision algorithm given

in Figure 4. We assume that n and p are powers of 2. Without loss of generality,

we assume that TAS can transfer O(p) cells between local and shared memory

(this assumption can be easily relaxed to comply with our model by using pointer

representation of the tuples that are TAS into cells of the array tab; see proof
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of Theorem 7.4.16 for details). For any processor i, we let U0
i , U1

i , U2
i , . . . be the

values of the local variable U of the processor i consecutively recorded (by an

external observer) in line 05 as the processor iterates through the while loop

(lines 04 to 28). If a processor i never reaches line 05 of an iteration number

k, then we define Uk−1
i = ∅ (this happens when the processor has halted during

prior iterations). We say that a processor is working on an interval, when it is

executing its first TAS in the for loop (lines 06 to 10), or any instruction during

this loop until the processor has executed the last TAS in the for loop. For a

fixed execution, processor, and iteration of the while loop, we let Uz denote the

value of U right before the processor executes line number z of the iteration, and

Uz the value of U right after line number z. It will be clear form the context

which execution, processor, and iteration Uz or Uz refer to.

The analysis starts with three lemmas and a corollary that reduce the anal-

ysis of properties of the algorithm to the analysis of properties of collections of

intervals. The first lemma shows that the collections U of intervals recorded as

the algorithms unfolds have specific structure.

Lemma 7.4.11. Consider any moment (of the global clock) during an execution

of the algorithm, and let k1, . . . , kp ≥ 0 be the numbers of the last TAS in the for

loops that corresponding processors have executed by then. Then each processor

i either will begin work on an interval from Uki
i , or is working on an interval

from Uki
i , or will halt without doing any more TAS, or has halted. The intervals
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U0
1 , . . . , Uk1

1 , . . . . . . , U0
p , . . . , U

kp
p are regular, and the intervals U0

h , . . . , Ukh
h are

monotonic, for any 1 ≤ h ≤ p.

Proof. The proof is by induction on the moments in the execution where the

values of ki’s change. We shall see that the lemma holds from the moment

when processors begin execution until the first time a last TAS in the for loop

is executed by any processor i. Then we will consider two moments: one right

before a last TAS is executed by some processor i in the for loop, and one right

after the TAS. This TAS causes the value of ki to increase by one. We will argue

that if the hypothesis holds before the TAS then it holds after the TAS until the

earliest moment before the next last TAS is executed by some processor.

Let us consider the base case. The lemma is true right before the last TAS is

executed first by any processor. The first line of the code of procedure COLLIDE

for processor i sets U to {[0, n − 1]}, and the value of U is not changed at least

until the processor reaches line 11 of the first iteration of the while loop. Thus

U0
i = {[0, n − 1]}, for any 1 ≤ i ≤ p. At the moment right before a last TAS is

executed for the first time by any processor, each processor i is either working, or

will work on an interval from U0
i . Note that collections U0

1 , . . . , U0
p are regular as

each contains the same single interval of length that is a power of two. Trivially,

the collection U0
i is monotonic for any 1 ≤ i ≤ p because any single collection is

always monotonic.

For the inductive step, suppose that k1, . . . , kp ≥ 0 are the numbers of last

TAS in the for loops that corresponding processors have executed by then, and
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that the lemma is true right before the last TAS in the for loop is executed by

a processor i during iteration number ki + 1. We have two cases: either the

processor succeeds on the TAS or fails.

Case 1: If the processor i succeeds on the last TAS, then it means that the

processor has successfully TAS to all cells in the interval I that it has been working

on. Notice that the processor never reads any memory cell that could be written

to by a different processor between now and the moment when the processor

reaches line 05 again in the next iteration number ki + 2 of the while loop, if the

processor ever reaches this line again. Therefore, the value of Uki+1
i is already

determined. Since the processor has been working on an interval I from U = Uki
i ,

then, in line 11, the processor removes the interval from the collection. Let V

denote the resulting collection of intervals. Clearly, the collections U0
i , . . . , Uki

i , V

are monotonic and the collections V, U0
1 , . . . , Uk1

1 , . . . . . . , U0
p , . . . , U

kp
p are regular.

When processor i reaches line 21, the collections U21, U0
1 , . . . , Uk1

1 , . . . . . . ,

U0
p , . . . , U

kp
p are regular, and the collections U0

i , . . . , Uki
i , U21 are monotonic. By

property (i), if U21 contains an interval of length 1, then U21 contains intervals

of length 1 or 2 only. Hence a possible removal of intervals of length 1 preserves

regularity and monotonicity. If U22 is empty then processor i halts and Uki+1
i = ∅.

Suppose that U22 is not empty. The processor will begin work on an interval from

a collection as explained next. When not all tips of intervals in U22 are marked,

then Uki+1
i = U22 and the processor will begin work on an interval with an

unmarked tip from the collection. Alternatively, the processor will begin work
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on an interval when all tips of intervals in U22 are marked. Then at least one

interval in U22 has length 2 or more. Let R be a collection equal to U22 except

for a longest interval replaced by its two halves (line 26). By Lemma 7.4.2, the

collections R, U0
1 , . . . , Uk1

1 , . . . . . . , U0
p , . . . , U

kp
p are regular, and, by Lemma 7.4.1,

the collections U0
i , . . . , Uki

i , R are monotonic. Then Uki+1
i = R. Note that at

any moment until the next time a last TAS is executed by some processor, each

processor j �= i : will begin work on an interval from U
kj

j , or is working on an

interval from U
kj

j , or will halt without doing any more TAS, or has halted; while

the processor i : will begin work on an interval from Uki+1
i , or is working on an

interval from Uki+1
i , or will halt without doing any more TAS, or has halted.

The argument presented so far ensures that the inductive step holds in the

case when the processor i succeeds on the last TAS.

Case 2: Suppose that the processor i fails on a TAS to a cell x that belongs

to the interval I that the processor has been working on. Then the processor

reaches line 13 and, if the processor was working on I from left to right, the set

D contains a prefix of I without x, or, if the processor was working from right

to left, a suffix of I without x. Suppose that it was a processor j that has done

a successful TAS to the cell x. This must have happened when the processor j

was working on an interval J either from its left tip towards its right tip or vice

versa, and so the set D′ read by the processor i in line 08 of iteration ki + 1 is a

prefix of J that contains x, or vice versa it is a suffix of J that contains x. Note

that i �= j because if a processor does a successful TAS to a cell, then it never
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again even attempts to do a TAS to this cell. Thus the collection U ′13 is equal to

Um
j , for some 0 ≤ m ≤ kj.

We now consider the changes to U that can happen from line 13 to line 20,

and see how these changes affect regularity and monotonicity.

After the processor i has executed lines 13 to 15, the desired properties hold.

Indeed, by Lemma 7.4.3, the collections U16, U0
1 , . . . , Uk1

1 , . . . . . . , U0
p , . . . , U

kp
p are

regular, and the collections U0
i , . . . , Uki

i , U16 are monotonic.

The execution of processor i now depends on whether i collided with j when

working in the opposite direction or the same direction.

First, suppose that the processor j was working on its interval J in the op-

posite direction than the processor i. Then i will execute line 16. As a result,

by Lemma 7.4.5, the collections U16, U0
1 , . . . , Uk1

1 , . . . . . . , U0
p , . . . , U

kp
p are regular,

and the collections U0
i , . . . , Uki

i , U16 are monotonic, and so the collection U21 is

equal to U16.

Second, assume that the processor j was working on J in the same direction

as processor i has been on I. We now study two subcases depending on the

success of i in TAS to any cell in I.

Subcase number one is when processor i has managed to successfully TAS to

at least one cell in I. Then D �= ∅ and so the processor will execute line 18. We

now argue that specific relationships must hold between D, D′, and x. If i and

j worked to the right, then x cannot be the second or later to the right element

of J , because then the first element of J would be successfully TAS by j and so
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i would have failed on a TAS to an element different than x as ensured by the

fact that i has been working on consecutive elements from the interval I and that

D �= ∅. So x must be the first element of J , and so x is the smallest element of

D′ and x − 1 is the largest element of D. Similarly, if i and j were working to

the left, then x is the largest element of D′ and x + 1 is the smallest element of

D. These relationships ensure that when i has executed line 18, by Lemma 7.4.7,

collections U18, U0
1 , . . . , Uk1

1 , . . . . . . , U0
p , . . . , U

kp
p are regular, and the collections

U0
i , . . . , Uki

i , U18 are monotonic, and so the collection U21 is equal to U18.

Subcase number two is when processor i failed on its first TAS to a cell in I.

Then D = ∅ and so the processor i will execute line 19. Since i has failed on its

first TAS, then, when i works to the right, x must be the smallest element in I

and x the largest element in D′, or, when i works to the left, then x is the largest

element in I and x the smallest element in D′. As a result, after i has executed

line 19, by Lemma 7.4.9, the collections U19, U0
1 , . . . , Uk1

1 , . . . . . . , U0
p , . . . , U

kp
p are

regular, and the collections U0
i , . . . , Uki

i , U19 are monotonic, and so the collection

U21 is equal to U19.

Let us summarize how the changes to U done by processor i from line 13

to line 20 can affect regularity and monotonicity right before i reaches line 21.

By the above argument, when the processor i fails on the TAS, we know that

collections U21, U0
1 , . . . , Uk1

1 , . . . . . . , U0
p , . . . , U

kp
p are regular, and the collections

U0
i , . . . , Uki

i , U21 are monotonic. We can carry out the same analysis as in the case

of a successful last TAS described before in Case 1, to show that any processor
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either has halted, will halt, is working, or will begin work, at any moment until

the next time some kg is increased, and that the collections are regular and

monotonic as desired.

This completes the inductive step, and the proof.

Corollary 7.4.12. Consider any moment during an execution of the algorithm

and let k1, . . . , kp ≥ 0 be the numbers of last TAS in the for loops that correspond-

ing processors have executed by then. Then the cells {0, . . . , n − 1} \ Uki
i of the

array w have been set to 1, for any i. When processor halts then each cell of w

has been set to 1.

Proof. The claim that any cell x ∈ {0, . . . , n − 1} \ Uki
i has been set to 1 can be

shown in a straightforward inductive way similar to that in Lemma 7.4.11. For

the second part observe that a processor halts only when its U is empty.

The next lemma shows that any processor has at most p/2 intervals in its

collection U at any time during execution of the algorithm. The key observation

that allows to prove the lemma is that no processor can split intervals into halves

so many times that the number of intervals becomes large. This is achieved by

realizing that if a processor has too many intervals then it stops splitting them,

as the processor must collide with some other processor that has done a part of

what the former processor believes that remains to be done.

Lemma 7.4.13. Consider any moment during an execution of the algorithm and

let k1, . . . , kp ≥ 0 be the numbers of last TAS in the for loops that corresponding
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processors have executed by then. Then for each processor i, the collection Uki
i

has at most p/2 intervals. None of the collections can have p marked tips.

Proof. The proof is by induction on the moments in the execution when the

values of ki’s change as in Lemma 7.4.11.

For the base case, we observe that the lemma is true right before the last TAS

is executed first by any processor, because U0
1 = . . . = U0

p are collections each

containing just one interval [0, n − 1] with no marked tips.

For the inductive step, suppose that k1, . . . , kp ≥ 0 are the numbers of last

TAS in the for loop that corresponding processors have executed by then, and

that each of the collections Uk1
1 , . . . , U

kp
p has at most p/2 intervals right before

a last TAS in the for loop is executed by a processor i for the (ki + 1)-th time

during the iteration number ki + 1 of the while loop. Right before the TAS, the

value of the variable U that the processor i has is equal to Uki
i . If the TAS is

successful, then when the processor reaches line 21 then the number of intervals

in U21 is one less than in Uki
i , and so it is at most p/2. If the TAS failed then

the processor must have collided with a different processor j and so the value

of the variable U ′13 of processor i is equal to Um
j , for some 0 ≤ m ≤ kj. By

the inductive hypothesis the number of intervals in U ′13 is at most p/2. After

the processor i has executed lines 13 to 20, the number of intervals in U can

be at most the maximum of the number of intervals in Uki
i and Um

j , because of

Lemma 7.4.3, Lemma 7.4.5, Lemma 7.4.7, and Lemma 7.4.9. And so U21 has at

most p/2 intervals.
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We now evaluate U until the processor reaches line 05 again, if ever. We begin

the evaluation with three simple cases. Recall that removing entire intervals

from a collection preserves regularity and monotonicity. If U21 is empty, then the

result is trivial because Uki+1
i is empty. Second, if the U21 has an interval with

an unmarked tip, then processor i does not execute lines 24 to 26 and so Uki+1
i is

equal to U21. Third, if U21 is not empty, all tips of all intervals in U21 are marked,

and U21 has strictly fewer than p/2 intervals, then the processor i executes lines

24 to 26. But then the interval [a, b] selected in line 24 has length at least 2

and after its split there are exactly two intervals in U26 that have unmarked tips.

Consequently, the Uki+1
i in the third case has one more interval compared to U21,

and so the number of intervals is bounded by p/2. In all these three cases the

result follows.

The final case in the inductive step is when the collection U21 has exactly p/2

intervals and all their tips are marked. We show that this cannot happen. Let

the collection U21 be composed of the intervals I1, . . . , Ip/2. Since all intervals of

length 1 with marked tips were removed in line 21, each of the p/2 intervals has

length at least 2. Thus the intervals have exactly p distinct tips and the tips are

marked. Note that if a processor i had done a successful TAS to a tip of its interval

during the for loop in a k-th iteration of the while loop, k ≤ ki + 1, then this

tip (not necessarily entire interval) would have been removed from its collection

before the processor i reaches line 22 of the while loop in iteration number k,

and the subsequent collection Uk+1
i , if any, does not include the tip, and, by
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the monotonicity property (iv), no subsequent collections until Uki
i can contain

the tip. Therefore, when the processor i reaches line 22 of the current iteration

number ki +1, all p distinct tips of the intervals I1, . . . , Ip/2 have been successfully

TAS by processors other than i. But then, by the pigeonhole principle, there is

a processor j other than i such that the processor j had successfully TAS to two

of the p tips before the processor i did the last TAS in the for loop of iteration

number ki + 1 of the while loop. Let x be the tip TAS by j first according to the

total order established by the TAS instructions, and y the other tip (TAS later).

Let jx ≤ jy be the iterations numbers of the while loop of processor j during

which the processor did a successful TAS to the two tips x and y respectively.

We consider two cases depending on whether x and y were TAS in the same or

different iteration of the while loop.

For the first case, suppose that x was TAS in an earlier iteration i.e., that

jx < jy. Then processor j must have removed the cell x from its set U by the

end of the iteration jx and so all subsequent collections starting from U jx

j until

U
kj

j inclusive do not contain any interval that contains x. During an iteration

number iy ≤ ki + 1, the processor i fails on TAS to the cell y and executes lines

13 to 15. At that time no interval of the collection U ′ of processor i contains an

interval with element x. Hence by monotonicity, the interval U21 of the iteration

number ki +1 of processor i does not contain any interval that contains x. This is

a desired contradiction because we assumed that x is a marked tip of an interval

in the collection U21.
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Finally, assume that x and y were TAS during the same iteration of the while

loop i.e., that jx = jy. Then, when i reaches line 13 during iteration iy, the

interval D′ contains two distinct elements x and y. It cannot be the case that i

managed to successfully TAS to a cell in the for loop while working in the same

direction as j did when j was doing TAS to y. Hence i executes either line 16 or

line 19 in which case at least one x or y is removed from U , together with some

interval or its part, before i reaches line 22 of iteration iy. Again, this leads to a

contradiction.

The inductive step is completed, which proves the lemma.

During an execution a processor performs some number of iterations of the

while loop. The next lemma shows an upper bound on this number. The lemma

is proven by noticing that the sequence U0
i , U1

i , U2
i , . . . cannot have too long sub-

sequences of equal collections because the number of marked tips would increase,

and that when two subsequent collections are different then the processor makes

substantial progress on its work. This means that the successive collections

quickly become “slimmer and slimmer”, and eventually become empty.

Lemma 7.4.14. In any execution of the algorithm any processor i performs at

most p2 + p (2p + 1) log n iterations of the while loop.

Proof. Let us consider any execution, any processor i, and the sequence of collec-

tions U0
i , U1

i , U2
i , . . . that the processor recorded. We begin with an observation

about the structure of the sequence. Firstly, if two consecutive collections are
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equal, then there is one tip that is unmarked in the previous collection and it is

marked in the subsequent collection, while all already marked tips remain marked.

Indeed, suppose that Uk
i = Uk+1

i . Note that when a processor is working on an

interval then the tip from which the processor has started the work is unmarked

at the time when the work begins. Since the two collections are equal, during

iteration k + 1 of the while loop of processor i, the value of the collection U stays

intact from the moment right before line 11 until right after line 28. In order for

this value to be unchanged, the processor must have failed on its first TAS to a

cell x in the for loop in the iteration, and the failure must have been because a

different processor had successfully TASed to x while it had been working on an

interval in the same direction as i was (otherwise the value of U would change).

As a result, a previously unmarked tip x of an interval from U becomes marked

in line 20. Note that no tip of any interval in a collection is ever unmarked by a

processor, unless a part of the interval that contains x is removed from a collec-

tion. This leads to an observation that we can bound the length of a sequence

of consecutive equal collections. Suppose that for some k and c ≥ 0 we have

Uk
i = Uk+1

i = . . . = Uk+c
i . By Lemma 7.4.13, the collection Uk

i has at most p/2

intervals and so at most p unmarked tips. Because each subsequent collection in

the sequence has one less unmarked tip and, by Lemma 7.4.13, no collection can

have p marked tips, c can be at most p − 1.

We now look into what must happen when two consecutive collections are

different. Take any k and let c be the largest number so that Uk
i = Uk+1

i = . . . =
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Uk+c
i , and suppose that a collection Uk+c+1

i is recorded by the processor i in the

execution. Let us now investigate what the difference is between the collections

Uk+c
i and Uk+c+1

i . We want to show that this difference is “big”. The value of

U11 in iteration k + c + 1 is equal to Uk+c
i , while the value of U28 is equal to

Uk+c+1
i . We consider all the ways in which the execution of the processor i may

proceed from line 11 until line 28 of iteration k + c + 1.

If the processor succeeded on the TAS, then it executes line 11 where an

interval is removed from U . By property (i), this interval has length that is equal

to at least half the length of a longest interval in Uk+c
i . Due to monotonicity

of subsequent operations in the iteration, the intervals in Uk+c+1
i combined have

fewer elements than the intervals in Uk+c
i combined by least half the length of a

longest interval in Uk+c
i .

Suppose on the other hand that the processor failed on the TAS, and so it

executes line 13. If the execution of lines 13 to 15 leads to a change in the value

of U , then, by Corollary 7.4.4, either the length of a longest interval in U15 is

smaller or equal to half the length of a longest interval in Uk+c
i , or the intervals

in U15 combined have fewer elements compared to Uk+c
i by at least half of the

length of a longest interval in Uk+c
i . Again, due to monotonicity, this relative

difference carries over to the difference between Uk+c
i and Uk+c+1

i .

Processor i could fail on the TAS and the execution of lines 13 to 15 does not

change U . Then U16 = Uk+c
i . Let j �= i be the processor that successfully TAS

to the cell x while working on an interval. Now we have two cases: either the
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processor j (with which i collided) worked in the same direction as i did or they

worked in different directions.

If the colliding processors i and j worked in different directions, then, by

Corollary 7.4.6, the intervals in U16 combined have fewer elements compared to

Uk+c
i by at least half of the length of a longest interval in Uk+c

i . Again, due to

monotonicity, the intervals Uk+c+1
i can only have even fewer elements. Suppose

that i and j worked in the same direction. Then we have that either the lines 18

to 19 changed the value of U or not. When U19 �= U18 then, by Corollary 7.4.8 and

Corollary 7.4.10, the intervals in U20 combined have fewer elements compared to

Uk+c
i by at least half of the length of a longest interval in Uk+c

i . If U19 = U18 then

we have that U21 = Uk+c
i . Consequently, if any interval of length 1 is removed

in line 21, then, by property (i), this interval is at least as long as half of the

length of a longest interval in Uk+c
i . Finally, assume that no interval of length

1 is removed. Since Uk+c+1
i is recorded, then i does not halt in line 22, and so

U23 = Uk+c
i . Then it cannot be the case that there is an unmarked tip, because

we assumed that Uk+c
i �= Uk+c+1

i . Hence a longest interval in U23 gets split, and

so Uk+c+1
i is equal to Uk+c

i except for a longest interval split into two halves.

Let us sum up the above study of the execution of the processor i from line

11 to line 28. When the collection Uk+c+1
i is different than the collection Uk+c

i

then: either the length of a longest interval in Uk+c+1
i is smaller or equal to half

the length of a longest interval in Uk+c
i , or Uk+c+1

i is equal to Uk+c
i except for a

longest interval being split into two halves, or the intervals in Uk+c+1
i combined
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have fewer elements compared to the intervals in Uk+c
i at least by half of the

length of a longest interval in Uk+c
i .

We now count how many times each of these three events can happen until

U becomes empty (in which case processor i must halt). Reduction of length by

the factor of 2 or more can happen at most log n times, the longest interval can

be split into two halves at most p log n times (because the number of intervals in

a collection is bounded by p/2), and at least a half of a longest interval can be

removed at most p (1 + log n) times. As a result U
p(log n+p log n+p(1+log n))
i = ∅, and

the result follows.

We are now ready to prove the main result of this section.

Theorem 7.4.15. The algorithm solves the Certified Write-All problem and has

work of O(n+ p4 log n); the combined number of cells of w that the processors set

to 1 is at most n + 4p3 log n.

Proof. Consider any execution of the algorithm. By Lemma 7.4.13 each proces-

sor performs a bounded number of iterations, and, by Corollary 7.4.12, when a

processor stops all cells of w have been set to 1. Hence the algorithm solves the

CWA problem.

We now argue about the work complexity of the algorithm. Let us fix a

processor and divide each of its iterations of the while loop into two parts. The

first part contains the instructions starting from the first TAS of the for loop until

but not including the last TAS of the for loop, while the second part contains
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all other instructions in the iteration (the second part has two discontinuous

sections of instructions). Note that all TAS in the first part are successful and

so the combined work of all processors on the first parts is O(n) (using a pointer

representation of the tuples) and at most n cells of the array w are set to 1 by

the p processors during the first parts. For any processor, the number of second

parts is equal to the number of iterations, which is bounded, by Lemma 7.4.14,

by p2 +p (2p + 1) log n. During each second part, at most one cell of w can be set

to 1, and so the p processors combined may set to 1 at most p3 + p2 (2p + 1) log n

cells of w in their second parts. Recall that, by Lemma 7.4.13, the number of

intervals in any collection during the execution is at most p/2 and so any second

part takes O(p) instructions to execute. Thus the combined work that processors

performed on the second parts is O(p4 log n). This completes the proof.

Theorem 7.4.16. The combined size of shared memory used by the processors

is O(n + p4 log n).

Proof. Note that instead of a tuple being TAS to locations of the array tab, each

processor can store a pointer to a tuple during any TAS operation. This tuple

can contain D and a pointer to U . Each processor generates as most O(p2 log n)

distinct U until it halts, and each U has size O(p).

7.4.4 Lower bound

We show a lower bound on work of any deterministic algorithm that solves

the CWA problem using Test-And-Set. When p = n, the bound is stronger than
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the one presented in the Theorem 3.5 of Buss et al. [24]. Our lower bound

generalizes techniques shown by Buss et al. in Theorem 3.1 and Theorem 3.5.

The main idea of the proof of our lower bound is that even if processors use the

Test-And-Set synchronization primitive, whenever a cell of the array w is 0, one

of the relatively fast processors has to eventually attempt to set the cell to 1, or

a fast processor performs arbitrary large amount of work. In the former case,

adversary can therefore stop processors from setting cells to 1, until large enough

number of processors try to set a cell to 1, and then the adversary can let only

this large number of processors set the cell to 1, thus ensuring small progress,

but high work.

Theorem 7.4.17. For any 3 ≤ p ≤ n, work of any deterministic algorithm

that solves the Certified Write-All problem and that uses Test-And-Set must be

Ω(n + p log p).

Proof. We shall design an execution of any deterministic algorithm that solves the

CWA problem, where processors will perform at least c(n + p ln p) basic actions,

where c will be an absolute constant that does not depend on n nor on p.

We schedule work of processors arbitrarily until there are exactly p cells of the

array w that remain to be set to 1. The rest of the execution will be divided into

phases numbered from p down to 1, so that at the beginning of phase u, exactly u

cells of w remain to be set to 1. We now define the execution inside a phase u. The

phase will consist of rounds. In any round we sequentially execute: a basic action
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of processor 1, then of processor 2, and so on until we execute a basic action of

processor p, unless a processor attempts to write 1 (possibly using Test-And-Set)

to a cell of the array w that is still 0, in which case we stop the processor before

the attempt, if it is not on hold already (we can detect if a processor will or will

not write 1 next, because the algorithm is deterministic). We schedule work of

processors in rounds in the way just described, and eventually we either: (i) reach

a round ku < n + p ln p at the end of which each processor is on hold and about

to write 1 to a cell of the array w that is still 0, or (ii) there are at least n+ p ln p

rounds in the phase. In the second case the result is trivial, because a processor

has performed n+p ln p basic actions in the phase, and so let us assume that this

case does not happen during any execution. At the end of round ku < n + p ln p,

there is a cell cu of the array w to which �p/u� processors are about to write

1, and this cell is still 0. We let these processors perform the write, one after

another, while all processors that are about to write to a cell other than cu are

still kept on hold. The execution of the phase so far results in at least p/u basic

actions being executed, and exactly one cell of the array w being changed from

0 to 1 (cells of shared memory other than w could have been modified as well

during the phase). At this moment, the phase u is over. We proceed scheduling

work of processors like this, phase after phase, until all p phases are over. When

p phases are over, the number of basic actions performed in the p phases is at

least p/p + p/(p−1) + . . .+ p/1 = pHp > p ln p. Therefore, work must be at least
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n − p + p ln p. Finally, we observe that when p ≥ 3, −1 + ln p > 0.05 ln p, and so

the result follows by setting c to 0.05.

The above lower bound is stronger than the one shown by Buss et al. [24] in

Theorem 3.5 in the case when p = n. Indeed Buss et al. shows that there is a

constant c > 0, such that work of any deterministic algorithm that solves Write-

All for p ≥ 3 processors and n ≥ 1 cells using Test-And-Set is bounded from

below by expression n + cp ln(n/2p). We will see that this expression is O(n).

There are two cases. The first case is when 2p > n. This means that ln(n/2p)

is negative, and so n + cp ln(n/2p) < n. The second case is when 2p ≤ n. Then

n/2p ≥ 1, and so ln(n/2p) ≤ n/2p. Thus p ln(n/2p) ≤ n/2. Combining the two

cases ensures that n + cp ln(n/2p) ≤ 3/2n, for any p ≥ 3 and n ≥ 1.

7.5 Conjecture on how to efficiently construct low-contention permu-

tations

This section presents a conjecture and supporting analysis indicating that it

may be possible to efficiently construct a list of q permutations on [q] such that

the list has contention O(q log2 q).

The algorithm AWT of Anderson and Woll uses lists of q permutations on [q].

We have seen that contention of a list used to instantiate the AWT algorithm

affects work of the instance. Specifically, it is desirable to produce lists with as

low contention as possible, because for any fixed number of processors n and

permutations q, work of an instance that uses a list decreases when contention
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of the list decreases. It is know that there exist lists with contention O(q log q)

but no known polynomial time in q construction of such lists exists. Kanellakis

and Shvartsman proposed [85] a way of creating a list of q permutations on [q]

in time polynomial in q. The authors conjectured that the lists have contention

O(q log q) but they provided no analysis. This section shows a partial analysis of

contention of the lists of permutations proposed by Kanellakis and Shvartsman.

Our result is hybrid as it includes analytical and empirical parts. The analytical

result shows that contention of the list with respect to a subset of permutations on

[q] is Θ(q log2 q). The empirical results provide evidence that our analysis covers

the worst case scenario. Therefore, we conjecture that the list of q permutations

on [q] of Kanellakis and Shvartsman has contention Θ(q log2 q).

7.5.1 Permutations of Kanellakis and Shvartsman

Definition 7.5.1. For any q > 0 such that q + 1 is prime, we define Dq =

〈δ1, . . . , δq〉 to be a list of q permutations δj(i) = ji mod (q + 1), i = 1, . . . , q.

7.5.2 Analytical bound

In this section, we show a bound on contention of Dq with respect to permu-

tations from a subset of all possible permutations on [q]. We start by showing an

upper bound on the number of left-to-right maxima for Dq.
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Let L(q, i) denote the number of left-to-right maxima in the permutation δi

of Dq. Let L(q) be the number of left to right maxima in all the permutations of

Dq, i.e., L(q) =
∑q

i=1 L(q, i). The next result shows the growth of L(q).

Theorem 7.5.1 ([27]). For any q > 0 such that q + 1 is a prime number,

L(q) =
3

π2
(q + 1)(ln(q + 1))2 + O(q ln q(ln ln q)2).

Theorem 7.5.1 gives a bound on contention of Dq with respect to the identity

permutation. The next theorem shows that the same bound applies to a subset

of permutations on [q].

Theorem 7.5.2. For any prime q + 1, contention of Dq with respect to any

δ ∈ Dq, is Cont(Dq, δ) = O(q log2 q).

Proof. Lemma follows from the fact that Dq is a subgroup of the symmetric group

of all permutations on [q], and from Theorem 7.5.1.

7.5.3 The conjecture and experimental support

We conduct an experimental study that leads us to a conjecture that L(q)

bounds contention of Dq from above.

We present the results of an exhaustive study where we evaluate contention

of Dq with respect to all permutations on [q]. The exhaustive search is performed

for each prime: 2, 3, 5, 7, 11, 13. For a given prime q + 1, we calculate contention

of Dq with respect to all permutations on [q]. Contention of Dq with respect to

any permutation is never greater than L(q) – the contention with respect to the
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identity permutation, see Table 1. For some permutations contention is equal to

L(q). The number of such permutations, |{δ on [q] : Cont(Dq, δ) = L(q)}|, is

given in the fourth column of the table; the last column shows the ratio of the

number to q!. Observe that the number of such permutations has to be at least

q (cf. Theorem 7.5.2).

q + 1 q! L(q) equal to L(q) ratio
2 1 1 1 1
3 2 3 2 1
5 24 9 8 0.33
7 720 17 12 0.016

11 3628800 37 60 0.000016
13 479001600 49 48 0.0000001
17 20922789888000 75 Still running Unknown

Table 1: Summary of exhaustive search.

In the exhaustive search, contention of Dq with respect to any permutation is

at most L(q), and the ratio of the number of permutations that yield contention

L(q) to q! diminishes as q grows. These observations lead us to the following

conjecture.

Conjecture 7.5.1. WISH: Cont(Dq) = L(q) = O(q log2 q).
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shared variables: f , array w[0, . . . , n − 1], array tab[0, . . . , n − 1] of {L, R} × 22N × 2N;
initially f = 0, w[x] = 0, tab[x] = 〈0, ∅, ∅〉, for x = 0, . . . , n − 1

COLLIDE
01 local variables: dir, U, D, dir′, U ′, D′, c, s, e, x, failed
02 U := {[0, n− 1]}, tips are unmarked unless explicitly marked
03 s := 0; e := n − 1; dir := R
04 while true
05 D := ∅
06 for x := s to/downto e
07 w[x] := 1 ; TAS(x)
08 〈dir′, U ′, D′〉 := tab[x]
09 if failed then goto 11
10 D := D ∪ {x}
11 if not failed then U := U \ D
12 else
13 if maxlen (U) > maxlen (U ′) then U := U ′ ∩ U
14 else
15 U := U ∩ U ′

16 if dir �= dir′ then U := U \ (D ∪ D′)
17 else
18 if D �= ∅ then U := U \ D
19 else U := U \ (D′ \ {x})
20 mark tip x of the interval in U that contains x
21 remove from U any interval of length 1 with a marked tip
22 if U is empty then set f to 1 and Halt
23 if tips of all intervals are marked then
24 let [a, b] be an interval among the longest ones in U
25 c := a + b−a+1

2 − 1
26 U := (U \ {[a, b]}) ∪ {[a, c], [c + 1, b]}
27 let s be an unmarked tip of an interval from U and e the other tip
28 if s ≤ e then dir := R else dir := L

TAS(x)
01 begin atomic
02 if tab[x].D is ∅ then
03 failed := false
04 tab[x] := 〈dir, U, D ∪ {x}〉
05 else failed := true
06 end atomic

Figure 4: Deterministic algorithm for the Certified Write-All problem for an
asynchronous shared memory machine as executed by any processor.
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Figure 5: This figure illustrates the definition of regular and monotonic collections
of intervals. In the example above, we have three collections U1, U2, and U3 of
intervals of cells. These collections are regular for the following reasons. Any
collection has intervals which lengths are powers of two, and which differ by factor
of 2. Any two intervals from any two distinct collections are either disjoint, or one
is contained in the other. If one is contained in the other, then the subset must
be properly aligned i.e., the subset must be equal to one interval among a power
of two equi-length intervals that partition the superset. Note that collections
U1, U2 are monotonic, because for each interval of U2 there is a superset interval
in U1. On the other hand, collections U2, U3 are not monotonic, because there is
no interval in U2 that contains interval I3,2.
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Lemma 7.4.5

Lemma 7.4.7

Lemma 7.4.9
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Figure 6: This figure illustrates the assumptions of Lemmas 7.4.5, 7.4.7, and
7.4.9.



Chapter 8

Conclusions and future work

The thesis presented how distributed devices that are disconnected for long

and unknown periods can efficiently perform a set of tasks. Specifically, the

thesis considered n distributed devices that must perform t independent tasks,

known to each device. The goal was to schedule work of the devices locally,

in the absence of communication, so that when communication is established

between some devices at some later point of time, the devices that connect have

performed few tasks redundantly beyond necessity. The thesis showed a lower

bound of a2/(t− b + a) · (1 − (t − b)/(an − a)) on the number of tasks wastefully

performed by at least two devices when they establish communication after having

performed a ≤ b tasks. The bound shows that wasted work must increase as the

devices progress in their work. The thesis showed deterministic and randomized

constructions that will allow all devices to avoid wasting work nearly optimally.

Specifically, for any group of h devices, when each of them has performed a tasks

161
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at the moment when they establish communication, worst-case wasted work of the

devices in the group is at most
(

h
2

) · a2/t · (1 + O(t−ε + h−1)). One of the insights

that this thesis offers is that when any disconnected device randomly selects its

next task, from among the tasks remaining to be done, then this device will

avoid duplicating the work of other devices quite well. The thesis uses, and is

related to, several mathematical theories. Techniques from design theory, linear

algebra, and graph theory have been applied to derive deterministic constructions.

The distributed scheduling problem studied in the thesis is related to the sphere

packing problem. The solutions give rise to a construction of latin squares with

specific uniformity properties. The lower bound generalizes the Second Johnson

Bound of coding theory.

In addition, the thesis studied scheduling algorithms for shared memory sys-

tems. The thesis investigated algorithms for the Certified Write-All problem.

The thesis demonstrated how to create near-optimal instances of the Certified

Write-All algorithm called AWT that was introduced by Anderson and Woll,

and that the choice of the number q of permutations used by instances of the

AWT algorithm is critical for obtaining an instance of the AWT algorithm with

near-optimal work. The thesis also showed a work-optimal deterministic algo-

rithm for the asynchronous Certified Write-All problem for a nontrivial number

of processors p ≤ (n/ log n)1/4.

There are several follow-up directions on the work presented in the thesis.

Our research presented in Chapters 4,5 and 6 makes some assumptions that may
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not be valid in practice, and it would be interesting to research how to remove

these assumptions. Specifically, the techniques presented in the thesis assume

that each device knows all tasks at the beginning of computation. This may

be unrealistic, for example, when the description of all tasks takes substantial

amount of space and consequently it may be too costly to distribute all tasks to

each processor at the beginning of computation. Hence, it would be interesting to

look into techniques of efficient distribution of tasks to processors. In addition,

the thesis assumed that processors may establish communication after having

performed an arbitrary number of tasks (total asynchrony). In practice it may

be the case that the number of tasks performed by reconnecting processors could

be approximated well by a “well-behaved” random variable. This information

seems to be important for mechanisms for distribution of tasks.

It seems that it is possible to reduce the space complexity of the algorithm

presented in Section 7.4.1 by modifying data structures. Specifically, instead of

creating a new U during each iteration, one could try to reuse the parts of U that

have not changed since the prior iteration. This should decrease space complexity,

but may increase work complexity as the new representation of U may be more

“dispersed”. It should be possible to tighten the analysis of work complexity by

further exploring the information flow between processors. It seems possible that

the actual work complexity of the algorithm is O(t + p3 log t).

There are several research directions following the results presented in Sec-

tion 7.3.2. Any AWT algorithm has a progress tree with internal nodes of fanout
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q. One could consider generalized AWT algorithms where fanout does not need

to be uniform. Suppose that a processor that visits a node of height i, uses a

collection Ri
q(i) of q(i) permutations on [q(i)]. Now one could choose different

values of q(i) for different heights i. Does this technique enable any improvement

of work as compared to the case when q = q(1) = . . . = q(h)? What are the

best values for q(1), . . . , q(h) as a function of n? Suppose that we are given a

relative cost κ of performing a write to the cell of the array w, compared to the

cost of executing any other basic action. What is the shape of the progress tree

that minimizes work? These questions give rise to more complex optimization

problems, which would be interesting to solve.
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